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HETEROGENOUS ITERATED LEARNING 3

Abstract

How does the process of information transmission affect the cultural or linguistic products

that emerge? This question is often studied experimentally and computationally via

iterated learning: a procedure in which participants learn from previous participants in a

chain. Iterated learning is a powerful tool because, when all participants share the same

priors, the stationary distributions of the iterated learning chains reveal those priors. In

many situations, however, it is unreasonable to assume that all participants share the same

prior beliefs. We present four simulation studies and one experiment demonstrating that

when the population of learners is heterogeneous, the behavior of an iterated learning chain

can be unpredictable, and is often systematically distorted by the learners with the most

extreme biases. This results in group-level outcomes that reflect neither the behavior of

any individuals within the population nor the overall population average. We discuss

implications for the use of iterated learning as a methodological tool as well as for the

processes that might have shaped cultural and linguistic evolution in the real world.

Keywords: Iterated learning; language evolution; cultural evolution; inductive biases;

Bayesian cognition
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HETEROGENOUS ITERATED LEARNING 4

When extremists win: Cultural transmission via iterated learning when populations are

heterogeneous

What makes humans unique? Long debated and much discussed, this question is not

fully resolved within the field, although most agree that it is a complex combination of our

social abilities, our linguistic skills, and our rich cultural history (Gintis, 2011; Hermann,

Call, Hernandez-Lloreda, Hare, & Tomasello, 2007; Pinker & Jackendoff, 2005;

Scott-Phillips, 2014; Sperber, 1996; Tomasello, 1999). All of these proposals are related in

some way to our ability to learn from others and then transmit that information across the

generations. Our social skills are probably one of the key mechanisms by which such

transmission occurs, and our language and cultural history are both a result and a cause of

such transmission. Therefore, understanding what dynamics govern the process and

outcome of such transmission is crucial to understanding human cognition.

Even if one accepts that understanding transmission is important, it is far from clear

how, to what extent, and why. One of the most elemental questions is what aspects of our

language or culture are shaped by the people involved in the transmission and what are

shaped by the process of transmission itself. For instance, some have argued that the

characteristics of our language or culture are shaped by the fact that people have to learn

them (Christiansen & Chater, 2008; Deacon, 1997; Kemp & Regier, 2012; Pinker, 2003;

Pinker & Bloom, 1990). Whether the brain was also evolutionarily selected for this

learning (Pinker, 2003) or not (Christiansen & Chater, 2008), all of these theories center on

the idea that it is through the process of learning that people (especially children) make a

mark on the products of subsequent generations: the aspects that are easily learned are

those that are more likely to be transmitted to the next generation.

Another view suggests that it is the process of transmission itself – not just the nature

of our minds – that shapes our language and culture. For instance, perhaps linguistic and

cultural products have evolved certain characteristics as an adaptation to the fact that

they must be transmitted from person to person and generation to generation over a finite
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HETEROGENOUS ITERATED LEARNING 5

and noisy channel (Kirby, 2001; Kirby, Tamariz, Cornish, & Smith, 2015). Of course, it is

entirely possible that they are shaped by both. If that is the case, it is important for

researchers to precisely establish and evaluate how each of these factors might trade off.

One key framework for thinking about and disentangling these two factors is known

as iterated learning, shown schematically in Figure 1. Iterated learning is a particular kind

of cultural transmission in which behavior arises in one individual (or generation) by

learning from the observations of the previous person (or generation) who acquired that

behavior in the same way (Kirby, Griffiths, & Smith, 2014). As more and more people (or

generations) join the chain, we can study the characteristics of the language or the culture

that emerges through this process. As a methodology, the technique is old (Bartlett, 1932),

but with increases in the mathematical, computational, and experimental sophistication in

its application, it has become considerably more popular in the past decade.

Although the iterated learning framework is abstract enough to be applicable to the

evolution of any kind of cultural knowledge, it has proven especially useful as a way to

study the evolution of language. One of the first applications of the paradigm, replicated

many times both experimentally and computationally, was to demonstrate that the process

of transmission can cause the emergence of compositionality. That is, one can evolve

structured languages – in which different parts of an expression map systematically onto

different aspects of meaning – simply by requiring them to be learned and transmitted

from person to person. Several elements are necessary for the emergence of

compositionality (Kirby et al., 2015). First, there must be a bottleneck or pressure for

compression: otherwise languages will become holistic, with distinct, unstructured symbols

for each possible meaning rather than structured components whose elements each map

onto a part of meaning (Brighton, Kirby, & Smith, 2005; Fay & Ellison, 2013; Kirby,

2000). Second, there must be some kind of pressure for expressivity: otherwise languages

will tend to become degenerate, with multiple meanings expressed with the same symbols

(Kirby, Cornish, & Smith, 2008; Perfors & Navarro, 2014; Silvey, Kirby, & Smith, 2014).

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



HETEROGENOUS ITERATED LEARNING 6

Another application of the iterated learning paradigm is to explain the emergence of

regularity in language. Human languages contain a great deal of variation, but that

variation is not unpredictable: rather, it is conditioned on phonological, sociological,

semantic, or pragmatic factors; truly unconstrained variation is rare or non-existent

(Chambers, Trudgill, & Schilling-Estes, 2003; Givòn, 1985). Confusingly, individual adult

learners appear to show little or no bias for regularization (Hudson Kam & Newport, 2005;

Vouloumanos, 2008). If people show little tendency to regularize, how and why do

languages evolve to be so regular? The iterated learning framework suggests an answer:

models and experiments both demonstrate that weak biases for regularity can be amplified

by the process of transmission (Morgan & Levy, 2016; Reali & Griffiths, 2009; Smith et al.,

in press; Smith & Wonnacott, 2010). This is because at each stage of transmission, a weak

bias creates an asymmetric pressure in the direction of the bias. Even if each step is small,

the effect after many generations is for the bias to be greatly exaggerated and for

irregularities to be evened out.

In addition to insights such as these, another advantage of iterated learning is that

the abstract behavior of iterated learning chains can be characterized mathematically. One

powerful and influential set of results uses the connection between iterated learning designs

and the theory of Markov chains to show that under certain assumptions, iterated learning

chains will converge to a distribution that depends only on the learners’ priors and the size

of the bottleneck (Griffiths & Kalish, 2007; Rafferty, Griffiths, & Klein, 2014). These

analyses all presume that the people in the chain are Bayesian, combining the data they

receive from the previous generation with their priors according to Bayes’ theorem.1 On

the basis of this mathematical result, iterated learning paradigms have been used in order

to reveal what inductive biases people bring to different tasks, including function learning

1It is worth noting that in this context, the presumption that people are Bayesian need not be synonymous

with a claim that people are rational or optimal. Rather, it refers to a much weaker claim: that their behavior

can be described using Bayes’ rule, as discussed in Tauber, Navarro, Perfors, and Steyvers (2017).
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HETEROGENOUS ITERATED LEARNING 7

(Kalish, Griffiths, & Lewandowsky, 2007), visual working memory (Lew & Vul, 2015),

reasoning about everyday events (Lewandowsky, Griffiths, & Kalish, 2009), and category

learning (Canini, Griffiths, Vanpaemel, & Kalish, 2014).

The analyses of Griffiths and Kalish (2007) are both fascinating and useful, but they

raise a natural question: how do the convergence properties of the chain depend on the

mathematical assumptions involved? There has been some work exploring this issue. For

instance, we know that chains only converge to the shared prior if people at each

generation produce their output by sampling from their posterior distributions; if instead

they simply select the hypothesis with the highest posterior probability, then it will tend to

exaggerate the prior (Kirby, Dowman, & Griffiths, 2007). Exactly how much it does so

depends on how much data people at each generation see: less data result in greater

exaggeration of the prior. This explains both why the presence of a bottleneck changes the

outcome of an iterated learning chain, and how weak biases can be magnified through

iterated learning. Moreover, iterated learning chains don’t always converge to something

like the prior or an exaggeration thereof. For instance, all of the previous results have made

the assumption that the only input to each person is the previous person in the chain, and

that each person generates output without reference to the environment around them.

However, we don’t use language in a vacuum; we use it to talk about things and events in

the world. If one changes the mathematical assumptions to reflect this insight, then the

convergent state of the iterated learning chain more closely resembles the posterior

distribution over hypotheses given the distribution of things or events in the world (Perfors

& Navarro, 2014).

The possibility that iterated learning chains do not always converge to the prior may

cast doubt on those studies which use iterated learning to make inferences about the

inductive biases people bring to different problems (Canini et al., 2014; Kalish et al., 2007;

Lew & Vul, 2015; Lewandowsky et al., 2009). However, many of these studies do not

include anything like an external environment: the assumption that all data are generated
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HETEROGENOUS ITERATED LEARNING 8

by people without reference to the world, inapplicable though it may be to some aspects of

real language learning, might appropriately apply in those laboratory experiments. It does

raise the question, though, of whether any of the other theoretical assumptions are critical

to the idea of convergence to the prior.

Here we investigate the implications of the assumption that all individuals share the

same priors and likelihoods. One might assume that this kind of homogeneity shouldn’t

matter: that “convergence to the prior distribution” when priors are heterogeneous should

simply mean that the outcome of iterated learning reflects the distribution of prior beliefs.

For instance, if 10% of people put all of their belief in hypothesis A and 90% of people put

all of their belief in hypothesis B, one might assume that the convergent distribution will

consist of 10% A and 90% B. Alternatively, one might assume that the chains will average

over the priors, resulting in a convergent distribution concentrated on a hypothesis between

A and B.

In this paper we demonstrate that neither of these situations necessarily occurs. If

people do not share the same priors, iterated learning does not converge to the prior in any

meaningful sense (not even the average). In fact, the stationary distribution to which it

does converge is disproportionately influenced by the most biased learners. The same thing

occurs when priors are homogeneous but likelihoods are heterogeneous. This has important

implications for the interpretation of studies that use iterated learning to draw inferences

about people’s inductive biases: such experiments may be reflecting the biases of only some

of the learners, and distorting even those. It also has important implications for

understanding cultural and linguistic change more generally. Perhaps many of the cultural

products that we use today may have been shaped by a minority of learners to whom the

rest of the population adapts.

Is this really a worry? Do people actually vary substantially in their priors or

likelihoods, particularly in domains like language learning? We would argue that it is, and

they do. Indeed, although there may be a few situations where people have roughly
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HETEROGENOUS ITERATED LEARNING 9

homogeneous priors and likelihoods, we suggest that it is those situations that are a

minority. Rather, we argue that most situations involving humans involve substantial

individual differences, and that they are reflected mathematically in heterogeneity of priors

and likelihoods.

To see this, consider what it means to specify a prior or likelihood. Mathematically,

the prior p(h) corresponds to the weighting an individual puts on the hypotheses in their

space before having seen data relevant to the learning situation, while the likelihood p(d|h)

does incorporate those data. Thus, the prior captures anything that results in a different

weighting of hypotheses at the beginning of a learning situation. Individual differences in

memory, attention, executive function, motivation, intelligence, or previous experience thus

all have the potential to translate to individual differences in priors because they all have

the effect of making different hypotheses more easily accessible, manipulable,

conceptualiseable, or useable to some people and not others. The likelihood captures not

just the effective data available to the learner (which can be influenced by individual

factors such as perception or attention), but also any assumptions made by learners about

the data generation process (which can be influenced by factors such as confidence or

sampling assumptions).

Individual differences in these factors are ubiquitous. The literature robustly

documents substantial variation in intelligence (Deary, Whalley, Lemmon, Crawford, &

Starr, 2000), working memory (Barrett, Tugade, & Engle, 2004; Unsworth & Engle, 2007),

executive functioning (Miyake & Friedman, 2012), information processing style (Epstein,

Pacini, Denes-Raj, & Heier, 1996; Humphreys & Revelle, 1984), learning (Ackerman, 1987;

Greenwald, McGhee, & Schwartz, 1998), and decision making (de Bruin, Parker, &

Fischhoff, 2007; Stanovich & West, 1998), among many other things. All of these sources of

variation have the potential to translate to effectively different hypothesis weights.

Within the domain of language, individual differences are also more the norm than

the exception. For instance, a recent review paper references hundreds of articles
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HETEROGENOUS ITERATED LEARNING 10

documenting how a wide range of individual differences contribute to differences in

language acquisition (Kidd, Donelly, & Christiansen, in press). These include differences in

phonological perception, visual word recognition, syntactic knowledge, prior linguistic

experience, working memory, long-term memory, executive attention, efficiency of lexical

access, richness of linguistic input, and statistical learning. Most of these things would be

expected to manifest as differences in the priors, because they reflect properties of the

individual’s mind rather than anything to do with the data or assumptions about the data

generation process. Moreover, even the most staunchly nativist proponent of Universal

Grammar would strongly endorse at least one source of prior heterogeneity: the difference

between child and adult learners.

Overall, individual differences are more the rule than the exception across nearly all

domains of cognition, and in many if not most situations these differences may be realised

or translated as differences in prior beliefs. Precisely characterising what those differences

are and how they translate to priors is far beyond the scope of this paper – indeed, it is the

work of decades. Our focus here is more narrow: when there is variability in priors between

people, how does this affect the shape of the distribution that emerges via iterated

learning? Given the mathematical generality of the underlying framework, our work is

relevant to any situation in which heterogeneous populations of learners transmit data to

each other, encompassing (at least in principle) circumstances as divergent as linguistic

evolution, the transmission of mathematical knowledge across generations, or what

happens in a chain of gossip among friends.

We begin with four simulation studies that highlight how iterated learning chains

behave when there are learners with qualitatively different biases, across a variety of

situations and within a variety of formalizations. Although details vary, one commonality

we observe is that learners with stronger biases have a disproportionate effect on the

convergent distribution; to what extent that qualitatively alters the results depends on

factors including the nature of the bottleneck and the overall composition of the rest of the
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HETEROGENOUS ITERATED LEARNING 11

populations. We follow the simulations with an illustrative empirical investigation which

demonstrates that these effects are substantial enough to make iterated learning untenable

as a methodological tool when large individual differences exist.

How do heterogeneous iterated learning chains behave?

This section outlines four simulations, each of which illustrates a different issue. Our

first example investigates regularization of a simple rule, and illustrates that learners with

stronger biases have a larger influence on language change. The second example examines a

jury decision making scenario and illustrates how miscalibrated Bayesian learners can

exhibit “groupthink” behavior. Our third example is a categorization problem that relies

on more complex psychological models, illustrating how iterated learning can distort

learners’ priors when individual differences are present. The final case study presents a

systematic exploration of several different factors that might affect the behavior of a

heterogeneous iterated learning chain.

Case study 1: Who is responsible for regularization?

Do all learners have equal influence on the process of linguistic and cultural

evolution? We consider this question in the context of the emergence of regularities over

time. Although in the abstract this situation occurs in a variety of domains – categories

with or without exceptions, constructions with or without irregularities, decision strategies

with or without variants – it arises especially often with regards to linguistic evolution:

when, how, and why do regular grammatical or morphological constructions emerge?

One possible source of heterogeneity is that some learners might have strong

opinions about a particular rule or construction, whereas others might have weak

opinions. Exactly who has which opinion might vary with the particular linguistic context

and construction involved: for instance, children may have a bias for regularization that

adults do not share (Hudson Kam & Newport, 2005), but adult second-language learners

may have biases based on transfer from their first language while children do not (Ellis,
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HETEROGENOUS ITERATED LEARNING 12

2015). We are fairly agnostic at this point about what such biases might be; all that

matters for the present purposes is that it is plausible that there are individual differences

in the strength and nature of at least some learning biases. Our question is what effect this

might have on the nature of the evolved language or cultural product.

To study this, consider the following iterated learning experiment. Participants are

presented with utterances in an artificial language that may incorporate a grammatical

feature (e.g., pluralization rule, case marking etc). After training, participants are asked to

produce new utterances in this language, and then these utterances are presented as the

input to the next learner in the chain. This procedure is relatively typical for linguistic

iterated learning experiments, and it corresponds to a simple Bayesian model (Ferdinand,

Kirby, & Smith, 2014; Reali & Griffiths, 2009; Smith & Wonnacott, 2010).

The model for the task can be constructed as follows. If θ denotes the probability

that the grammatical rule in question should be followed for a novel utterance in the

language, then the learner needs to estimate this unknown probability. A Bayesian analysis

uses a prior distribution P (θ) to describe the inductive biases that the participants bring to

the experiment, and a standard choice in this scenario is to assume that the prior can be

described using a Beta(a, b) distribution in which

P (θ) ∝ θa−1(1 − θ)b−1

The learners with strong and weak biases can be captured by different priors. In

our simulations we formalize learners with a strong bias using a Beta(1,10) prior and

learners with a weak bias with a Beta(2,1) prior. In this scenario, the biases of the two

learner types point in different directions, though this need not be true in general.

Regardless of the biases the learner brings to the experiment, it is assumed that belief

updating follows Bayes’ rule. After completing a training session in which x of the n

sentences presented to them follow the rule, the posterior distribution P (θ | x) is given by

P (θ | x) ∝ P (x | θ)P (θ)
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HETEROGENOUS ITERATED LEARNING 13

where P (x | θ) ∝ θx(1 − θ)n−x describes the probability of observing x out of n cases

satisfying the grammatical rule given that the true probability is θ. Under these

assumptions, the posterior over θ is a Beta(a + x, b + n − x) distribution. When asked to

generate a novel sentence for the next learner, a Bayesian learner might choose to sample a

value of θ from their posterior, and their sentences would satisfy the grammatical rule with

probability θ. More formally, the number of generated sentences y that satisfy the rule is

sampled from the posterior predictive distribution P (y|x):

P (y|x) =
∫

1

0

P (y|θ)P (θ|x)dθ

This model is a standard tool when investigating regularization in iterated learning chains

(Ferdinand, Thompson, Kirby, & Smith, 2013; Reali & Griffiths, 2009). The posterior

predictive distribution supplies the transition probabilities for an iterated learning chain: if

the ith participant is presented with x out of n utterances that follow the grammatical rule,

then P (y|x) describes the probability that they will produce y out of n rule-satisfying

utterances; these are the utterances that will be presented to participant i + 1.

It is natural to expect that the inductive biases of learners will influence the

responses that they produce in an artificial language learning experiment. This is

illustrated in Figure 2, which plots the distribution over rule-consistent responses y that we

would expect to observe, as a function of two things: the number of rule-consistent training

items x plus the nature of the learner (weak or strong). The weak learners have a weak

bias to impose the grammatical rule, as illustrated by the fact the response distributions

are all shifted slightly to the right hand side of the plots: on average, these learners

produce rule-consistent responses slightly more often than they received in the input (i.e.,

y > x). In contrast, the strong learners, who have a strong bias against the rule, find the

rule hard to acquire. As a consequence they tend to produce far fewer rule-consistent

responses in their output than they receive as input (i.e., y < x).2

How effectively can iterated learning methods reveal these inductive biases? To

2One could perform the same simulation but with weak learners who have a bias against the rule and
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HETEROGENOUS ITERATED LEARNING 14

answer this question we simulate the results of three different kinds of iterated learning

experiments. In all cases, the first person is taught 10 sentences in an artificial language, 5

of which are consistent with a grammatical rule and 5 of which are not; they then generate

10 sentences that are then used as input for the next learner; and so on for a sequence of 20

language learners. In the first experiment all learners are weak with the kind of

grammatical rule being taught, and in the second experiment all learners are strong. In

the third experiment, half of the learners are weak and half are strong. In each case

results are aggregated across 100,000 simulated iterated learning chains.

The results are shown in Figure 3. When all learners share the same inductive biases,

an iterated learning experiment transparently reveals those biases. This is illustrated in the

left and middle panels of Figure 3. In the top left panel we see that the weak learners

tend to regularize: the proportion of rule-consistent responses rises from the initial value of

50% towards the 67% probability that the learners expect. Similarly, the iterated learning

chain consisting purely of strong learners moves in the opposite direction, quickly

converging to only 9% of responses being consistent with the rule, again reflecting the prior

bias that these learners possess. The bottom left and bottom middle panels illustrate that,

after 20 iterations, the distribution of responses accurately reflects the priors.

So far this is precisely the pattern of results described by Griffiths and Kalish (2007):

iterated learning reveals the prior. However, when we consider the iterated learning

experiment conducted with a mixed population (right panels of Figure 3), we observe a

strikingly different result. In this situation – where half of the learners are weak and half

are strong – the average bias in the population is to expect 38% of sentences to be

rule-consistent. Yet, as the top right panel shows, the iterated learning chain converges to

a smaller number, with only 27% of responses following the rule. More importantly, as the

bottom right panel reveals, the distribution of responses bears very little resemblance to

strong learners who have a bias to learn it. In that case, the interpretation of the bias would be different

but everything else would be identical.
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HETEROGENOUS ITERATED LEARNING 15

the underlying population biases. One might have hoped that, when learners bring

different priors to an iterated learning experiment, the chain would converge to a weighted

average of their priors. In this case, this weighted average would be a 50-50 mixture of the

priors of weak learners and strong learners, which is shown by the dots-and-lines. As

the figure illustrates, the iterated learning chain (histogram) does not converge to anything

even remotely similar to this mixture distribution.

Why does the iterated learning procedure fail to reveal “the prior” when the

population is heterogeneous? An answer to this question can be found by separating the

responses by learner type, shown in Figure 4. The left hand side of the plot shows the

response distributions produced by weak learners in the mixed chain; they do not look at

all similar to the responses that they would have produced in a homogeneous chain.

Instead of converging to their own prior bias, which would give rise to 67% rule consistent

responses, their responses are very strongly influenced by the the biases of the strong

learners, and as a result their responses are rule-consistent 36% of the time. However, this

effect is not symmetric: the influence of the weak learners increases the number of

rule-consistent responses of the strong learners by a much smaller amount, from 9% to

17.5%. The distributional effects shown in the lower panels are even more pronounced: by

the final iteration of the experiment, a strong learner can be expected to sample

responses from a distribution that is not markedly different from their prior, but the

responses produced by a weak learner are drawn from a distribution that is qualitatively

different from both their prior and the group’s average prior.

As this simple example illustrates, when individual differences exist an iterated

learning procedure is not guaranteed to reveal the inductive biases of the learner in any

meaningful sense of the term. The reason this occurs is that the strong learners apply a

very strong inductive bias: the Beta(1,10) prior that they bring to the learning problem

ensures that these learners require a lot of evidence before they are willing (or able) to

apply the grammatical rule in question, and as a consequence data generated by a weak
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HETEROGENOUS ITERATED LEARNING 16

learner will have minimal ability to sway such a person. The reverse does not hold: the

weak learners in this scenario adopted a Beta(2,1) prior that ensures they have a prior bias

to expect a grammatical rule, but this bias is weak and these learners are very responsive

to external input. As a result, a weak participant makes a much larger adjustment from

the prior than does an strong one, with the consequence that the overall behavior of the

mixed chain is much more heavily driven by the group with the strongest bias.

This result is robust, perhaps also underwhelming: after all, these average responses

are different from the averaged priors but not strikingly so, and the overall proportion of

rule-consistent responses has not changed a great deal. However, consider what happens

when the vast majority of the population consists of completely unbiased learners with a

Beta(1,1) prior but 5% consists of learners with a Beta(100,1) prior that strongly favors

adopting the rule. In that situation, shown in the top row of Figure 5, the population-level

response appears far more extreme than the vast majority of learners, following the rule

almost 80% of the time (left panel). The middle and right panels show that this is because,

as previously, the less extreme Beta(1,1) learners systematically adopt the rule far more

than their prior would suggest they do. The more extreme Beta(100,1) learners

under-adopt relative to their prior, but not as much, so the population average behaviour is

distorted.3

Some readers may have noticed one apparent discrepancy between our results and

other work showing that the long-run behaviour of iterated learning chains such as these is

toward complete regularization and full adoption of a rule or pattern (Reali & Griffiths,

3Interestingly, the output of the iterated learning chain also does not converge to a weighted population

average in which weights correspond to strength of belief. We tested this by weighting each learner propor-

tional to the number of prior pseudo-observations; thus, a weighted mixture of a Beta(98,2) and a Beta(1,49)

would assign twice as much weight to the former than the letter. The chain slightly undershot this value.

It would be possible to calculate weights in other ways (e.g., entropy of priors, etc) but for space reasons

we omit a fuller exploration of these possibilities. In any case it is clear that the nature of the convergent

distribution is not obviously predictable.
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HETEROGENOUS ITERATED LEARNING 17

2009; Smith & Wonnacott, 2010). The reason we do not observe that here is that so far we

have assumed that learners sample their hypotheses from the posterior distribution rather

than picking the one with the highest posterior probability. This latter process, known as

MAP learning, has been shown to exaggerate the prior (Kirby et al., 2007).

What happens to an iterated learning chain with a mixed population of MAP learners

with a heterogeneous set of priors? The bottom row of Figure 5 explores this question with

a population identical to the top row but making the assumption that the learners produce

output by selecting the hypotheses that maximize posterior probability rather than

sampling from the posterior distribution. It is clear that the amount of distortion caused

by the tiny 5% minority of extremists has been exaggerated even further: even though only

a few have any bias towards the rule at all, it is enough to produce almost complete

adoption of the rule by all learners by the 100th iteration of the chain. This result is

especially interesting in light of previous work suggesting that iterated learning can result

in full regularization even if everyone in the population has only weak priors for

regularization (Smith & Wonnacott, 2010). Our result suggests that regularization can

emerge even if the vast majority of individuals in the population are not biased at all to

regularize. More broadly, the theoretically interesting implication of this entire case study

is that as long as there are different people in a population with different biases, it is those

with the stronger ones that have a disproportionate effect on the resulting language.

Depending on the rule or construction involved, such people might be children, adult

second language learners, or individuals from a culturally dominant subgroup.

How much do these results stem from the particular details of our formalization? To

address this question, the next case study considers another kind of heterogeneous

population in which people differ in the degree to which they depend on their own

reasoning rather than relying on others. This technically corresponds to heterogeneity in

likelihoods rather than priors, but as we shall see, the effects are similar: the resulting

distribution is disproportionately shaped by some agents over others.
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HETEROGENOUS ITERATED LEARNING 18

Case study 2: Phrenology, forensics and the overconfident crowd

Communities of learners often arrive at beliefs that seem entirely unfounded in

evidence Examples include the widespread belief in phrenology in the 19th century

(Faigman, 2007), disproportionate trust in unreliable forensic methods (PCAST, 2016),

beliefs in conspiracy theories (Goertzel, 1994), and “groupthink” that plagues decision

making processes (Janis, 1982). How do these false beliefs arise? Do they necessarily reflect

an overly-credulous form of reasoning that all humans are equally susceptible to, or can an

entire community of mostly well-calibrated learners be misled by a small number of highly

biased learners?

To illustrate how this might work, consider the following scenario in which a jury of

12 people begin their deliberations with a straw poll. A notepad is passed around the

room, with each person writing down whether they would decide in favour of the plaintiff

or the defendant before removing their sheet of paper and passing the pad to the next

juror. Unfortunately, it turns out that paper on the notepad is rather thin, and each juror

can clearly read the indentations left by the previous person. Therefore, the straw poll

forms an iterated learning chain in which each juror receives input from the previous one.

Clearly, the flawed notepad creates a situation that violates the independence of the

juror votes in the straw poll, but does it distort the overall results? To answer this, we

consider the behavior of a simple Bayesian juror. The juror considers two hypotheses,

namely that the evidence favors the plaintiff (e = 1) and that it favors the defendant

(e = 0). On the basis of their personal evaluation of the evidence at trial, the juror believes

that the outcome should favor the plaintiff with probability θ. This belief sets the juror’s

prior belief, P (e = 1) = θ, a belief that is updated when the notepad is passed to them and

the vote v of the preceding juror is inadvertently revealed. The juror unconsciously assigns

a reliability r value to the previous person, such that P (v = 1|e = 1) = P (v = 0|e = 0) = r,

and updates their beliefs accordingly. If the preceding juror voted for the plaintiff, the
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HETEROGENOUS ITERATED LEARNING 19

current juror’s posterior degree of belief that the verdict should favor the plaintiff becomes

P (e = 1 | v = 1) =
rθ

rθ + (1 − r)(1 − θ)
(1)

whereas if the earlier vote favored the defendant, this posterior probability becomes

P (e = 1 | v = 0) =
(1 − r)θ

(1 − r)θ + r(1 − θ)
(2)

For simplicity, we assume that the juror generates their own vote probabilistically, by

sampling from the posterior distribution: if the juror’s posterior indicates that there is a

95% probability that the evidence favors the plaintiff, then they vote in favor of the

plaintiff with probability 0.95. As these equations illustrate, when r = 0.5 the current juror

completely ignores the vote provided by the previous one and the posterior probability is

identical to the prior. This arises naturally when the current juror is confident that their

existing beliefs incorporate all relevant information about the case, and as such the

opinions of other jurors can have no influence upon their own beliefs. We refer to such a

juror as a goat – someone who forms their own view and is not led to conclusions by the

opinions of others. In contrast, suppose the juror is underconfident about their beliefs,

perhaps suspecting that other jurors have access to different information. Such a juror will

set r > 0.5, because they attribute evidentiary value to the opinions of others, and we refer

to this kind of a juror as a sheep because they are more likely to adjust their vote to agree

with the votes of others. Note that sheep in this case are mis-calibrated: since the juror

next to them saw no different evidence than they did, by taking their opinion into account

they are treating non-independent data (the evidence in the trial and the neighbouring

juror’s belief) as independent and overweighting that evidence. What happens in this case?

We consider three scenarios for how this straw poll may play out. In the first scenario

all jurors are goats who set r = 0.5 and have a modest opinion in favor of the defendant

(θ = 0.4). In the second scenario all jurors are sheep who set r = 0.9 and have a modest

opinion favoring the plaintiff (θ = 0.6). Finally we consider a situation where half of the

jurors are sheep and the other half are goats. To illustrate what happens in these
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HETEROGENOUS ITERATED LEARNING 20

situations we simulated each scenario 100,000 times. The results are plotted in Figure 6.

Not surprisingly, because the goat jurors ignore the input and generate responses directly

from their own prior beliefs, the “chain” starts at their prior (on average, 40% of jurors

vote for the plaintiff) and the total number of votes in favor of the plaintiff follows a

binomial distribution.

What should we expect to see if all jurors are sheep? One reading of the literature

suggests that, since iterated learning chains of Bayesian learners converge to the prior, and

since the first sheep samples from their own prior, we should see a result not dissimilar to

the one we see for goats. That is – while we might expect to see non-independence among

successive jurors – we should find that on average a sheep juror should vote for the

plaintiff 60% of the time, in accordance with their priors. However, as the middle column

to Figure 6 illustrates, this is emphatically not what happens. The first juror does indeed

vote in accordance with their priors, but by the time the 12th juror is polled, the

probability of voting for the plaintiff has risen to about 67%. Moreover, it is very simple to

prove that this is not a simulation error. A pure iterated learning chain of sheep does not

converge to the prior in any meaningful sense. The long-run probability of a sheep voting

for the plaintiff is in fact 2/3. Let p = P (vi = 1|vi−1 = 0) denote the probability that the

ith juror in the chain votes for the plaintiff given that the previous juror voted for the

defendant, and similarly let d = P (vi = 0|vi−1 = 1) denote the probability that the ith juror

switches the other direction. The transition matrix for the strawpoll is thus

T =









1 − p p

d 1 − d









A Markov with this transition matrix converges to a stationary distribution π in which the

(marginal) probability of voting for the defendant and plaintiff is proportional to d and p

respectively. To verify this, note that

πT ∝ [d, p]









1 − p p

d 1 − d








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HETEROGENOUS ITERATED LEARNING 21

= [d(1 − p) + pd, dp + p(1 − d)]

= [d, p]

∝ π

It is straightforward to use Equations 1 and 2 to show that for a sheep juror, the

probability of switching the vote from the plaintiff to the defendant is

d = (.1 × .4)/(.1 × .4 + .9 × .6) = .069, and similarly the probability of switching the vote

towards the plaintiff is p = (.1 × .6)/(.1 × .6 + .9 × .4) = .142. Accordingly, in the long run,

a chain of sheep converges to a 67% probability of voting for the plaintiff even though

each individual sheep only assigns a 60% prior probability to the plaintiff.

To understand why this result occurs – in seeming violation of the convergence proofs

offered by Griffiths and Kalish (2007) – note that the distribution of sheep votes in the

lower middle panel of Figure 6 is bimodal. In almost all cases sheep vote as a block: the

most likely outcome is that all 12 jurors vote for the plaintiff, but should that not occur

the second most plausible outcome is all 12 jurors voting for the defendant. Ultimately this

occurs because the sheep jurors are fundamentally miscalibrated. Because the sheep juror

assigns evidentiary value to the opinions of other jurors – even though those other jurors

have observed the exact same evidence at trial – the strength of their posterior belief in the

plaintiff’s case is exaggerated. In effect they have “double counted” the evidence at trial:

the evidence at trial is used to form the current juror’s prior opinion, but because that

same evidence also influenced the vote of the previous juror, it can also exert an indirect

influence on the current juror. As a consequence, an iterated learning chain constructed

solely from sheep jurors does not converge to the prior.

Next, consider what happens when sheep and goats are mixed together in equal

proportions, as depicted in the right hand column of Figure 6. The sheep assign prior

probability of 0.6 to the plaintiff, whereas the goats assign prior 0.4, so the population

average prior is 0.5. Alternatively, if we consider the behavior of the two homogeneous

iterated learning chains, the sheep on their own would be expected to converge to 0.67
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HETEROGENOUS ITERATED LEARNING 22

and the goats would converge to 0.4, so the average of these two long run probabilities is

0.54. It would not be unreasonable – if one did not know the details – to expect that an

iterated learning chain comprised of an equal mixture of these two learner types should

converge to a situation in which the average probability of voting for the plaintiff should lie

somewhere between 50% and 54%. Unsurprisingly, of course, it does nothing of the sort.

Because the goats are insensitive to the opinions of others whereas sheep are highly

influenced by others, the goats dominate the behavior of the mixed chain, and the long

run behavior converges to a 43% probability of voting the plaintiff. This is shown more

clearly in Figure 7 which shows exactly this asymmetry: the sheep “learn” to mimic

goats but the goats make no such accommodation.

Although this simulation describes a very simple situation, it highlights two

important things about how iterated learning scenarios can play out. Firstly, the

sheep-only scenario illustrates that even in the homogeneous case where all learners are

identical to each other, it is possible for an iterated learning chain to converge to something

other than the prior. This result mirrors previous work by Smith (2009) showing that

convergence can be affected when learner’s likelihood function is at odds with the true

generative process. Relatedly, it complements work by Perfors and Navarro (2014) which

showed that the convergence of iterated learning chains is affected when there is an

additional input to the chain (i.e., the world passes new information to learners). In the

sheep chain we find that convergence is influenced when learners mistakenly believe there

is additional information being passed into the chain. This mistaken belief drives a kind of

groupthink, in which a collection of individually underconfident learners becomes

overconfident as a group. That is, because each sheep has insufficient confidence in their

own priors, an iterated learning chain of sheep jurors becomes overly confident. In essence,

this result provides a mechanism for a very strong belief to emerge in a fashion that is not

driven by the external world, and moreover that it is fundamentally caused by the

underconfidence of individual learners.
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The second point to take away from this simulation is that the behavior of a

heterogeneous chain is not easily predicted by considering the behavior of its constituent

homogeneous chains, or the priors of individual learners. The mixed chain of sheep and

goats is much more strongly driven by the goats, even though a homogeneous chain of

goats produces a much less extreme outcome than the a chain of pure sheep. People who

are more willing (or able) to learn from the input of others will have less influence on an

iterated learning chain than people who do not adjust their beliefs. This asymmetry is

shown very clearly in the sheep-goats scenario here, but it is the same phenomenon that

drives the asymmetry between the weak and strong learners in the first case study.

Case study 3: Categorization

The examples considered to this point have focused on Bayesian models and

situations in which where there are two qualitatively different groups in the population.

Our third case study expands the focus, and considers a situation involving non-Bayesian

models and a more general notion of individual differences. The problem we focus on is

categorization, and we use a standard exemplar model (Nosofsky, 1986) of classification to

highlight how iterated learning plays out in this setting when the population is

heterogeneous.

We consider a learning problem in which stimuli vary along a single stimulus

dimension with 8 exemplars spaced evenly across the range (located at x = 1, . . . , 8). Each

of these items can be assigned to one of two categories (A or B). We are interested in

exploring the presence of two different kinds of inductive biases, one pertaining to category

size and another pertaining to category coherence. The “category size” bias refers to

whether the learner has an a priori preference to divide the stimuli into two equally sized

categories (e.g., a 4-4 split) or prefers to divide them in a more uneven fashion (e.g., a 7-1

split). The “category coherence” bias refers to the extent to which the learner prefers to

group similar (i.e., nearby) items into the same category.
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An iterated learning design can be used to explore these biases in a relatively

straightforward way, as illustrated in Figure 8. During category learning, each learner is

shown training items that consist of four exemplars and their category labels, selected

randomly subject to the constraint that there must be one exemplar of each category in the

training set. During the test phase the learner must classify the remaining four exemplars.

An iterated learning chain is then constructed in an obvious way, by using a random subset

of responses from one learner as the training data for the next, subject to the constraint

that the learner must be shown at least one example of each category. To simulate the

behavior of the chain, we assume each participant can be modeled using the Generalized

Context Model (GCM) of Nosofsky (1986). According to the GCM, the probability of

assigning a test item located at y to category A given training items x = (x1, . . . , xn) with

labels l = (l1, . . . , ln) is proportional to the sum of the similarities between the test item

and the known members of category A:

P (y ∈ A | x, l) =

∑

i|li=A S(xi, y)
∑

i|li=A S(xi, y) +
∑

i|li=B S(xi, y)

Exemplar similarity is an exponentially decaying function of distance in the psychological

space:

S(x, y) = exp(−λ|x − y|)

The model has one free parameter: the specificity parameter λ, which describes how

rapidly similarity decays as a function of distance. When λ is large, similarity falls away

very quickly with distance, and when λ is small similarity diminishes much more slowly.

Although the GCM is not usually framed as a Bayesian model (but see Nosofsky, 1991) it

nevertheless imposes inductive biases that ensure that some categorization schemes are a

priori more “natural” than others (Pothos & Bailey, 2009). Moreover, these biases are

dependent on the value of the specificity parameter λ, a fact that becomes very apparent

when we simulate the behavior of (homogeneous) iterated learning chains using GCM

learners.
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To illustrate this, consider the category coherence bias. Let AAAABBBB denote the

category structure in which the four items located at x = 1, 2, 3, 4 belong to category A,

and the other items belong to category B (left panel in Figure 8). The category structure

AAAABBBB has the maximum possible coherence, while the maximally incoherent

category structure is one in which the labels alternate ABABABAB. A simple way of

measuring the coherence of a categorization scheme is to count the number of times a pair

of adjacent items are assigned to the same category. There are no instances of this

occurring for the ABABABAB structure, so it has coherence zero. For AAAABBBB, there

are six such instances. Using this measure, it is possible to obtain a very clear picture of

how the GCM imposes a coherence bias within an iterated learning design. The left panel

of Figure 9 shows what happens in an iterated learning chain when all participants have

the same λ. The first learner is shown a random subset of four items and asked to label the

other four; those responses were used to generate the input for the next learner. At the

beginning of all chains, when the category assignments are random, the average coherence

is the same regardless of λ. When similarity decays slowly (λ = 0.1) the GCM does not

impose a strong coherence bias on the input, and the stationary distribution of the chain

reflects that: the categories produced by the iterated learning chain are only barely more

coherent than random assignment. In contrast, when we set λ = 10, corresponding to a

narrow generalization gradient, the GCM always assigns items to the same category as the

nearest exemplar. This creates a strong pressure towards maximally coherent category

structures, and the iterated learning chain converges to a coherence value of six.

Of course, the assumption that all of the learners have the same prior seems unlikely

to apply to humans. With that in mind we ran a second simulated iterated learning study,

shown in the right panel of Figure 9. This time we allowed learners to vary in their λ

values (sampling uniformly at random from the same three λ values of 0.1, 1, and 10). In

the figure, the gray dotted line reflects the average of this heterogeneous population of

learners over the course of iterated learning. It is apparent that it is lower than the average
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of the learners when they are in homogeneous chains (on the left). Overall, however, when

we compare the left and right panels to one another the impression is that the differences

are modest. All the learners become somewhat more similar to one another, with the

categories produced by λ = 10 learners becoming slightly less coherent and the curves for

the λ = 0.1 learners becoming slightly more coherent; but the average coherence does not

change by much. Based on this figure, one might conclude that the heterogeneity of the

population has done very little to distort the categorization schemes produced by the

various different learners. Unfortunately, this conclusion would be incorrect, as becomes

apparent when we consider a different inductive bias.

Categorization is a complex enough task that even when stimuli vary on only a single

dimension there are many different ways of describing the inductive biases that a learner

possesses. A preference for coherent categories is one kind of bias that a learner might

express, but one might be just as interested in exploring the extent to which learners prefer

categories to be of similar size. For instance, the category structures AAAABBBB and

ABABABAB have different degrees of coherence, but both schemes divide the exemplars

into two equal-sized categories. By contrast, the categories ABBBBBBB and AAAABBBB

are equally coherent, but the first one divides the exemplars in a 7-1 split and the second

uses a 4-4 split. A preference for any of these is not built into the GCM directly, but an

effective preference falls naturally out of the model as a byproduct of variation in λ. We

can operationalize this by counting how many exemplars are assigned to the smaller

category, yielding a measure that produces value 1 when category sizes are most uneven

and value 4 when they are exactly even.

Figure 10 shows the category size measures for the three separate homogeneous

chains (left) and the single heterogeneous chain (right) run previously. The homogeneous

chains reveal that the GCM is biased to prefer unevenly sized categories. However, this

bias is weak when the model generalizes narrowly (λ = 10), and large when the model

generalizes widely (λ = 0.1). Unfortunately, almost none of this differentiation is evident
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when we look at the heterogeneous chains: the overall average is substantially different

from when the three learner types were taken separately, and there are almost no

individual differences to be found, with all three learner types producing similar responses.

In this instance, mixing learners with different biases into the iterated learning has almost

completely erased their differences.

The explanation for why this occurs is the same as before. Here, the bias for

unevenly-sized categories is the stronger one. This means that a learner with a stronger

bias for unevenness (with λ = 0.1) that was given equally-sized categories as input would

tend to create output that was more uneven. Critically, however, a learner with less of a

bias for unevenness (with λ = 1) also has less strong of a preference in general. They would

therefore tend to preserve any unevenness they are given. The end result is that

unevenly-sized categories are much more common than a simple averaging of the

preferences of the learners would suggest. As in the previous two case studies, it is the

asymmetrical response between learners with different biases that is critical.

Case study 4: A systematic exploration

Each of the three case studies presents an example in which heterogeneity among

learners introduces systematic biases to an iterated learning chain. At a qualitative level

we see two distinct effects: (a) iterated learning tends to erase individual differences and

(b) learners that have strong inductive biases have greater influence on the chain. In this

section we present a more systematic exploration of the factors that shape these two effects.

The scenario we consider is deliberately generic. In it, each learner is asked to produce

one or more continuous-valued judgments xi. These judgments are assumed to reflect some

latent belief bi possessed by the learner plus some normally distributed error (assumed to

have mean 0 and standard deviation 1). Before receiving any input, the learner is uncertain

what to believe about the task, captured by the prior bi ∼ Normal(µi, σi). When shown the

judgments made by the previous learner xi−1 the learner arrives at the posterior
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distribution P (bi|xi−1), samples their belief bi from this distribution, and then generates

their own judgment(s) xi accordingly.4 This model allows a clear separation between the

“value” of the learner’s inductive bias (i.e., µ) and the “strength” of that inductive bias

(i.e., 1/σ). Using this model we consider heterogeneity in two different scenarios.

Discrete groups. Mirroring the set up in case studies 1 and 2, we first consider the

situation where there are two qualitatively distinct groups of people in the iterated learning

chain. The first group is always assumed to have the same direction of prior bias (given by

setting µ1 = 0) and strength of prior bias (given by σ1 = 1). We then systematically vary

the properties of the second group with the goal of fully characterizing how the stationary

distribution of the iterated learning chain depends on a variety of factors. These factors

include: the strength of the bias of group two relative to group one (manipulated by

varying σ2); the dissimilarity in beliefs across groups (manipulated by varying µ2); the

bottleneck (manipulated by varying the amount of data generated by each learner n); and

the relative proportion p of people in each of the two groups. We set default values of

µ2 = 1, σ2 = 1/3, n = 3, and p = 0.5, and then varied each parameter separately, running

5000 iterated learning chains at every parameter value, reading off the state of the chain

after 50 iterations. We recorded the actual hypothesis (i.e., the latent belief bi) sampled by

each simulated participant, and compared the average belief elicited via iterated learning to

the relevant priors.

As Figure 11 shows, the results of the simulation are mostly as one might predict.

When the strength of the inductive bias in group 2 is increased (left to right in panel a), all

learners in the chain express beliefs that are closer to the group 2 bias. Increasing the

separation between the groups (panel b) induces a proportional change in everyone’s

beliefs. Increasing the proportion of people in group 2 shifts the average belief of both

4As this is a conjugate prior, the posterior distribution P (bi|xi−1) is also a normal distribution, with

mean (σ−2

0
+ nσ−2)−1 and variance (σ−2

0
+ nσ−2)−1(µσ−2

0
+ (

∑

xi−1)σ−2), where σ2

0
= 1 is the variance of

the measurement error.
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groups towards the group 2 bias (panel c). The most interesting finding is the effect of

widening the bottleneck (panel d). As one would expect, the more information exchanged

between learners, the stronger the homogenizing effect (the curves converge). However, the

effect is asymmetric: the strong bias learners (group 2) are only very weakly affected,

whereas the weak bias learners (group 1) are greatly affected. The wider the bottleneck,

the more learners with strong biases dominate over learners with weak biases.

Continuous variation. Extending the set up in case study 3, we also consider a

situation in which every learner in the chain has their own idiosyncratic mean µi and

standard deviation σi, sampled randomly from some population distribution. For the

population distribution over learner bias µi we consider two possibilities, a symmetric

distribution in which the learner biases are normally distributed around 0, and an

asymmetric distribution in which the biases have mean 0 but are positively skewed. For

simplicity, we assume that the strength of belief σi is a fixed function of the value of the

bias µi, and consider three possibilities for how the strength and value of an inductive bias

might be related. In the equal strength condition all learners have the same strength of

belief σ, in the confident extremes condition the learners with the most extreme biases also

have the strongest confidence, and in the confident center condition the learners with the

most moderate beliefs have the greatest confidence. We considered all six possible

combinations of these two factors, aggregating over 10000 iterated learning chains in each

case. For simplicity, we assumed that only a single observation x is generated by each

learner in the chain, but reduced variability in responses from 1 to 0.1 to ensure that this

one response would be considered informative to most learners in the chain.

The results of this simulation are shown in Figure 12. In every case, we observe the

homogenizing effect that the iterated learning procedure has on a heterogeneous

population. The standard deviation of the marginal distribution of beliefs (i.e., b) expressed

in the iterated learning chain is always lower than the marginal prior over b taken across

the entire population. This effect seems to be slightly attenuated in the confident extremes
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condition (panels a and d), but not completely eliminated. Interestingly, in five of the six

cases there are minmal effects on the average belief expressed by learners: the mean value

of b elicited by the iterated learning chain is the same as in the prior. However, this is not

universally true. The notable exception, shown in panel d, is when the population beliefs

are asymmetric and extreme beliefs are the most strongly held. When this situation arises,

the confident extremists on the right hand side of the distribution have a very strong effect

on the centrists (who do not hold any strong beliefs and are easily swayed). However,

because the population is asymmetric there is no counterbalancing group of confident

extremists on the left the distribution. Consequently, in this situation the iterated learning

procedure induces a quite substantial shift in the mean expressed beliefs relative to the true

priors held by learners, with the entire distribution shifting to the right. In this situation,

the average belief elicited by an iterated learning procedure can be substantially different

to the average belief that would be elicited if each learner sampled from their own prior.

Summary

Our examples all display essentially the same pattern. When all learners bring the

same inductive bias to the problem, iterated learning behaves exactly in the way one might

expect. Consistent with Griffiths and Kalish (2007), when all learners are Bayesian

reasoners with identical priors and correctly specified likelihoods, the iterated learning

procedure reveals those priors, while for a non-Bayesian model an analogous quantity

expressing some sensible notion of preference is uncovered. However, when learners bring

different biases to the problem there is no guarantee that the responses of any one

participant genuinely reflects their prior biases, nor is there any guarantee that the average

responses reflect the average bias in the population.

This behavior appeared in all four of the case studies we explored. In the

regularization example there were systematic distortions to the prior in both groups of

participants when they were mixed into the same chain, along with systematic shifts in the
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mean response that overweighted those learners with the strongest biases. In the jury

decision making example we were able to derive the stationary distribution of the iterated

learning chain and show that it did not reveal the prior in any transparent fashion. In the

categorization example we saw that the effects of heterogeneity are themselves

heterogeneous: some inductive biases (like category coherence) were not strongly affected,

whereas other inductive biases in the same task (like category size) were very heavily

distorted by the presence of individual differences. In our final example, we see that these

effects are systematic, become more severe as the information bottleneck widens, and can

be observed regardless of whether individual differences are discrete or continuous.

These results are the consequence of any intergenerational information transmission

process that operates where some learners hold beliefs that are more extreme than others.

The central reason for this result is that the biases and knowledge possessed by one learner

influences the learning and output of the next. Therefore, if different learners respond

asymmetrically to the output, then their pooled output will not be reflective just of their

own biases. Rather, it will be some amalgam of the two that weights the most biased

learners the most heavily. Critically, it is not necessarily reflective of the “pure” inductive

biases possessed by anyone, either individually or in aggregate.

In the final section we empirically demonstrate that this effect has implications for

using iterated learning experiments to infer people’s biases. We present an experiment in

which we constructed iterated learning chains from the responses of two distinct

populations of human learners. As our simulations predicted, the output of the chains was

heavily shaped by those with the more extreme biases. The result is a chain that does not

reflect the average of all of the learners and also distorts the responses of each learner type

taken separately.
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Experiment

Overview

The purpose of this experiment is to explore, using real human data, whether chains

constructed out of heterogeneous populations fail to converge to the prior as our

simulations would predict. Our procedure was inspired by the “ask a friend” option used in

a number of game shows, and loosely mirrors the structure of the jury decision making

scenario in our second case study. In the experimental scenario, participants are asked to

answer a question about which they (may) have some preexisting knowledge. However,

they are also given a recommendation from another person that they can rely upon if they

choose. The learner’s task is to integrate their prior knowledge with the new information to

arrive at a decision. Since the intent of the study is to capture the biases and responses of

people who we already know have very different priors, we chose to ask questions about

Australian politics to two groups of people: Australians and Americans. Similar to

Ferdinand et al. (2013), rather than running iterated learning experiments directly we then

constructed iterated learning chains from those biases and priors, systematically

manipulating the proportion of Americans and Australians in each chain. This procedure

constructs chains that are indistinguishable from those gathered through direct

experimentation, because the response any participant depends only on the information

they are prompted with (the advice, in our experiment), and not on the order in which

those events occurred. Our question was whether the output of the iterated learning chains

with mixed participants matched the separately-estimated priors.

The scenario

In our experiments, people were asked to answer a question about Australian politics

based on a combination of their own knowledge and the input of one other person, which

they can weight as they choose. Formally the problem is similar to the jury decision

making problem, and can be modeled in a similar way. Each learner is assumed to have
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some subjective beliefs from which a prior distribution over the outcomes P (o) can be

constructed: Americans may recognize the names of one or two Australian politicians only,

while Australians may have much more nuanced knowledge. They also have some

confidence in their own beliefs relative to the advisor: most Americans may realize that

they don’t know much about Australian politics, while Australians may differ more widely

in their confidence.

To provide a simple model for this task, we consider a modest extension of the

Bayesian model used to specify the sheep and goat learners in our second case study. As

before, the learner assigns some degree of reliability to the advisor, and the extent of the

learner’s belief revision will depend on this reliability. Specifically, the model that the

advisor provides the correct response with probability r and chooses randomly among the

remaining n − 1 options with probability 1 − r. The larger the value of r, the more likely

the participant is to rely on the advisor. In this model, the posterior probability P (o|a),

over outcomes o given advice a, is

P (o|a) =
P (a|o)P (o)

∑

o′ P (a|o′)P (o′)

where the likelihood P (a|o) equals r if a = o and (1 − r)/(n − 1) otherwise. Figure 13

illustrates the role of confidence in the advisor for a situation with four different options

(A-D). If a learner with the prior beliefs about options A-D depicted in the left hand panel

is not very confident in the advisor, their responses will more closely match their prior

beliefs, as in the middle panel. If, on the other hand, they are confident that the advice is

correct they are likely to follow it, as in the right panel.

As with the previous examples, the iterated learning method implies that if everyone

shares the same prior P (o) and samples responses from the posterior P (o|a), the long run

behavior of an iterated learning chain should reflect the prior. However, the analysis in this

paper suggests that when individual differences are present, we should not expect the

result to adequately reflect individual priors. Specifically, we should expect to see

systematic distortions in which the responses of individual subjects are shrunk towards the
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beliefs of other participants, with the participants who are more like the goats (i.e.,

unwilling to change their beliefs based on the previous person in the chain) having a

stronger influence on the overall chain.

In order to investigate the extent to which this might occur in practice, our

experiment is designed to elicit priors and responses in two different ways. In the direct

elicitation condition we simply ask people to report their priors P (o); this allows us to

produce plots similar to the left panel of Figure 13. In the advice taking condition we

present participants with a specific piece of advice and ask them to make a decision; this

allows us to produce a “transition matrix” analogous to those shown in the middle and right

panels of Figure 13. This approach to studying cultural transmission was previously used

by Ferdinand et al. (2013). By recruiting participants with different levels of knowledge

about a topic, we can control the extent to which individual differences are present in the

sample. We then use this to investigate the behavior of iterated learning chains in practice.

Method

Participants. The experiment collected data from two populations expected to

possess different inductive biases, workers on Amazon Mechanical Turk (MTurk) and

undergraduate students at UNSW in Sydney, Australia. MTurk workers were paid US$0.85

for 5 minutes, whereas the UNSW students were a self-selected sample who participated for

course credit. Ten MTurk participants were excluded as they were not located in the US.

Two versions of the task were presented. A total of 320 participants (196 on MTurk,

124 at UNSW) completed the advice taking task and an additional 80 participants (38

MTurk, 42 UNSW) completed the direct elicitation task. Demographics for the

advice taking task were as follows. The MTurk sample was 64% male, ranging in age

from 18 to 67 (mean: 36.6), while the UNSW sample was 23% male, ranging in age from 17

to 49 (mean: 19.6). In the direct elicitation task, the MTurk sample was 76% male,

ranging in age from 18 to 67 (mean: 33.7). The UNSW sample was 14% male, 2% other,
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and the rest were female, with an age range of 17 to 34 (mean: 18.9). For simplicity, we

henceforth refer to the MTurk sample as Americans and the UNSW sample as Australians.

Procedure: advice taking. The task was completed via a Qualtrics survey with

two items. One pertained to the NFL Draft and is not included here for space reasons.5

The other item pertained to the 2016 Australian election, which had not occurred at the

time of the experiment. It asked people to guess who would be the Australian Prime

Minister after the election, presenting four options to choose from: Malcolm Turnbull, Bill

Shorten, John Howard and Gordon Brown. Two of the options were high-familiarity lures:

as retired former Prime Ministers of Australia and the UK respectively, neither John

Howard nor Gordon Brown were available as candidates in the election. As the leaders of

the two major Australian political parties, Malcolm Turnbull and Bill Shorten were the

only two plausible choices. These facts would be obvious to the vast majority of

Australians, but represent obscure knowledge for most American citizens.

The questionnaire was designed in a format that provides input from other agents.

People were presented with “advice” from a friend recommending that they select one of

the four options (chosen randomly from the four possibilities). The advisor was described

as very knowledgeable about the subject matter, as somebody who follows Australian

politics extremely closely. However, they were also implied to be potentially unreliable

(because they have been consuming alcohol). Presenting the advice in this format was

deliberate, as it allows a genuinely knowledgeable participant to explain why their

supposedly knowledgeable friend is giving foolish advice (e.g., they’re drunk and so are

predicting that John Howard will make a spectacular return to Australian politics). It also

allows the freedom for a participant to rely on the advice (e.g., thinking, okay, they’ve been

drinking but they probably still know the answer). The exact wording of the question was

5Its results are consistent with the rest of the paper, demonstrating that an iterated learning chain

composed of people with distinct priors does not converge to an average of those priors, and systematically

distorts the behavior of the individuals in the chain.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



HETEROGENOUS ITERATED LEARNING 36

as follows:

Imagine that you are at your local bar with some friends. After several

drinks, the topic of conversation turns to politics. You are asked for your

opinion on which of the following politicians will win the next Australian

Federal Election.

One of your close friends recommends that you say [insert option]. You

know that they follow Australian politics quite closely and know a lot about it;

on the other hand, they have just had several alcoholic drinks. In light of their

recommendation, who do you think will win the election?

Procedure: Direct elicitation. The direct elicitation task used the same

question, but adopted a much simpler procedure. People were simply asked to assign

probabilities to the four alternatives (expressed as percentages), where the numbers were

constrained to add up to 100%, using a sliding bar interface.

Results

The results from the direct elicitation task are plotted in Figure 14 and confirm our

hypothesis about the different prior beliefs across the two participant pools. The Australian

participants correctly recognized that John Howard and Gordon Brown were not legitimate

candidates for Australian Prime Minister, giving most probability to Malcolm Turnbull

(47%) and Bill Shorten (35%). In contrast, the American participant responses were more

or less uniform across Turnbull (28%), Shorten (21%), Howard (29%) and Brown (23%).

In the advice taking scenario, the results are also fairly predictable. As illustrated

in Figure 15, when participants are not knowledgeable about the topic they follow the

advice they are given, but tend not to if they know about the topic. Most (60%) American

participants followed their advisor but the Australian participants tended to choose

Turnbull (58% of responses) regardless of the advice given. Note the similarities between
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Figure 15 and 13: in this context the American participants gave responses similar to the

sheep in case study 2 where the Australian participants behaved in a fashion more akin to

the goats, which has implications for their relative ability to influence an iterated learning

chain.

Simulated iterated learning chains

The data from the advice taking task allow us to examine how iterated learning

chains behave in the presence of systematic differences among participants. The

experiment produces a transition matrix of exactly the sort that iterated learning chains

require – one that gives the probability of each possible response given each possible input,

as in Figure 15. Using this matrix, we can investigate what an iterated learning chain

involving different combinations of these participants would look like. A participant is

initially selected at random and their response (e.g., Turnbull) is “fed” to the next

simulated participant by sampling a participant randomly with replacement from those

participants who were given “Turnbull” as their advice.

This method makes it straightforward to simulate chains with different proportions of

each of the two populations (Americans or Australians). At each step, a participant is

chosen from either population with some fixed probability θ and their response is selected

based on the transition matrix of that population. By systematically varying θ in different

chains, we can explore the effect of different levels of heterogeneity, from completely

homogeneous (with chains composed entirely of Americans or entirely of Australians) to

maximally heterogeneous (with a chain composed of half Americans and half Australians).

Given our previous analysis as well as the observed priors and transition matrices, we

expect that mixing the two populations together in a single chain should be expected to

systematically distort the chain away from the performance of either group individually, or

what one would get by simply averaging their priors. Because of their much stronger

tendency to follow the advice they are given, American participants should exert less
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influence on the chain as a whole, and should be more willing to adjust their responses to

mimic Australian participants than vice versa.

To evaluate this, we simulated iterated learning chains using the procedure outlined

above, systematically varying the probability of selecting an Australian participant.6 The

results, shown in Figure 16, are as expected. The left panel shows the behavior of the entire

chain as a function of the proportion of Australian participants. As more Australians are

included, the probability assigned to Turnbull increases far more than a simple weighted

average over prior beliefs would suggest it should. In fact, the chain need only include a

small proportion of Australians (about 10-20%) for Turnbull to be the modal response.

To understand why this happens, we can separately analyze the responses of

Australian (middle panel) and American (right panel) participants in the chains. When the

chain consists entirely of Americans (left-hand side of both panels), there are no Australian

responses and the American workers therefore produce answers that are consistent with the

transition matrix plotted in the top left panel of Figure 15: 42% of responses are Brown,

followed by 30% Turnbull. However, as we start to introduce more Australians responses

into the chain, the distribution of responses produced by Americans changes systematically,

because the biases of the Australians affect the Americans via the input they receive. The

more Australians in the chain, the more the Americans favor Turnbull. In the extreme case

where the chain is 90% Australians and only 10% Americans, those Americans are

producing responses that are 47% Turnbull and only 24% Brown. Of critical importance,

however, the effect is not symmetric. Because the Australians are much more confident in

their knowledge than the Americans, the Australians reduce the degree to which they

choose Turnbull far less than the Americans increase theirs. Accordingly, the prior beliefs

held by Australian participants exert a disproportionate influence on the chain as a whole.7

6Our simulations use 100,000 iterations and a burn-in of 1,000 iterations, producing very smooth curves.

However, because the chains sample with replacement from a set of 320 participants, these curves are still

subject to sampling error.
7More precisely (since we simulated the chains by sampling responses in the empirical data) it is the
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Discussion

The pattern of results is intuitive and in some respects unsurprising: the inference

problem pertains to Australian politics, the Australian participants brought considerable

prior knowledge into the task, and their responses were almost entirely unaffected by the

advice they were given. In contrast the American participants entered the task with very

little prior knowledge, and relied almost entirely on the advisor. This naturally created a

“sheep versus goats” scenario when we use the data to construct an iterated learning

chaining. Only a very small number of Australian participants need to be injected into the

chain to produce very substantial changes in the responses produced by the American

participants. Arguably this is very sensible behavior, with the American participants

wisely deferring to the better knowledge that the Australian participants had. However, it

does very strongly imply that the responses produced by the American participants in the

heterogeneous chain do not in any meaningful sense reflect their prior knowledge about

Australian politics. Without any Australian influence, the American participants produce

iterated learning chains that don’t converge to anything sensible (the apparent bias for

Gordon Brown possibly reflects name recognition based on UK politics), yet in a chain that

consists of an equal mixture of Australian and American participants those same

participants would produce responses that look considerably more knowledgeable. In

essence, the long run behavior of our mixed iterated learning chain does not reflect a

“shared” prior, nor does it represent a “weighted average” of individual priors – rather, it is

disproportionately influenced by those individuals with the strongest biases.

transition probabilities in Figure 15 that exert this influence, which are presumably shaped by the prior

beliefs held by Australian and American participants. The precise relationship between the two depends

on how responses are generated. For instance, if participants were using MAP estimation rather than

sampling from the posterior, then the homogeneous chains (i.e., all Australian or all American) will reflect

an exaggerated version of the participant priors, as shown in Figure 5.
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General discussion

Our work represents a natural extension to the results presented by Griffiths and

Kalish (2007). In their original work, iterated learning with Bayesian agents was shown to

converge to the prior if those agents all share the same prior and likelihood. However, when

these assumptions do not hold, there can be systematic departures from this pattern.

Implications of this are briefly discussed below.

How widely do these results hold?

The general pattern we observe is that when individual differences exist, iterated

learning chains tend to have a homogenizing effect which minimises these differences and

overweights the contributions of those learners with the strongest biases. How widely do

these results hold? Based on our simulations, the homogenizing effect appears to be

especially pervasive, appearing in every one of our case studies, including situations

involving non-Bayesian models. However, in some instances this homogenizing effect is

modest, particularly if the information bottleneck is narrow. This pattern is consistent

with earlier work by Ferdinand and Zuidema (2008, 2009) who also found in a more

restricted setting that the size of the bottleneck matters considerably for heterogeneous

iterated learning chains.

With regards to the disproportionate influence of “extremists”, a little more care is

required. As far as we can tell, learners with extreme biases always have a stronger

influence on other learners (we found this in every one of our examples). However, this

does not always lead to a systematic shift in the overall distribution of responses. Perhaps

the clearest illustration of this was the finding shown in Figure 12: in the continuous

setting, the iterated learning chain only produces a shift in the mean of the response

distribution when there are learners with extreme and strongly held biases and there are no

counterbalancing extremists on the other side of the distribution to counteract their

influence. This probably explains why Ferdinand and Zuidema (2008, 2009) did not find
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evidence of systematic distortion despite considering heterogeneous iterated learning

chains. Their heterogeneous agents happened to have equally strong prior biases, thus

counterbalancing each other.

Broader implications

The paradigm of iterated learning leads a bit of a double life within the psychological

literature. As a result, the implications of our work dependon the context in which it is to

be applied. As a theoretical tool, the underlying dynamics of iterated learning chains

provide valuable insights into how information is transmitted between individuals or

generations. Our results are important because, unlike other work exploring circumstances

in which iterated learning distorts the prior (e.g., Kirby et al., 2007), we find that this

distortion is hard to precisely characterize and also means that some individuals have more

influence than others. Who those individuals are and exactly what their influence is may

vary considerably depending on the domain the learning situation.

Similarly, we found that learners with the most confidence in their own beliefs will be

less influenced by others and their beliefs will also exert a disproportionate influence on

others. As is sometimes noted (e.g., Russo & Schoemaker, 1992), the ability to influence

others in this fashion provides a motivation to express confidence, and in turn provides a

partial explanation for the pervasive overconfidence effect (e.g., Lichtenstein, Fischhoff, &

Phillips, 1977) in human judgment. If the goal is to have cultural influence rather than be

correct, strong biases are better than weak ones.

However, our simulation results also suggest a natural and slightly counterintuitive

extension of this theory: that individual underconfidence can produce collective

overconfidence. In the jury decision-making scenario, the behavior of a chain of sheep-like

jurors produced perverse outcomes even though all jurors were Bayesian reasoners sharing

the same priors. While each individual juror was underconfident – in the sense of

underweighting the relative importance of their own beliefs relative to the input of others –
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the stationary distribution of a chain of such learners ended up overconfident, insofar as it

exaggerated the prior beliefs of all learners. This effect is strikingly reminiscent of the

groupthink phenomenon (Esser, 1998; Janis, 1982). Our results suggest that Bayesian

reasoners are no more immune to such effects than any other kind of learner, in the (very

likely) event that the learner does not have perfectly calibrated confidence in their own

beliefs.

Iterated learning as an elicitation tool

On the methodological side, iterated learning has often been used as a tool for

exploring the inductive biases of individuals. Based on formal results suggesting that the

stationary distribution of an iterated learning chain is the prior, researchers in cognitive

science have sometimes used these designs as a form of elicitation task, in which the

(between-subject) distribution of responses is taken to be reflective of some

(within-subject) latent mental representation of the world. Our results suggest that such

conclusions may be unwarranted whenever individual differences are present. When people

bring different priors to a task, there is no inherent reason to think that the stationary

distribution of an iterated learning chain bears any meaningful relationship to those priors.

The distortions are systematic in the sense that stronger biases lead to disproportionate

influence, while simultaneously being difficult to predict in the sense that one cannot

specify with any precision in what way that disproportionate influence is realized.

This lack of predictability is especially troublesome from a methodological point of

view. In our third case study, it was not at all obvious to us that heterogeneity among

category learners would produce a very large distortion of “category size” biases but almost

no distortion to the bias for “coherent” categories. Indeed, without some other method for

checking that one’s participants all share the same beliefs and that those beliefs are not

mis-calibrated as in sheep jurors – as well as some tool for verifying how sensitive a

particular bias is to distortion via the iterated learning methodology – it is hard to see how
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any researcher can be confident that an iterated learning experiment has revealed a “real”

inductive bias. On this front, we are a little more skeptical of the utility of iterated

learning methods for exploring individual inductive biases.8

What are the biases that iterated learning reveals?

Our results raise a question about what precisely constitutes an “inductive bias”.

When Bayesian reasoners are involved, the usual way of characterizing an inductive bias is

through the prior distribution that a learner imposes over a set of hypotheses. As such, it

is typically assumed that an iterated learning chain reveals the prior (Griffiths & Kalish,

2007). Our main result in this paper has argued that this is not true when learners have

different biases. However, consistent with Smith (2009) we also find that iterated learning

can fail to reveal the prior even when all learners are Bayesians with a shared prior. In the

juror scenario, a homogeneous chain of Bayesian sheep produced behavior that

substantially misrepresents their priors. This occurs because the sheep jurors applied the

wrong likelihood function and overweighted the evidentiary value of other jurors’ opinions.

The fact that this miscalibration has an impact on the stationary distribution of an

iterated learning chain is revealing: even with Bayesian reasoners, the “inductive bias”

revealed by an iterated learning is not a transparent reflection of the prior distribution, but

is instead a product of both the prior distribution and the likelihood. This should not be

surprising. In real life, one’s biases do not solely consist of the beliefs one has about the

world (priors): one’s willingness to have those beliefs changed and the manner in which

those changes occur (likelihoods) are also a form of bias. As our results illustrate, the

likelihood can shape the behavior of an iterated learning chain just as much as the priors.

An intriguing generalization of this issue emerges when we consider the question at

8Another methodological possibility might be to use iterated learning experiments as a tool for inferring

the bias parameters of relevant cognitive models – that is, using the input-output data pairs produced by the

experiments in order to fit models. Our research here is agnostic about the utility of this method, although

it represents an interesting angle for future work.
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the population level. What inductive biases does a population of learners possess? Like

most researchers in this area, we have adopted the simplest view and assumed that the

population prior corresponds to the average of individual priors. Yet, in many real world

situations, it might be more sensible to weight the knowledgeable or certain people more:

after all, no one person retains all of the cultural knowledge of an entire population. In our

experiment, for example, American participants in a heterogeneous iterated learning design

were able produce more accurate responses than they would have done in a homogeneous

chain, precisely because they relied on the stronger inductive biases of Australian

participants. From this perspective, it might be more natural to describe the population

prior in a fashion that weights highly confident individuals most heavily. Our simulations

in the first case study suggest that iterated learning chains do not converge to a weighted

population average of this sort either, at least not in a straightforward way, but it is at this

point an underexplored issue and an opportunity for future work.

More generally, in richer social contexts, agents need to keep track of the goals of

other agents and be wary of potential deception. People often express strong opinions in

order to influence others, and a learner may discount extreme or very confident opinions as

a result. Initial work in our lab suggests that when learners are given the ability to make

inferences about who to trust and listen to, the resulting distribution still does not

converge to the prior. Rather, at least much of the time, subpopulations tend to break off

and form “echo chambers” composed of agents who only communicate within the emergent

subpopulation. Precisely characterizing these dynamics is also a matter for future work.

In general, our research shows that even within very simple iterated learning chains,

heterogeneity leads unpredictable convergence outcomes. When populations of learners

vary, the resulting information transmission chain is disproportionately shaped by those

with stronger biases. However, exactly how and to what extent it is shaped depends on a

complicated interplay of diverse factors. Given the ubiquity of individual differences across

nearly every domain of human cognition, understanding the effects of heterogeneity is an
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important part of appropriately applying iterated learning methodologically as well as

understanding cultural and linguistic evolution in the world.
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Figure 1 . Schematic illustration of a typical iterated learning paradigm, which assumes that

learner n learns on the basis of the data provided by learner n − 1. Sillhouette images obtained

from http://www.milliande-printables.com/.
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Figure 2 . Illustration of the language learning scenario. Each learner is given 10 sentences as

input and asked to produce 10 novel sentences as output. Each sentence can be characterized as

rule-consistent or rule-inconsistent, with regards to some particular grammatical rule. Panel (a)

shows how a learner with weak prior bias updates their prior to a posterior distribution when the

training data consists of 5 of 10 rule-consistent sentences, and panel (b) shows the corresponding

plots for learners with a strong prior bias in the opposite direction. The resulting transition

matrices for the two learner types are plotted in panels (c) and (d). These panels plot a set of 11

histograms showing the distribution of the number of rule-consistent responses, as a function of

the number of rule-consistent input sentences. These plots illustrate the consequences of different

inductive biases. Although both learner types tend to mirror the input they receive, the

transition matrix for the strong bias learner shows a much stronger influence of the prior.
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Figure 3 . Iterated learning works when the learners are homogeneous, but fails when they are

heterogeneous. The plots on the left show results from an iterated learning chain consisting solely

of weak learners, and the plots in the middle show the results from an iterated learning chain

consisting solely of strong learners. The plots on the right depict a mixed chain in which half

the learners have a weak bias about the general class of grammatical rules to be learned, and

half of the learners have a strong one. All chains are initialized with 5 of 10 sentences obeying

the specific rule in question. The plots in the top row show how the average number (across

simulations) of rule-consistent responses produced by the learner changes across generations. The

plots in the bottom row show the distribution of responses produced in the 20th generation (solid

lines) and the population average prior of the learners (gray bars). The iterated learning chain

reveals the true inductive biases (prior) only in the homogeneous chains (left and middle) but

produces substantial distortions when the chain is constructed from learners with different biases

(right panel).

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



HETEROGENOUS ITERATED LEARNING 55

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0
2

4
6

8
10

Weak Learners in Mixed Chain

Iteration

A
ve

ra
ge

 R
es

po
ns

e

0 1 2 3 4 5 6 7 8 9

Weak Learners in Mixed Chain

Response

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

● ● ●
●

●
●

●
●

●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0
2

4
6

8
10

Strong Learners in Mixed Chain

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated
Prior

0 1 2 3 4 5 6 7 8 9

Strong Learners in Mixed Chain

Response

P
ro

ba
bi

lit
y

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

●

●

●

●

●

●
●

● ● ● ●

● Final Iterated
Prior

Figure 4 . Responses in the mixed chain broken down by learner type. The weak learners

produce responses (top left panel, dotted line) that are quite different from those that they would

have produced in a homogeneous chain (top left panel, solid line). Nor does the distribution of

their responses (bottom left panel, dotted line) reflect the distribution of their priors (bottom left

panel, bars). By contrast, the strong learners produce responses that are more similar to those

they would have produced in a homogeneous chain and to their prior distribution. The weak

learners are more profoundly distorted by being in a chain with strong learners, rather than

vice-versa.
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Figure 5 . Linguistic rule adoption when the population of learners is highly uneven. In this

scenario, 95% of learners are unbiased and 5% have a very strong prior to adopt the rule. The top

row assumes that learners sample their hypotheses from the posterior distribution, while the

bottom row assumes they pick the one with the highest posterior probability (MAP learning).

The left column shows the behaviour of this mixed chain: even though 95% of the learners are

unbiased, the chain ends up producing the rule about 80% of the time when learners sample from

the posterior (top left), and almost complete regularization when learners apply MAP learning

(bottom left). This occurs because the responses of the unbiased learners (middle column) are

significantly distorted from their priors, as a result of occasionally receiving input from the biased

learners (right panel), who are not distorted nearly as much.
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Figure 6 . The results of the hypothetical jury straw poll. The top row plots the probability that

each juror votes for the plaintiff, as a function of their position in the chain (the dashed line plots

the population average prior in each case), and the bottom row plots the distribution (across

simulations) of the total number of votes for the plaintiff. Plots on the left show the results if all

jurors are goats, the middle column shows the results if all jurors are sheep, and the results on

the right show the outcome if half of the jurors are goats and the other half are sheep.
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Figure 7 . The behavior of sheep and goats when mixed together in the jury scenario. As one

might expect, the behavior of goats is entirely unchanged by the presence of sheep, but the

sheep shift their votes to more closely match the goats.
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Figure 8 . In case study 3, we consider a categorization case with eight items from two categories

that differ from one another along one dimension (top panel). We imagine a situation in which an

experimenter might want to use the iterated learning task to infer to what extent people have a

bias to assume that categories are coherent (left panel) rather than incoherent (right panel).
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Figure 9 . Category coherence: Performance of iterated learning chains in a supervised learning

categorization task. The y axis shows category coherence as reflected in the number of adjacent

items in the same category: higher numbers reflect more coherence. Left panel: Category

coherence assuming all participants share the same prior (λ). Here there are three chains each

reflecting one of the three λ values. As λ grows higher, iterated learning produces more coherent

categories. The gray dotted line reflects the average of the three chains. Right panel: When

there are individual differences within participants, the overall average coherence of the iterated

learning chain (gray dotted line) is lower than the average coherence of the three participant

types taken separately (gray dotted line in left panel). This is because the behavior of learners

with larger λ is pulled more towards the behavior of learners with smaller λ, rather than

vice-versa. All results reflect 100,000 simulations for each separate chain.
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Figure 10 . Category size: Performance of iterated learning chains in a supervised learning

categorization task. The y axis shows the preference for skewed categories, as reflected in the

number of items in the smaller category: 1 indicates the maximum degree of skew, while 4 means

both categories are equally sized. Left panel: Relative size of the categories assuming all

participants share the same prior (λ). Here there are three chains each reflecting one of three λ

values. As λ grows higher, iterated learning produces more equally-sized categories. The gray

dotted line reflects the average of the three chains. Right panel: When there are individual

differences within participants, the overall average category skew in the iterated learning chain is

larger (i.e., the size of the smallest category is smaller) than the average of the three participant

types taken separately (gray dotted line in left panel). As before, this is because the behavior of

learners with larger λ is pulled more towards the behavior of learners with smaller λ, rather than

vice-versa. All results reflect 100,000 simulations for each separate chain.
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Figure 11 . A systematic exploration of four factors that affect the behavior of heterogeneous

iterated learning chains, in situations where there are two discrete groups of participant in which

group 2 is generally more strongly biased. In each panel the solid lines plot the average belief b

expressed by a member of each group elicited via an iterated learning chain (gray = group 1,

black = group 2), and the dotted lines show the average belief that would be expected if the

judgments were sampled from the relevant prior. The population shifts towards the group 2 belief

as the strength of the bias in group 2 is increased (panel a), as there is more separation between

groups (panel b), as group 2 makes up more proportion of the population (panel c), and as

bottleneck size increases (panel d).
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Figure 12 . Systematic exploration of the behavior of heterogeneous iterated learning chains

when individual differences are continuous. In the top row, individual differences are normally

distributed (symmetric condition), whereas in the bottom row there is a positive skew

(asymmetric condition). In the middle column, all learners have the same strength of bias no

matter where their belief falls on the scale (equal strength), whereas on the left it is the learners

on the tails of the distribution that have the strongest biases (confident extremes), and on the

right the strongest biases occur in the middle of the distribution (confident center). In each panel,

the solid plots depict the marginal prior distribution over the latent belief b taken across the

entire population, whereas the shaded plots show the corresponding marginal distribution over

the beliefs b elicited by an iterated learning procedure. The inset panels indicate which

distribution condition (symmetric or asymmetric) and which bias condition (confident extremes,

equal strength or confident center) is depicted, and the text annotations indicate the mean and

standard deviation for each of the marginal distributions shown. It is evident that in all cases

iterated learning distorts the underlying shape of population variation, and when the population

is asymmetric and the extremes are more confident (panel d) it also converges to a different mean.
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Figure 13 . A simple Bayesian model for the advice taking problem. The left panel plots a

subjective probability distribution over options A-D – the prior. The middle panel plots the

posterior probability over these options conditional on each possible piece of advice (darker =

more probable), for a learner who believes that the advisor is correct with probability 0.3 (only

slightly above chance) and therefore relies primarily on their own beliefs – roughly analogous to

the goats in case study 2. The right panel plots the same results for a situation in which the

learner believes the advisor is correct with probability 0.9, more or less consistent with the sheep

jurors in case study 2.
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Figure 14 . Average reported prior probabilities in the direct elicitation task. Most

Australian participants correctly recognized that Turnbull and Shorten were the only legitimate

candidates, whereas the American participants rated all four options about equally, suggesting

that they had no relevant knowledge about the topic.
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Figure 15 . Empirical transition matrices estimated from the advice taking task. The advice is

shown on the x axis, while the choice of the participant is on the y axis. Americans (left panel)

tended to follow the advice they were given about the Australian election, as reflected in the

darker colors on the diagonal. By contrast, Australians (right panel) were likely to pick Malcolm

Turnbull regardless of what they were advised to do. This reflects differences in confidence about

their prior beliefs, which affects the degree to which they are influenced by their input.
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Figure 16 . Long run behavior of simulated iterated learning chains, plotted as a function of the

probability θ of updating the chain with an Australian participant (x axis). The y axis reflects

the proportion of each of the four possible candidates, which in a typical iterated learning analysis

would be assumed to reflect people’s priors. Left panel: Response proportions from each chain

as a whole. As more Australians are included in the chain, the probability assigned to Turnbull

increases. Strikingly, it is necessary for the chain to include only a small proportion of Australians

(between 10% and 20%) for Turnbull to become the modal response. The reason for this is shown

when we break down responses by participant group. Middle panel. Responses from only the

Australians in each chain reveal relatively little change as more Australians are included: the

Australian participants are not strongly influenced by the input they are given. Right panel.

Responses from only the Americans in the chain show that they are highly distorted by the

presence of Australians, appearing to select Turnbull by a wide margin even though Americans’

actual priors were uniform over all four options.
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