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1. Introduction

The electronic bandgap (BG) is one of the fundamental proper-
ties of materials. It arises directly from the configuration of
electronic structures and corresponds to the minimum energy
that an electron requires to be excited into the conduction
band.[1–4]

In particular, in 2D materials, the
bandgap value determines fundamental
physical characteristics such as optical exci-
tation, and electron transport and trans-
fer.[5–9] Therefore, the identification and
the control of the bandgap in van der
Waals 2D heterostructures (vdWHs) is a
viable strategy for design of novel materials
for a large variety of electro-optic devi-
ces.[10–17]

Depending on the definition used, the
bandgap can have more than one meaning.
The optical bandgap refers to the mini-

mum energy that an electron must absorb to be excited to the
conduction band, where the conduction band minimum and
the valence band maximum align, forming an electron–hole pair.
If the bands do not align, then the same quantity is referred to as
the electrical or transport bandgap, which in general represents
the energy threshold for creating an electron–hole pair that is not
bound together. In these cases, the optical bandgap is smaller
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The bandgap is one of the most fundamental properties of condensed matter.
However, an accurate calculation of its value, which could potentially allow
experimentalists to identify materials suitable for device applications, is very
computationally expensive. Here, active machine learning algorithms are used to
leverage a limited number of accurate density functional theory calculations to
robustly predict the bandgap of a very large number of novel 2D heterostructures.
Using this approach, a database of�2.2 million bandgap values for various novel
2D van der Waals heterostructures is produced.
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than the transport bandgap. These two definitions have physical
meaning and correspond to quantities that can be measured
experimentally. In contrast, the fundamental bandgap refers to
the energy separating unoccupied from occupied one-electron
states, and it is meaningful only within a theoretical model.
In general, the experimental bandgap does not correspond to
the fundamental bandgap. Some approaches that go beyond den-
sity functional theory (DFT) have been developed to consider
electron excitation for bandgap calculations. However, within
the commonly used DFT approximations (e.g., generalized gra-
dient approximation [GGA], meta-GGA, and hybrid functionals
used to solve the Kohn–Sham equations for the ground state),
optical and fundamental bandgaps are equivalent.[18,19]

Furthermore, some studies posit a weak electron–hole binding
energy in selected vdWHS and, therefore, to the first approxima-
tion they can be treated as the same quantity.[20]

For the simplest approximation of the exchange correlation
functional, DFT largely underestimates the value of the bandgap.
When calculated within the local density approximation (LDA),
the values are typically �40% less than experimental values.[21,22]

To improve the accuracy of the calculations, functionals consid-
ering the gradient of the charge density (GGA) are used.
However, significant underestimation of the bandgap values per-
sists and, in many cases, it leads to an incorrect description of the
electronic and optical properties of a material.[23–25] To improve
the prediction of bandgap calculations, Hartree–Fock exact
exchange interactions can be included in the Kohn–Sham equa-
tions, leading to the so-called hybrid functional approxima-
tions.[26,27] Heyd et al. developed one of the most widely used
functionals (HSE06) for predicting electronic structures and
properties of solid-state materials, including bandgaps.[28,29]

However, the inclusion of exact exchange leads to significantly
higher computational costs compared with simpler LDA or
GGA functionals, a very important issue when a large number
of calculations is required.[30,31]

Due to the large number of theoretically possible 2Dmonolayers
(�6000 structures), it is possible to generate �20 million unique
novel bilayer heterostructures by a direct stacking of these 2D
monolayers (Nb¼Nm(Nmþ 1)/2).[https://2dmatpedia.org/),[32]]
Calculation of the electronic structures and properties of this many
complex materials is currently intractable, even for simple DFT
calculations, and the lack of experimentally fabricated vdWHs
makes validation challenging.

We have previously shown how machine learning (ML) models
can be used to leverage results fromDFT calculations of hybrid 2D
materials, generating outstanding results.[32] Here we demonstrate
how a combination of a relatively small number of computation-
ally expensive DFT-HSE06 calculations and a ML method called
active learning (AL) can reliably predict bandgap values for a large
set of stable semiconducting bilayers.[32] We show how these ML
models can be used to create a database of reliable bandgap values
for approximately 2.2 million vdWHs, using a very limited num-
ber of first-principles calculations (�400 bilayers).

2. Results

Here, an AL model was built starting from an initial training set
of 109 randomly selected bilayers (XL), where each bilayer

consists of two semiconducting monolayers from the 2matpedia
database.

Members of this set have an IE, E≤�1.0 eV Å�2, ensuring
that the interactions are vdW, and contain a subset with
HSE06 bandgaps relatively close to literature values (see
Table 1). Possible discrepancies between our results and the lit-
erature data may originate from the use of different computa-
tional methodologies and/or from configuration of the
supercells used in the calculations.

The 109 HSE06 bandgap calculations were used to build the
initial Bayesian neural network (BNN) model. Five different ver-
sions of the initial model were produced using different selec-
tions of the train-test sets, selected by clustering using the k-
means algorithm.[32] For each bilayer, bandgap values were cal-
culated using the five versions of the initial model, resulting in
five different databases consisting of 2.2M structures (Y1,Y2,…
Y5). After calculating the mean and standard deviation of each
bilayer bandgap, a set of �100 bilayers (XAL1) that had the largest
standard deviations were selected. In other words, the initial
BNN models could not find a mapping function of sufficient
accuracy for that set of bilayers. The process, shown schemati-
cally in Figure 1, was repeated four times, each time selecting
a new set of �100 poorly predicted bilayers (XAL1…XAL3), until
the quality of the model reached convergence. At that point,
the training set contained 473 structures whose bandgaps were
predicted with an R2 of 0.81 and mean absolute percentage error
(MAPE) of 0.16, and the test set was predicted with an R2 of 0.92
and MAPE of 0.11. An additional set of 52 structures (XAL4) was
subsequently added to the training set to test for convergence of
the parameters (Table 2). The XAL subsets used to expand the
training set are represented in the uniform manifold approxima-
tion and projection (UMAP) in Figure 2, showing how the DFT
calculations are distributed over the whole set of bilayers. UMAP
provides a 2D, visual, and intuitive representation of possible
structural–functional similarities of the structures in the hyper-
space of descriptors. Points that are close together in the UMAP
correspond to structures with similar physicochemical proper-
ties. As the training set is approximately uniformly distributed

Table 1. Bandgap (in eV) comparison between the value calculated here
using HSE06 and other HSE06 calculations found in the literature.[58–60]

Discrepancies may result from different methodologies used in the
approximation of the vdW potential and/or configuration of the
supercells used.

Bilayer Bandgap [eV]
This work

Bandgap [eV]
Other works

O2Pt–NiO2 1.72 1.39[58]

OTl2–GeI2 1.83 1.45[58]

Br2Mg–Cl2Zn 5.50 5.49[58]

Cl2Zn–CdCl2 5.10 5.29[58]

OTl2–O2Pt 0.62 0.86[58]

I2Yb–Br2Ge 1.30 1.04[58]

InSe/AsP 1.26 1.07[59]

HfS2/MoTe2 0.59 0.35[60]
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across the UMAC, the 2.2M structures predicted by the ML mod-
els lie within the domain of applicability for the model, so should
be predicted with reasonable accuracy.

To demonstrate how efficient the AL model was we generated
an additional BNN model trained on 425 randomly selected
bilayers. This model did not predict the training and test set well,
with no R2 values greater than 0.51. This indicated the funda-
mental role that AL played in reducing the computational cost

and increasing the accuracy when leveraging HSE06 calculations
of 2D heterostructures.

The distribution of bandgaps and relative errors associated
with the predictions, calculated from 600 trial Bayesian networks,
as a function of the monolayer building blocks, is shown as a
heatmap in Figure 3. This shows a logarithmic distribution of
bandgaps over the 0.1–8.0 eV range, with �9% of the structures
having a direct bandgap configuration. Notably, it also indicates a
relatively large error (but still below 30%) associated with low
bandgap values, apparent around the monolayer 1¼ 650–750.
Although the error appears to be associated with specific mono-
layers, this is due to the sampling used to build the training set
that explores the hyperspace of bilayer descriptors in a partly
inhomogeneous way. Therefore, any relationships between the
BNN error and the nature of chemical bonds or chemical com-
position of the bilayers are not significant. This is also confirmed
by the distribution of bandgaps and largest error structures in the
UMAP across the whole set (see Figure 4).

The bilayers were grouped by bandgap energy and labeled
with their position in the optical spectrum as follows: infrared
(IR)≤ 1.65 eV≤ red (R)≤ 1.99 eV≤ orange (O)≤ 2.10 eV
≤ yellow (Y)≤ 2.17 eV≤ green (G)≤ 2.50 eV≤ blue (B)≤ 2.75 eV
≤ violet (V)≤ 3.26 eV≤ ultraviolet (UV). The number of bilayers
within each range is shown in Table 3.

Within each bandgap group, we counted the frequency of each
monolayer in the 2.2M bilayer dataset and shows the most fre-
quent representatives in Table 4.

To elucidate the contribution to the bandgap due to inclusion
of the exchange term in the DFT functionals, the correlation
between the bandgaps calculated within the GGA-PBE and
HSE06 approximations was assessed (see Figure 5). The

Table 2. R2, root mean-squared error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) test and train set
predictions for the BNN bandgap models. The results are labeled
progressively by four steps where each step adds additional data point
sets (XAL1…XAL3) to the initial 109 bilayers, selected using an AL
algorithm. The fifth run was carried out using additional 52 bilayers
(XAL4) to test the convergence of the parameters.

Set R2 RMSE [eV] MAE [eV] MAPE [%]

First run (XL)

BNN-test 0.37 0.92 0.66 0.6

BNN-train 0.75 0.51 0.34 0.4

Second run (XAL1)

BNN-test 0.51 0.75 0.60 0.4

BNN-train 0.77 0.51 0.35 0.3

Third run (XAL2)

BNN-test 0.71 0.74 0.65 0.3

BNN-train 0.82 0.53 0.41 0.2

Fourth run (XAL3)

BNN-test 0.81 0.45 0.31 0.2

BNN-train 0.92 0.41 0.28 0.1

Fifth run (XAL4)

BNN-test 0.80 0.44 0.30 0.2

BNN-train 0.93 0.40 0.28 0.1

Collection of small
training set

Training and testing
of model

Use model to calculate
band gaps

Run model N times
and make predictions

seYoN

Select structures with large
dispersion in predictions

Include new structures
in training set

To band gap database

R2 and MAPE ok?

Figure 1. Flowchart of the AL model used to build the BNN model. The
structures included in the training set of iteration Mþ 1 were selected
from the worst performing, after the evaluation of the mean value and
the standard deviation calculated for each value from N runs of the model
at the iteration M.

Figure 2. Uniform manifold approximation and projection showing the
distribution of DFT (dark blue) calculated bandgaps over the whole
2.2M dataset (light gray).
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Pearson and Spearman correlations between PBE and HSE06
bandgaps were 0.68 and 0.60, respectively, indicating a signifi-
cant (linear) correlation between the results of the two
approaches. The feature importance (FI) of each descriptor
and the one of the GGA-PBE bandgaps were calculated, and
the results show that the GGA-PBE bandgap FI is only marginally
higher than the largest FI of the other descriptors (0.13 vs 0.08).
In addition, a least absolute shrinkage and selection operator
(LASSO) regression analysis indicated that the GGA-PBE
calculated bandgap is a less-effective descriptor in the BNNmod-
els compared with the structural descriptors used here, validating
the relevance of the descriptors used to represent the bilayers in
this study (listed in the Supporting Information).[32–34]

We also assessed the change in the bandgaps as a function of
the twist angle. Monolayers with different symmetries along the
x–y plane (AgI, AlTe, BN, Br3Cr, ITaTe4, and GaSe) were
selected, and supercells with twist angles of 0�, 30�, 45�, 60�,
and 90� were built. The calculated total energy of each structure

elucidated the resultant effect of charge transfer on the bandgap.
The charge transfer suggested a relatively small change at differ-
ent twist angles because of the weak vdW interactions, resulting
in a negligible bandgap change (shown in the Supporting
Information).

Although the bandgap change with the twist angle was small,
care must be taken in interpreting this outcome because of the
limited number of twist angles that produce a supercell small
enough to make the calculations tractable. The literature suggests
that for specific twist angles, the bandgap can vary up to �15%,
providing a novel way to use geometric parameters of a bilayer to
adjust the electronic properties.[35–38] Our work identified the
crucial role of crystal symmetries in the band structure configu-
ration. The point symmetries, rotation, reflection, and inversion
determine the nature of the bands, supporting the validity of the

Figure 3. Bandgap (top) and relative error (bottom) of the bilayers as a
function of the two monolayers building blocks. Absolute errors have been
calculated as the standard deviation of the response distribution, using a
dropout approach with probability 0.1. Detailed information can be found
in Bayesian Neural Networks section. The heatmaps have been generated
by interpolating the function BG¼ f(x,y) and so that the images can
provide information by showing potential clustering.

Figure 4. Distribution of the calculated a) bandgap values and b) relative
error in the UMAP.
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present analysis within the high-symmetry/low-energy/bilayer
configurations of the vdWHs.[39]

Furthermore, the potential correlations of the HSE06 bandgap
with the IE and elastic constant along the z-axis (C33), calculated
in our previous work were analyzed.[32] These two quantities rep-
resent macroscopic features that originate from the charge redis-
tribution upon vdWHs formation, and therefore they may, in

principle, have an influence on the band alignment that deter-
mines the bandgap. However, the Pearson and Spearman coef-
ficients between the HSE06, and the IE and C33 were calculated
to be �0.06 and 0.03, respectively, indicating a negligible
correlation between these quantities, again confirming that
the complex nature of the bandgap goes beyond intuitive
considerations.

Figure 5. a) Bilayer GGA-PBE and HSE06 bandgap correlation and b) their relative energy distribution. Their calculated Pearson and Spearman correlation
coefficients are 0.68 and 0.60, respectively, indicating a significant (linear) correlation.

Table 3. Number of bilayers in the 2.2M set divided in groups depending on the on the position of the vdWHs bandgap in the visible spectrum. Here, the
energy ranges as labeled as follows: infrared (IR)≤ 1.65 eV≤ red (R)≤ 1.99 eV≤ orange (O)≤ 2.10 eV≤ yellow (Y)≤ 2.17 eV≤ green (G)≤ 2.50 eV≤ blue
(B)≤ 2.75 eV≤ violet (V)≤ 3.26 eV≤ ultraviolet (UV).

Optical spectrum IR R O Y G B V UV

Number of bilayers in band 307 100 217 180 86 089 59 342 320 450 267 739 474 231 538 011

Table 4. Count of monolayers frequency in the 2.2M bilayers set, grouped depending on the position of the vdWHs bandgap in the visible spectrum.
Here, the energy ranges as labeled as follows: infrared (IR)≤ 1.65 eV≤ red (R)≤ 1.99 eV≤ orange (O)≤ 2.10 eV≤ yellow (Y)≤ 2.17 eV≤ green
(G)≤ 2.50 eV≤ blue (B)≤ 2.75 eV≤ violet (V)≤ 3.26 eV≤ ultraviolet (UV).

IR R O Y

Monolayer Count Monolayer Count Monolayer Count Monolayer Count

F6Li2O3Ta2 2003 B2O6U 713 Cl4P 343 ClP4 197

C6Li2O18V3 1863 F3Zr 694 F3Ti 298 F3Ti 179

LiO12Te2V3 1860 O8Pb3V2 683 H2Mg3O12Si4 227 HfI3 154

Li4O12Te3V 1843 Ni2O8Te3 673 Nb2O3 223 Br3MoTe6 152

C3Li2O9V 1805 Ge2Se5Tl2 640 Br3MoTe6 216 Cl8Ge3 143

G B V UV

Monolayer Count Monolayer Count Monolayer Count Monolayer Count

Cl3Hf 737 Cl3Zr 596 Fa3Si 997 CuNb2O8Zn2 2127

S3Y2 696 I3Ti 531 Br3In 996 F7RbSb2 2126

O2P 674 Br2Mo2S 516 F3Hf 995 B2CuO6Pb2 2120

HfI4 655 Br3Sn 508 Cl8CuGa2 969 F5VZn 2111

HfI3 654 Br2Mo 489 Cl2Mo 950 Cu3F8Li2 2098
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3. Conclusions

We have used DFT calculations and AL to generate a database of
�2.2 million novel vdWHs bandgaps, potentially identifying
those with significant potential for technological and scientific
utility. No correlations between the BG and other fundamental
properties of vdWHs such as IE and C33 were found, highlight-
ing the BG calculation as a fundamental problem rather than an
emerging property correlated to macroscopic observables. This
work did, however, find a relatively strong correlation between
the PBE and HSE06 calculated BG. Furthermore, the potential
of active ML to very substantially accelerate convergence of
ML model prediction accuracies using modest training set
sizes was demonstrated, demonstrating the capabilities of the
combined MLþDFT approaches used in materials discovery.

4. Experimental Section

DFT Calculations: To calculate the energy of the structures by DFT, we
employed a projector-augmented waves (PAW) approach as implemented
in VASP, within both the GGA (Perdew et al. [PBE]) and HSE06.[42–44] In
HSE06, the van der Waals correlation correction was applied using
the method of Grimme, with Becke–Jonson damping (DFT-D3).[40,41,45] A
(3� 3� 1) point k-mesh, where x and y are in the plane of the 2D layers
and z represents the orthogonal stacking axis for themonolayers, and a basis
set energy cut-off of 700 eV were used for all geometry optimization calcu-
lations. A larger grid of (9� 9� 1) was used for non-self-consistent bandgap
calculations. The energy minimization tolerance was 10�6 eV, and the force
tolerance was 10�2 eV Å2. A vacuum of�15 Å along the z-axis was chosen to
avoid interactions with replicas in the periodic boundary conditions.

Structural information was obtained for 6,138 monolayers from an
online database (https://2dmatpedia.org/) and 2,132 semiconducting
structures were selected to build the 2 270 142 (2.2M) bilayer database.
A subset of bilayers was used for the DFT calculations, selected by applying
two constraints: the lattice mismatch, Lm< 2%; and the number of atoms
in the cell, Na< 200. This ensured both a reliable convergence of DFT
calculations and a reasonable computational time.

Only one twist angle between the two monolayers was considered, cor-
responding to the lowest energy configuration. However, some additional
considerations were also required. In both homo- and heterostructures,
the weak interlayer forces allowed the angles between the monolayers
along the x–y plane to adopt different values, with only a small change
in the interlayer energy (IE; �30meV). However, as a consequence of
the angle-dependent symmetry of the resulting bilayer and the resulting
formation of dipoles, the band structure may be significantly affected
by the twist angle (changes reported in the literature are between 5%
and 15%).[35–37,46] Although this may be useful for engineering the
bandgaps of structures, it adds additional complication to the bandgap
analysis.[38,47,48] We found a negligible change in the bandgap at high sym-
metry twist angles for selected bilayers, supporting the accuracy of our
calculations within low energy configurations.

Bayesian Neural Networks: We used a Bayesian neural network (BNN)
ML algorithm to predict the bandgaps of a large number of heterostruc-
tures. From the Bayesian point of view, regressions were formulated using
probability distributions rather than point estimates.[49] The target prop-
erty, or response, was not estimated as a single value, but was assumed to
be drawn from a probability distribution using a dropout approach.[50–52]

Therefore, our BNN also predicted the confidence interval for each value,
indicative of the quality of the prediction for each individual heterostruc-
ture.[53] Here, a BNN with two hidden layers composed of 32 neurons each
was used, where the dropout probability was 0.1. The dropout regularized
the network and avoided overfitting by creating a distribution over the
calculated response. This was averaged over 600 trial networks giving

the mean response value and the associated standard deviation. A detailed
description of the BNN used can be found in previous studies.[32]

Active Learning: In evaluating the exact exchange energy density, HSE06
calculations have a large computational cost and large memory requirements
compared with GGA. The central processing unit (CPU) time ratio of a single-
point calculation carried out within HSE06 approximations was �5 and 7
times larger than for GGA-PBE calculations, consistent with the literature.[54]

Thus, the use of HSE06 calculations to compute the bandgap for selected
representative bilayers in the training set was very computationally demand-
ing. Here, an active learning (AL) approach was adopted to restrict the num-
ber of HSE06 calculations required to train the BNN.[55,56] The main
advantage of AL was that the data used for BNN training can be chosen selec-
tively, leading to a better performance, while requiring substantially less data
than traditional static learning methods. It was important to ensure that the
training dataset was representative of the true distribution of the data.

The data were divided into a very small, labeled dataset that included up
to a few hundred bilayers (the seed XL), and a large unlabeled dataset that
included up to �2.2million bilayers (XU). Typically, there was an arbitrary
partitioning between the labeled and unlabeled data. After splitting the
data, the seed can be used to train the model. Once the model had been
trainedN times using a different training-test split by k-means clustering, it
can be used to predict the response for the unlabeled data (Yi¼ fi(XU)).
Each element of the unlabeled data will therefore have N different pre-
dicted values. By calculating the mean and standard deviation of the target
property (response) for each unlabeled data over the N runs, the worse
performing structure was selected, its properties calculated using HSE06,
and added to the seed for the next BNN training iteration. With this new
labeled dataset, the learner can be retrained, iterating the process until the
required accuracy was achieved, evaluated by parameters such as R2, mean
square error (MSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). The measures of dispersion were preferred
as they are less dependent on the number of parameters in the model
and the number of materials in the data set.[57]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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