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Abstract 15 

Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-16 

reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral 17 

temperature. BMR is one of the most widely measured physiological traits, and data are available for 18 

over 1200 species. With data available for such a wide range of species, BMR is a benchmark 19 

measurement in ecological and evolutionary physiology, and is often used as a reference against 20 

which other levels of metabolism are compared. Implicit is such comparisons is the assumption that 21 

BMR is invariant for a given species, and that it therefore represents a stable point of comparison. 22 

However, BMR shows substantial variation between individuals, populations, and species. 23 

Investigation of the ultimate (evolutionary) explanations for these differences remains an active area 24 

of inquiry, and explanation of size-related trends remains a contentious area.  Whereas explanations 25 

for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry 26 

and physics, investigations of mass-independent variation typically take an evolutionary perspective 27 

and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including 28 

diet, habitat temperature, and net primary productivity.  Here we review explanations for size-related 29 

and mass-independent variation in the BMR of animals, and suggest ways that the various 30 

explanations can be evaluated and integrated. 31 

 32 

33 
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Introduction 34 

Basal metabolic rate (BMR) is perhaps the most widely reported physiological metric. 35 

‗Basal‘ has long been recognised as a poorly chosen term (Krogh, 1916) because metabolic rate can 36 

fall below BMR under a range of conditions (Geiser, 2004; Green et al., 2007; Halsey et al., 2008; 37 

Green et al., 2009).  The term nevertheless remains in widespread use and has come to refer not to 38 

the lowest metabolic rate that an endotherm can achieve, but instead to metabolic rate measured 39 

under precisely defined conditions. BMR is the rate of metabolism of a resting, normothermic, 40 

postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian 41 

phase at a thermoneutral temperature (McNab, 1997; Frappell and Butler, 2004). BMR is usually 42 

measured by indirect calorimetry as rate of oxygen consumption, using well described techniques 43 

and commercially available equipment (Withers, 2001; Lighton, 2008). Being relatively easy to 44 

measure in the laboratory, the number of species for which data are available has grown steadily 45 

since the 1930s (Figure 1), and data are presently available for nearly 700 species of mammal (Sieg 46 

et al., 2009), and more than 500 species of bird (McNab, 2009). The highest reported BMR (of 47 

Elephas maximus: Benedict, 1938) is almost five orders of magnitude greater than the lowest (of 48 

Myotis nigricans: McNab, 1989), and size is well known to account for much of the inter-specific 49 

variation in BMR (Peters, 1983; Calder, 1984; Schmidt-Nielsen, 1984). However, the strong 50 

relationship between mass and BMR conceals a great deal of variation, and species of the same size 51 

can differ by up to several fold (White and Seymour, 2004). Even within a species, BMR varies 52 

seasonally (Lovegrove, 2005; Smit and McKechnie, 2010) as well as between populations (Wikelski 53 

et al., 2003; Broggi et al., 2007; Tieleman et al., 2009b) and individuals (Nespolo and Franco, 2007). 54 

That differences between individuals and species can be significant, substantial, and repeatable, has 55 

led to the speculation that this variation must be important. The present review examines the causes 56 

and consequences of this variation, approaching the topic from both ultimate (evolutionary) and 57 

proximate (mechanistic) perspectives.  We focus on inter-specific variation in BMR, though we do 58 
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use some examples from intra-specific studies; a more in-depth coverage of intra-specific variation is 59 

provided by Konarzewski and Książek (2012). We begin by discussing the profound influence of 60 

body mass on metabolism, and follow this with a discussion of the causes and consequences of the 61 

variation in BMR that is not explained by body mass. We conclude with the suggestion that 62 

integrative examinations of mass-dependent and mass-independent variation are likely to yield 63 

valuable insights into the evolutionary causes of the allometric scaling of metabolic rate with body 64 

mass. 65 

Non-isometric scaling and the influence of body mass 66 

Body mass alone explains most (generally > 90%) of the variation in BMR between species, 67 

and a great deal of ink has been spilled debating the exact form of the scaling relationship between 68 

body mass and metabolism. Like many physiological variables, BMR does not increase in direct 69 

proportion to body mass (isometrically). Instead, the relationship between body mass (M) and BMR 70 

is allometric and often well described by a power function of the form: 71 

BMR = a M
 b

 72 

where a is the scaling constant, and b is the scaling exponent (see White, 2011; White and Kearney, 73 

2012 for discussion of statistical analyses of metabolic scaling). The value of the scaling exponent 74 

has been the subject of interest since at least the 19
th

 century, when Sarrus and Rameaux (1838, cited 75 

by Brody, 1945) suggested that metabolic rate should scale in proportion to body surface area rather 76 

than body mass. Sarrus and Rameaux‘s hypothesis found empirical support when Rubner (1883) 77 

reported that the metabolic rates of dogs were proportional not to their body mass, but to their body 78 

surface area. This finding came to be known as the surface law of metabolism (e.g. Brody, 1945; 79 

Kleiber, 1961). Although some subsequent studies have supported the exponent of ⅔ implied by 80 

these early analyses (e.g. Heusner, 1991; White and Seymour, 2003), the heat loss hypothesis is 81 

unlikely to be correct, since animals with relatively high body surface areas do not have relatively 82 

high BMRs (White and Seymour, 2004). Moreover, in the decades following publication of Rubner‘s 83 
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(1883) work, the exponent of ⅔ was supplanted by a value of ¾ (Kleiber, 1932).  Later analyses 84 

expanded the data set to include a wider range of species (Benedict, 1938; Brody, 1945; 85 

Hemmingsen, 1960) and the ¾-power scaling relationship came to be known as Kleiber‘s law (e.g. 86 

Smil, 2000; Wang et al., 2001). Notably, however, recent analyses reject any single value of the 87 

exponent for mammals (e.g. Duncan et al., 2007; Sieg et al., 2009; White et al., 2009; Capellini et al., 88 

2010) and demonstrate that the scaling exponent of BMR increases with body size (e.g. Clarke et al., 89 

2010; Kolokotrones et al., 2010). These analyses further refute the idea that heat loss dictates the 90 

scaling of BMR, because the exponent of BMR for large animals with low surface area: volume 91 

ratios is significantly different from the scaling exponent of body surface area (⅔: Reynolds, 1997). 92 

Among birds, the most recent phylogenetically-informed (PI) analyses demonstrate a difference 93 

between wild-caught and captive species (McKechnie et al., 2006). Wild-caught birds scale with an 94 

exponent close to ¾, whereas captive species scale with an exponent close to ⅔ (McKechnie et al., 95 

2006), although other studies favour different values (White et al., 2007a). Clearly, there is no 96 

consensus on a single value for the scaling exponent of BMR, and recent meta-analyses have 97 

generally stressed the lack of a single universal value (Savage et al., 2004; Glazier, 2005; White et 98 

al., 2007b). The causes of the non-isometric scaling of metabolism remain a lively subject of 99 

ongoing debate (e.g. Krogh, 1916; Kleiber, 1961; McMahon, 1973; Heusner, 1982; Kooijman, 1986; 100 

Heusner, 1991; Patterson, 1992; West et al., 1997; Banavar et al., 1999; West et al., 1999; Dodds et 101 

al., 2001; Banavar et al., 2002b; Darveau et al., 2002; Kozłowski et al., 2003b, a; Agutter and 102 

Wheatley, 2004; Kozłowski and Konarzewski, 2004; Weibel et al., 2004; Brown et al., 2005; 103 

Glazier, 2005; Kozłowski and Konarzewski, 2005; Weibel and Hoppeler, 2005; Demetrius, 2006; 104 

Chown et al., 2007; Gillooly and Allen, 2007; White et al., 2007b; Ginzburg and Damuth, 2008; 105 

White et al., 2008; Banavar et al., 2010; Demetrius and Tuszynski, 2010; Glazier, 2010; Roberts et 106 

al., 2010; Agutter and Tuszynski, 2011; Riveros and Enquist, 2011; Roberts et al., 2011; Seymour 107 

and White, 2011; White et al., 2011c).  108 
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Hypotheses for the scaling of metabolic rate have been reviewed in detail by a number of 109 

authors (e.g. Dodds et al., 2001; Agutter and Wheatley, 2004; Glazier, 2005; da Silva et al., 2006; 110 

O'Connor et al., 2007), and many hypotheses will not be discussed further here (e.g. Patterson, 1992; 111 

Witting, 1995; Kozłowski and Weiner, 1997; Bejan, 2000; Demetrius, 2003; Makarieva et al., 2003; 112 

Bejan, 2005; Demetrius, 2006; Ginzburg and Damuth, 2008; Demetrius and Tuszynski, 2010).  113 

Instead, we focus on those hypotheses that we view as most prominent, emphasising those that are 114 

the subject of ongoing empirical scrutiny. 115 

Resource Distribution 116 

The most prominent recent explanations for the scaling of metabolic rate are the resource distribution 117 

theories of West, Brown, and Enquist (West et al., 1997, 1999) and Banavar and co-workers 118 

(Banavar et al., 1999; Banavar et al., 2002b).  These theories predict the scaling of metabolic rate 119 

with body size on the basis of models of resource transport. The two theories have influenced a 120 

general model for quarter-power scaling in animals, which incorporates a minimum of specific detail 121 

and requires only a few simplifying assumptions (reproduced from Banavar et al., 2010 p 15816, 122 

with minor modifications for clarity): 123 

1. Definition of metabolic rate: Metabolic rate, B, can be measured as the rate of flow of discrete 124 

particles through a supply network. In mammals, for example, metabolic rate is routinely measured 125 

as the rate of oxygen consumption, and the oxygen molecules are transported in the blood vessels 126 

from a central source, the heart, to terminal units, the mitochondria. 127 

2.  Steady-state postulate: The flux of resources is at steady state, so supply matches demand, the rate 128 

B of particles being consumed by the terminal units matches the rate B of particles leaving the 129 

source, and the number of particles in transit does not change over time. 130 

3. Geometric similarity: Animals, especially those in the same taxonomic or functional group, are 131 

geometrically similar, so their geometry can be characterized by length, L, surface area, A, and 132 

volume, V, and simple Euclidean geometrical scaling gives V ∼ L3 and A ∼ L2. 133 

4. Directed transport: The average distance (d) from the source to each terminal unit is proportional to 134 

the length, L, of the animal.  135 

5. Velocity, v, is assumed to be uniform within an animal.  The average transit time, τ, scales as τ ∼ d/v. 136 
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6. Mass is proportional to volume: The density of protoplasm is approximately constant across animals, 137 

so mass, M, is proportional to volume, V. 138 

7. Particles in transit are contained within animal volume: The number of resource particles in transit, 139 

N, scales linearly with M and V. 140 

8. Definition of service volume: a service volume is defined as a unit of tissue that has a fixed metabolic 141 

rate independent of animal mass. Thus the number of service volumes is proportional to B. In an 142 

animal with volume V, each service volume is proportional to V/B and radius or length ls ∼ (V/B)1/3. 143 

The service volume does not necessarily correspond to any biological structure, although in 144 

mammals the service volume can be thought of as the volume of tissue supplied by a capillary, the 145 

terminal unit of the vascular network. 146 

The theory assumes only that resources are distributed from a point source through a distribution 147 

network with no particular branching pattern, and therefore applies equally to hierarchically 148 

branched and explosion networks.  It also assumes the transported resources are not stored near the 149 

service volume, and hence the ideas relate strongly to those metabolites that cannot be stored in the 150 

body (e.g. O2). The model predicts that the scaling exponent of metabolic rate is 2/3 if velocity of 151 

flow is independent of mass (consistent with an alternative model: Dodds, 2010), but can attain a 152 

maximum value of 3/4 if velocity scales with its maximum exponent, 1/12 (Banavar et al., 2010).  It 153 

is worth noting, however, that real animals clearly violate some assumptions of the model.  Not all 154 

animals have outward directed transport systems that distribute resources from a single point and, 155 

even for those that do, flow velocity is not uniform throughout the animal (Banavar et al., 2010).  156 

Although the central tendency of ¾-power scaling is supported by some studies (Savage et al., 2004; 157 

Moses et al., 2008), other studies emphasise the many deviations from quarter-power scaling and the 158 

resource distribution model has yet to adequately explain differences in the scaling exponent 159 

between endotherms and ectotherms (Phillipson, 1981; Glazier, 2005; White et al., 2006; White et 160 

al., 2007b; Glazier, 2010), and between rest and activity (White and Seymour, 2005a; Glazier, 2008; 161 

White et al., 2008; Glazier, 2010), although attempts to do so have been made (Gillooly and Allen, 162 

2007).  Debate regarding resource distribution models has been vociferous, focussing on issues of 163 

mathematical validity and empirical support (Banavar et al., 2000; Dodds et al., 2001; Banavar et al., 164 
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2002a; West et al., 2002a; Banavar et al., 2003; Darveau et al., 2003; West et al., 2003; Kozłowski 165 

and Konarzewski, 2004; Suarez et al., 2004; West et al., 2004; Brown et al., 2005; Kozłowski and 166 

Konarzewski, 2005; Painter, 2005a; Suarez and Darveau, 2005; Chaui-Berlinck, 2006, 2007; Savage 167 

et al., 2007; Agutter and Tuszynski, 2011). 168 

Interestingly, much of the empirical evaluation of the predictions of the resource distribution 169 

models has focussed on the scaling of metabolic rate with body mass (e.g. Bokma, 2004; Savage et 170 

al., 2004; Glazier, 2005; Duncan et al., 2007; White et al., 2007b), and the range of other scaling 171 

exponents predicted by these models has rarely been examined (Table 1).  Examining the congruence 172 

between predicted and observed values for circulatory variables, in particular, seems to be a valuable 173 

step in evaluating the core of these models, which are grounded in principles of hydrodynamics. 174 

West et al.‘s (1997, 1999) models for ¾ power scaling, for example, assume that natural selection 175 

has optimized the resource distribution network to minimize transport costs. This seems reasonable 176 

because the heart contributes a significant fraction of whole-animal metabolic rate (2.4-10.4%: 177 

Loiselle and Gibbs, 1979) and individuals with low metabolic rates are favoured in at least some 178 

situations (e.g. Blackmer et al., 2005; Artacho and Nespolo, 2009).  Some of the predictions of the 179 

models are supported by empirical data, suggesting that they are plausible models of resource 180 

transport (Table 1).  In birds and mammals, for example, heart rate scales with an exponent close to 181 

the predicted value of -0.25 (Table 1).  For fish, on the other hand, heart rate is independent of body 182 

mass (Clark and Farrell, 2011; White and Seymour, 2011). 183 

A significant product of the resource distribution model has been its use as a foundation for a 184 

Metabolic Theory of Ecology (MTE), which aims to use metabolism as a basis for applying first 185 

principles of physics and chemistry to link the biology of individual organisms to the ecology of 186 

populations, communities, and ecosystems (Brown et al., 2004b).  The fundamental equation of MTE 187 

describes variation in MR in terms of an empirically determined normalisation constant independent 188 
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of body size and temperature (i0), body mass (M), activation energy (E), Boltzmann‘s constant (k), 189 

and absolute temperature (T) (Gillooly et al., 2001; Brown et al., 2004b): 190 

 MR = i0 M
3/4

 e
-E/kT 

 191 

While early work on the MTE applied only a narrow range of parameters to describe the 192 

temperature- and mass-dependence of metabolic rate, recent work by the original proponents of MTE 193 

has acknowledged a wider range of variation in the parameters of the fundamental equation (Wang et 194 

al., 2009; DeLong et al., 2010; Dell et al., 2011).  The strength of MTE lies in its ability to predict a 195 

wide range of ecological patterns (Allen et al., 2002; Brown et al., 2004b; Meehan et al., 2004; 196 

Meehan, 2006; Buckley et al., 2008; Munch and Salinas, 2009), its grounding in first principles 197 

(although some contention exists about the extent to which this holds for the temperature term: 198 

Clarke, 2006; Irlich et al., 2009), and its deliberate simplicity (Brown et al., 2004a).  Not all tests of 199 

MTE support the theory (e.g. Algar et al., 2007; Duncan et al., 2007; Hawkins et al., 2007a; 200 

O'Connor et al., 2007; Downs et al., 2008), however, and it is worth noting that other theories also 201 

predict the scaling of metabolic rate with body mass with similar accuracy (see below), and 202 

application of these alternative explanations to explaining size-dependent ecological patterns is likely 203 

to be similarly successful. 204 

Dynamic Energy Budget 205 

In the framework of the Dynamic Energy Budget (DEB) theory (Kooijman, 2010), metabolic rate is 206 

considered to comprise a weighted sum of four processes: assimilation, maintenance, growth, and 207 

maturation.  DEB theory decomposes body mass into two indirectly measurable state variables, the 208 

‗reserve‘ and the ‗structure‘, and is based on generalized surface area (source) and volume (sink) 209 

relationships.  It makes the key assumptions that the composition of reserve and structure each 210 

remains constant but may differ from each other (‗strong homeostasis‘) and that, under constant 211 

food, the relative amount of reserve and structure stays constant and hence so does the entire body 212 

composition (‗weak homeostasis‘). Energy and matter are assimilated in proportion to structural 213 
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surface area (because food enters the body across surfaces), and directed first to the reserve pool of 214 

the organism.  The reserve is not necessarily metabolites ‗set aside for later‘, but rather is defined by 215 

its turnover rate. It reflects the part of the dry mass of an organism that fluctuates with resource 216 

supply, and is constantly used and replenished. DEB theory assumes that no costs are paid for the 217 

maintenance of reserves, but costs are paid for their turnover and are included in the overheads of 218 

assimilation and utilization. The structure is the ―permanent‖ biomass and does require energy for its 219 

maintenance (protein turnover and the maintenance of concentration gradients and ionic potentials, 220 

etc.) in direct proportion to structural volume.   221 

 Under DEB theory, the allometric scaling of metabolic rate arises because the contribution of 222 

non-respiring reserves to body mass increases with body size.  For example, body fat (which can be 223 

considered as part of the reserve, but is by no means all of it) scales as M
1.19

 in mammals (Pitts and 224 

Bullard, 1968; Calder, 1984) and has a very low mass-specific metabolic rate (Elia, 1992).  For 225 

interspecific comparisons, DEB theory predicts the scaling of mass-specific standard or basal 226 

metabolic rate for fully grown animals as (Kooijman et al., 2007; Kooijman, 2010): 227 

 228 

where respiration has contributions from growth and maintenance (assimilation is excluded because 229 

animals are postabsorptive). The parameters dE and dV represent the specific density (g cm
-3

) of 230 

reserve (E) and structure (V) and the amount of structure is proportional to the cubed volumetric 231 

length L
3
, so dV is independent of mass.  The ratio of reserve to structure is proportional to L, so 232 

metabolic rate scales allometrically with an exponent less than 1. Inclusion of a ―heating length‖ 233 

multiplier Lh (a positive constant for endotherms, and zero for ectotherms) for a surface area term 234 

(L
2
) in the numerator means that the scaling exponent of metabolic rate is predicted to be lower for 235 

endotherms than ectotherms, a pattern that is supported by empirical data (Phillipson, 1981; White et 236 

al., 2006; White et al., 2007b).  However, the appropriateness of including a surface-specific heating 237 

term LhL
2
 requires further scrutiny since body surface area and basal metabolic rate are not related in 238 
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mammals (White and Seymour, 2004), and it is not clear that heat loss determines basal metabolism 239 

in a mechanistic sense (da Silva et al., 2006; Seymour and White, 2011). 240 

The mechanisms invoked by DEB theory to explain intraspecific scaling relationships are 241 

different from those that explain interspecific scaling.  Interspecifically, the allometric scaling of 242 

metabolic rate arises because of the increase in reserve with mass, and differences between 243 

endotherms and ecotherms arise because of differences in the heating constant.  Although the idea 244 

has not yet been formally explored, it seems likely that at least some of the variation in the 245 

interspecific scaling exponent of metabolic rate could be explained by DEB theory on the basis of 246 

size- and activity-dependent variation between species in the energy turnover of structure, and 247 

thereby the relative contributions of reserve and structure to whole-body metabolism.  It is not yet 248 

clear, however, if DEB theory can explain the frequently observed covariation between metabolic 249 

level and the scaling exponent of metabolic rate (Glazier, 2005, 2008, 2009a, b, c, 2010). 250 

Metabolic Level Boundaries 251 

The metabolic level boundaries (MLB) hypothesis (Glazier, 2005, 2010) predicts that scaling 252 

exponents for MR will vary between two boundary constraints: surface-area limits on fluxes of 253 

metabolic resources, wastes and (or) heat that scale allometrically as M
2/3

, and volume limits on 254 

energy use or power production that scale isometrically as M
1
. Thus, metabolic rate is predicted to 255 

scale isometrically at low levels of sustained metabolic intensity, and the scaling exponent of 256 

metabolic rate is predicted to decrease toward 2/3 as sustained metabolic intensity increases.  During 257 

intense activity, volume limits on power production by the locomotory musculature dominate, and 258 

metabolic rate is predicted to scale isometrically.  The pattern of variation predicted by the metabolic 259 

level boundaries hypothesis is supported by variation in the scaling exponent for birds and mammals 260 

(Glazier, 2008, 2009a), unicellular organisms (Glazier, 2009b), and ectothermic animals (Glazier, 261 

2009c; Killen et al., 2010). In support of the hypothesis, the body temperature of large animals has 262 

been shown to rise continually during intense aerobic exercise (e.g. Jones et al., 1989; Nagano et al., 263 
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1990b), which demonstrates the metabolic rate during intense exercise is not constrained by heat 264 

flux.  265 

Allometric cascade 266 

The allometric cascade (AC) theory (Darveau et al., 2002; Hochachka et al., 2003) regards the 267 

scaling of metabolic rate as a consequence of multiple causes, where the exponent b is the sum of the 268 

influences of multiple contributors to metabolism and control, and where the relative strength of each 269 

contributor, with its own characteristic exponent value, is determined by its control contribution.  270 

The original mathematical model derived from the allometric cascade theory has been criticised 271 

(Banavar et al., 2003; West et al., 2003), and a revised model subsequently appeared (Darveau et al., 272 

2003; Hochachka et al., 2003): 273 

 274 

where MR0 is the ‗characteristic metabolic rate‘ of an animal with a ‗characteristic body mass‘, M0. 275 

With M0 of 1 unit mass (usually kg), MR0 takes the place of the value a, found in the standard scaling 276 

equation, bi is the scaling exponent of the process i, and ci is its control contribution to overall flux, 277 

or the control coefficient of the process i. 278 

For animals working at V
.
O2max (i.e. their maximal sustainable work rates, equivalent to 279 

maximum sustainable ATP turnover rates), major contributors to control include the lung, heart and 280 

circulation (Wagner, 1993; Jones, 1998), as well as cellular-level energy-supply and ATP-demand 281 

pathways (Thomas and Fell, 1998; Jeneson et al., 2000; Cloutier and Wellstead, 2010).  Based on the 282 

control coefficients for these processes, the predicted global b value is 0.82 – 0.92 (Darveau et al., 283 

2002), in good agreement with empirical data (Bishop, 1999; Weibel et al., 2004; White and 284 

Seymour, 2005a; White et al., 2007b; White et al., 2008). For animals under BMR conditions, on the 285 

other hand, all of the oxygen delivery steps have an excess capacity of at least several-fold, which 286 

allows animals to increase the metabolic rate from BMR to V
.
O2max.  Thus, the control contributions 287 

of these steps are considered to be zero under basal conditions, and the global scaling of BMR is 288 
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driven by energy demand processes.  Under basal conditions, major energy sinks are Na
+
-K

+
-289 

ATPase, protein turnover, substrate cycles, and mitochondrial proton leak (Rolfe and Brand, 1997), 290 

and the control coefficients for these processes contribute to the global b value for BMR, which is 291 

predicted to be within the range 0.76 – 0.79 (Darveau et al., 2002), which is somewhat higher than 292 

observed for mammals over most of their mass range (Kolokotrones et al., 2010). The principles of 293 

allometric cascade theory also appear to be valid for resting and exercising humans (Batterham and 294 

Jackson, 2003, 2005;  but see Nevill and Bate, 2005 for an alternative viewpoint). 295 

Cell Size 296 

The cell size (CS) model proposes that the mass scaling of metabolism is shaped by the evolutionary 297 

coupling of cell size and body size, since, with increasing cell size, the cell surface area:volume ratio 298 

decreases (Davison, 1955; Kozłowski et al., 2003a; Kozłowski et al., 2010). All other things being 299 

equal, the model predicts that metabolic rate should scale isometrically when evolutionary increases 300 

in body size are achieved entirely through increases in cell number (i.e. cell size scales as M
0
), or as 301 

M
2/3

 when increases in size are achieved through increases in cell volume (i.e. cell size increases 302 

with M). Experimental studies have supported the link between cell size and metabolic rate (Maciak 303 

et al., 2011), and the cell size model for metabolic scaling has been supported in studies of 304 

endotherms (Vinogradov, 1995; Kozłowski et al., 2003a; Opazo et al., 2005), reptiles (Starostová et 305 

al., 2009), tetrapods (Vinogradov and Anatskaya, 2006), and insects (Chown et al., 2007).  Recent 306 

work, however, has demonstrated that patterns of mass-dependence of cell sizes in different animal 307 

groups are inconsistent with the assumptions of the model, and has called for revision of the model 308 

(Glazier, 2005; Kozłowski et al., 2010).  Cell volume scales with exponents between 0 and 0.3 in 309 

birds and mammals (Kozłowski et al., 2010). The cell size model predicts that a cell volume scaling 310 

exponent of 0.3 should be associated with a metabolic rate scaling exponent of 0.9 (Kozłowski et al., 311 

2003a; Kozłowski et al., 2010), which is greater than the exponents observed for these groups 312 

(McKechnie and Wolf, 2004; White and Seymour, 2005a; McKechnie et al., 2006; White et al., 313 
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2007b; White et al., 2009).  The cell size model is also difficult to reconcile with the observation that 314 

the metabolism of individual cells in culture does not scale with the 2/3-power of cell volume (West 315 

et al., 2002b), though the relevance of cell preparations to the in vivo metabolism of cells remains an 316 

open question.  Similarly, the ratio of mitochondrial volume to cell volume is a more important 317 

predictor of the respiration of isolated hepatocytes than cell volume itself (Porter and Brand, 1995). 318 

Heat dissipation limits 319 

The heat dissipation limit (HDL) theory (Speakman and Król, 2010) proposes that an upper 320 

boundary on sustained energy expenditure is imposed by the maximal capacity to dissipate body heat 321 

and therefore avoid the detrimental consequences of hyperthermia. In contrast to other theories, HDL 322 

seeks to explain the scaling of average daily energy expenditure (field metabolic rate), which it 323 

estimates on the basis of the exponent of maximal capacity to dissipate heat (  M
0.47 – 0.50

, all other 324 

things being equal).  Interestingly, the value of ~0.5 is similar to that predicted for the scaling 325 

exponent of metabolic rate at a constant temperature by an analytical model of the thermal niche of 326 

an ellipsoid furred endotherm (Porter and Kearney, 2009), as well as to the empirically-determined 327 

scaling exponent of minimum wet thermal conductance (b = 0.42 to 0.62: Schleucher and Withers, 328 

2001; Withers et al., 2006), and the scaling exponent of daily energy expenditure (DEE) measured at 329 

any given temperature (Calder, 1984).  Incorporating empirical data for the scaling of plumage/fur 330 

mass (  M
0.95 – 0.98

), skin mass (  M
0.94

), and body temperature (  M
0.05

), the predicted scaling 331 

exponent of maximum heat dissipation capacity is about 0.63, a value close to the measured scaling 332 

exponents (shown ± SE) of FMR of 0.647 ± 0.013 in mammals and 0.658 ± 0.017 in birds 333 

(Speakman and Król, 2010).  When analysed using phylogenetic independent contrasts (Felsenstein, 334 

1985) the exponent of FMR for birds and mammals are 0.679 ± 0.032 and 0.576 ± 0.036, 335 

respectively (Speakman and Król, 2010). 336 

The HDL theory is also supported by the observation that the daily energy turnover of 337 

lactating animals is increased by manipulating heat dissipation capacity through pelage removal or 338 



 15 

cold exposure (Johnson and Speakman, 2001; Król and Speakman, 2003; Król et al., 2007; Wu et al., 339 

2009; Simons et al., 2011), but not by increases in litter size, by forced exercise, or by simultaneous 340 

pregnancy (Hammond and Diamond, 1994; Johnson et al., 2001a, b; Laurien-Kehnen and Trillmich, 341 

2003).  Similarly, lactating red squirrels Tamiasciurus hudsonicus raising large litters occupy poorly 342 

insulated nests in warm years (Guillemette et al., 2009).  Support for the predictions of the theory is 343 

not universal, however, and other studies of small mammals report mixed results (Zhao and Cao, 344 

2009; Speakman and Król, 2011; Zhao, 2011).  The generality of the HDL theory also remains to be 345 

verified on animals performing other energetically-demanding activities, such as locomotion, and the 346 

theory explains the scaling of metabolic rate only in free-living endotherms, and does not apply to 347 

ectotherms.  Nonetheless, for endotherms, the theory is relevant to BMR because it represents an 348 

upper limit to DEE.  Given that BMR contributes a substantial component of DEE, an upper limit to 349 

DEE with a scaling exponent of ~0.63 will constrain BMR to a similarly low exponent to ensure that 350 

there is scope for activity (= DEE – BMR) across the size range of endotherms.  351 

Evaluating explanations for metabolic scaling 352 

It is a truism that all biological models are wrong because they are simplifications of complex 353 

systems and rarely, if ever, fully account for the variation they aim to explain.  Ideally, models 354 

should maximise generality, realism, and precision, but this is not always possible and one of these is 355 

often sacrificed in favour of the others (Levins, 1966).  Nevertheless, these three goals offer criteria 356 

by which competing models can be evaluated.  With respect to metabolic scaling, distinguishing 357 

among competing models on the grounds of how well they predict empirical data is difficult because 358 

many models predict similar values.  Metabolic rate may scale allometrically because of the 359 

geometry of resource distribution networks, leading to predictions of metabolic scaling exponents of 360 

0.67 – 0.75 (Banavar et al., 2010) or 0.5 – 1 (Price et al., 2007). A definitive test of the resource 361 

distribution model has proven elusive, however, because like several other models it predicts a 362 

central tendency of 0.75-power scaling (West et al., 1997, 1999). Thus, while this prediction shows 363 
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good general agreement with the mean scaling exponent observed in both intra-specific (Moses et al., 364 

2008) and inter-specific (Savage et al., 2004) studies, other models make similar predictions: the Cell 365 

Size (Kozłowski et al., 2003a), Metabolic Level Boundaries (Glazier, 2010), and Dynamic Energy 366 

Budget models all predict b to vary between 0.67 and 1,  the mid-point of which is close to 0.75.  367 

Similarly, the metabolic level boundaries (Glazier, 2010) and dynamic energy budget (Kooijman, 368 

2010) models both predict that scaling exponents for resting endotherms will be lower than those for 369 

resting ectotherms.  Given that the predictions from the models overlap so strongly, it is important 370 

that the presentation of models include clear descriptions of their unique predictions to facilitate tests 371 

that distinguish between alternatives (Shipley, 2000; Currie et al., 2004; Hawkins et al., 2007b; 372 

Glazier, 2010; White et al., 2011b; Kearney and White, 2012). 373 

An alternative criterion by which competing explanations for metabolic scaling can be 374 

compared is their relative complexity.  Simple explanations that incorporate a minimum of detail are 375 

sometimes regarded as more parsimonious than more complicated ones (Zuo et al., 2009). Implicit in 376 

such a judgement is the idea that a model should be evaluated not only on how well it fits available 377 

data, but that comparisons of alternative models should incorporate information about how many 378 

parameters are required to describe the data. Thus, of two models that describe variation in metabolic 379 

rate equally well, the ‗best‘ model is the one that includes the fewest parameters. Such ideas form the 380 

basis of information theoretic approaches to model comparison (Burnham and Anderson, 2002; 381 

Johnson and Omland, 2004; Hobbs and Hilborn, 2006); in the case of metabolic scaling, such tests 382 

generally favour complex models over simple ones (Isaac and Carbone, 2010), because the 383 

additional predictive power of complex models outweighs their need to estimate extra parameters. It 384 

should be borne in mind, however, that some models are more connected to formal theories (e.g. 385 

DEB) than others (e.g. MLB); theory-based models must also be evaluated on the legitimacy of the 386 

theoretical assumptions in addition to model complexity (Kearney and White, 2012). 387 
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The two most common problems associated with tests of explanations for metabolic scaling 388 

have been a failure to account for phylogenetic non-independence in comparative data, and a reliance 389 

on correlational approaches to understand the scaling of physiological traits with body mass.  While 390 

the former is rarely a problem in recent analyses (e.g. Sieg et al., 2009; White et al., 2009; Capellini 391 

et al., 2010; Kolokotrones et al., 2010), the latter is almost unavoidable because the metabolic rate 392 

and body mass are necessarily measured in intact individuals. The resultant correlation between these 393 

traits is then assessed; this approach precludes examination of the causal effect of mass on the trait of 394 

interest.  Correlational approaches to distinguishing between competing explanations are problematic 395 

because many variables in addition to metabolic rate co-vary with body mass.  For example, body 396 

mass is correlated with climate, diet, and life-history traits including litter size and maximum 397 

longevity (McNab, 2008; Jones et al., 2009), all of which have been shown to have confounding 398 

effects on metabolic rate (e.g. White and Seymour, 2004; McNab, 2008).  A potential solution to this 399 

problem is the examination of scaling relationships for colonial organisms.  The size of colonies can 400 

be manipulated experimentally and the consequences of the manipulation for scaling relationships 401 

can be examined (e.g. Nakaya et al., 2005; White et al., 2011b).  An additional alternative approach 402 

is the manipulation of biotic and abiotic variables, and examination of the size-dependence of the 403 

resultant effect (Glazier, 2005).  Such an approach is most commonly applied to intraspecific studies 404 

(e.g. Table 2) but could also be applied to interspecific ones, and represents a potentially powerful 405 

tool to understand the factors that constrain and influence the allometry of metabolic rate. 406 

Integrating explanations for metabolic scaling 407 

The various explanations for metabolic scaling are not necessarily exclusive, and integration of 408 

various aspects of the associated theories and models may lead to a greater understanding of why 409 

metabolic rate scales allometrically with body mass (Ginzburg and Damuth, 2008; Glazier, 2010).  410 

For example, Clarke et al. (2010) suggest that the reason why the relationship between log(M) and 411 

log(MR) for mammals is not linear (e.g. Hayssen and Lacy, 1985; Dodds et al., 2001; Glazier, 2005; 412 
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Makarieva et al., 2008; Kolokotrones et al., 2010; White, 2011) is because at large sizes the scaling 413 

is dominated by factors that dictate 0.75-power scaling (e.g. resource distribution: West et al., 1997), 414 

whereas at small sizes this factor is overridden by considerations of heat flow and hence the 415 

exponent is closer to 0.67. They note that the pattern of variation in the scaling exponent arising from 416 

this prediction is analogous to the metabolic level boundaries hypothesis of Glazier (2005, 2010).  417 

Similar arguments could be made using several of the other theories discussed above, since they also 418 

invoke fluxes that scale allometrically (e.g. of heat across body surfaces or metabolites across cell 419 

surfaces).  Indeed, since the sum of two non-isometric scaling relationships will not be a strict power 420 

function of mass (Figure 2) (see also Garland, 1983; Calder, 1984), any theory that includes additive 421 

combinations of isometric (  M
1
) and allometric (e.g.  M

0.67
) components that vary with metabolic 422 

level will match a number of observed scaling patterns, at least qualitatively.  Examples of such 423 

patterns include the curvature in BMR scaling for mammals (Hayssen and Lacy, 1985; Painter, 424 

2005b; Kolokotrones et al., 2010), differences between the scaling exponent of basal and standard 425 

metabolic rate of endotherms and ectotherms (White et al., 2007b; White et al., 2008), the high 426 

scaling exponent of hibernating endotherms compared to daily heterotherms and euthermic 427 

endotherms (Geiser, 1988; White and Seymour, 2005a), and the high scaling exponent of field 428 

metabolic rate in reptiles compared to birds and mammals (Nagy et al., 1999; Nagy, 2005; Speakman 429 

and Król, 2010). This prediction is made explicit by the MLB hypothesis, which includes fluxes of 430 

metabolic resources, wastes and (or) heat that scale allometrically (Glazier, 2005, 2008, 2010), but 431 

the principle of summed allometric and isometric components (or summed components that each 432 

scale allometrically with different exponents) of metabolic rate applies equally to combinations of 433 

organ-tissue compartments that differ in their association with body mass (see e.g. Wang et al., 2001; 434 

Glazier, 2005; Painter, 2005b; Glazier, 2010; Killen et al., 2010). 435 

Differences in the scaling of BMR and V
.
O2max, for example, can be explained by 436 

considering differences in the metabolic scaling exponents between tissues that contribute to energy 437 
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turnover during rest and exercise (Glazier, 2005).  Most metabolic activity during basal metabolism 438 

is associated with the internal organs including liver, kidney, gastrointestinal tract, heart, and brain 439 

(Krebs, 1950; Rolfe and Brown, 1997), and variation in BMR between species and individuals has 440 

therefore been attributed to variation in organ mass (Daan et al., 1990; Konarzewski and Diamond, 441 

1995; Meerlo et al., 1997; Książek et al., 2004; Song and Wang, 2006; Brzęk et al., 2007; Raichlen 442 

et al., 2009; Williams et al., 2010) and tissue metabolism (Krebs, 1950; Wang et al., 2001). During 443 

exercise-induced maximal metabolism, on the other hand, most (>90%) metabolic activity is 444 

associated with work done by the locomotor muscles and delivery of substrates and oxygen to these 445 

(Weibel et al., 2004). There is therefore a hierarchy of contributions to organismal metabolism 446 

depending on demand (see Darveau et al., 2002; Suarez and Darveau, 2005): whole-animal 447 

metabolism is a function of organ mass and metabolism, which in turn is a function of tissue and 448 

mitochondrial metabolism, which is governed by the activity of metabolic enzymes.  At rest, 449 

allometric scaling of visceral organism metabolism dominates (see e.g. Porter, 2001; Wang et al., 450 

2001; Glazier, 2005), whereas during exercise isometric scaling of muscle metabolism dominates 451 

(see e.g. Weibel et al., 2004; Glazier, 2005).  Evidence for the validity of such an approach comes 452 

from the human literature, which includes examples where specific body compartments have been 453 

shown to be more appropriate than whole body mass for standardising inter-individual differences in 454 

V
.
O2max (Eliakim et al., 1996; Nevill et al., 2004; Nevill et al., 2006; Tolfrey et al., 2006).  Similarly, 455 

muscular parameters better explain inter-specific variation in mammalian V
.
O2max than does body 456 

mass (Weibel et al., 2004; Weibel and Hoppeler, 2005).   457 

Decomposition of whole-animal metabolism into organ-tissue compartments that scale with 458 

different exponents can also explain the higher scaling exponent of ectotherm SMR compared to 459 

endotherm BMR (White et al., 2006; White et al., 2007b).  The organs that contribute to resting 460 

metabolism are smaller in ectotherms than in endotherms (Crile and Quiring, 1940; Martin, 1981; 461 

Karasov, 1987; Franz et al., 2009) and the tissue-mass-specific metabolic intensity is lower (Hulbert 462 
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and Else, 1981; Hulbert et al., 2002).  Thus, if whole-animal metabolism is assumed, for simplicity, 463 

to have two compartments (e.g. muscle + bone compartment that scales as M
~1

, and a visceral organ 464 

+ brain compartment that scales as M
~0.67

) and the mass-specific intensity of both compartments is 465 

higher for endotherms than ecotherms, then the scaling exponent of SMR is predicted to be lower for 466 

endotherms than ecotherms (Figure 3).  This approach also predicts that the curvature in MR will be 467 

less pronounced or absent in ectotherms than endotherms, as is also apparently the case (Ehnes et al., 468 

2011; Müller et al., 2011a).  The exact values of the exponents predicted by this approach will 469 

depend on the scaling exponent of organ masses and tissue-mass-specific metabolic intensities.  470 

However, while this ‗multi-compartment‘ approach can explain variation in the scaling exponent of 471 

whole-animal metabolic rate, it does not offer an explanation for why the compartments scale as they 472 

do.  First principles explanations for these organ-specific scaling patterns might come from the 473 

mechanistic models discussed above, and further understanding of the ultimate (evolutionary) causes 474 

of the allometric relationship between metabolic rate and body size could be gleaned from 475 

examination of the genetic associations between traits that contribute to metabolic rate (Glazier, 476 

2005).  For example, examination of how the genetic correlation between brain size and body size 477 

varies during development has been beneficial in understanding why the scaling exponent of brain 478 

size is lower during development than for interspecific comparisons (Lande, 1979; Riska and 479 

Atchley, 1985; Lynch and Walsh, 1998). 480 

Causes of mass-independent variation in BMR 481 

Climate and habitat productivity 482 

Perhaps the most prominent and well-supported abiotic correlate of mass-independent variation in 483 

BMR is environmental temperature, which is negatively related to BMR in both birds (Jetz et al., 484 

2007; White et al., 2007a) and mammals (Lovegrove, 2003; Careau et al., 2007), including humans 485 

(Froehle, 2008). This relationship probably arises as a consequence of the need to limit endogenous 486 
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heat production in hot environments (McNab and Morrison, 1963), and to maximise heat production 487 

in cold environments (BMR is positively correlated with maximum cold-induced metabolic rate in 488 

both birds and mammals: Dutenhoffer and Swanson, 1996; Rezende et al., 2002; Rezende et al., 489 

2004). The low BMR of species from hot environments may also arise because lower differential 490 

between body and ambient temperatures means that the contribution of endogenous heat production 491 

to thermoregulation can be reduced, thereby saving energy and/or water, or because high temperature 492 

limits the sustained metabolism of endotherms (Speakman and Król, 2010). If energy expenditure 493 

attributable to maintenance (BMR) and activity (AMR = FMR - BMR) are considered independent 494 

(i.e. the 'partioned pathways' model of Ricklefs et al., 1996), as is the case in at least free-ranging 495 

great cormorants Phalacrocorax carbo (White et al., 2011a), then, in an environment where daily 496 

energy expenditure is restricted by heat dissipation, a reduction in BMR increases the scope for 497 

activity. Support for the idea that scope for activity (=FMR divided by BMR) is restricted by the 498 

difference between maximum rates of heat dissipation and BMR arises from the observation that 499 

scope for activity decreases from up to 8-fold for small mammals to less than 3-fold for large ones 500 

(Westerterp and Speakman, 2008), though it is not currently clear if scope for activity also with 501 

climate. While the relationship between environmental temperature and BMR is likely to have a 502 

genetic component, as has been shown for stonechats (Wikelski et al., 2003), the extent to which 503 

phenotypic plasticity contributes to the observed relationship between environmental temperature 504 

and BMR remains unclear, as cold acclimation causes an increase in metabolic rate for birds and 505 

mammals (Williams and Tieleman, 2000; Song and Wang, 2006; McKechnie et al., 2007; 506 

McKechnie, 2008). Recent comparative analysis suggest that the magnitude and direction of seasonal 507 

acclimatization in free-living birds depends upon their thermal environment: species that experience 508 

cold winters at high latitude have higher BMR in winter than summer, whereas species that inhabit 509 

warmer subtropical latitudes have lower BMR in winter (Smit and McKechnie, 2010). These 510 

acclimation and acclimatization responses act on timescales of weeks, suggesting that ambient 511 
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temperature has a proximate role in influencing BMR (Swanson and Olmstead, 1999; McKechnie et 512 

al., 2007), though changes associated with environmental triggers for reproduction are also 513 

implicated as drivers of seasonal variation (Smit and McKechnie, 2010). However, there is evidence 514 

that inter-specific and inter-population differences are maintained for multiple generations in 515 

captivity, and that populations from more seasonal environments show a greater capacity for thermal 516 

acclimation than populations from stable environments (Tieleman et al., 2003; Cavieres and Sabat, 517 

2008). These findings suggest a genetic component to climate-associated variation in BMR. Thus, 518 

there remains a clear need for common-garden experiments comparing differences in BMR between 519 

animals from warm and cold environments to separate the genetic and phenotypic components of the 520 

negative relationship between environmental temperature and BMR. 521 

Related to the effect of temperature, BMR is often thought to be associated with 522 

environmental productivity, such that animals from highly productive environments have higher 523 

BMRs than those from less productive environments. This conclusion stems from the observation 524 

that the BMRs of arid species are generally lower than those of mesic species (e.g. Tieleman and 525 

Williams, 2000; Withers et al., 2006). However, the BMR of birds is not related to net primary 526 

productivity (White et al., 2007a). This contrasts with the situation in mammals, where 527 

environmental productivity has been shown to be positively correlated with BMR in a range of 528 

studies (Mueller and Diamond, 2001; Bozinovic et al., 2007; Bozinovic et al., 2009). BMR is 529 

similarly correlated with rainfall parameters associated with environmental productivity for 530 

marsupials (Withers et al., 2006) and small (< 1 kg) eutherians (Lovegrove, 2003). Birds and 531 

mammals also differ in the relationship between BMR and rainfall variability: the relationship is 532 

negative in mammals (Lovegrove, 2003; Withers et al., 2006), but positive (White et al., 2007a) or 533 

absent (Jetz et al., 2007) in birds. The reason for this difference between birds and mammals is 534 

unclear, but it could be genuine, reflecting perhaps a difference in mobility, or it could arise as a 535 

consequence of methodological differences between the avian and mammalian analyses. Future 536 
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analyses applying uniform phylogenetically-informed methods (see e.g. Rezende and Diniz-Filho, 537 

2012) and drawing on environmental data from a single database could resolve the issue, and could 538 

be extended to other groups for which latitudinal and climate effects on metabolic rate have been 539 

identified, such as insects (Addo-Bediako et al., 2002) and fish (White et al., 2012). The ongoing 540 

accumulation of readily available climate data (e.g. www.worldclim.org), large compilations of 541 

metabolic data (e.g. McNab, 2009; Sieg et al., 2009) and complete species-level supertrees (e.g. 542 

Bininda-Emonds et al., 2007) will facilitate such work. 543 

Probably the most controversial correlate of BMR is diet. Early work tended to report 544 

significant associations between diet and BMR (e.g. McNab, 1969, 1986). These were, however, not 545 

supported by subsequent PI analyses (e.g. Cruz-Neto et al., 2001; Rezende et al., 2004), though 546 

problems in correctly assigning dietary categories could contribute to this discrepancy (McNab, 547 

2003). More recent PI analyses have supported an association between diet and BMR for Carnivora 548 

(Muñoz-Garcia and Williams, 2005), and between diet and FMR for birds (Anderson and Jetz, 549 

2005), but no association is observed between BMR and diet for birds (Table 3) or mammals in 550 

general (White, 2011; see also Clarke et al. 2010 for a discussion of covariation between diet and 551 

body temperature in mammals).  552 

Organ-tissue contributions to mass-independent BMR 553 

The internal organs contribute substantially to BMR, and variation in BMR between species has 554 

therefore been attributed to variation in organ mass (Daan et al., 1990; Raichlen et al., 2009) and 555 

tissue metabolism (Krebs, 1950; Wang et al., 2001). Within species, 71% of the variation in BMR of 556 

Chilean mouse oppossums is explained by variation in the mass of digestive organs (Nespolo et al., 557 

2002), strains of mice with high BMR tend to have relatively large metabolically active organs 558 

(heart, kidney, liver, and small intestine) (Konarzewski and Diamond, 1995), and mice artificially 559 

selected for high BMR have larger small intestine, liver, kidneys, and heart than mice selected for 560 

low BMR (Książek et al., 2004; Brzęk et al., 2007). Similarly, cold-acclimated Brandt's voles 561 

http://www.worldclim.org/
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Lasiopodomys brandtii have higher BMR and heavier liver, kidneys and gastrointestinal segments 562 

than warm-acclimated ones (Song and Wang, 2006). In field voles Microtus agrestis, BMR is 563 

positively correlated with heart mass (Meerlo et al., 1997). However, the relationship between organ 564 

mass and BMR differs between sexes in red junglefowl Gallus gallus (Hammond et al., 2000), BMR 565 

is associated with only the mass of reproductive tissue in adult house sparrows Passer domesticus 566 

(Chappell et al., 1999), and diet-induced changes in the mass of the gastrointestinal tracts, gizzards, 567 

and livers of starlings are not associated with increases in BMR (Geluso and Hayes, 1999). Thus, 568 

while comparative studies of birds have revealed a clear effect of inter-specific variation in organ 569 

masses on BMR (Daan et al., 1990), the results of intraspecific studies are more equivocal.   570 

A controversial correlate of metabolic rate is brain size (Imamura and Clowes, 1975; Martin, 571 

1981; Harvey and Bennett, 1983; McNab, 1989; Nagano et al., 1990a; Pastor, 2000; Isler and van 572 

Schaik, 2006; Weisbecker and Goswami, 2010). Recent comparative analyses are generally in favour 573 

of an association between brain size and metabolism for at least eutherian mammals; the presence or 574 

absence of an association for marsupials is more equivocal and depends upon the method of analysis 575 

(Imamura and Clowes, 1975; Weisbecker and Goswami, 2010).  A potential problem with 576 

comparative analyses of the association between brain size and BMR, however, is that brain size is 577 

correlated with a range of other ecological and life-history traits (e.g. Burrin et al., 1989; Eisemann 578 

and Nienaber, 1990; Huntington et al., 1990; Guerino et al., 1991; Sol et al., 2002; Sol et al., 2005), 579 

and disentangling the associations between these traits, BMR, and brain size is difficult.  Intra-580 

specific studies have also demonstrated an association between brain size and BMR for humans 581 

(Javed et al., 2010; Müller et al., 2011b) and inbred strains of mice (Konarzewski and Diamond, 582 

1995), and artificial selection studies offer an alternative experimental approach to examining the 583 

association.  Brain weight has been shown to respond to artificial selection in mice in only 6-10 584 

generations (Roderick et al., 1976), and comparison of BMR in lines divergently selected for low and 585 

high brain size should help resolve the issue. 586 
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Mitochondrial contributions to mass-independent BMR 587 

Approximately 90% of oxygen consumption is associated with ATP production by mitochondria, 588 

with ~19-28% used by Na
+
-K

+
-ATPase and ~20% associated with mitochondrial proton leak (Rolfe 589 

and Brand, 1997). Variation in BMR between populations and individuals within a species have been 590 

attributed to variation in mitochondrial function (Speakman et al., 2004; Tieleman et al., 2009a), and 591 

individual mice with high metabolic rates have more uncoupled mitochondria than those with low 592 

metabolic rates (Speakman et al., 2004). However, differences in BMR between eutherians and 593 

marsupials are not explained by differences in mitochondrial proton leak (Polymeropoulos et al., 594 

2011), nor are differences in BMR between individual humans (Larsen et al., 2011).  Differences in 595 

BMR between individual humans are explained instead by differences in mitochondrial oxygen 596 

affinity (Larsen et al., 2011).  Inter-individual and inter-population differences in mitochondrial 597 

function have been linked to fitness-enhancing traits in ectotherms (e.g. Ellison and Burton, 2006; 598 

Seebacher and Wilson, 2006), and similar links between BMR, mitochondrial function, and 599 

Darwinian fitness surely await discovery in endotherms. In addition to measurement of 600 

mitochondrial activity, attention should also be given to variation in the density of mitochondria, as 601 

variation in total mitochondrial volume accounts for significant variation in aerobic capacity (Weibel 602 

et al., 2004). Since aerobic capacity is often correlated with BMR (e.g. Hayes and Garland, 1995; see 603 

also Table 4) and mitochondrial processes contribute significantly to BMR, it seems likely that BMR 604 

will be correlated with the metabolic intensity and abundance of mitochondria, as well as 605 

mitochondrial morphology, which is related to proton leak across the inner mitochondrial membrane 606 

(Porter et al., 1996). 607 

Approaches to understanding mass-independent variation 608 

Quantitative genetic analyses and artificial selection experiments are a promising approach for 609 

elucidating the evolutionary factors that influence BMR. Several of these are ongoing, including 610 

divergent selection on BMR directly in laboratory mice (Książek et al., 2004); divergent selection on 611 
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locomotor activity, predatory behaviour, and ability to cope with herbivorous diet in bank voles 612 

Myodes (Clethrionomys) glareolus (Sadowska et al., 2008); and selection on maximum rate of 613 

oxygen consumption (V̇ O2max) during treadmill exercise, as well as selection to generate a negative 614 

correlation between V̇ O2max and BMR (see Swallow et al., 2009; Wone et al., 2011). Results available 615 

to date have demonstrated support for as association between diet and BMR, although the ability to 616 

cope with a low-quality herbivorous diet shows a positive additive genetic correlation with BMR 617 

(Sadowska et al., 2009), rather than the negative association expected from studies of the effect of 618 

dietary manipulation on BMR (Veloso and Bozinovic, 1993; Koteja, 1996; Perissinotti et al., 2009; 619 

Zhao and Wang, 2009).  Seven generations of selection for high V̇ O2max has so far yielded a 12.3% 620 

increase in V̇ O2max in selected lines compared to control lines, and a non-significant 3.5% increase in 621 

BMR (Wone et al., 2011).   622 

Selection on BMR directly has generated lines of mice that differ significantly in BMR and 623 

V̇ O2max elicited by forced swimming (Książek et al., 2004).  The body-mass-corrected masses of four 624 

visceral organs (small intestine, liver, kidneys, and heart) are also consistently and substantially 625 

higher in mice selected for high BMR than those selected for low BMR (Książek et al., 2004); these 626 

differences are considered large enough to claim the existence of positive genetic correlations 627 

between BMR and the masses of examined viscera (Książek et al., 2004).  It will be interesting to 628 

examine the outcomes of the suite of selection experiments not only for BMR, but also on the traits 629 

that are believed to underlie variation in BMR including the sizes of visceral organs and 630 

mitochondrial characteristics. Brain and liver mass are heritable in mice (Jones et al., 1992), as are 631 

the masses of brain, heart, liver, and kidney in baboons Papio hamadryas (Mahaney et al., 1993), 632 

and the liver in wild mice Phyllotis darwini (Bacigalupe et al., 2004).  Baboons show additive 633 

genetic correlations between the masses of brain and liver, as well as between liver and kidneys 634 

(Mahaney et al., 1993), but no additive genetic correlations were detected between liver, heart, lungs, 635 

small intestine, and caecum in Phyllotis darwini (Bacigalupe et al., 2004).  Given the phenotypic 636 
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associations observed between visceral organs and BMR as well as between mitochondrial 637 

characteristics and BMR, the likely heritability of these traits, and the genetic associations among 638 

visceral organs, it seems plausible that genetic associations between BMR and these traits will also 639 

be revealed.  Such analyses will yield valuable information regarding the mechanistic bases of 640 

variation in BMR that arises as a consequence of direct selection on BMR, or as a consequence of 641 

correlated responses in BMR associated with selection on other traits. 642 

Consequences of variation in BMR for animal performance 643 

Mass-independent variation in BMR amounts to up to several-fold between individuals, 644 

populations, and species, and understanding the consequences of this variation for organismal 645 

performance is essential to understanding the selection pressures that act on energy expenditure in 646 

the wild. In this regard, the most strident criticism of the BMR concept is that while the strict 647 

conditions prescribed for its measurement facilitate comparison by ensuring that all animals are in a 648 

similar physiological state, these conditions potentially come with the sacrifice of biological 649 

relevance. Basal conditions can be paraphrased as the measurement of a starving, stationary, sleeping 650 

animal, suggesting that the measurement is likely to have little practical utility in understanding the 651 

evolution of energy expenditure. Nevertheless, the observation that BMR varies significantly has led 652 

to the idea that the variation is important and might therefore be the subject of natural selection, 653 

either directly on BMR itself, or indirectly on a trait related to BMR. Indeed, BMR is repeatable 654 

(Nespolo and Franco, 2007), has low to moderate heritability (Table 5; see also Table 6 for 655 

heritabilities of metabolic rate for ecotherms), varies between individuals, responds to artificial 656 

selection (Książek et al., 2004), and is correlated with a wide range of other traits (Table 4, see also 657 

Biro and Stamps, 2010; Burton et al., 2011). This suggests that BMR could be the subject of 658 

selection, but studies demonstrating this in wild populations are rare.  659 

Measurements of the association between juvenile survival and SMR in snails Helix aspersa 660 

suggest that maintenance metabolism is under a combination of directional and stabilising selection 661 
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(Artacho and Nespolo, 2009), such that individuals with low and intermediate metabolic rates are 662 

favoured over those with high metabolic rates.  Natural selection therefore eliminates individuals 663 

with high metabolic rates but does not necessarily favour individuals with the absolute lowest 664 

metabolic rates.  Similarly, inbreeding results in an increase in resting metabolic rate in crickets 665 

Gryllodes sigillatus, suggesting that low quality individuals have higher metabolic rates than high 666 

quality individuals (Ketola and Kotiaho, 2009). This contrasts with the finding that BMR is 667 

positively related to over-winter survival in short-tailed field voles Microtus agrestis (Jackson et al., 668 

2001) and reproductive success in bank voles Myodes (Clethrionomys) glareolus (Boratyński and 669 

Koteja, 2010), although BMR is not related to over-winter survival in bank voles (Boratyński and 670 

Koteja, 2009). This discrepancy presumably arises for the same reason that stabilising selection was 671 

observed by Artacho and Nespolo (2009): high BMR may be an advantage in some situations, but a 672 

liability in others, and vice versa. Thus, high BMR and maximum rates of thermogenesis increase 673 

over-winter survival by improving cold tolerance (Hayes and O'Conner, 1999; Jackson et al., 2001), 674 

but low BMR improves starvation resistance (Rixon and Stevenson, 1957). Male Leach‘s storm-675 

petrels Oceanodroma leucorhoa with low BMR breed earlier and produce chicks that grow faster 676 

than males with relatively high BMR (Blackmer et al., 2005), but mice with low BMR die sooner 677 

than those with high BMR (Speakman et al., 2004). Other studies have found no link between BMR 678 

and reproductive traits in mice (Hayes et al., 1992; Johnson et al., 2001a; Johnston et al., 2007), a 679 

positive correlation between energy expenditure during lactation and BMR in Peromyscus mice 680 

(Glazier, 1985), no link between interspecific differences in age at first reproduction and BMR 681 

(Lovegrove, 2009), and a positive relationship between BMR and maximum running speed 682 

(Lovegrove, 2004).  683 

The level of BMR therefore appears to be maintained as a consequence of a series of trade-684 

offs such that low BMR is an advantage during food deprivation or reproduction, but high BMR is an 685 

advantage during cold exposure or predation events. This list is very unlikely to be exhaustive and 686 
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other relationships presumably await discovery.  However, an unanswered and intriguing question 687 

concerns the extent to which the ―file drawer problem‖ (Csada et al., 1996) influences our current 688 

understanding of the consequences of variation in BMR, and it is presently unclear how many non-689 

significant relationships between BMR and other traits remain unpublished. 690 

Looking forward: the evolution of BMR and allometric scaling 691 

BMR is ultimately linked with a range of extrinsic variables including habitat temperature, 692 

net primary productivity, and diet, and BMR is correlated with variation in survival, reproduction, 693 

and lifespan. An enduring area of interest that remains active, despite decades of research, concerns 694 

understanding the mechanistic basis of the allometric scaling of metabolic rate with body mass (e.g. 695 

Agutter and Wheatley, 2004; Savage et al., 2008; White and Kearney, 2012).  However, if the non-696 

isometric scaling of metabolic rate is ever to be understood, it is first necessary to know exactly what 697 

the relationship is. Recent meta-analyses (Glazier, 2005; White et al., 2007b), and PI analyses of 698 

hundreds of species of birds (McKechnie and Wolf, 2004; McKechnie et al., 2006; Kabat et al., 699 

2008) and mammals (Duncan et al., 2007; Sieg et al., 2009; White et al., 2009; Capellini et al., 2010) 700 

have failed to support any single value of the allometric scaling exponents relating BMR to body 701 

mass. Without very substantial increases in the size of the data set, these conclusions are unlikely to 702 

change (White and Seymour, 2005b). Thus, an emerging challenge is to understand, for example, the 703 

differences in metabolic scaling between endotherms and ectotherms (Farrell-Gray and Gotelli, 704 

2005; White et al., 2007b), and between metabolic levels (White and Seymour, 2005a; Glazier, 2008, 705 

2009a). One promising area for understanding the allometry of metabolic rate is the use of 706 

experimental manipulation of intra-specific scaling exponents in species that span a wide range of 707 

body masses during development.  During development, many species of ectotherm grow over 708 

several orders of magnitude in body size (e.g. Soling and Kleineke, 1976; Killen et al., 2007; Moran 709 

and Wells, 2007), and the scaling of metabolic rate in ecotherms has proven amenable to 710 

experimental manipulation (e.g. Table 2) (Glazier, 2005). Such experimental studies, which might 711 
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involve manipulation of any of the factors known to influence metabolism, potentially represent 712 

powerful tools to understand the factors that constrain and influence the allometric scaling exponent 713 

relating metabolic rate to body mass.  714 

Further progress toward understanding why metabolic rate scales allometrically is also likely 715 

to be made by complimenting the ongoing emphasis on mechanistic explanations with an approach 716 

that views metabolic scaling as an evolutionary outcome of trait associations, and explicitly 717 

incorporates the factors associated with mass-independent variation in metabolic rate between 718 

species (e.g. temperature, productivity, reproductive output) (see e.g. Glazier, 2005; Killen et al., 719 

2010). Quantitative genetic tools have previously been applied to other problems of allometric 720 

scaling (e.g. Lande, 1979; Riska and Atchley, 1985; Lynch and Walsh, 1998), and are increasingly 721 

being applied to understanding other aspects of metabolic evolution (Artacho et al., 2005; Hayes, 722 

2010; Nespolo et al., 2011, see also Konarzewski and Książek, 2012).  The application of this tool 723 

set also has the potential to yield substantial benefits not only to the understanding of mass-724 

independent variation, but also to the scaling of metabolic rate with body mass.  As an example, 725 

because the genetic correlation between body mass and metabolic rate is positive and often less than 726 

1 (Table 7), allometric scaling of metabolic rate with body mass can arise in a simple evolutionary 727 

model that includes random variation in body mass and correlated changes in metabolic rate (Figure 728 

4; see Appendix B for modelling procedures).  The scaling exponent of metabolic rate in such a 729 

model can take a wide range of values, depending on the strength of the association between 730 

metabolic rate and body mass (Figure 4).  While this example is obviously simplistic, it nonetheless 731 

demonstrates that the evolution of allometric scaling might be explained without the need to invoke 732 

first principles mechanistic hypotheses grounded in chemistry or physics (see also Witting, 1995; 733 

Kozłowski and Weiner, 1997; Glazier, 2005 for other examples).  Taking the resource distribution 734 

hypotheses as an example, this evolutionary approach based on trait associations assumes not that the 735 

geometry of the resource distribution network dictates metabolic scaling, but that the geometry of the 736 
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resource distribution network has evolved to support the pattern of metabolic scaling (see also 737 

Weibel and Hoppeler, 2005). For evolutionary models of allometric scaling to be of any value, 738 

however, it is essential that plausible models of evolution and trait association are specified, and, 739 

critically, that appropriate tests are either presented in conjunction with the models, or that clear 740 

descriptions of the unique predictions of the models are presented, so that appropriate tests can be 741 

designed (Shipley, 2000; Currie et al., 2004; Hawkins et al., 2007b; Glazier, 2010; White et al., 742 

2011b; Kearney and White, 2012). 743 
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 1608 
Figure 1.  Total annual publication output across all fields indexed by PubMed (Publications per 1609 

year, red line) and publication rate of data for mammalian basal metabolic rate (BMR, filled bars).  1610 

BMR data are from a recent compilation (Sieg et al., 2009).  Where BMR data for a species have 1611 

been published multiple times, only the first instance is included. 1612 

1613 
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 1614 

 1615 
 1616 

Figure 2.  Summing isometric and allometric relationships introduces curvature into the relationship 1617 

between logY and logX. 1618 

1619 

X1 
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 1620 

 1621 
Figure 3.  Relationships between mammalian BMR (unfilled diamonds: Sieg et al., 2009) and reptile 1622 

SMR (unfilled squares: White et al., 2006) and mass (M, g) estimated by fitting summed allometric 1623 

(∝ M0.67
) and isometric (∝ M1

) components by iteration (Gauss-Newton algorithm) using JMP v8.0.1 1624 

(SAS Institute, Cary, NC, USA).  Mammal BMR = 4.30 M
0.67

 + 0.084 mass
1
; Reptile SMR = 1625 

0.18 M
0.67

 + 0.012 M
1
.  Data for reptiles were normalised to a body temperature of 25 °C using a Q10 1626 

value of 2.44 (White et al., 2006). 1627 

1628 
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 1629 

 1630 
Figure 4. Simulated associations between metabolic rate (MR) and mass (M) generated according to 1631 

the methods in Appendix B.  The scaling exponent (b) and strength of the association is dependent 1632 

on the relationship between changes in MR and changes in M (filled triangles: the change in MR at 1633 

each time step is equal to 0.7 to 1 times the change in M, b = 0.84; unfilled diamonds: change in MR 1634 

is 0.5 to 1 times the change in M, b = 0.75; filled squares: change in MR is 0.33 to 1 times the 1635 

change in M, b = 0.66).  The model does not predict the elevation of the relationship; filled triangles 1636 

and filled squares are offset by for clarity by +1 and -1 orders of magnitude, respectively. 1637 

1638 
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Table 1. Selected scaling exponents (b) for the cardiovascular system predicted by the fractal 1639 

resource distribution model of West, Brown, and Enquist (WBE: West et al., 1997) and the Resource 1640 

Distribution Network model of Banavar et al. (RDN: Banavar et al., 2010). 1641 

 1642 

Variable WBE RDN Observed 

Cardiac 

frequency 
-0.25  

Mammals: -0.23 (Seymour and Blaylock, 2000) 

Birds: -0.28 (Seymour and Blaylock, 2000) 

Fish: ~0 (White and Seymour, 2011) 

Aorta radius 0.375 0.33 0.33 (Peters, 1983) 

Aorta length 0.25 0.33 0.32 (Günther and León de la Barra, 1966) 

Aorta 

pressure 
0  0.05 (Seymour and Blaylock, 2000) 

Blood 

velocity 
0 0 to 0.083 0.07 (Peters, 1983) 

Respiratory 

frequency 
-0.25  

-0.56 to -0.25 

(Stahl, 1967; Frappell et al., 2001; Mortola and Limoges, 

2006; Terblanche et al., 2008; Mortola and Seguin, 2009) 

1643 
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Table 2. Examples of manipulative studies of the scaling of metabolic rate (see Glazier, 2005 for an 1644 

extensive compilation of further examples). 1645 

 1646 

Treatment Species Reference 

Diet Daphnia (Jeyasingh, 2007) 

Light intensity Daphnia pulex (Buikema, 1972) 

 
Atlantic cod 

Gadus morhua 
(Finn et al., 2002) 

Oxygen 

availability 

Marine nematode 

Enoplus brevis 
(Atkinson, 1973) 

pH 
Ornate rainbowfish 

Rhadinoventrus ornatus 
(Vaca and White, 2010) 

Salinity 
Crab 

Hemigrapsus oregonensis 
(Dehnel, 1960) 

 
Crab 

Hemigrapsus nudus 
(Dehnel, 1960) 

 
Rainbow trout 

Salmo gardneri 
(Rao, 1971) 

Starvation 
Shore crab 

Carcinus maenus 
(Marsden et al., 1973) 

 
Sand Dollar 

Mellita quinquiesperforata 
(Lane and Lawrence, 1979) 

Temperature 
American cockroach  

Periplaneta americana 
(Dehnel and Segal, 1956) 

 
Freshwater snail 

Marisa cornuarietis 
(Åkerlund, 1969) 

 
Shore crab 

Carcinus maenus 
(Marsden et al., 1973) 

 
Sea anemone 

Metridium senile 
(Walsh and Somero, 1981) 

 
Wood louse 

Porcellio laevis 
(Lardies et al., 2004) 

 
Vendance 

Coregonus albula 
(Ohlberger et al., 2007) 

Water 

availability 

Manchurian ash 

Fraxinus mandshurica 
(Chen and Li, 2003) 

 
Amur cork tree  

Phellodendron amurense 
(Chen and Li, 2003) 

Colony size 
Botrylloides simodensis 

(colonial ascidian) 
(Nakaya et al., 2005) 

 
Hippoporina indica 

(Colonial marine bryozoan) 
(White et al., 2011b) 

Inbreeding 
Cricket 

Gryllodes sigillatus 
(Ketola and Kotiaho, 2012) 

1647 
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Table 3. Parameter estimates for a model for avian basal metabolic rate (BMR, ml h
-1

) as assessed by 1648 

phylogenetic generalised least squares (λ = 0.83 and AIC = -395.2; AIC for an equivalent non-1649 

phylogenetic model is 247.0).  Significant (p < 0.05) parameters are indicated with *; n.s. is non-1650 

significant.  See Appendix A for a description of the analysis. 1651 

 1652 

Parameter Estimate s.e. 

Intercept -1.11
 *
 0.06 

logM 0.72
 *
 0.02 

Diet 

 Aquatic vegetation 0.03
 n.s.

 0.07 

 Aquatic invertebrates 0.06
 n.s.

 0.05 

 Fruit -0.04
 n.s.

 0.03 

 Flying insects -0.06
 n.s.

 0.05 

 Grass 0.07
 n.s.

 0.08 

 Leaves 0.04
 n.s.

 0.04 

 Insects 0.01
 n.s.

 0.02 

 Omnivore 0.07
 n.s.

 0.04 

 Pollen 0.08
 n.s.

 0.04 

 Seeds -0.01
 n.s.

 0.03 

 Vertebrates -0.01
 n.s.

 0.04 

 1653 

1654 
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Table 4. A selection of significant correlates of metabolic rate in animals (values in parentheses are 1655 

additive genetic correlations). 1656 

 1657 

Species 
MR 

level 
Correlate Direction Reference 

Laboratory rat 

Rattus norvegicus 
RMR 

Starvation 

resistance 
- (Rixon and Stevenson, 1957) 

Great tit 

Parus major 
RMR Social dominance + (Røskaft et al., 1986) 

Pied flycatchers 

Ficedula hypoleuca 
RMR Social dominance + (Røskaft et al., 1986) 

Willow tit 

Parus montanus 
RMR Social dominance + (Hogstad, 1987) 

Deer mouse 

Peromyscus maniculatus 
BMR V

.
O2max + (Hayes, 1989) 

Belding's ground squirrel 

Spermophilus beldingi 
RMR V

.
O2max + (Chappell and Bachman, 1995) 

Masu salmon 

Oncorhynchus masou 
RMR Social dominance + (Yamamoto et al., 1998) 

House sparrows 

Passer domesticus 
BMRjuvenile Juvenile V

.
O2max + (Chappell et al., 1999) 

Short-tailed field vole 

Microtus agrestis 
RMR 

Over-winter 

survival 
+ (Jackson et al., 2001) 

Nine-banded armadillos 

Dasypus novemcinctus 
BMR MMRcold + (Boily, 2002) 

Short-tailed field vole 

Microtus agrestis 
RMR 

Daily energy 

expenditure* 
+ (Speakman et al., 2003) 

Laboratory mice 

Mus musculus 
RMR Longevity + (Speakman et al., 2004) 

Leach‘s storm-petrel 

Oceanodroma leucorhoa 
BMR ♂ Offspring growth - (Blackmer et al., 2005) 

Leach‘s storm-petrel 

Oceanodroma leucorhoa 
BMR ♂ Hatch date + (Blackmer et al., 2005) 

Bank vole 

Myodes glareolus 
BMR MMRswim (+) (Sadowska et al., 2005) 

Laboratory mouse 

Mus musculus 
BMR 

Gestational 

weight loss 
+ (Johnston et al., 2007) 

Garden snail 

Helix aspersa 
SMR Juvenile survival 

- and 

stabilising 
(Artacho and Nespolo, 2009) 

Laboratory mice 

Mus musculus 
BMR MMRexercise (+) (Wone et al., 2009) 

Bank vole 

Myodes glareolus 
BMR 

Postweaning 

growth rate 
(+) (Sadowska et al., 2009) 

Bank vole 

Myodes glareolus 
BMR 

Ability to cope 

with poor diet 
(+) (Sadowska et al., 2009) 

Bank vole 

Myodes glareolus 
BMR ♂ 

Reproductive 

success 
+ (Boratyński and Koteja, 2010) 

Bank voles 

Myodes glareolus 
BMR ♀ 

Over-winter 

survival 
+ (Boratyński et al., 2010) 
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Red squirrels 

Tamiasciurus hudsonicus 
RMR 

Over-winter 

survival 
- (Larivée et al., 2010) 

Root vole 

Microtus oeconomus 
RMR  

Proactive 

behaviour 
+ (Lantová et al., 2011) 

Deer mouse 

Peromyscus maniculatus 
RMR 

Exploratory 

behaviour 
(+) (Careau et al., 2011) 

Atlantic salmon 

Salmo salar 
SMR Social dominance + (Reid et al., 2011) 

Atlantic salmon 

Salmo salar 
SMR Feeding rate + (Reid et al., 2011) 

Atlantic salmon 

Salmo salar 
SMR Growth rate - (Reid et al., 2011) 

 1658 

*Extrinsic association caused by environmental differences between habitats, rather than an intrinsic 1659 

one.  Note that a number of other studies have found no association between metabolic rate and a 1660 

range of traits (Hayes et al., 1992; Chappell et al., 1999; Hammond et al., 2000; Dohm et al., 2001; 1661 

Johnson et al., 2001a; Nespolo et al., 2005; Sadowska et al., 2005; Vézina et al., 2006; Chappell et 1662 

al., 2007; Boratyński and Koteja, 2009; Bouwhuis et al., 2011; Timonin et al., 2011; Schimpf et al., 1663 

2012).  See also Biro and Stamps (2010) and Burton et al. (2011) for compilations of associations 1664 

between metabolic rate and other traits. 1665 

1666 
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Table 5. Narrow-sense heritability (h
2
) of basal metabolic rate (BMR), standard metabolic rate 1667 

(SMR), sustained metabolic rate (susMR), cold-induced maximum metabolic rate (MMR), and 1668 

exercise-induced maximum metabolic rate (V̇ O2max) of birds and mammals. * indicates p <0.05. 1669 

 1670 

Species Measurement h
2
 ± SE Reference 

Laboratory mouse Mus musculus BMR 0.08 ± 0.06 (Lacy and Lynch, 1979) 

Laboratory mouse Mus musculus RMR 0.21 ± 0.04* 
(Lynch and Sulzbach, 

1984) 

Hsd:ICR strain, Mus domesticus BMR 0.09 (Dohm et al., 2001) 

 V̇ O2max 0.64* (Dohm et al., 2001) 

Leaf-eared mouse Phyllotis darwini BMR 0.15 (Nespolo et al., 2003) 

Leaf-eared mouse Phyllotis darwini BMR 0.21 ± 0.21 (Bacigalupe et al., 2004) 

 susMR 0.20 ± 0.38 (Bacigalupe et al., 2004) 

Laboratory mouse Mus musculus BMR 0.38 ± 0.21* (Konarzewski et al., 2005) 

 Swim V̇ O2max 0.40 ± 0.21* (Konarzewski et al., 2005) 

Leaf-eared mouse Phyllotis darwini BMR 0.11 ± 0.18 (Nespolo et al., 2005) 

 MMR 0.69 ± 0.35* (Nespolo et al., 2005) 

Bank vole Clethrionomys glareolus BMR 0.40* (Sadowska et al., 2005) 

 Swim V̇ O2max 0.40* (Sadowska et al., 2005) 

 MMR 0.43* (Sadowska et al., 2005) 

Zebra finch Taeniopygia guttata BMR 0.25 ± 0.04* (Rønning et al., 2007) 

Blue tit Cyanistes caeruleus RMR 0.59 ± 0.25 (Nilsson et al., 2009) 

Stonechat Saxicola torquate rubicola BMRresidual 0.48 ± 0.16 (Tieleman et al., 2009b) 

Stonechat Saxicola torquata axillaris BMRresidual 0.20 ± 0.35 (Tieleman et al., 2009b) 

Stonechat Saxicola torquate maura BMR (g
-1

) 0.37 ± 0.47 (Tieleman et al., 2009b) 

Laboratory mouse Mus musculus BMRresidual 0.19 ± 0.07* (Wone et al., 2009) 

 V
.
O2maxresidual 0.16 ± 0.06* (Wone et al., 2009) 

Pied Flycatcher Ficedula hypoleuca RMR 0.43 ± 0.17* (Bushuev et al., 2011) 

Deer mouse Peromyscus maniculatus RMRresidual 0.39 ± 0.20 (Careau et al., 2011) 

 1671 

1672 



 59 

Table 6. Broad-sense (H
2
) and narrow sense (h

2
) heritability of metabolic rate in ectothermic animals 1673 

(
*
 p <0.05, *** p < 0.001). 1674 

 1675 

Species Measurement Heritability ± SE Reference 

Garter snake Thamnophis sirtalis Maximum H
2
 = 0.88

***
 (Garland and Bennett, 1990) 

Drosophila melanogaster    

5 d post-eclosion Routine MR H
2
 = 0.07

***
 (Khazaeli et al., 2005) 

 Routine MR H
2
 = 0.14

***
 (Khazaeli et al., 2005) 

16 d post-eclosion Routine MR H
2
 = 0.48

***
 (Khazaeli et al., 2005) 

 Routine MR H
2
 = 0.45

***
 (Khazaeli et al., 2005) 

29 d post-eclosion Routine MR H
2
 = 0.43

***
 (Khazaeli et al., 2005) 

 Routine MR H
2
 = 0.26

***
 (Khazaeli et al., 2005) 

47 d post-eclosion Routine MR H
2
 = 0.30

***
 (Khazaeli et al., 2005) 

 Routine MR H
2
 = 0.29

***
 (Khazaeli et al., 2005) 

Sand cricket Gryllus firmus Resting H
2
 = 0.045 ± 0.04 (Nespolo et al., 2007) 

 Average H
2
 = 0.052 ± 0.06 (Nespolo et al., 2007) 

 Minimum H
2
 = 0.10 ± 0.06 (Nespolo et al., 2007) 

 Maximum H
2
 = 0.085 ± 0.05 (Nespolo et al., 2007) 

Cricket Gryllodes sigillatus Resting h
2
 = 0.142 ± 0.187  (Ketola and Kotiaho, 2009) 

 Exercise h
2
 = 0.718

*
 ± 0.313 (Ketola and Kotiaho, 2009) 

 1676 

1677 
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Table 7. Additive genetic correlations between metabolic rate and body mass in animals, shown ± 1678 

SEE. 1679 

 1680 

Species MR level Correlation Reference 

Zebra finch 

Taeniopygia guttata 
BMR 0.914 ± 0.081 (Rønning et al., 2007) 

Blue tit 

Cyanistes caeruleus 
RMR 1.178 ± 0.456 (Nilsson et al., 2009) 

Stonechat 

Saxicola torquata rubicola 
BMR 0.400 ± 0.349 (Tieleman et al., 2009b) 

Stonechat 

Saxicola torquata axillaris 
BMR 0.780 ± 0.360 (Tieleman et al., 2009b) 

Deer mouse 

Peromyscus maniculatus 
BMR 0.72 ± 0.23 (Careau et al., 2011) 

 1681 

 1682 

1683 
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Appendix A.  Phylogenetic methods for the analysis of the 1684 

effect of diet on avian basal metabolic rate. 1685 

 1686 

The relationship between log transformed basal metabolic rate (BMR),  log transformed body mass  1687 

(M) and dietary categories was analysed using phylogenetic generalised least squares (PGLS) 1688 

(Grafen, 1989; Martins and Hansen, 1997; Garland and Ives, 2000) in the APE (Analysis of 1689 

Phylogenetics and Evolution) package (Paradis et al., 2004) within R (Ihaka and Gentleman, 1996) 1690 

according to established procedures (Halsey et al., 2006; Duncan et al., 2007; White et al., 2009).  1691 

Data for avian BMR matched to a phylogenetic hypothesis were obtained from a published analysis 1692 

of the scaling of BMR (Kabat et al., 2008), and were matched to dietary categories provided by 1693 

McNab (2009). Matched BMR and diet data were available for a total of 287 species. Since the true 1694 

branch lengths in the phylogeny are unknown, two branch length assumptions were compared: all 1695 

branches set equal to 1, and an alternative assumption that branch lengths were proportional in length 1696 

to the number of taxa descended from the node to which the branch leads (Grafen, 1989).  A measure 1697 

of phylogenetic correlation, λ (Pagel, 1999; Freckleton et al., 2002), was estimated by fitting PGLS 1698 

models with different values of λ and finding the value that maximizes the log likelihood.  The 1699 

degree to which trait evolution deviates from Brownian motion (λ = 1) was accommodated by 1700 

modifying the covariance matrix using the maximum likelihood value of λ, which is a multiplier of 1701 

the off-diagonal elements of the covariance matrix (i.e., those quantifying the degree of relatedness 1702 

between species). All models were compared on the basis of Akaike‘s Information Criterion (AIC) 1703 

as a measure of model fit (Burnham and Anderson, 2001, 2002).  The relative support of alternative 1704 

models was compared on the basis of i (= AIC – minimum AIC); models having i ≤ 2 have 1705 

substantial support, those where 4 ≤ i ≤ 7 have considerably less support, while models having i > 1706 

10 have essentially no support (Burnham and Anderson, 2001). 1707 
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Appendix B.  Methods for the generation of an allometric 1708 

association between metabolic rate and body mass. 1709 

The model for allometric scaling is based on Monte Carlo simulations developed to understand the 1710 

causes of the observed right-skewed lognormal distribution of mammalian body masses (Maurer et 1711 

al., 1992; Blackburn and Gaston, 1994, 1998, 1999). Initially, 400 ‗species‘ with a mass (M) of 1 and 1712 

a metabolic rate (MR) of 1 were generated.  For each species, a random change in M was then 1713 

generated by multiplying M by a normal deviate with a mean of 0 and standard deviation of 0.02 and 1714 

then adding M.  This was then repeated a total of 5000 times for each ‗species‘.  Thus, for each of the 1715 

5000 time steps, mass varied randomly with a standard deviation of 2% of the value of M at the 1716 

previous time step.  Because the genetic correlation between MR and M is positive and often less 1717 

than 1 (Table 7), factorial changes in MR at each time step were randomly smaller than the changes 1718 

in MR (see e.g. Figure 4).  This procedure generates lognormal distributions of M and MR, 1719 

consistent with the idea that body size evolves multiplicatively, and could be made more realistic by 1720 

the introduction of size-biased selection and extinction, and anagenetic size change within species 1721 

between speciation and extinction events (e.g. Stanley, 1973; Maurer et al., 1992; Kingsolver and 1722 

Pfennig, 2004; Clauset and Erwin, 2008; Mattila and Bokma, 2008; Clauset et al., 2009).  The 1723 

consequences of variation in MR for allometric scaling could be examined by including selections 1724 

against low (e.g. Jackson et al., 2001) or high (e.g. Artacho and Nespolo, 2009) MR. 1725 

 1726 
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