
Noname manuscript No.
(will be inserted by the editor)

Enhancing Performance of Failure-prone Clusters by
Adaptive Provisioning of Cloud Resources

Bahman Javadi · Parimala
Thulasiraman · Rajkumar Buyya

Received: date / Accepted: date

Abstract In this paper, we investigate Cloud computing resource provision-
ing to extend the computing capacity of local clusters in the presence of fail-
ures. We consider three steps in the resource provisioning including resource
brokering, dispatch sequences, and scheduling. The proposed brokering strat-
egy is based on the stochastic analysis of routing in distributed parallel queues
and takes into account the response time of the Cloud provider and the local
cluster while considering computing cost of both sides. Moreover, we pro-
pose dispatching with probabilistic and deterministic sequences to redirect
requests to the resource providers. We also incorporate checkpointing in some
well-known scheduling algorithms to provide fault-tolerant environment. We
propose two cost-aware and failure-aware provisioning policies that can be uti-
lized by an organization that operates a cluster managed by virtual machine
technology and seeks to use resources from a public Cloud provider. Simula-
tion results demonstrate that the proposed policies improve the response time
of users’ requests by a factor of 4.10 under a moderate load with a limited cost
on a public Cloud.

Bahman Javadi
School of Computing, Engineering and Mathematics
University of Western Sydney
E-mail: b.javadi@uws.edu.au

Parimala Thulasiraman
InterDisciplinary Evolving Algorithmic Sciences (IDEAS) Laboratory
Department of Computer Science
University of Manitoba, Winnipeg, Canada

Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems
The University of Melbourne, Australia

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 1/23

2 Bahman Javadi et al.

1 Introduction

Public Cloud platforms provide easy access to an organizations’ high-performance
computing and storage infrastructures through web services. In this platform,
the complexity of managing an IT infrastructure is completely hidden from
its users. One particular type of Cloud service, known as Infrastructure-as-
a-Service (IaaS) provides raw computing and storage in the form of virtual
machines (VMs), which can be customized and configured based on applica-
tion demands providing massive scalability, high reliability and performance.
Although, IaaS can be used as a stand alone service, in this paper, we inte-
grate public Cloud services with that of an organization’ local cluster running
virtual machine technology. Utilization of public Cloud along with local clus-
ter resources is commonly called hybrid Cloud [1], the system used in this
paper. Security concerns with the public Clouds is one of the main drivers for
hybrid Clouds. High performance computing applications can leverage from
such systems to execute data intensive applications for increased performance
gain.

In the literature, several works [2–5] have adopted public Cloud platforms
for scientific applications. Most of these works, however, only demonstrate
performance and monetary cost-benefits for such applications. Recently, As-
sunção et al. [5] proposed scheduling strategies to integrate resources from
public Cloud provider and local cluster. In this work, the requests are first in-
stantiated on cluster and in the event more resources are needed to serve user
requests, IaaS Cloud provider virtual machines are added to the cluster. This
is done to reduce users’ response time. Their strategies, however, do not take
into consideration the total cost of the hybrid Cloud when making decisions on
redirection of requests between local cluster and public Cloud. Furthermore,
the authors do not consider the trade-off between cost and performance in case
of resource failures on local cluster. A failure is defined as an event in which
the system fails to operate according to its specifications [6]. In the presence
of resource failures, a job could result in premature termination leading to
undesirable completion time. In particular, compute bound jobs such as batch
programs whose results cannot be used until the jobs are completed in its
entirety, suffer due to resource failures.

In this paper, we aim to provide cost-aware and failure-aware provision-
ing policies to extend the capacity and enhance the performance of existing
local cluster in the presence of resource failures. We consider three steps in
the resource provisioning policy in the hybrid Cloud system. The first step is
the resource brokering to obtain the proportion of the input workload to be
served in each resource provider. For this purpose, we propose a generic an-
alytical model based on stochastic analysis of distributed parallel queues [7].
The second step in the resource provisioning is the dispatch sequence, which
is the sequence of submitting requests to providers. We propose two differ-
ent dispatch methods based on probabilistic and deterministic sequences. The
last step is scheduling of requests on resources, which would be done through
different well-known scheduling algorithms. Our proposed policies take advan-

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 2/23

Enhancing Performance of Failure-prone Clusters 3

tage of non-observable queues, so they do not require any information of the
scheduler’s queues. We evaluate the proposed policies under realistic workload
and failure traces and consider different performance metrics such as average
weighted response time and job slowdown.

The rest of this paper is organized as follows. In Section 2, we present the
hybrid Cloud system model used in this paper. Related work is described in
Section 3. Section 4 presents the generic resource provisioning policy includ-
ing brokering strategy, dispatch sequences, and scheduling algorithms. The
resource provisioning in a hybrid Cloud system with two resource providers is
described in Section 5. The performance evaluation of the proposed policies
is discussed in Section 6. We also analyze the cost of mapping the proposed
policies on a real public Cloud in this section. Conclusions and future work
are presented in Section 7.

2 System Model

In this section, we briefly present the hybrid Cloud system model used in this
paper. This is based on the InterGrid middleware designed and implemented
in the Cloudbus research group1 [8].

2.1 System Architecture

There are two different types of resource providers in the system as seen in
Figure 1: the local cluster running virtual machines (within organization’s Site)
and public IaaS Cloud provider. A user launches an application on the local
cluster and submits a request to the InterGrid gateway (IGG). Each user’s
request has the following characteristics: type of required virtual machine;
number of virtual machines; estimated duration of the request; deadline of
the request. When such a request arrives at IGG, the IGG determines which
resource provider to use.

An IGG is aware of the peering terms between resource providers and
selects suitable one that can provide the required resources for incoming re-
quest. The adaptive provisioning policy is a part of the IGG which include
the scheduling algorithms of the local resources and the public Cloud as well
as brokering strategies to share the incoming workload with the public Cloud
provider. An IGG is able to interact with Virtual Infrastructure Engine (VIE)
or another IGG to schedule resources on local cluster or IaaS Cloud provider.
The VIE manages the resources of the local cluster. The VIE and can start,
pause, resume, and stop VMs on the physical resources. IGGs have peering
arrangements that allows them to communicate and determine when and how
the resources are used between IGGs. In such circumstances, an IGG can in-
teract with another IGG to provision resources from a public Cloud to fulfill
the users’ requirements.

1 http://www.Cloudbus.org/

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 3/23

4 Bahman Javadi et al.

IGG

IGG

Virtual
Infrastructure
Engine (VIE)

Physical Resources

User
application

VIE
(Cloud APIs)

1. Request
for VMs

2. Enactment of leases

3. Application deployment

Organisation's Site

Cloud Provider

Peering
arrangement

Fig. 1 The system architecture.

A three-step scenario in which an IGG allocates resources from a local
cluster in an organization to deploy applications, is indicated in Figure 1. As
one can see, the user sends a request for VMs to the IGG. The local IGG
tries to obtain resources from the underlying VIE. This is the point where
the IGG must make decision about selecting resource provider to supply the
user’s request, so the resource provisioning policies come to the picture. Once
the IGG has allocated the requested VMs, it makes them available and the
user will be able to access the VMs and finally deploy the application.

2.2 System Implementation

The IGG has been implemented in Java and a layered view of its components
is depicted in Figure 2. The core component of the IGG is the Scheduler, which
implements provisioning policies and peering with other IGGs. The scheduler
maintains the resource availability information as well as creating, starting and
stopping the VMs through the Virtual Machine Manager (VMM). VMM im-
plementation is generic, so different VIEs can be connected and make a flexible
architecture. Currently, VIE can connect to OpenNebula [9], Eucalyptus [10],
or Aneka [11] to manage the local resources. In addition, two interfaces to
connect to a Grid middleware (i.e., Grid’5000) and an IaaS Cloud provider
(i.e., Amazon’s EC2 [12]) have been developed. Moreover, an emulated VIE
for testing and debugging has been implemented for VMM.

The persistence database is used for storing information of the gateway
such as VM templates and peering arrangements. In this work, we consider
the case where the public Cloud provider has a matching VM template for
each available template at the database. The Management and Monitoring
enables gateway to manage and monitor resources such as Java applications.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 4/23

Enhancing Performance of Failure-prone Clusters 5

Fig. 2 IGG components.

The Communication Module provides as asynchronous message-passing mech-
anism, and received messages are handled in parallel by a thread-pool. That
makes gateway loosely coupled and allows for more failure-tolerant communi-
cation protocols.

2.3 System Workload

In this paper, we consider scientific applications characterized by tightly-
coupled computations and communications. Computational Fluid Dynamic
(CFD) applications are examples of such applications. Each application can
include several tasks and they are sensitive to communication networks in
terms of delay and bandwidth. Therefore, they may not benefit heavily from
resource co-allocation from multiple provides in virtualized environments [13],
and must be served with resources from a single resource provider. In our prob-
lem, we define a user’s request as corresponding to an individual job while an
application may include several jobs. Also, we assume requests are not deadline
constrained.

3 Related Work

This section describes the related work pertaining to the utilization of Cloud
computing resources and augmenting them with local infrastructure to increase
resource availability to solve scientific computing applications.

Several load sharing mechanisms have been proposed for different types
of distributed systems. Iosup et al. [14] proposed a matchmaking mechanism
for enabling resource sharing across computational Grids. Balazinska et al.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 5/23

6 Bahman Javadi et al.

[15] investigated a mechanism for migrating stream processing operators in a
federated distributed system. We address the adaptive resource provisioning
which borrow resources from a Cloud provider to improve the reliability and
performance of an organization’s infrastructure in the presence of resource
failures.

In [16] a system of brokers that enable the leasing of various types of
resources including virtual machines is provided. Also, authors in [17] investi-
gated the number of migrations required when the broker and a site scheduler
use conflicting policies. VioCluster [18] is a system in which a broker is respon-
sible for dynamically managing a virtual domain by borrowing and lending
machines between clusters. Our proposed policies in this paper, do not rely
on any information from the local scheduler. We also consider the resource
failures model to propose adaptive brokering strategies.

Montero et al. [19] also used GridWay to deploy virtual machines on a
Globus Grid; They also proposed the GridGateWay [20] to enable grid inter-
operability of Globus Grids. In [1], authors developed virtual infrastructure
management through two open source projects, OpenNebula and Haizea2. In
contrast, we developed the InterGrid environment that is based on the virtual
machine technology and can be connected to any distributed systems through
Virtual Machine Manager (VMM). Moreover, we consider a new type of plat-
form which is commonly called Hybrid Cloud and propose adaptive brokering
strategies which are part of InterGrid Gateway (IGG) to utilize public Cloud
resources.

The applicability of public Cloud services for Grid computing has been
demonstrated in existing work. In [4], authors consider the Amazon data stor-
age service S3 for scientific data-intensive applications. They conclude that
monetary costs are high as the storage service groups availability, durabil-
ity, and access performance together. In contrast, data-intensive applications
often do not need all of these three features. Garfinkel conducts a general
cost-benefit analysis of Clouds in [21]. However, no specific type of scientific
application is considered. In [3], the authors determine the cost of running a
scientific workflow over a Cloud. They find that the computational costs out-
weighed storage costs for their Montage application. Kondo et al. [2] provided
cost-benefit analysis of Cloud computing versus desktop grids for compute-
intensive tasks. In our work, in contrast to others, we consider the workload
as the users’ requests which can be data or compute intensive jobs. Also, in-
stead of cost-benefit analysis, we proposed cost-aware brokering strategies to
extend the capacity of an unreliable local cluster.

In [22], authors developed a model of an Elastic Site that utilized service
provided by a site to take advantage of elastically provisioned resources in a
public Cloud. The authors in [5] investigated whether an organization using
a local cluster can benefit from using Cloud providers to improve the per-
formance of its users’ requests. The authors in [23] utilized gang scheduling
to dispatch parallel jobs to a cluster of VMs which are hosted at Amazon’s

2 http://haizea.cs.uchicago.edu

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 6/23

Enhancing Performance of Failure-prone Clusters 7

Fig. 3 Model of resource brokering for n providers.

EC2. Our work is different in several aspects. We proposed a general model of
resource provisioning for n providers which can be applied to other types of
systems and applications. We also proposed cost/fault-aware brokering strate-
gies based on non-observable queues that do not need to have any information
about the local queue of providers. In contrast to the work by Assunção et
al. [5], the proposed policies are independent of the scheduling algorithms.
Moreover, we evaluate the performance of the system under realistic workload
and failure traces.

4 The Proposed Generic Resource Provisioning

As mentioned earlier, the resource provisioning policy in the system under
study has three steps: resource brokering, dispatching, and scheduling of re-
quests. The first two steps are performed by the Gateway (e.g., IGG) and
the last step is done at the local scheduler of each resource provider. In this
section, we assume n providers and propose a generic solution for the three
resource provisioning steps.

4.1 Adaptive Brokering Strategy

We formulate the problem of resource brokering similar to that of routing in
distributed parallel queues [24,7]. That is, we consider each resource provider
as one server with a given service rate; a scheduler that serves as an input
queue; and a broker that redirects the incoming requests to one of the providers
as shown in Figure 3.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 7/23

8 Bahman Javadi et al.

In the following subsection, the proposed brokering strategy finds the rout-
ing probabilities. We assume that the broker located in front of n heteroge-
neous multi-server parallel queues routes the given requests to providers ac-
cording to the routing probabilities Pi.

Requests arrive to the broker with a given distribution I, mean E[I] = λ−1

and variance V [I] = σ2
I . We assume the broker holds no queues (we will

elaborate on this assumption in Section 4.2). Therefore, requests are handled
immediately by the broker upon arrival. Each resource provider is modeled as
a single queue with Mi nodes and a local scheduler. Furthermore, we assume
service time of queue i follows a given distribution Si with mean E[Si] = µ−1i
and coefficient of variance CSi = σSi · µi.

Another aspect of the problem that must be taken into account is the
computing cost. While commercial Cloud is made available in pay-as-you-go
manner, computing cost of local infrastructure usually is not easy to estimate,
as it depends on many issues such as life time, system utilization, system tech-
nology, etc. However, ignoring the cost of a local infrastructure and assuming
the resources are free with respect to the Cloud resources is unrealistic. There
are some obvious source of costs that can be considered, such as high start-up
costs for purchasing hardware or power and cooling costs. Therefore, in this
model, we associate a price, Ki, to be paid to each of provider i based on
resource usage per time unit. This parameter can be considered as the holding
cost, or weight per request per time unit at queue i. Ki can be defined as a
constant value or a function of system parameters. For example, in Amazon’s
EC2, on-demand instances have fixed price while Spot instances have variable
price which is a function of VM demand [12].

Considering the associated cost as well as response time of the given re-
quests for each resource provider, the objective function for the broker could
be expressed as follows:

min
n∑
i=1

(Ki · E[Ti]) (1)

where E[Ti] is the expected response time of requests served at queue i and is
described in the following.

Based on Figure 3, queue i has the mean inter-arrival time E[Ii] = λ−1i =
(Piλ)−1, so we can find its variance by Wald’s equation [25] as follows:

V [Ii] =
σ2
IPi + λ−2(1− Pi)

P 2
i

(2)

As mentioned before, queue i has the mean service time and the coefficient of
variance µ−1i and σSi · µi, respectively. As the incoming requests have several
VMs that potentially can be as large as Mi nodes, we model each provider with
a single server queue. By considering general distribution for the inter-arrival
time as well as the service time, each queue can be modeled as a GI/GI/1
FCFS queue. Therefore, we are able to approximate the expected response

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 8/23

Enhancing Performance of Failure-prone Clusters 9

time of queue i by the following equation3 [24]:

E[Ti] =
1

µi
+
C2
Ii
− C2

Si

2(µi − λi)
(3)

where C2
Ii

is the squared coefficient of variance for the inter-arrival time at
queue i, and can be calculated using Equation (2) as follows:

C2
Ii =

V [Ii]

E[Ii]2
= 1 + Pi(λ

2σ2
I − 1) (4)

Next, we apply Lagrange multipliers method to optimize Equation (1) using
E[Ti] from Equation (3) and assuming

∑n
i=1 Pi = 1. The solution of this

optimization gives the routing probabilities Pi as follows:

Pi =
µi
λ
−
∑n
i=1 µi − λ

λ
·
√
Kiηi∑n

i=1

√
Kiηi

(5)

where ηi can be calculated by the following equation:

ηi = λ(λ2σ2
I + λ2 + C2

Si − λµi) (6)

Equation (5) reflects the effect of the system parameters as well as computing
costs on the routing probabilities leading to a cost-aware brokering strategy.
Moreover, the proposed brokering strategy is based on non-observable queues
which means it does not need any information about the scheduler’s queues.
This simplifies implementation of the IGG in the hybrid Cloud system.

4.2 Dispatch Sequences

The proposed adaptive brokering strategy in the previous subsection deter-
mines only the routing probabilities (i.e., Pi). However, it does not explain
any sequence for dispatching the incoming requests to the resource providers.
Here, we consider two dispatch sequences including probabilistic and deter-
ministic methods to complete the second step of resource provisioning.

Given the routing probabilities, one way to dispatch the requests is using
a Bernoulli distribution to randomly submit the requests. In this case, the
gateway only uses routing probabilities without any special sequencing of re-
quests sent to providers. In this sense, this method is memoryless as it does
not take into account which requests have been sent to which queues. We call
this method Adaptive with Random Sequence (ARS) policy.

In contrast, we also propose another method with deterministic sequence,
which considers the past sequence of dispatching with a very limited time
overhead. This method, we call as Adaptive with Deterministic Sequence

3 There are several approximations for this queue in the literature, but we choose one
which is a good estimate for heavily loaded systems.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 9/23

10 Bahman Javadi et al.

(ADS) policy. To generate the deterministic sequence, we used the Billiard
scheme [26], determined as follows.

Suppose a billiard ball bounces in an n-dimensional cube where each side
and opposite side are assigned by an integer value in the range of {1, 2, ..., n}.
Then, a deterministic billiard sequence is generated by a series of integer values
which shows the sides hit by the ball when shot. In [26], the authors proposed
a method to generate the billiard sequence as follows:

ib = min
∀i

{
Xi + Yi
Pi

}
(7)

where ib is the target queue, and X and Y are vectors of integers with size n.
Xi reflects the fastest queue, and is set to one for the fastest queue and zero for
all other queues [7]. Yi keeps track of the number of requests that have been
sent to queue i and is initialized to zero. After finding the target queue, it is
updated as Yib = Yib + 1. Pi is the fraction of requests that are sent to queue
i and is the same as the routing probabilities obtained from Equation (5).

Based on the proposed methods for dispatching, the assumption about
the broker without a queue would be justifiable as the broker has only a few
computation operations to make decision about target providers for incoming
requests.

4.3 Scheduling Algorithms

The last step in the resource provisioning is scheduling of request on the avail-
able VMs in the resource providers. For this purpose, we utilize three well-
known scheduling algorithms conservative [27], aggressive [28], and selective
backfilling [29]. With conservative backfilling, each request is scheduled when
it is submitted to the system, and requests are allowed to leap forward in
the queue if they do not delay other queued requests. In aggressive backfill-
ing (EASY), only the request at the head of the queue, called the pivot, is
granted a reservation. Other requests are allowed to move ahead in the queue
as long as they do not delay the pivot. Selective backfilling grants reservation
to a request when its expected slowdown exceeds a threshold. This implies,
the request has waited long enough in the queue. The expected slowdown of
a given request is also called eXpansion Factor (XFactor) and is given by the
following equation:

XFactor =
wj + dj
dj

(8)

where wj and dj are the waiting time and the run time of request j, re-
spectively. We use the Selective-Differential-Adaptive scheme proposed in [29],
which lets the XFactor threshold be the average slowdown of previously com-
pleted requests.

We assume that each VM runs on one available node. As a given request
needs all VMs to be available for the whole required duration, any failure

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 10/23

Enhancing Performance of Failure-prone Clusters 11

event in any virtual machine would stop execution of the whole request. The
request can be started again, if and only if all VMs become available again.
If there is a resource failure during execution we apply checkpointing [30]
technique to resume execution of the request from where it was interrupted.
We incorporate checkpointing in our scheduling algorithms and provide a fault-
tolerant environment for serving requests in the local cluster.

5 Case Study: Hybrid Cloud With Two Providers

In this section, we adopt the results of Section 4 for our specific case where we
have two providers (i.e., n = 2). We use index i = s for the local cluster and
i = c for the Cloud hereafter. Moreover, we assume that there is computing
speed homogeneity within each provider. As mentioned earlier, the proposed
policies are part of the IGG (see Figure 2).

To apply the proposed analytical model for brokering strategy, we first
need to specify the arrival distribution I. The arrival distribution I depends
on the system workload and could be given as a general distribution with
light-tails [24]. As can be seen from Equation (3), the mean service time, µi,
and coefficient of variance, CSi are two unknown parameters. Therefore, in the
following, we determine µs and CSs for the local cluster and µc and CSc for
Cloud to obtain the corresponding routing probabilities by Equation (5).

5.1 Runtime Model for Local Cluster

The distribution of service time in each provider depends on the characteristics
of the infrastructure as well as the input workload. Moreover, in our analysis in
Section 4, relative response times are more important than absolute response
times. The reason is that scaling up or down of the service times in Equation (1)
does not change the routing probabilities.

Since we assume an unreliable local cluster with resource failures, we must
consider the availability and unavailability intervals of each resource to work
out the service time distribution. We term the continuous period of a service
outage due to a failure as an unavailability interval. A continuous period of
availability is called an availability interval. For this purpose, we use the pro-
posed model by Kleinrock et al. [31] to find the mean and coefficient of variance
of completion time for W time units of work over M transient processors, as
follows:

f =
W

b
=
W

M

(ta + tu)

ta
(9)

σf

f
=

√
σ2
b√

bW
(10)

where

b =
ta

(ta + tu)
M (11)

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 11/23

12 Bahman Javadi et al.

σ2
b =

σ2
at

2
u + σ2

ut
2
a

(ta + tu)3
M (12)

Moreover, ta, tu, σ2
a and σ2

u are the mean and the variance of availability and
unavailability interval lengths, respectively.

As the input workload includes parallel requests (i.e., request with several
VMs), we consider the mean request size (W) as the given work to the system.
We define the mean request size by multiplying the mean number of VMs (V)
by the mean request duration (D). Hence, W = V ·D. These two parameters
are dependent on workload model (see Section 6.1).

By considering W time units of work over Ms failure-prone nodes, we
define the service rate of the cluster queue as the reciprocal value of the mean
completion time for a given workload as follows:

µs =

(
W

Ms · τs
ta + tu
ta

+ Ls

)−1
(13)

where τs is the computing speed of the nodes in the local cluster in terms of
instruction per second, and Ls is the time to transfer the application (e.g.,
configuration file or input file(s)) to the cluster through the communication
network. Another required parameter is the coefficient of variance of the clus-
ter’ service time (i.e., CSs) which is nothing but Equation (10). This makes
our brokering strategy failure-aware and consequently adaptive to the system’s
failure pattern.

5.2 Runtime Model for Public Cloud

In this work, we investigate a hybrid Cloud system including an unreliable local
cluster while public Cloud is able to provide highly reliable services to their
customers [32]. Although resource failures are inevitable, but public Cloud
providers adopt carefully engineered modules include redundant components
to cope with resource failures [33]. This design style is too expensive to consider
for design and implementation of local clusters.

Therefore, we can use Normal distribution for the request completion time
in the Cloud. This can be justified by the central limit theorem which assures
that when summing many independent random variables (here requests com-
pletion time), the resulting distribution tends toward a Normal distribution.
So, the service rate of the Cloud queue can be found as the reciprocal values of
the mean request completion time for a given workload on Mc reliable nodes
as follows:

µc =

(
W

Mc · τc
+ Lc

)−1
(14)

where τc and Lc are the computing speed and the time to transfer the appli-
cation to public Cloud provider, respectively. It should be noted that the time

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 12/23

Enhancing Performance of Failure-prone Clusters 13

to transfer output data to the local cluster is not considered as it can be over-
lapped with other computations. The coefficient of variance of the service time
can be assumed as one (i.e., CSc = 1) to model the performance variability in
public Cloud resources [34]. This can be the minimum value for the coefficient
of variance and should be increased on the basis of variance in performance
of Cloud resources. Moreover, this is the parameter that should be changed
to adapt the proposed performance model for different types of resources in a
public Cloud provider (e.g., different instances in Amazon’s EC2 [12]).

Apart from the brokering strategy, other two steps of resource provisioning
can be directly used from Section 4. For n = 2, Xc = 1 and Xs = 0 in the
billiard scheme, for our specific case.

6 Performance Evaluation

In order to evaluate the performance of the proposed policies, we implemented
a discrete event simulator using CloudSim [35]. We used simulation as experi-
ments are reproducible and the cost of conducting experiments on a real public
Cloud would be prohibitively expensive.

The performance metrics related to response times of requests that are
considered in all simulation scenarios are the Average Weighted Response Time
(AWRT) [36] and the bounded slowdown [37]. The AWRT for N given requests
is defined by the following equation:

AWRT =

∑N
j=1 dj · vj · (ctj − stj)∑N

j=1 dj · vj
(15)

where vj is the number of virtual machines of request j. ctj is the time of
completion of the request and stj is its submission time. The resource con-
sumption (dj ·vj) of each request j is used as the weight. The AWRT measures
the average time that users must wait to have their requests completed. The
bounded slowdown metric, is defined as follows:

Slowdown =
1

N

N∑
j=1

wj +max(dj , bound)

max(dj , bound)
(16)

where wj is the waiting time of request j. Also, bound is set to 10 seconds to
eliminate the effect of very short requests [37].

We evaluate the proposed policies against another basic policy, the No-
Redirection policy. This is the simplest brokering policy with the routing
probability of the local cluster set to one (Ps = 1) and set to zero for Cloud
(Pc = 0). In this policy, all requests run only on the unreliable local cluster.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 13/23

14 Bahman Javadi et al.

Table 1 Input parameters for the workload model.

Parameters Distribution/Value
Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)

No. of VMs Loguniform (l = 0.8,m = 3.5, h = 6, q = 0.9)
Request duration Lognormal (2.5 ≤ θ ≤ 3.5, σ = 1.7)

Pone 0.02
Ppow2 0.78

6.1 Workload Model

The workload model for evaluation scenarios is obtained from the Grid Work-
load Archive [38]. We used the parallel job model of the DAS-2 system which
is a multi-cluster Grid [39]. Based on the workload characterization, the inter-
arrival time, request size, and request duration follow Weibull, two-stage Lo-
guniform and Lognormal distributions, respectively. These distributions with
their parameters are listed in Table 1. It should be noted that the number of
VMs in the request can be scaled to the system size (e.g., M nodes) by setting
h = log2M .

To find the mean number of VMs per request, we need the probability
of different number of VMs in the incoming requests. Assume that Pone and
Ppow2 are probabilities of request with one VM and power of two VMs in
the workload, respectively. Therefore, the mean number of VMs required by
requests is given as follows:

V = Pone + 2dre(Ppow2) + 2r (1− (Pone + Ppow2)) (17)

where r is the mean value of the two-stage uniform distribution with param-
eters (l,m, h, q) as listed in Table 1 and can be found as follows:

r =
ql +m+ (1− q)h

2
(18)

Additionally, the mean request duration is the mean value of the Lognormal
distribution with parameters (θ, σ) which is given by:

D = eθ+
σ2

2 (19)

6.2 Experimental Setup

For each simulation experiment, statistics were gathered for a two-month pe-
riod of the DAS-2 workloads. The first week of workloads during the warm-
up phase were ignored to avoid bias before the system reached steady-state.
For the experiments, each data point is the average of 30 simulation rounds
including several jobs vary from 3,000 to 25,000 (depends on the workload pa-
rameters). In our experiments, the results of simulations are accurate within
a confidence level of 95%.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 14/23

Enhancing Performance of Failure-prone Clusters 15

Table 2 Input parameters for the failure model.

Parameters Description Value (hours)
ta Mean availability length 22.25
σa Std of availability length 41.09
tu Mean unavailability length 10.22
σu Std of unavailability length 40.75

The number of resources in the local cluster and Cloud is equal to Ms =
Mc = 64 with homogeneous computing speed4 (i.e., τs = τc = 1000 MIPS).
Moreover, the cost of resources in the Cloud is considered to be five times
more expensive than the local cluster’s resources (i.e., Ks = 1, Kc = 5). The
network transfer time of the cluster is negligible as the local resources are
interconnected by a high-speed network, Ls = 0. However, to execute the
application on the public Cloud we must send the configuration file as well as
input file(s). Therefore, we consider the network transfer time as Lc = 64 sec.,
which is the time to transfer 80 MB data5 on a 10 Mbps network connection
6.

The failure trace for the experiments is obtained from the Failure Trace
Archive [6]. We used the failure trace of a cluster in the Grid’5000 with 64 nodes
for duration of 18 months, which includes on average 795 events per node. An
event is defined as a failure event (when the status of a resource changes
from availability to unavailability) or a recovery event (when the status of a
resource changes from unavailability to availability). The parameters for the
failure model of Grid’5000 are listed in Table 2 (see [6] for more details). Also,
each experiment utilizes a unique starting point in the failure traces to avoid
bias results.

In order to generate different synthetic workloads, we modified two param-
eters of the workload model, one at a time. To change the inter-arrival time,
we modified the second parameter of the Weibull distribution (the shape pa-
rameter β) as shown in Table 1. Also, to have requests with different duration,
we changed the first parameter of the Lognormal distribution between 2.5 and
3.5 which is mentioned in Table 1.

To compute the cost of using resources from a public Cloud provider, we use
the amounts charged by Amazon to run basic virtual machines and network
usage at EC2. For the total of N requests which are submitted to the system,
the cost of using EC2 can be calculated as follows:

CostEC2 = (Hc +N · Pc ·Hu)Cp + (N · Pc ·Bin)Cx (20)

where Hc is the total Cloud usage per hour. This implies, if a request uses a
VM for 40 minutes for example, the cost of one hour is considered. N · Pc is

4 This assumption is made just to focus on performance degradation due to failure.
5 This is the maximum amount of data for a real scientific workflow application [40].
6 The network latency is negligible as it is less than a second for public Cloud environ-

ments [41].

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 15/23

16 Bahman Javadi et al.

the fraction of requests which are redirected to the public Cloud. Also, Hu is
the startup time for initialization of operating system on a virtual machine
which is set to 80 seconds [34]. We take into account this value as Amazon
commences charging users when the VM process starts. Bin is the amount of
data which transfer to Amazon’s EC2 for each request and as it is mentioned
before, it is 80 MB per request. The cost of one specific instance on EC2 (us-
east) is determined as Cp and considered as 0.085 USD per virtual machine
per hour for a small instance. The cost of data transfer to Amazon’s EC2 is
also considered as Cx which is 0.1 USD per GB 7. It should be noted that we
consider a case where requests’ output are very small and can be transfered
to the local cluster for free [12].

6.3 Results and discussions

(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 4 AWRT versus arrival rate (θ = 3.0).

In this section, NoR, ARS, and ADS refer to the No-Redirection, Adaptive
with Random Sequence, and Adaptive with Deterministic Sequence, respec-
tively. Moreover, CB, SB, and EB stand for Conservative, Selective and EASY
Backfilling, respectively. The same scheduling algorithms are used for the local
cluster and Cloud in all scenarios.

The simulation results for AWRT versus arrival rate are depicted in Fig-
ure 4 for different provisioning policies while average request duration is kept
of medium size (i.e., θ = 3.0). For all these cases, we see that increasing the
arrival rate dramatically increases the request failure rate for AWRT in NoR
policy. On the other hand, the ARS and ADS policies control the failure rate
by redirecting the requests to the Cloud which lead to lower AWRT. The max-
imum improvement factor of using adaptive brokering with respect to NoR is
3.4, 3.7, and 5.1 times in terms of AWRT for conservative, selective and EASY
backfilling, respectively. Although, ADS uses deterministic sequence, there is
probability of changing this sequence due to request backfilling in the local

7 All prices obtained at time of writing this paper during May-June 2011.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 16/23

Enhancing Performance of Failure-prone Clusters 17

scheduler. Therefore, the ADS achieves almost the same performance as the
ARS for all the scheduling algorithms.

Figure 5 shows AWRT against different request duration in the moderate
arrival rate (i.e., β = 0.25). It reveals that ADS policy is slightly better than
ARS for selective scheduling algorithm. To be more precise, the average per-
formance improvement of ADS with respect to the ARS is 5.8% for selective
backfilling. In the case of conservative and EASY backfilling there is no con-
siderable improvement. The reason to have some fluctuations in these figures
is the effect of backfilling in the scheduler queue due to changing of requests
duration.

(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 5 AWRT versus request duration (β = 0.25).

Figure 6 expresses slowdown of requests versus arrival rate for different pro-
visioning policies with the same configuration as previous experiments. Based
on these figures, use of adaptive brokering strategies decreases the request
slowdown by 4 times for conservative and selective backfilling and 10.9 times
for EASY backfilling with respect to NoR policy. As it is illustrated, by increas-
ing the arrival rate, the gap between NoR and adaptive brokering strategies
increases. This is because the routing probabilities are strongly dependent on
the arrival rate and adaptively redirect more requests to the Cloud to control
the system performance.

In Figure 7, request slowdown is depicted against various request sizes for
all three policies. These figures reveal that by increasing the request duration,
the slowdown decreases while the ADS marginally surpasses ARS for the se-
lective and EASY backfilling. For the conservative backfilling the performance
of ARS is almost better than ADS, specially for short request duration.

It is worth noting that the theoretical work in [7] showed that the Billiard
scheme provides optimal response time when all queues are FCFS and service
times follow the exponential distribution. However, in our case, queues are
not FCFS due to probability of backfilling and service times are not simple
short-tailed distributions. We observed that in this situation, the ADS policy
with billiard sequence is not able to perform very well with respect to the ARS
due to perturbation of sequence in the scheduler of the resource providers.

It should be noted that, we do not consider the checkpointing overheads in
this study, as we want to focus on effect of failures in the resource provision-

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 17/23

18 Bahman Javadi et al.

ing. In other words, we show that even without time and space overheads of
checkpointing mechanism, resource provisioning from a public Cloud substan-
tially improve the system performance. This improvement would be the lower
bound of enhancement while including overheads of checkpointing.

(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 6 Slowdown versus arrival rate (θ = 3.0).

(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 7 Slowdown versus request duration (β = 0.25).

6.4 Cost analysis on a public Cloud

To analyze how the proposed policies utilize the Cloud resources, Figure 9
shows the amount of Cloud usage in time versus arrival rate (Figure 8(a)) and
request duration (Figure 8(b)) for the two-month long workload.

We observed that the amount of Cloud usage (Hc in Equation (20)) for
different scheduling algorithms is exactly the same. However, as we illustrated
before in this section, the proposed policies have different performance in terms
of AWRT and slowdown. Moreover, this confirms that our proposed policies
are independent from the scheduling algorithms. Recall that in the objective
function of the broker in Equation (1), both cost and response time can be
relative, so the monetary cost of Cloud usage is independent from the broker’
cost parameters (Ki).

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 18/23

Enhancing Performance of Failure-prone Clusters 19

Nevertheless, according to the experiments the ADS utilizes up to 6.7%
less resources from the Cloud provider with respect to the ARS. This can save
some amount of money that must be paid for utilizing of the Cloud resources.
To be more precise, in the following, we discuss how we can map this usage to
a real public Cloud provider (i.e., Amazon’s EC2).

(a) Various arrival rate (θ = 3.0) (b) Various request duration (β = 0.25)

Fig. 8 Amount of Cloud usage for all provisioning polices (* stands for CB, SB, and EB).

To do this, we calculated the usage of EC2 and its associated cost per
month using Equation (20). Figure 9(a) and Figure 9(b) show the amount of
money spent on EC2 per month to respond to the incoming requests with
different arrival rate and request duration, respectively. As noted before, the
Cloud usage for all proposed policies are the same because of the cost-time
optimization in the broker. Moreover, ADS and ARS have the same monetary
cost on EC2 for various arrival rate while ADS incurs lower cost for various
duration size (see Figure 9(b)). To show the difference of the proposed poli-
cies in terms of cost and performance under different working conditions, we
illustrate a quantitative analysis.

Table 3 lists the performance improvement all proposed polices with respect
to the case of using only the unreliable local cluster. In each row the values are
presented for different request duration while the input load is moderate (i.e.,
β = 0.25). In addition, the Cloud cost of each scenario is presented in Table 4.
We can observe that with a limited cost (e.g., less than 1200 USD) per month,
we can improve the performance of users’ requests up to 4.10 in terms of AWRT
and up to 9.58 in terms of slowdown. However, by spending more money per
month, we are able to obtain up to 5.90 and 17.61 times improvement in terms
of AWRT and slowdown, respectively. As it is illustrated in Table 3, the EASY
backfilling improves dramatically in terms of AWRT and slowdown for medium
and large requests. Additionally, in almost all cases, the ADS policy is slightly
better than ARS policy in terms of the cost at EC2 per month.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 19/23

20 Bahman Javadi et al.

(a) Various arrival rate (θ = 3.0) (b) Various request duration (β = 0.25)

Fig. 9 Cost of using EC2 per month for various request duration and a moderate load
(β = 0.25) (* stands for CB, SB, and EB).

Table 3 The performance improvement of provisioning polices for different request dura-
tions and moderate input load (β = 0.25, A: AWRT, S: Slowdown).

Request

duration Conservative Selective EASY
ARS ADS ARS ADS ARS ADS

A S A S A S A S A S A S

Short (θ = 2.5) 2.00 1.99 2.04 1.98 2.37 2.14 2.06 2.12 2.16 3.35 1.98 3.13
Medium (θ = 3.0) 2.75 3.13 2.89 3.35 3.33 3.78 3.05 3.78 4.10 9.44 4.06 9.58
Large (θ = 3.4) 3.69 4.46 3.11 3.93 4.65 5.88 5.05 5.97 5.90 17.61 5.36 15.97

Table 4 The Cloud cost of provisioning polices for different request durations and moderate
input load (β = 0.25).

Request

duration EC2 cost/month (USD)
ARS ADS

Short (θ = 2.5) 728.40 724.20
Medium (θ = 3.0) 1193.60 1191.60
Large (θ = 3.4) 1434.40 1423.80

7 Conclusions

We considered the problem of Cloud computing resource provisioning to ex-
tend the computing capacity and performance of an unreliable local cluster.
We presented a generic resource provisioning model based on the stochastic
analysis of routing in distributed parallel queues where the arrival and ser-
vice processes follow general distributions. The proposed brokering strategy is
adaptive to the cost and response time of resource providers. Both proposed
policies, ARS and ADS, utilize adaptive brokering strategy while ARD adopts
probabilistic sequence and ADS uses deterministic sequence to redirect the
requests. The proposed policies take advantage of non-observable queues, so
they do not require any information about the scheduler’s queues.

Experimental results under realistic workload and failure events reveal that
both policies reduces AWRT and slowdown of requests significantly for dif-
ferent scheduling algorithms, where ADS policy shows marginally better cost

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 20/23

Enhancing Performance of Failure-prone Clusters 21

than ARS. We observed that request backfilling strongly modifies the sequence
of requests in the queues, so the ADS policy can not achieve a considerable im-
provement with respect to ARS policy. Finally, we believe that the proposed
performance model can be a practical evaluation tool that can help system
administrators to explore the design space and examine various system pa-
rameters.

In future work, we intend to consider deadline-constrained requests and
evaluate the effect of Cloud computing resource provisioning on such requests.
In addition, moving VMs between local resources and public Cloud will be
another approach to deal with resource failures in the local clusters, for the
loosely-coupled parallel applications. We also intend to implement the pro-
posed strategies inside the IGG and run real experiments. For this purpose,
we will investigate different checkpointing mechanisms in our analysis and
implementation as well.

Acknowledgements

The authors would like to thank Jonatha Anselmi, Rodrigo N. Calheiros,
Mohsen Amini, and Amir Vahid for useful discussions.

References

1. B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Virtual infrastructure manage-
ment in private and hybrid clouds, IEEE Internet Computing 13 (5) (2009) 14 –22.

2. D. Kondo, B. Javadi, P. Malecot, F. Cappello, D. P. Anderson, Cost-benefit analysis of
Cloud computing versus desktop grids, in: Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2009), IEEE Computer Society,
Washington, DC, Rome, Italy, 2009, pp. 1–12.

3. E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science on
the Cloud: The montage example, in: Proceedings of the 19th ACM/IEEE International
Conference on Supercomputing (SC 2008), IEEE Press, Piscataway, NJ, Austin, Texas,
2008, pp. 1–12.

4. M. R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for science Grids:
a viable solution?, in: Proceedings of the 1st International Workshop on Data-aware
Distributed Computing (DADC’08) in conjunction with HPDC 2008, ACM, New York,
NY, Boston, MA, 2008, pp. 55–64.

5. M. D. de Assunção, A. di Costanzo, R. Buyya, Evaluating the cost-benefit of using cloud
computing to extend the capacity of clusters, in: Proceedings of the 18th International
Symposium on High Performance Parallel and Distributed Computing (HPDC 2009),
ACM, New York, NY, Garching, Germany, 2009, pp. 141–150.

6. D. Kondo, B. Javadi, A. Iosup, D. H. J. Epema, The Failure Trace Archive: Enabling
comparative analysis of failures in diverse distributed systems, in: Proceedings of the
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CC-
Grid 2010), IEEE Computer Society, Washington, DC, Melbourne, Australia, 2010, pp.
398–407.

7. J. Anselmi, B. Gaujal, Optimal routing in parallel, non-observable queues and the price
of anarchy revisited, in: 22nd International Teletraffic Congress (ITC), Amsterdam, The
Netherlands, 2010.

8. A. di Costanzo, M. D. de Assunção, R. Buyya, Harnessing cloud technologies for a vir-
tualized distributed computing infrastructure, IEEE Internet Computing 13 (5) (2009)
24–33.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 21/23

22 Bahman Javadi et al.

9. J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, I. M. Llorente, OpenNEbula: The
open source virtual machine manager for cluster computing, in: Open Source Grid and
Cluster Software Conference, Book of Abstracts, San Francisco, CA, 2008.

10. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorod-
nov, The Eucalyptus open-source cloud-computing system, in: Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
2009), IEEE Computer Society, Washington, DC, Shanghai, China, 2009, pp. 124–131.

11. C. Vecchiola, X. Chu, R. Buyya, Aneka: A Software Platform for .NET-based Cloud
Computing, IOS Press, Amsterdam, 2009, pp. 267–295.

12. Amazon Inc., Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.

com/ec2.
13. M. Tatezono, N. Maruyama, S. Matsuoka, Making wide-area, multi-site MPI feasible

using Xen VM, in: Proceedings of the 4th Workshop on Frontiers of High Performance
Computing and Networking in conjuction with ISPA 2006, Springer-Verlag, Berlin, Sor-
rento, Italy, 2006, pp. 387–396.

14. A. Iosup, D. H. J. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-operating Grids
through delegated matchmaking, in: Proceedings of the 18th ACM/IEEE Conference
on Supercomputing (SC 2007), ACM, New York, NY, Reno, Nevada, 2007, pp. 1–12.

15. M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load management in
federated distributed systems, in: Proceedings of the 1st Symposium on Networked
Systems Design and Implementation (NSDI 2004), USENIX Association, Berkeley, CA,
San Francisco, CA, 2004, pp. 197–210.

16. D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K. G. Yocum, Sharing networked
resources with brokered leases, in: Proceedings of the USENIX Annual Technical Con-
ference, USENIX Association, Berkeley, CA, Boston, MA, 2006, pp. 199–212.

17. L. Grit, D. Inwin, A. Yumerefendi, J. Chase, Virtual machine hosting for networked
clusters: Building the foundations for ’autonomic’ orchestration, in: Proceedings of the
1st International Workshop on Virtualization Technology in Distributed Computing
(VTDC 2006), IEEE Computer Society, Washington, DC, Tampa, Florida, 2006, pp.
7–15.

18. P. Ruth, P. McGachey, D. Xu, VioCluster: Virtualization for dynamic computational
domain, in: Proceedings of the 7th IEEE International Conference on Cluster Comput-
ing (Cluster 2005), IEEE Press, Piscataway, NJ, Burlington, MA, 2005, pp. 1–10.

19. A. J. Rubio-Montero, E. Huedo, R. S. Montero, I. M. Llorente, Management of virtual
machines on Globus Grids using GridWay, in: Proceedings of the 21st IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2007), IEEE Press,
Piscataway, NJ, Long Beach, USA, 2007, pp. 1–7.

20. E. Huedo, R. S. Montero, I. M. Llorente, Grid architecture from a metascheduling
perspective, IEEE Computer 43 (7) (2010) 51 –56.

21. S. Garfinkel, Commodity grid computing with Amazons S3 and EC2, USENIX LOGIN
32 (1) (2007) 7–13.

22. P. Marshall, K. Keahey, T. Freeman, Elastic site: Using clouds to elastically extend site
resources, in: Proceedings of the 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid 2010), IEEE Computer Society, Washington, DC,
Melbourne, Australia, 2010, pp. 43–52.

23. I. Moschakis, H. Karatza, Evaluation of gang scheduling performance and cost in a
cloud computing system, The Journal of Supercomputing 1 (2010) 1–18.

24. X. Guo, Y. Lu, M. S. Squillante, Optimal probabilistic routing in distributed parallel
queues, SIGMETRICS Perform. Eval. Rev. 32 (2) (2004) 53–54.

25. S. M. Ross, Stochastic Processes, second edition, John Wiley and Sons, 1997.
26. A. Hordijk, D. van der Laan, Periodic routing to parallel queues and billiard sequences,

Mathematical Methods of Operations Research 59 (2004) 173–192.
27. A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, workloads, and user runtime

estimates in scheduling the IBM SP2 with backfilling, IEEE Transactions on Parallel
and Distributed Systems 12 (6) (2001) 529–543.

28. D. A. Lifka, The ANL/IBM SP scheduling system, in: Proceedings of the 1st Work-
shop on Job Scheduling Strategies for Parallel Processing (JSSPP ’95), Springer-Verlag,
London, Santa Barbara, CA, 1995, pp. 295–303.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 22/23

Enhancing Performance of Failure-prone Clusters 23

29. S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan, Selective reservation
strategies for backfill job scheduling, in: Proceedings of the 8th International Work-
shop on Job Scheduling Strategies for Parallel Processing (JSSPP ’02), Springer-Verlag,
London, Edinburgh, Scotland, UK, 2002, pp. 55–71.

30. M. Bouguerra, T. Gautier, D. Trystram, J.-M. Vincent, A flexible checkpoint/restart
model in distributed systems, in: Proceedings of the 9th International Conference on
Parallel Processing and Applied Mathematics (PPAM 2010), Springer-Verlag, Berlin,
Torun, Poland, 2010, pp. 206–215.

31. L. Kleinrock, W. Korfhage, Collecting unused processing capacity: An analysis of tran-
sient distributed systems, IEEE Transactions on Parallel and Distributed Systems 4 (5)
(1993) 535–546.

32. J. Varia, Best Practices in Architecting Cloud Applications in the AWS Cloud, Wiley
Press, Hoboken, NJ, 2011, pp. 459–490.

33. U. Hoelzle, L. A. Barroso, The Datacenter as a Computer: An Introduction to the Design
of Warehouse-Scale Machines, Morgan and Claypool Publishers, San Rafael, CA, 2009.

34. S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema, A per-
formance analysis of EC2 Cloud computing services for scientific computing, in: Pro-
ceedings of the 1st International Conference on Cloud Computing (CloudComp 2009),
Springer-Verlag, Berlin, Beijing, China, 2009, pp. 115–131.

35. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, CloudSim: a
toolkit for modeling and simulation of Cloud computing environments and evaluation
of resource provisioning algorithms, Software: Practice and Experience 41 (1) (2011)
23–50.

36. C. Grimme, J. Lepping, A. Papaspyrou, Prospects of collaboration between compute
providers by means of job interchange, in: 13th Job Scheduling Strategies for Parallel
Processing, Vol. 4942 of Lecture Notes in Computer Science, Berlin / Heidelberg, 2008,
pp. 132–151.

37. D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, P. Wong, Theory and
practice in parallel job scheduling, in: Proceedings of the 3rd International Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP ’97), Springer-Verlag, London,
Seattle, WA, 1997, pp. 1–34.

38. A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. H. J. Epema, The
Grid Workloads Archive, Future Generation Computer Systems 24 (7) (2008) 672–686.

39. H. Li, D. Groep, L. Wolters, Workload characteristics of a multi-cluster supercomputer,
in: Proceedings of the 10th International Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP ’04), Springer-Verlag, Berlin, New York, USA, 2004, pp.
176–193.

40. S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. E. Dobson, K. Chiu, A grid work-
flow environment for brain imaging analysis on distributed systems, Concurrency and
Computation: Practice and Experience 21 (16) (2009) 2118–2139.

41. CloudHarmony, http://cloudharmony.com/.

SUPE826_source [09/24 15:16] SmallExtended, Basic, Numbered, rh:Option 23/23

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Javadi, B; Thulasiraman, P; Buyya, R

Title:

Enhancing performance of failure-prone clusters by adaptive provisioning of cloud resources

Date:

2013-02-01

Citation:

Javadi, B., Thulasiraman, P. & Buyya, R. (2013). Enhancing performance of failure-prone

clusters by adaptive provisioning of cloud resources. JOURNAL OF SUPERCOMPUTING,

63 (2), pp.467-489. https://doi.org/10.1007/s11227-012-0826-2.

Persistent Link:

http://hdl.handle.net/11343/283090

File Description:

Accepted version

