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Abstract

We study the optimal procurement mechanism when contract breach and abandoning

a project may be efficient, either because of completion costs higher than anticipated, or

new and more lucrative opportunities for the contractor. When contractors have private

information about their costs, the procurer finds it optimal to set damages above expectation

damages. There is a lock-in effect, or status-quo bias; the agent that has won the award will

complete the project even in situations when it would be efficient to abandon it. If the cost

types of all agents are above a threshold, the optimal bidding procedure assigns the project

by lottery. The optimal mechanism cannot be implemented by standard auction formats.

However, the larger the number of agents bidding for the project, the closer auctions with a

liquidated damage clause approximate the optimal mechanism.
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1 Introduction

Procurement is an important component of economic activity. According to the

World Trade Organization, government procurement alone accounts for 10-15 per-

cent of GDP.1 Many procurement projects require the procurer to sink specialized

resources once the contractor has been selected and execution has begun. In such

cases, non performance, or contract breach, is an important concern; replacing the

contractor may be difficult. The construction industry is a particularly good example.

Because most of the work is subcontracted and firms often are small, it is relatively

easy to shut down and then open a new business under a different name; contract

breach is not very costly for contractors, but it can be disruptive for procurers.2

Competitive bidding is often used to select the agent in charge of completing

a project. Once the winning agent has been selected, he enters in a contractual

relationship with the principal. It is often the case that before the project starts

the principal and the winning agent do not know all the details surrounding the

project. It may well turn out, for example, that executing the project is more costly

than anticipated. In addition, new and more lucrative opportunities may arise for

the agent. In some instances, completion costs may turn out to be so high, or a new

alternative opportunity so lucrative, that it would be efficient to abandon the project.

Matters are complicated by the fact that the agent normally has private infor-

mation about his productivity and is the one who discovers the true value of the

completion cost and of his outside option. The agent always has an incentive to over-

state his cost and the value of the outside option. Cost overstating could be addressed

by using fixed price contracts, but, apart from asking the agent to bear all the risk,

fixed price contracts have the drawback of providing the agent with an incentive to

breach the contract without completing the project even when completion is efficient.

Procurers are aware of the risk of contractor breach, and have put in place several

contractual arrangements to ameliorate the problem. Stipulated damage payments

for breach of contract, known as liquidated damage clauses, are the most commonly

used arrangement.3 However, in common law countries the courts have imposed con-

1See http://www.wto.org/english/tratop e/gproc e/gproc e.htm
2According to construction management professionals, a large number of USA construction firms

stay in business for a short time. For example, Ganaway (2006) claims that only 43 per cent of U.S.

construction firms remain in business after four years. The situation is not much different in other

countries.
3Performance bonds and third party guarantees like letters of credit and surety bonds are also
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straints on these contractual arrangements. Liquidated damage clauses that exceed

expectation damages are typically invalidated by the courts (e.g., see Uniform Com-

mercial Code, §§ 2-302(1), 2-718(1), and the Restatements of Contract (Second) §§

208, 356.)4,5

Another approach that is used to address the contract default problem is to adopt

bidding formats specifically designed to minimize default. One common feature of

these bidding formats is to rule out bids that are perceived as excessively low. Winners

that bid low, it is argued, have a bigger incentive not to perform the contractual task.

For instance, the directory 2004/18/EC of the European Union for public works

prescribes that “abnormally low tenders” can win the auction only if reliability is

assessed in an audit conducted by the procurer.6

In this paper, we adopt a mechanism design approach to study the optimal con-

tract and bidding procedure in situations where contract breach and abandoning a

project may, or may not, be socially efficient. We are interested in understanding

what contractual arrangements are optimal and whether the current legal and regu-

latory practice of limiting damages in contract law is justified. We are also interested

in uncovering the distortions introduced by the fact that the opportunity cost of

completion is only discovered by the agent, who also has private information about

his productivity.

We show that if there were common knowledge about the agents’ productivities,

the principal would set liquidated damages equal to expectation damages and choose

an up-front payment to the project winner that extracts all the surplus. The agent

would make the efficient completion decision, abandoning the project when social

cost exceeds social value.

With private information about the agents’ costs, the optimal contract depends

used.
4Expectation damages is the legal term for the ex-ante expected loss to the principal.
5In most civil law countries, penalty clauses are enforceable, but they may be mitigated by the

courts
6Procedures that exclude bids automatically have been recently opposed by the EU Commission,

because of their anticompetitive flavor, and now they can be used in the EU only for awarding

contracts of limited amount (e.g., up to 1 million euros in the case of Italy) – this exemption is

explicitly justified by the high costs of testing bidder reliability in the case of small projects. The

many shortcomings of bidding procedures that exclude abnormally low tenders have been studied

by Albano et al. (2006) and Decarolis (2011). Recent studies of alternative procurement procedures

include Postl (2012) and Rezende (2009).
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on the value of the project to the principal. If the project is of high value, then

the principal will make sure that the project is always completed, as social efficiency

would dictate. This can be done by offering the same contract as under complete

information, with liquidated damages equal to expectation damages and no informa-

tion rent for the agent. On the contrary, if the value of the project is such that it is

sometimes efficient to abandon it, then the winning agent’s informational advantage

has bite and he is able to extract information rents.

Importantly, in order to reduce the agent’s information rent the principal will

find it optimal to write a punitive damage clause in the contract (i.e., to set damages

above expectation damages). As a result, a feature of the optimal contract is a lock-in

effect, or status-quo bias; the agent that has won the award will complete the project

even in situations when it would be efficient to abandon it. The agent may pass

up outside opportunities of higher social value and complete the project instead, in

order to avoid paying punitive damages. This is the first distortion due to incomplete

information.

A feature of the optimal bidding procedure under both complete and incomplete

information is that if the cost types of all agents are above a threshold, then the

project is assigned by lottery. Indeed, when the procurer uses a lottery to assign

the project, it makes sure that the payment to the winning agent and the liquidated

damage clause are such that the project is always completed. When a lottery is used,

the agent obtains no information rent even under incomplete information. To reduce

the agent’s information rent, the second distortion the principal introduces in the

optimal mechanism under incomplete information is to award the project by lottery

more frequently than under complete information.7

An additional conclusion of our analysis is that the optimal mechanism cannot be

implemented by standard auction formats, not even if we add a liquidated damage

clause to the agents’ bids. This is because in an optimal mechanism the liquidated

7In public procurement, awarding projects by lottery is not unheard of. As an example consider

the auction to build a police station in the Sicilian municipality of Palma di Montechiaro. The

auction rules required to eliminated the 10% highest and the 40% lowest reductions over the base

price, and then to pick as winner the bid closest to the average of the remaining bids. There were

exactly 24 bids closest to the average and the actual winner was determined by a lottery draw. Our

paper uncovers settings were lotteries might be optimal, but it is well known that they are highly

inefficient in many circumstances (e.g., see Milgrom, 2004); we do not advocate their generalized

use as allocation mechanisms. We refer again to Albano et al. (2006) and Decarolis (2011) for a

discussion of the shortcomings of bidding procedures that exclude abnormally low tenders.
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damage clause depends on the agent’s cost type, which is private information. How-

ever, the smaller the variability in cost types across agents and the larger the number

of agents bidding for the project, the closer auctions with a liquidated damage clause

approximate the optimal mechanism.

One policy implication of our model is that when the courts invalidate punitive

contractual damages, they may be enhancing the social efficiency of contracts, but

they also redistribute surplus from the principal to the contractor. Thus, our paper

shows that invalidation of punitive contractual damages may be justified if the courts’

overriding goal is to promote efficiency, in the sense of maximizing total surplus.

At the same time, in public procurement it may be reasonable to attach a higher

welfare weight to the procurer’s payoff than the contractor’s profit; if this is so,

then liquidated damages higher than expectation damages ought to be enforced and

current court practice is not justified.

Thus, it is difficult to understand why the rule that liquidated damages cannot

exceed expectation damages should have general validity, irrespective of the circum-

stances. Edlin and Schwartz (2003) review the literature on contractual damage

clauses and reach a similar policy conclusion. The literature has shown that penal-

ties – damages that exceed expectation damages – may be welfare enhancing (e.g.,

when parties must make relation specific investments as in Edlin and Reichelstein,

1996) or welfare reducing (e.g., when parties use a punitive damage clause to deter

entry, as in Chung, 1992). The paper closer to us is Stole (1992). He shows that

when a seller is trying to screen buyers whose valuations are private information, the

optimal mechanism requires liquidated damages below expectation damages. Our

story is also based on incomplete information, but we reach the opposite conclusion,

the procurer’s optimal contract requires penalties - a liquidated damage clause above

expectation damages.

Our paper is also related to the literature on default in auctions. Spulber (1990)

was the first to note that auctions may provide incentives for contractors to default

when there are cost overruns. His efficiency restoring solution is to introduce expec-

tation damages.8 Waehrer (1995), on the other hand, requires the winning bidder to

post a deposit that is lost in case of default. In Zheng (2001), a budget constrained

winning bidder may borrow in order to pay above his budget, which is private infor-

8Ramchurn et al. (2009) show that by rewarding all bidders in case of success and penalizing them

in case of failure, efficiency can be obtained even in the case of multidimensional private information.
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mation. Rhodes-Kropf and Viswanathan (2005) extend Zheng’s analysis; their focus

is on how different ways of financing bids affect bidding behavior. Zheng (2009)

shows that, if implemented, the 2008 U.S. Treasury plan of auctioning toxic assets

might have induced poor bidders to outbid rich bidders, and then to default on the

government loans in case of unsalvageable assets. Parlane (2003), Board (2007), and

Burguet et al. (2012) study procurement mechanisms with bidders that have limited

liability. Wan and Beil (2009) allow the principal to test a bidder’s risk of default

both before and after bidding.

Finally, related is also the literature on auctions where the winner has the right

to withdraw his bid. Von Ungern-Sternberg (1991) argues that such auctions are

the norm in the Swiss construction industry. He studies a simultaneous sealed-bid

multi-object procurement auction and shows that letting the winner have the right

to withdraw his bid is beneficial to the principal, by leading to lower equilibrium

prices when bidders face rising marginal costs. Asker (2000) considers a single-item

auction in which bidders only discover after the auction whether the item is a “good”

or a “bad”. He shows that the right to withdraw the offer raises the seller’s expected

revenue and provides experimental evidence supporting the theory.

The paper proceeds as follows. Section 2 presents the model. Section 3 solves for

the complete information benchmark, while Section 4 studies the optimal procure-

ment mechanism under incomplete information. Section 5 looks at standard auctions,

and Section 6 concludes.

2 The Model

There are N risk-neutral agents, indexed by i ∈ N = {1, ..., N} and one principal.

The principal has a project that can only be undertaken by one of the agents. Each

agent also has an alternative project that he could pursue instead of working for

the principal. Each agent i has a private cost ki of working on either project. The

principal’s and alternative project also have common cost components, γP and γA

respectively, which we interpret as cost overruns. The agent’s benefit from working

on the principal’s project is the compensation stipulated in the contract offered by the

principal. We model the benefit from working on the alternative project as a random

variable ω. The cost components γP , γA, ki are also random variables. Benefit ω and

costs γP , γA, ki, i ∈ N , are independently distributed.
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Each agent i has private information about the private cost type ki; the types

ki are drawn independently from the same distribution G (k) which is absolutely

continuous with support K = [k−, k+] and density g (k) = G′ (k). We make the

standard assumption that G (ki) /g (ki) is an increasing function of ki.

The agent that wins the principal’s contract discovers the value of the cost over-

runs γP during the project’s completion, after having sunk the cost ki in it. At

that point, the agent may abandon the principal’s project and pursue the alternative

opportunity which has an expected net payoff of E [ω] − E
[
γA

]
− ki, where E [ω]

is the expected benefit and E
[
γA

]
the expected cost overruns. We assume that

E [ω]−E
[
γA

]
≥ k+, so that the outside option has non-negative value for all agents.

We can think of the opportunity cost of continuing the principal’s project as

γP +
(
E [ω] − E

[
γA

]
− ki

)
.

Defining

c = γP + E [ω] − E
[
γA

]
,

we can write the opportunity cost of completing the principal’s project as c − ki. It

is then convenient to view the cost c as being drawn from a distribution F (c), which

is absolutely continuous with support [c−, c+] and density f (c) = F ′(c).

We want to study the contract design problem of the principal under the con-

straint that the contract may specify damage payments for breach, but the agent

must remain free to quit the relationship. We adopt a mechanism design approach.

By the revelation principle, there is no loss of generality in considering only direct

mechanisms in which the principal chooses the probability of assigning the project

and the penalties and bonuses for each agent, as functions of the agents’ reported

cost types and project completion. Denote by K−i = [k−, k+]N−1 the set of types

of agent i’s opponents with generic element k−i and let g−i(k−i) = Πj∈I,j 6=ig(kj) be

the associated density function. We denote by πi(ki, k−i) the probability that the

project is assigned to agent i. Let tLi (ki, k−i) be the fee charged to agent i when

he participates in the mechanism but does not win the project; let tFi (ki, k−i) be

the amount charged to i when he wins the project but breaches the agreement to

complete it; let βi(ki, k−i) be the bonus paid to winner i if he completes the project.9

Note that the principal would not benefit from conditioning the transfers tFi and βi

9As will become clear later, in the optimal contract the participation fee tL
i could be set to be

equal to zero for all cost types; charging the losing agents is not necessary.
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on a cost report by the agent once the agent has discovered the cost γP . Incentive

compatibility implies that tFi and βi cannot vary with γP .

After discovering the completion cost γP , the winning agent i will want to com-

plete the project with the principal if and only if βi −(c − ki) ≥ −tFi . It is convenient

to define the payment

pi(ki, k−i) = βi(ki, k−i) + tFi (ki, k−i).

Then, the agent completes the principal’s project if and only if

pi ≥ c − ki.

The payment pi can be interpreted as the damage clause stipulated in the contract.

To see this, suppose the agent is paid the bonus bi = βi not upon project completion

but up-front, before and independently of project completion. If the agent fails to

complete, it must pay damages to the principal. If pi is the size of the damages paid

in case of breach, then the total transfer from the winning agent to the principal in

case of breach is pi − bi = pi − βi = tFi .

By raising the winner’s stipulated damage payment pi, the principal reduces the

probability of the agent breaching; min {pi + ki, c
+} is the highest level of the oppor-

tunity cost component c at which the project is completed.

Note that if the winning agent completes the project for the principal, his payoff

net of the outside option is

(
βi − ki − γP

)
−

(
E [ω] − E

[
γA

]
− ki

)
= pi − tFi − c

If, on the other hand, the winning agent quits, his payoff net of the outside option

is the cost sunk in the principal’s project minus the amount charged after failure to

complete, −ki − tFi . Thus, agent i’s expected payoff net of the outside option payoff

from participating in the procurement mechanism when his cost type is ki and he

reports z, while the other agents report their true types, is:10

U(z; ki) =

∫

K
−i

{∫ pi(z,k
−i)+ki

c−

[
pi(z, k−i) − tFi (z, k−i) − c

]
f(c)dcπi(z, k−i)

−

∫ c+

pi(z,k
−i)+ki

[
ki + tFi (z, k−i)

]
f (c) dcπi(z, k−i) − tLi (z, k−i) [1 − πi(z, k−i)]

}
g−i(k−i)dk−i

10To simplify notation, here and in the remainder of the paper we replace min
�
pi + ki, c

+
	

with

pi + ki as the highest opportunity cost c at which the project is completed, exploiting the fact that

f(c) = 0 and F (c) = 1 for c > c+.
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Defining

ti(ki, k−i) = tFi (ki, k−i)πi(ki, k−i) + tLi (ki, k−i) [1 − πi(ki, k−i)] ,

we can rewrite agent i’s expected payoff as:

U(z; ki) =

∫

K
−i

{∫ pi(z,k
−i)+ki

c−

[pi(z, k−i) + ki − c] f(c)dcπi(z, k−i) (1)

−kiπi(z, k−i) − ti(z, k−i)
}

g−i(k−i)dk−i

Given that in equilibrium each agent must report truthfully, U(ki) = U(ki; ki) is type

ki of agent i’s net utility gain.

For simplicity, we assume that the principal obtains a benefit V only if the project

is completed; the principal obtains zero benefit if the agent breaches the agreement

and fails to complete the project. We assume that the benefit V is higher than the

expected opportunity cost component c, V > E [c] . Thus, the principal’s expected

payoff from agent i under truthtelling is:

UP
i =

∫

K

∫

K
−i

{∫ pi(ki,k−i)+ki

c−

[V − pi(ki, k−i)] f(c)dcπi(ki, k−i)

+ti(ki, k−i)
}

g−i(k−i)dk−ig(ki)dki

Using (1), UP
i can be rewritten as

UP
i =

∫

K

∫

K
−i

{∫ pi(ki,k−i)+ki

c−

[V − c + ki] f(c)dcπi(ki, k−i)

− kiπi(ki, k−i) − U(ki)
}

g−i(k−i)dk−ig(ki)dki

The principal’s problem is to maximize
∑N

i=1 UP
i subject to the constraints that

1) it is an equilibrium for the agents to report their true types; 2) all agents make a

non-negative expected payoff net of the outside option, i.e., U(ki) ≥ 0 for all types

ki that participate in the mechanism; 3)
∑N

i=1 πi (·) ≤ 1 and πi (·) ≥ 0.

3 The Full Information Benchmark

If the cost types ki of all players are known, then the principal can extract all surplus

from the agents by setting U(ki) = 0. Define

S1
i (ki; pi(ki, k−i)) =

∫ pi(ki,k−i)+ki

c−

[V − c + ki] f(c)dc − ki

9



as the (first-best) total net surplus, or social value, generated by agent i when i wins

the project and his opponents have types k−i. The principal chooses pi and πi so as

to maximize
∑N

i=1 S1
i (ki; pi(ki, k−i))πi(ki, k−i) for all values of ki and k−i.

Differentiating S1
i (ki; pi(ki, k−i)) with respect to pi(ki, k−i) for pi(ki, k−i)+ki < c+

gives:
∂S1

i (·)

∂pi(ki, k−i)
= [V − pi(ki, k−i)] f(pi(ki, k−i) + ki)

and hence it is optimal to set pi (ki, k−i) = V.11 For pi + ki ≥ c+, S1
i does not change

with pi. Thus, it is an optimal pricing policy to set pi (ki, k−i) = V.

Let

kT1 = c+ − V

and note that S1
i (ki; p

FB
i ) is positive for all ki since: 1) it is equal to V − E [c] > 0

for ki ≥ kT1 ; 2) it is strictly decreasing in ki if ki < kT1 . All agent types generate a

positive surplus. As a result, the principal finds it optimal not to exclude any agent

type from participating in the mechanism.

Agents with cost types ki higher than kT1 never quit, once they have been selected

to complete the project. Furthermore, the principal obtains the same surplus from

all of them and hence may as well award the project randomly to one of them if there

are no lower types. From now on, when the principal is indifferent about awarding

the project to different agents, we will always select the mechanism that uses a fair

lottery to determine the winner.

For a given type profile ki, k−i, let kmin = mini∈N ki and nmin be the number

of agents of type kmin. If kmin < kT1 , then it is optimal for the principal to assign

the task to one of the agents with the lowest private cost type kmin. Such an agent

generates the highest total net surplus, since S1
i decreases with ki if ki < kT1 .

The next proposition summarizes the optimal mechanism under complete infor-

mation.

Proposition 1 Under complete information about the cost types of agents, for all

ki, k−i, in the optimal procurement mechanism the project is awarded according to the

following rule:

πFB
i (ki, k−i) =





1
nmin if ki = kmin ≤ kT1 = c+ − V
1
N

if kmin > kT1

0 otherwise.

11S1
i increases with pi if pi < V and decreases in pi if pi > V.
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The agent’s information rent is zero; for all ki ∈ K

U(ki) = 0.

The optimal mechanism specifies liquidated damages equal to expectation damages:12

pFB
i (ki, k−i) = V,

and can be implemented by setting a zero participation fee tLi and an up-front payment

equal to the project’s benefit to the principal minus its social value:

bFB
i (ki, k−i) = V − S1

i (ki; V ).

The formula for bFB
i (ki, k−i) is obtained from (1). By setting pi = V , the principal

aligns the winning agent’s incentives with his own. It is as if the principal sold the

project to the agent, who will then quit when it is socially optimal to quit. In

addition, the principal sets the up-front payment and participation fee that extract

all the surplus from the agents. Indeed, the participation fee tLi can be set equal to

zero, so that the losing agents are not charged.13

It is important to stress that it is not efficient, and the principal will not want,

to always induce the agent to complete the project. As we shall see in the next

section, with private information the completion decision will be distorted away from

efficiency and the stipulated damages will differ from expectation damages.

Finally, it is useful to distinguish between three cases, depending on the value of

the project relative to the completion and private cost types. We say that the project

is high value if V ≥ c+ −k−. In this case it is k− ≥ kT1 ; agents never quit the project

and the project is assigned by a fair lottery. We say that the project is low value

if V ≤ c+ − k+. In this case, the project is always awarded to the agent with the

lowest private cost type. The winner will quit if the completion cost is higher than

V + ki, an event that has positive probability. If the project has an intermediate

value, c+ − k+ < V < c+ − k−, two cases are possible: a) the lowest private cost

12Since V is the project’s benefit, it is also equal to the principal’s damages if the project is not

completed.
13An alternative way to implement the optimal mechanism is to charge all agents a positive par-

ticipation fee tL
i ; the fee amounts tL

i clearly decrease with the number of bidders N, as an increase

in N decreases the probability of winning the project (and hence making a profit).
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type is above the threshold kT1 and the project is allocated by lottery and always

completed; b) the lowest private cost type is below the threshold kT1 and the project

is assigned to the agent with the lowest private cost type and completed only if the

completion cost turns out to be below V + ki.

4 The Optimal Mechanism under Private Information

The first question we want to ask is the following. In the presence of private informa-

tion could the principal induce the agent to make the efficient completion decision?

The answer is positive and the reason is simple. The principal could set the stipulated

damages to be pi = V. Indeed, as we shall see, the principal could also make sure that

the agent winning the project is the same as in the case of complete information.

When the cost types are private information, however, agents will be able to

obtain information rents. As in the standard principal-agent model, to reduce the

information rents, the principal will find it optimal to distort the completion decision

of the agent away from the first best, complete information, outcome. What is the

direction of the distortion? Will the principal increase or decrease the probability of

a quit? Will the principal use a lottery to assign the project more or less often? Will

stipulated damages be above or below expectation damages?

The standard approach to solve for an optimal mechanism under incomplete in-

formation uses revenue equivalence; that is, it uses the fact that in the standard

problem the payments to the agents (and hence the principal’s payoff) are deter-

mined once one fixes the payoff of the worst-off agent and the probability of winning

by each agent. We need to modify this approach here, because in our model the

payment to the project winner determines whether the winner quits, and also affects

the principal’s payoff through that channel. What will be true in our model is that

once one fixes the payoff to the worst-off agent, the transfer ti is determined by the

probabilities of winning πi and the stipulated damages pi.

Consider equation (1); the incentive compatibility constraint and an envelope

theorem argument yield:

dU(ki)

dki
=

∂U(z, ki)

∂ki

∣∣∣∣
z=ki

= −

∫

K
−i

[1 − F (pi(ki, k−i) + ki)] πi(ki, k−i)g−i(k−i)dk−i

(2)

Equation (2) is a first order condition on agent i’s maximization problem. We will

proceed by ignoring the second order condition; Lemma 1 in the appendix shows that
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it is satisfied by the solution of the principal’s problem.

Since by (2) agent i’s equilibrium expected payoff is decreasing in ki, the individual

rationality, or participation, constraint is satisfied as long as it is satisfied for the

highest type. Then, we can write the individual rationality constraint as follows:

U(k+) ≥ 0.

Using (2) and integrating by parts we obtain:

∫ k+

k−

U(ki)g(ki)dki

= U
(
k+

)
+

∫ k+

k−

∫ k+

ki

∫

K
−i

[1 − F (pi(k, k−i) + k)] πi(k, k−i)g−i(k−i)dk−idkg (ki) dki

= U
(
k+

)
+

∫ k+

k−

∫

K
−i

[1 − F (pi(ki, k−i) + ki)]πi(ki, k−i)g−i(k−i)dk−iG (ki) dki.

Note that while the principal could set pi = V and thus induce the agent to make

the same completion decision as under complete information, by raising pi above V

the principal is able to reduce the agent’s information rent.

The principal’s total payoff can be written as

UP = −
N∑

i=1

U(k+) +
N∑

i=1

∫

K
−i

∫ k+

k−

{∫ pi(ki,k−i)+ki

c−

[
V + ki +

G (ki)

g (ki)
− c

]
f(c)dc

−ki −
G (ki)

g (ki)

}
πi(ki, k−i)g(ki)dkig−i(k−i)dk−i

The principal’s program is to maximize UP subject to the constraint that πi

is a probability and U(k+) ≥ 0. It is immediate that the principal should set

U (k+) = 0. The agent with the highest private cost type will get no information

rent. Indeed, by (2) no agent that completes the project with probability one (i.e.,

such that pi + ki ≥ c+) obtains an information rent.

Let

S2
i (ki; pi(ki, k−i)) =

∫ pi(ki,k−i)+ki

c−

[
V + ki +

G (ki)

g (ki)
− c

]
f(c)dc − ki −

G (ki)

g (ki)

be the (second-best) net total surplus the principal would obtain from assigning the

project to agent i.

First note that S2
i does not depend on pi(ki, k−i) if pi(ki, k−i) + ki > c+. On the

other hand, when pi(ki, k−i) + ki < c+, differentiating S2
i with respect to pi(ki, k−i)
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yields
∂S2

i (·)

∂pi(ki, k−i)
=

[
V +

G (ki)

g (ki)
− pi(ki, k−i)

]
f(pi(ki, k−i) + ki).

Define kT2 as the (unique) solution to14

V +
G

(
kT2

)

g (kT2)
+ kT2 = c+.

Note that kT2 plays the same role played by kT1 under complete information. It

follows that it is optimal for the principal to set

pSB
i (ki, k−i) =





V + G(ki)
g(ki)

if ki ≤ kT2

V +
G(kT2)
g(kT2)

if ki > kT2

Now observe that S2
i

(
ki; p

SB
i (ki, k−i)

)
is positive for all ki since: 1) it is equal to

V −E [c] > 0 for ki ≥ kT2 ; 2) it is strictly decreasing in ki if ki < kT2 . It follows that,

as in the case of complete information, the principal does not want to exclude any

agent type from participating in the mechanism.

In the optimal mechanism agent types with cost higher than kT2 never quit. Note

also that the principal obtains the same surplus from all types in the interval
[
kT2 , k+

]

and hence will assign the project randomly to one of them if there are no lower types.

On the other hand, if kmin < kT2 , then it is optimal for the principal to award the

job to one of the agents with the lowest cost type ki; since S2
i decreases with ki, such

an agent generates the highest total net surplus to the principal.

The next proposition summarizes the optimal mechanism under incomplete in-

formation.

Proposition 2 In the optimal procurement mechanism under incomplete informa-

tion about the cost types of agents, for all ki, k−i, the project is awarded according to

the following rule:

πSB
i (ki, k−i) =





1
nmin if ki = kmin ≤ kT2

1
N

if kmin > kT2

0 otherwise,

14For values of kT2 < k− define
G(kT2)
g(kT2)

= 0. For values of kT2 > k+ define
G(kT2)
g(kT2)

=
G(k+)
g(k+)

.
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where kT2 is the solution to

V +
G

(
kT2

)

g (kT2)
+ kT2 = c+.

Agents with cost types above kT2 earn zero information rent; for all ki ≥ kT2

U(ki) = 0.

Cost types below kT2 obtain a positive information rent; ki < kT2 implies U (ki) > 0.

The optimal mechanism specifies liquidated damages equal to:

pSB
i (ki, k−i) =





V + G(ki)
g(ki)

if ki ≤ kT2

V +
G(kT2)
g(kT2)

if ki > kT2

and can be implemented by setting a zero participation fee tLi and an up-front payment

equal to:

bSB
i (ki, k−i) =





V − S2
i

(
ki; V + G(ki)

g(ki)

)
+ U(ki)

[1−G(ki)]
N−1 if ki ≤ kT2

V − S2
i

(
kT2 ; V +

G(kT2)
g(kT2)

)
if ki > kT2

The formula for bSB
i (ki, k−i) is obtained from (1), the formula for pSB

i (ki, k−i) and

the facts that U(ki) = 0 for ki > kT2 while the winning probability of type ki ≤ kT2

equals the probability that all other types are above ki:
∫

K
−i

πi(ki, k−i)g−i(k−i)dk−i = [1 − G (ki)]
N−1 .

The next proposition is an immediate consequence of G (ki) > 0 for all ki > k− and

kT2 < kT1 .

Proposition 3 Under incomplete information: (1) Stipulated damages pSB
i are

higher than expectation damages V , the first best level of damages, for all except

the agent with the lowest private cost type k−; hence the project is completed even for

realizations of the opportunity cost component c when it would be socially efficient to

abandon it. (2) The region of types for which the project is assigned by a fair lottery

is larger than under complete information.
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In the optimal mechanism under incomplete information, stipulated damages are

punitive; that is, they are higher than the principal’s benefit of completing the project

V . As a result, there are realizations of the opportunity cost component c above

V + ki under which the winning agent completes a project that would be efficient to

abandon. Note that there is no distortion at the bottom; the liquidated damages of

type k− are set at V.

Every type ki < kT2 earns a positive information rent. The principal chooses

higher stipulated damages than in the case of complete information in order to reduce

the agents’ information rents. Interestingly, the principal also expands the region of

types under which the project is assigned by lottery. This is also in order to reduce

the agents’ information rents; indeed, when the project is assigned by a lottery agents

obtain no rents. Thus, for some realizations of the type profile a lottery is used and

the project is always completed, when it would be socially efficient to award the

project to the agent with the lowest private cost type and have it abandoned if the

completion cost turns out to be high.

Finally, note that the high value region for which k− ≥ kT2 and the winning agent

never quits the project is the same as under complete information: V ≥ c+ − k−.

On the other hand, the low value region for which the project is always awarded to

the agent with the lowest private cost type shrinks to V ≤ c+ − k+ − 1/g (k+), while

the intermediate value region expands to c+ − k+ − 1/g (k+) < V < c+ − k−. As we

already observed, within the intermediate region, the subregion for which the project

is assigned by lottery expands.

5 Auctions

One way to interpret the optimal mechanism is as a complex auction in which agents

bid over both the up-front bonus and damages and the principal uses a (complex)

scoring rule to decide the winner. A natural question addressed in this section is: Are

there simple auctions that, at least in some circumstances, implement the optimal

mechanism?

The principal could use many different simple auctions formats to determine the

project winner. Apart from the standard difference between first and second-price

auctions, when the agents may breach the contract it is important to specify the terms

over which agents bid. This is because, unlike in standard auctions, the winning bid

16



determines both the winner’s compensation and when the project will be completed.

We look at two formats; in both of them losers’ transfers are zero, tL = 0. In the

first format, the bonus auction, the principal fixes the total amount tF to be paid

by the winner that fails to complete the project and asks the agents to bid over

the bonus β the winner gets upon completion. In the second format, the up-front-

payment auction, the principal set the damages p to be paid by the winner in case of

breach and let the agents bid over the up-front payment b they receive upon winning.

For simplicity, under both formats we look at a second-price auction, in which the

contract is awarded to the bidder who has submitted the lowest bid, while the bonus

or up-front payment are equal to the second lowest bid. We restrict attention to

symmetric Bayesian equilibria.

Proposition 4 The equilibrium bid in a second-price, bonus auction is the solution

to

β(ki; t) = E [c|c < β(ki; t) + t + ki] + (ki + t)
1 − F (β(ki; t) + t + ki)

F (β(ki; t) + t + ki)
(3)

The equilibrium bid in a second-price, up-front-payment auction is

b(ki; p) =

∫ p+ki

c−

cf(c)dc +

∫ c+

p+ki

[ki + p] f(c)dc (4)

Proof See the Appendix. �

To understand the formulas for the bidding functions of the second-price bonus

and up-front-payment auctions, recall that in a standard second-price procurement

auction the equilibrium bid is the expected cost of the bidder. Thus, if the price were

equal to the winner’s bid (i.e., if the winner’s bid were in a tie with the price-setter’s

bid), the winner would make zero profit. Proposition 4 shows that when contract

breach is possible, the winner would also make zero expected profit if the bonus, or

the up-front-payment, were equal to his bid.

In discussing whether auctions can implement the optimal mechanism, it is useful

to start from the high value case: V ≥ c+ − k−. In this case, by setting p = V the

principal can make sure that the second-price, up-front-payment, auction implements

the optimal mechanism. The equilibrium bid is b(ki; p) = E [c] and the outcome is

the first best outcome; the project is always completed. By setting t = V − E [c],

the second-price, bonus auction also implements the optimal mechanism in the high

value case.
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On the other hand, in the low value and in the intermediate value regions when

V < c+ − k−, the two auctions formats cannot implement the optimal mechanism.

Because the bidding function for the bonus auction is only implicitly defined by (3), it

is easier to work with the up-front-payment auction. The next proposition computes

the optimal value of the liquidated damages clause p, the value that maximizes the

principal’s expected payoff. Let k(1) be the lowest cost type and k(2) be the second

lowest cost type among the N agents.

Proposition 5 The optimal damage clause in the second-price, up-front-payment

auction is the solution of

p = V +
E

[
F

(
p + k(2)

)]
− E

[
F

(
p + k(1)

)]

E
[
f

(
p + k(1)

)] .

The optimal liquidated damages clause p is greater than the expectation damages V

as long as V + k− < c+. If V + k− ≥ c+ then p = V.

Proof See the Appendix. �

In the up-front-payment auction that maximizes the principal’s payoff, liquidated

damages are set above expectation damages except for the case of a high value project,

when damages equal expectation damages. This is similar to what happens in the

optimal mechanism, but in the optimal mechanism liquidated damages are an in-

creasing function of the winning agent’s cost type, while in the up-front-payment

auction they are a constant.

It is also important to note that as the number of bidders grows large, the outcome

of the up-front-payment auction approaches the outcome of the optimal mechanism.

This is because, as the number of agents grows large, the lowest cost and second

lowest cost types approach k− and hence the liquidated damage clauses in the optimal

mechanism and in the up-front-payment auction approach the expectation damages

amount V .

6 Conclusions

The main lesson of this paper is that when the efficiency of breaching a procurement

contract is private information of the agent, the procurer will want to use a punitive

damage clause that locks in the contractor in order to reduce his information rent.
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Breach is efficient when it relieves the contractor from unusually high completion

costs discovered after the contract has been signed, or when a new and more valuable

opportunity arises that the contractor can only take up after abandoning the current

project. In such circumstances, the court’s refusal to recognize the validity of punitive

damage clauses, by limiting the principal’s ability to extract rent from the agent,

may be viewed as efficiency enhancing. At the same time, when the procurer is a

government agency, a constraint on the amount of admissible damages moves surplus

from the public at large to the private contractor. It is not clear that the courts’

stance is justified in such a case.

Another lesson of the paper is that the optimal bidding procedure is complex,

in essence requiring agents to bid both on price and the damage clause, and using

a scoring rule which is not simple to describe. However, with a large number of

bidders, a second-price auction that sets the liquidated damage clause to expectation

damages and asks agents to bid on the up-front payment for the project approximates

the optimal mechanism.

Appendix

In this appendix, first we prove a lemma that deals with the second order condition

of the agents’ reporting problem. Then we provide a proof of Propositions 4 and 5.

Lemma 1 Consider the mechanism described by the functions pi(ki, k−i), ti(ki, k−i),

πi(ki, k−i) for all i. Suppose that (a) pi(ki, k−i) = pi (ki) (i.e., pi does not depend

on the types k−i); (b) pi(ki) is increasing in ki and differentiable; (c) Πi(ki) =
∫
K

−i
πi(ki, k−i)g−i(k−i)dk−i exists and is (weakly) decreasing in ki. If this mecha-

nism satisfies the first order condition of the agent’s reporting problem, then it also

satisfies the second order condition and hence it is incentive compatible.

Proof Consider the first order condition of agent i reporting problem:

∂U(z, ki)

∂z

∣∣∣∣
z=ki

= 0.

Differentiating it totally yields

∂2U(z, ki)

∂z∂ki

∣∣∣∣
z=ki

+
∂2U(z, ki)

∂z2

∣∣∣∣
z=ki

= 0.
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Since

∂U(z, ki)

∂ki
= −

∫

K
−i

[1 − F (pi(z, k−i) + ki)] πi(z, k−i)g−i(k−i)dk−i,

under the hypotheses of the lemma, we can write the second order condition as:

−
∂2U(z, ki)

∂z2

∣∣∣∣
z=ki

=
∂2U(z, ki)

∂z∂ki

∣∣∣∣
z=ki

= − [1 − F (pi(ki) + ki)]
dΠi(ki)

dki
+ f (pi(ki) + ki)

dpi(ki)

dki
Πi(ki) ≥ 0.

�

Proof of Proposition 4 Consider first a second-price, bonus auction. Let β(ki)

be the bidding function (for notational simplicity we drop the dependence on t) and

assume provisionally that it is strictly increasing everywhere. Let Q(k) = [1 − G(k)].

We can write bidder i’s problem of determining the optimal value of his bid b as:

max
b

∫ k+

β−1(b)

{∫ β(k)+ki+t

c−

[β(k) + ki + t − c] f(c)dc − (ki + t)

}
(N − 1) g (k)Q(k)N−2dk.

The first order condition is

−
dβ−1(b)

db

{∫ b+ki+t

c−

[b + ki + t − c] f(c)dc − (ki + t)

}
(N − 1) g

(
β−1(b)

)
Q(β−1(b))N−2 = 0,

which yields, using the Nash equilibrium condition b = β(ki),

∫ β(ki)+ki+t

c−

[β(ki) + ki + t − c] f(c)dc − ki − t = 0 (5)

or

β(ki) = E [c|c < β(ki) + ki + t] + (ki + t)
1 − F (β(ki) + ki + t)

F (β(ki) + ki + t)
. (6)

It is immediate to see that the second order condition is satisfied and that Equation

(6) defines the equilibrium bidding function, as long as β(ki) is strictly increasing.

To see that β (ki) is increasing, note that if we differentiate (5) with respect to ki we

obtain ∫ β(ki)+ki+t

c−

[
β′(ki) + 1

]
f(c)dc − 1 = 0

and hence

β′(ki) =
1 − F (β(ki) + ki + t)

F (β(ki) + ki + t)
> 0 for β(ki) + ki + t < c+.
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Using (6), we see that β (ki) + ki + t < c+ for types ki such that ki < c+ − E [c] − t.

Thus, we have shown that if ki < c+ − E [c] − t then bidder ki will bid according to

β (ki; t) .

Now suppose β (ki) + ki + t ≥ c+ or, equivalently, ki ≥ c+ − E [c] − t. When

winning, bidder ki will complete the contract with certainty and therefore must bid

no less than the expected cost; furthermore, he will certainly lose the auction if he

asks for more than the expected cost. It follows that the equilibrium bid is E [c] .

Thus, since β (ki) = E [c] for ki ≥ c+ − E [c], bidding according to β (ki) is also an

equilibrium for these types.

Now consider a second-price, up-front-payment auction. Let p be the damages

and b(ki) be the bidding function (for notational simplicity we drop the dependence

on p) and assume provisionally that it is strictly increasing everywhere. We can

write bidder i’s problem of determining the optimal value of his bid b̃ (the up-front

payment) as:

maxeb ∫ k+

b−1(eb) {
b(k) −

∫ p+ki

c−

cf(c)dc −

∫ c+

p+ki

[ki + p] f(c)dc

}
(N − 1) g (k) Q(k)N−2dk.

The first order condition is

−
db−1(̃b)

db̃

{
b̃ −

∫ p+ki

c−

cf(c)dc −

∫ c+

p+ki

[ki + p] f(c)dc

}
(N − 1) g

(
b−1(̃b)

)
Q(b−1(̃b))N−2 = 0,

which yields, using the Nash equilibrium condition b̃ = b(ki; p) :

b(ki; p) =

∫ p+ki

c−

cf(c)dc +

∫ c+

p+ki

[ki + p] f(c)dc.

It remains to check that b is increasing in ki. This follows immediately:

∂b(ki; p)

∂ki
= 1 − F (p + ki) .

Note that the fact that b is increasing also implies that the second order condition

holds. �

Proof of Proposition 5 Observe from (4) that

∂b(ki; p)

∂p
= 1 − F (p + ki) .
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Let k(1) be the lowest cost type, k(2) be the second lowest cost type, and gk(1),k(2)(x, y)

be their joint density. The principal chooses p to maximize

∫ k+

k−

∫ k+

k−

{∫ p+x

c−

V f(c)dc +

∫ c+

p+x

pf (c) dc − b(y; p)

}
gk(1),k(2)(x, y)dxdy

which yields the first order condition

∫ k+

k−

∫ k+

k−

{[V − p] f(p + x) + [1 − F (p + x)] − [1 − F (p + y)]} gk(1),k(2)(x, y)dxdy = 0

or

[V − p]

∫ k+

k−

∫ k+

k−

f(p+x)gk(1),k(2)(x, y)dxdy−

∫ k+

k−

∫ k+

k−

[F (p + x) − F (p + y)] gk(1),k(2)(x, y)dxdy = 0

from which we obtain

p = V +
E

[
F

(
p + k(2)

)]
− E

[
F

(
p + k(1)

)]

E
[
f

(
p + k(1)

)] .

Since k(1) < k(2) it is immediate to see that the optimal damage clause is p > V

as long as V + k− < c+. If V + k− ≥ c+ then F (V + k1) = F (V + k2) = 1 for all

k1, k2 and p = V. �
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