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ABSTRACT

We present a new analysis of the late Alpine brittle deformation in the southern branch of the Western
Alpine arc, focusing on the stack of internal metamorphic nappes east of the Argentera external crystalline massif.

The regional-scale fault network is dominated by a NW-SE striking right-lateral fault system that follows the
general curvature of the arc and controls the overall morphology of the area. A second fault set strikes N-S and is
mainly represented by normal faults which accommodate orogen-parallel extension. Structural analysis and paleo-
stress tensors derived from inversion of fault-slip data reveal a complex pattern of deformation involving extensional
and strike-slip deformation events. The orogen-parallel extension previously described in the internal zones at the
east of the Pelvoux massif is confirmed further south and we show that it is combined with right-lateral strike-slip
deformation that increases in intensity towards the southwest. The stability of the minimum stress axis (63) direction
suggests that extensional and transcurrent regimes are contemporaneous and highlights regional interferences

between inner brittle extension, parallel to the strike of the belt, and the strike-slip strain field driven by the



counterclockwise rotation of the Apulia-Adria plate. The curved geometry of the belt constrains the direction of
extension and the coupling relationship between the internal and external Alpine zones. We propose that the
Neogene tectonic history is a result of the unique curved tectonic architecture of the South-Western Alps with
respect to the rotation of the Apulia-Adria indenting plate. The southern tip of the Western Alpine arc represents a

transitional zone between extension in the inner chain and strike-slip/compression in the outer parts.

. INTRODUCTION

The tectonic and orogenic evolution of the Alps has been dominated by the indentation of the European
margin by the Apulia-Adria African promontory since the Eocene (see Tapponnier, 1977; Handy et al. 2010;

Schmid and Kissling, 2000 for review). The structure of the belt is classically divided between highly deformed and

metamorphosed ‘internal zones’ which contrast with the less shortened and low-grade metamorphic ‘external zone’
(e.g. Bousquet et al. 2008) (Figure 1). The characteristic arcuate shape of the Western Alps was acquired during the

Oligocene, partly resulting from the palaeogeography of the Apulia-Adria indenter and from complex rotations and

shearing within the internal zone relative to a stable Europe (Goguel, 1963; Gidon, 1974; Debelmas, 1986; Ménard,
1988; Vialon et al. 1989; Laubscher, 1996; Collombet et al. 2002).

All along the European Alps compressional structures observed in the internal zones are overprinted by late

brittle faults linked to complex extensional and transtensional deformation with a general direction of extension that

follows the curvature of the belt (Bauve et al. 2014; Bertrand et al., 2015; Bertrand and Sue, 2017; Bistacchi and
Massironi, 2000; Champagnac et al. 2003; Champagnac et al. 2004; Champagnac et al. 2006; Ciancaleoni and
Marquer, 2008; Grosjean et al, 2004; Kurz et al. 1993; Perrone et al. 2011; Sue and Tricart, 1999; Sue and Tricart,

2002; Sue and Tricart, 2003b; Sue et al. 1999; Sue et al. 2007; Wang and Neubauer, 1998) (Figure 1).

Analysis of the relationship between fault rocks, hydrothermal veins and the thermal history determined by
fission track thermochronometry in the NW-Alps showed that the transition from ductile to brittle deformation

occurred at different times, with transitions occurring during the Eocene-Oligocene and during the Oligocene-
Miocene (Malusa et al. 2009). It has been proposed that the extensional tectonic phase took place during the

Neogene, immediately after the Oligocene climax of collision, and represents a late tectonic event in the alpine



history (e.g. Sue and Tricart, 2003b; Allanic, 2012; Zwingmann and Mancktelow, 2004).

In detail, the Neogene orogen-parallel extension recognized at the scale of the Alpine chain as a whole has
been followed by a still active orogen-perpendicular extension well described in the Western arc of the Alps.
Analysis of the present-day displacement field derived from geodetic and seismotectonic data reveals that the

internal zones are still undergoing extensional deformation showing a preferential direction of extension

perpendicular to the belt axis (review in Delacou et al. 2004; Sue et al. 2007) which indicates a Plio-Quaternary

(Sue et al. 2007) switch from orogen-parallel extension. The origin of the latest extensional deformation results from
complex vertical motions in the alpine crust but the exact nature of the structures and associated dynamics remain a

matter of debate (e.g. Sue et al. 2007; Vernant et al. 2013; Chéry et al., 2016; Fox et al. 2015; Schlunegger and

Kissling, 2015; Zhao et al. 2015; Nocquet et al. in press.; Champagnac et al. 2007; Serpelloni et al. 2013; Baran et
al., 2014).

The apparent link between the arcuate shape of the belt and the directions of extension draws interest towards
the southern termination of the arc, where the strike of the belt quickly changes from N-S to WNW-ESE. The area
stands out as an essential element to understanding the genesis of the Alpine arc’s bend in its latest evolutionary

stages, including the transition in the pattern of deformation. Recent neotectonic investigations have focused on the

Argentera crystalline massif and the easternmost part of the external zone (Sanchez et al. 2010; Bauve et al. 2014).

Here we detail the late brittle deformation in the stack of the internal metamorphic nappes east of the Argentera
external crystalline massif (Figure 2) and we discuss the Neogene brittle deformation of the area and its regional
significance. Our contribution focuses on the geometry of the fault array at local to regional scales and on the
corresponding palaeostress fields quantified from the inversion of fault/striae measurements. We aim to gain a better
understanding of the late deformation stages affecting the Western Alpine arc and their relationships to the overall

arcuate shape of the belt.

* GEOLOGICAL AND TECTONIC SETTING OF THE SW WESTERN ALPS

Geological and tectonic setting

The southern part of the Alpine arc is characterized by several zones with complex deformation histories



since the Oligocene (Figure 2).

The internal metamorphic zones, to the east, comprise the Briangonnais zone, a stack of margin-derived
nappes, and the overriding Piémont zone, a more complex imbrication of nappes derived from the distal margin and
the Téthyan Ocean (e.g. Graciansky et al. 2010). These nappes were mainly stacked during a Late-Cretaceous to
Eocene E-W compression phase, in an oceanic accretionary wedge evolving into a collision wedge and experiencing

HP-LT metamorphic conditions (Frey et al. 1999; Schwartz et al. 2000; Lanari et al. 2012; Lanari et al. 2014,

Agard, 2001; Mohn et al. 2010). This wedge was severely and repeatedly refolded during the Oligocene, as it was
thrust over the external zone along the Crustal Penninic Front (CPF (Sue and Tricart, 2003b)) at ¢. 32 Ma to 35 Ma

(Simon-Labric et al. 2009) and a collision wedge was built at the scale of the entire present day Alpine realm (e.g.

Tricart et al. 2006). From the Neogene onwards, deformation in the inner part of the arc was driven by large NW-SE
to WNW-ESE strike-slip right-lateral fault systems which accommodated rotations and indentation of the Apulia-
Adria indenter (review in Collombet et al. 2002).

The major ophiolitic complex in the Monviso massif underwent eclogitic metamorphic conditions around 45-50 Ma
(Rubatto and Hermann, 2003; Duchéne et al. 1997). In the same massif, a ZFT age of 19.6 Ma and an AFT age of
8.6 Ma indicate a mean cooling rate of 15-19°C/Ma that leads to a 0.6-0.8km/Ma estimation of the exhumation rate

during Miocene times if one assumes a 25 °C/Km gradient (Schwartz et al. 2007).

In Queyras and Upper Ubaye, ZFT system has not been completely reset (Schwartz et al. 2007) although
metamorphism reached the blueschist facies between 45 and 62 Ma (Agard et al. 2002). In the same regions, the
AFT ages range between 22 and 26 Ma, characterizing a trend to younger exhumation from west towards east during
the Miocene. Tricart et al. (2007) emphasize that the transverse gradient is the opposite of what is observed in the
Piedmont area further north in the Western Alps, indicating a unique later thermal history for the southern branch of
the arc.

The ZFT system has not been reset in the Brianconnais units having undergone high pressure greenschist
metamorphic conditions around 43-50 Ma (Bucher, 2003). The AFT ages are Oligocene, ranging between 22.2+1.6

and 31.7+2.0 Ma. These ages appears remarkably old with respect to those obtained by Seward and Mancktelow



(1994) further north, and seems to indicate a trend to older ages towards the south (Tricart et al. 2007).

At the southern tip, the Briangonnais zone, belonging to the Ligurian Alps and close to the Mediterranean Sea,
yielded a ZFT age of 31 Ma (Vance, 1999) which suggests that the whole southern part of the Briangonnais arc was
cooled recently. The AFT ages between 24 and 26 Ma (Barbieri et al. 2003, Carrapa et al. 2003) confirm this
important observation, and is consistent with the transgression of the Oligocene molasses on the Ligurian
Briangonnais around 30 Ma (Molare Formation, see Gnaccolini et al. 1998). This element highlights the contrast
between the northern and southern branches of the Western Alps as regards to the thermal evolution of late-collision

stages. The southern branch appears to have undergone an early exhumation history.
To the west of the studied area, ocean-derived ‘Exotic Flysch’ nappes override the internal fringe of the

external zone. These non-metamorphic nappes of internal origin were emplaced at shallow levels just before crustal-

scale underthrusting below the CPF (Tricart, 1984). They presently lie in a structural saddle between the Pelvoux

and Argentera elevated massifs (Ménard, 1979), interpreted by (Sanchez et al. 2010) as a recent and still active pull-
apart structure connected to the north with the dextral Jausiers Fault where significant seismic activity was recently

recorded (Jenatton et al. 2007). The External zone, represented here by the Mesozoic to Cenozoic sedimentary cover
of the Pelvoux and Argentera crystalline basement, was deformed during the E-W compression phase and then
subject to N-S compression during the Miocene (e.g. Giannerini et al. 2011; Laurent et al. 2000). This style of
deformation would be still active during the Pliocene as suggested by the dextral strike-slip reactivation of thrust
faults in the foreland sedimentary cover (e.g. Bauve et al. 2012; Hippolyte and Dumont, 2000).

To the Southeast, the Argentera crystalline massif results from uplift of the Variscan basement in association

with reverse and strike-slip faulting along NW-SE lineaments (e.g. Bigot-Cormier et al. 2006; Bogdanoff et al.
2000). The compression direction is assumed to have rotated from NE-SW to N-S during the late Miocene-Pliocene
explaining evolution of SW-verging reverse faults into dextral transpressive faults (Bellahsen et al. 2012; Dumont et

al. 2012; Ford et al. 2006; Schreiber et al. 2011). The Cretaceous to Tertiary sedimentary cover around the massif

has undergone recent normal faulting (Labaume et al. 1989; Sanchez et al. 2010). Several stages of mid-crustal
greenschist facies brittle-ductile shear zone activity related to N-S shortening have been dated at 26, 22 and 20 Ma

(Corsini et al. 2004; Sanchez et al. 2011b). Apatite fission-track analyses from Bigot-Cormier et al. (2006) and



Sanchez et al. (2011) show a transition from ductile to brittle deformation in the crystalline basement at around 12
Ma consistent with the N-S compression (Baietto et al. 2009; Sanchez et al. 2011a; Sanchez et al. 2011b).

Both the CPF and the drainage divide follow the mountain belt curvature, trending NW-SE to the NW of the
Argentera massif and W-E to the east of this massif (Figure 2). This curvature is also displayed by an important

corridor of brittle fault zones. Among them is the NW-SE Serenne-Bersezio fault recognized early on as a major
dextral fault (Sturani, 1962; d’Atri, 2016). To the North, the Serenne-Bersezio fault zone extends into the High

Durance fault zone that trends N-S, behind the Pelvoux crystalline massif (Sue and Tricart, 2003b with ref. therein).

Active Tectonics

The Southwestern Alps are considered the most seismically active part of the Alps with some of the largest

instrumental events recorded (Ubaye, 05-04-1959, ML=5.5) (Ménard, 1988; Sue et al. 2007; Jenatton et al. 2007).

Historical earthquakes catalogue report Medvedev — Sponheuer — Karnik (MSK) intensity up to X and estimated
magnitude higher than 6 (Lambert and Levret-Albaret, 1996). The seismicity affects both the internal and external

zones. Several faults have been recognized as being seismogenic or potentially seismogenic and usually correspond
to inherited Alpine structure at depths down to 15 km (Lardeaux et al. 2006; Schreiber et al. 2010, Sue et al. 2007) ;
The High-Durance Fault is known to be active since the Miocene and reactivates the CPF in extension (e.g. Sue et
al. 2007, 2010). Seismic activity is documented on both NS to NE-SW and NW-SE faults: Earthquake swarms have
recently been recorded in the vicinity of the NW-SE Jausiers Fault (Jenatton et al. 2007) revealing complex dextral
strike-slip and extensional accommodation of the deformation. NW-SE faults such as the Serenne-Bersezio fault
have been affected by earthquakes with dextral strike-slip mechanisms (Sue et al. 1999), while N-S to NE-SW faults

show left-lateral and normal displacements (Moyenne Durance fault: Sébrier et al. 1997; Peille-Laghet fault :

Courboulex et al. 2003).

. METHODS



. Morphotectonic analysis

The regional lineaments were investigated through morphotectonic analysis of shaded digital elevation
models (30m resolution) together with observation of aerial photographs and geological maps. This approach
remains qualitative and is suitable for identifying the dominant directions characterizing the fault network. It has

been validated through repeated comparison with observations in the field.

. Structural Analysis in the Field

The current tectonic structure of the area is the result of a complex series of tectonic phases which occurred
before and during collision. Structural analysis of outcrops in the field allowed the late-stages of alpine brittle
deformation to be resolved from earlier compression-related structures such as nappe piles, folds, schistosities and
cleavages related to the different compressional phases. Here we focus essentially on the late brittle stages of
deformation and do not consider the pre-alpine phases nor later phases related to nappe tectonics. However, as each
of those phases may have strongly influenced the following, we performed a careful structural analysis to assess the
role of inherited structure on the brittle deformation stages.

In the following, a ‘site’ is defined as an outcrop area of ca. 1 km?with homogenous lithology. Outcrops
mainly comprise Triasic-to-Cretaceous carbonates and marly series derived from the ocean and metamorphosed
during the alpine history. Senses of slip on the fault planes were determined in the field from offset markers, striae,
grooves, and/or fibers, and en-échelon structures; in that frame, high confidence slip sense indicators were used to
validate lower confidence indicators in the vicinity. Several sites presented superimposed brittle deformation
structures whose relative chronology has been determined from crosscutting relationships.

. Paleostress Tensor Inversion

The determination of regional stresses from populations of fault-slip data is based on the Wallace and Bott
hypothesis (Bott, 1959; Wallace, 1951) that considers several assumptions: (1) the shear stress vector applied to a
given fault is parallel to the slip vector along the fault surface; (2) the fault surfaces are planar; (3) the blocks are

rigid; (4) no stress perturbation exists, i.e. movements of faulted blocks are free; and (5) a steady stress state prevails



during a given tectonic event. The inversion of fault-slip data is consequently not a trivial problem and has to be
carefully carried out and systematically associated with a structural field analysis.
Several methods have been developed and discussed in previous publications and we refer you to these for a

complete discussion (e.g. Angelier, 1984; Angelier, 1990; Etchecopar et al. 1981; Yamaji, 2000; Yamaji, 2002;

Lacombe, 2012).

In this work, the inversions of fault-slip data have been carried out using the direct inversion method
(Angelier, 1990) implemented in the TectonicsFP software (Ortner et al. 2002). Each inversion of a subset of data

resulted in a best-fitting reduced stress tensor (Angelier, 1984) defined by the orientation of the three principal stress
axes, o1, 62, and 63 (with 61> 62> 63), the ¢ ratio (¢ = (62-63)/(c1-63)) representing the shape of the stress
ellipsoid and the average misfit angle o, which is the angle between the measured striae and the computed shear
stress vector. The ¢ value, which ranges from 0 to 1, indicates the relative magnitudes of the principal stresses and
consequently the susceptibility of palaeostress axes to perturbations, and its own stability. The misfit angle
represents an estimate of the coherency of the fault-slip population: individual faults with misfit angles greater than
30° have been considered as unrelated to the considered stress tensor and discarded. In demonstrably polyphase sites
(in the field), palaeostress tensors related to the subsequent stages were computed independently without using
automatic separation of data.

The result of the direct inversion was subsequently compared to results obtained with other methods of
palaeostress determination: the right dihedral solution (RD) (Angelier and Mechler, 1977), the pressure-tension

method (PBT) (Turner, 1953), and the numerical dynamic analysis (NDA) (Spang, 1972) for a 30° angle 6

according to the Anderson theory of faulting (Anderson, 1951). The parameters obtained for each of the four

methods are provided as supplementary data. Tensors with fewer than 8 faults were systematically discarded. Using

these criteria, 85% of the 1700 total fault-slip measurements have been used in the paleostress inversion process.

. RESULTS

. Morphotectonics

Distribution of fault strike directions derived from the morphotectonic analysis of aerial photographs and



DEM allow the identification of three main directions (Figure 3):
The first is a NW-SE (trending N140°E to N150° E) set of faults. The lineaments were recognized in the field

as dextral second-order faults associated with the major NW-SE Bersezio fault. These faults govern the morphology
of the area, which is characterized by alignments of NW-SE dry glacial valleys (Figure 4A and 4B). The second set
of faults defines an N-S oriented subset, identified in the field as mainly normal faults defining tilted blocks (Figure

4C) or steep conjugate fault sets (Figure 4D) that can accommodate orogen-parallel extension. The third, relatively
minor, fault set was identified with a NE-SW trend (trending N30°E to N40°E) and is correlated with sinistral or

normal faults, conjugated with the main family.

. Field analysis

Structural analysis of outcrops in the field reveals multiple lines of evidence for extensional and strike-slip
deformation:

The Mount Arpet site (Figure 5) shows numerous pairs of close to N-S trending steep faults with opposite
dips, likely representing conjugate normal faults (Anderson, 1951). Their extensional character is confirmed by the
normal slip sense indicated by striae, slickenfibers and en-échelon tension gashes associated with most faults. Slip
directions mainly display high pitch values confirming E-W horizontal extension. The fault/striae measurements
along the outcrop allowed computation of a first palaeostress tensor that is consistent with an E-W extension
(horizontal minimum compressive stress direction, 63, trending 093°). Normal faults have been subsequently
reactivated as strike-slip faults, as evidenced by nearly horizontal late striae. This second population of fault/striae
measurements lead to a palaeostress tensor that displays horizontal N-S o1 and E-W oriented 63 (respectively

N10°E and N100°E) axes. Note that both tensors exhibit a similar 63 direction.

Another characteristic example comes from the NW-SE striking Fouillouse Valley (Figure 6) which follows
the northward trend of the Serenne fault zone that links the Upper Durance fault zone to the North and the Bersezio
fault zone to the southeast (see Sue and Tricart, 2003a; Tricart, 2004 for details). A large N130-140°E fault surface

is exposed along an outcrop of several tens of square metres. The nearly vertical surface shows metre-scale tectonic

grooves that dip close to horizontal. They indicate a major dextral strike-slip displacement. These grooves are



overprinted by a second generation of grooves characterized by shorter wavelengths and that plunge moderately
towards the SE, in response to an evolving tectonic regime. Locally, final movement along the fault is indicated by
sub-vertical striae, associated with pressure-dissolution features on the flanks of the pre-existing horizontal grooves.
This third movement is confirmed by dragfolds that affect the pre-existing cataclastic zone. Our analysis clearly
indicates down-throw to the North-East along the fault in a tectonic regime evolving from strike-slip (transcurrent
displacement) to normal slip (extensional displacement). As inversion of fault/striae pairs is not applicable to
multiple measurements along a single fault surface, we did not invert this data. However, measurements allow a
graphical estimation of the principal compressive and tensional axes using the right-dihedra method as proposed by
(Angelier and Mechler, 1977). This procedure leads us to propose a continuous evolution of slip along the fault
surface, from pure right-lateral strike-slip through an increasing oblique movement, ending by the collapse of the
northern compartment, in a roughly E-W extensional regime.

The analysis of multiple sites across the studied area revealed that the fault network has been reactivated
several times. The N-S and NE-SW faults are clearly related to extension but show many evidences of strike-slip
reactivations while the NW-SE faults (Serenne-Bersezio fault system), which are clearly related to dextral strike-slip
movements, also accommodate extensional deformations. If chronologies can be established locally, the succession
of regimes at the regional scale is more ambiguous which suggests that the extensional and strike-slip deformations
observed in the area are the expression of complex interactions between the stress regime and the local structures.
The alternating transcurrent and extensional regimes remain everywhere consistent with a roughly E-W striking 63

axis, which appears as the most stable regional tectonic feature.

. Statistical Analysis of Fault/Striae pair measurements and Paleostress Determination

A total of 1700 fault-striae pairs have been measured in 60 sites throughout the study area. Azimuthal
distribution of the complete fault measurements dataset (Figure 7) shows NW-SE to NE-SW oriented faults with a
dominant N-S orientation. The azimuths are comparable to those derived from the lineament analysis (Figure 4) and
the dataset is consequently considered as representative of the regional fault pattern. The faults are generally steep,
with about 70% of the dataset showing dips greater than 60°.

The inversion of fault-slip data allowed to reconstruct 79 reduced paleostress tensors at the regional scale



(stereonets and associated parameters are presented in Supplementary material). In the following, the stress tensors
are described in terms of tectonic regime based on the dip of the principal stress axis: compressional regime (63
steeper), extensional regime (c1 steeper) and strike-slip regime (62 steeper).

The Frohlich triangular diagram (Frohlich, 1992) shows the distribution of the stress tensor in terms of
tectonic regimes with the three vertices representing pure ‘Andersonian’, strike-slip, extensional and compressional
regimes (Figure 8). The tensors are essentially distributed between extensional (51%) and strike slip regimes (47%).
The highest density of tensors occurs close to the extensional vertex near a position where the o1 axis plunges
between 60° to 90° and 62 and 63 plunges by less than 30°. In general, resulting stress tensors are away from pure
extensional and pure strike-slip ‘Andersonian’ positions. The strike-slip tensors uniformly cover the strike-slip
domain and do not show any particular clustering.

The same kind of observation can be drawn from the analysis of the ¢ ratios (Figure 8). About one half of the
extensional tensors presents ¢ ratio value lesser than 0.5 (34% have ¢ ratio lesser than 0.25) and suggests a tendency
to radial extension. The ¢ ratio values of the strike slip tensors are more distributed but 66% have @ ratio lesser than
0.5, associated with pure strike-slip and transpression.

Azimuthal distribution of paleostresses direction (Figure 9) shows o1 axes mainly oriented N-S and a minor

peaks at N20° to 30°E, keeping in mind that the o1 are subvertical for the extensional tensors. A striking aspect is

the relatively stable direction of the 63 axis for both extensional and strike-slip tensors (N70°E to 120°E). The map
presented in figure 9 B shows the projected direction of the minimal horizontal stress axis 63 for the strike-slip and
extensional stress tensors (N100°E). The overall map shows coherency between the extensional and strike-slip

minimal stress axis directions. The directions follow globally the trend of the arc of the Western Alps which
highlights a primary control from the regional structure, but significant deviations with respect to the local direction
of the CPF (>30°) are observed in places and suggest local perturbations of the stress regime. There is no clear
regionalization between strike-slip and extensional tensors and both of them uniformly cover the whole studied area.
The local obliquity between faulting directions and stress axes, if significant, may explain oblique movements
observed in the field. This also echoes with the tendency to radial extension drawn from the analysis of the ¢ ratios
and points towards interaction between the stress regime with the pre-existing local structures. As a whole, the
arcuate shape of the belt and pre-existing alpine structures seems to control the tectonic expression of the stress

regime deduced from brittle deformation analysis.



« DISCUSSION

We discuss our results in the light of the stress regimes derived from previous studies in the overall
Southwestern Alps (Figure 10), namely to the North of the present study in the Briancon region, east and southeast
of the Pelvoux crystalline massif (Sue, 1998; Sue and Tricart, 2003a) and to the southwest in the sedimentary cover
of the Argentera crystalline massif (Bauve et al. 2014). We then integrate those results in the regional tectonic
context and discuss the main factor controlling the Southwestern Alps’s tectonic evolution.

The multi-scale analysis of the brittle deformation affecting the internal zones of the SW Alps presented in

this study reveals a complex pattern which involves both strike-slip and extensional deformations. The three main

fault orientations documented here (N140° to 150°E, NO° to 10°E, and N30° to 40°E) are comparable with those

identified in the sedimentary cover of the Argentera (Bauve et al. 2014; Sanchez et al. 2010). They are also

consistent, although slightly deviated, with the faults identified in the Upper Durance Valley to the North (Sue,
1998; Sue and Tricart, 2003a). The slight differences with respect to the directions observed further north are
interpreted as related to the general curvature of the belt. The NW-SE oriented faults mainly accommodate dextral
deformations along the curvature of the arc while N-S faults accommodate extension parallel to the main axis of the
chain. Multiple evidences of obliqgue movements on the fault planes reveal that the fault network has been
reactivated several times during the Neogene to accommaodate switches between extensional and strike-slip regimes,
both of them keeping the same overall 63 axis’ strike (N100°E).

The strike-slip tensors show a remarkably constant N-S direction of the principal stress axis 61 which is
consistent with the regional direction of compression resulting from the Europe-Apulia convergence and the
counterclockwise rotation of Apulia-Adria. The latter clearly controls the overall right-lateral shear between the
internal and external zones and account for the local N-S direction of compression (e.g. Calais et al. 2002). It is also
clearly related to the compressional and strike-slip structures observed in the Mesozoic and Cenozoic cover of the
External domain south of the studied area (Giannerini et al. 2011; Gigot et al. 1974; Laurent et al. 2000; Gidon,
2000).

Extensional indicators previously described further north in the High Durance (Sue and Tricart, 2002; Sue



and Tricart, 2003a) and up to the Aosta Valley (Champagnac et al. 2004; Champagnac et al. 2006; Sue et al. 1999)
are confirmed in the internal zones of the SW Western Alps. Our study also links the extension in the internal zone
to the extension observed in the North-Western part of the Argentera massif (Sanchez et al. 2010; Bauve et al.
2014). Our study reveals a clear southward continuity of extensional deformation but highlights an increasing
importance of dextral strike-slip deformation from the east of the Pelvoux to this NW-SE oriented part of the
internal Alpine arc. In addition, contrary to the Pelvoux transect, both dextral slip and extension also affect the inner
fringe of the external zone, in particular the Argentera massif (Sanchez et al. 2010 with references therein).

A major issue in constraining the paleostress-axis in time comes from the inherent difficulties in dating
activation of faults within the area. Previous works in the NW-Alps have successfully combined analysis of
paleostress-axis with fault-rock types and thermochronological data (Malusa et al. 2009; Bertrand et al, 2015). We
attempted to sample and extract apatites but the nature of rocks constituting the terrain of the study area did not
prove suitable for thermochronological analysis (Beucher et al., 2009). They are mainly constituted by carbonates
and very marly series derived from the oceanic domains metamorphosed into marble or calcshists (the so-called
Shistes Lustrés). No-direct evidences allow for a precise chronology of deformations and more work is needed to
constrain the Neogene history of the Southwestern Alps. However, the structural analysis of the outcrops, the
orientation of the principal stresses of the tensors which generally deviate from ‘Andersonian’ positions and the
contradictory chronologies across the studied area suggest that the transition between strike-slip and extensional
deformation is progressive, with potential switching between these two end-members. This lead us to question the
validity of discussing the Neogene evolution of the SW Alps in terms of phases and to consider, as already proposed
further south by (Bauve et al. 2014), that strike-slip and extensional deformations are contemporaneous and
potentially related to the interaction of a single tectonic regime with the local structures. This remains compatible
with the evolving state of stress proposed further north by (Sue et al. 1999; Sue and Tricart, 2002; Sue and Tricart,
2003a), which highlighted radial (i.e. multi-trend) extension affecting the internal metamorphic zones east of the
Pelvoux massif and subsequent transcurrent deformation. Indeed, in the overall Southwestern part of the Alpine arc,
we established the preponderance of orogen-parallel extension (mean strike for the 63 axes of N101°E) (Figure 10),
with respect to the mix between orogen-perpendicular and parallel extension recognized to the North (Sue and

Tricart, 2003b), with mean 63 axes N160°E (CS-North, Figure 10) and N115°E (CS-South, Figure 10) from North to



South for the orogen-parallel component, and N84°E for the orogen-perpendicular one (Figure 10) (see also
Champagnac et al. 2006). This orogen-parallel component remains surprisingly stable all along the SW branch of
the Alpine inner arc. Moreover, we found a very similar tectonic pattern as the one established to the Southeast by
Bauve et al. (2014), whose data show a N95°E mean 63 strike (VB, Figure 10). Regarding the paleostress field
published by Bauve et al. (2014) and our own results, it seems that the importance of extensional tectonics increases
from west to east with respect to transcurrent tectonics, along a transect cutting through the north of the Argentera
crystalline massif, from its external cover to the internal zones (Figure 10).

The statistical distribution of our ¢ stress ratios displays a primary signal with low ¢-ratio (<0.25), for a
majority of the extensional tensors and a significant number of the strike-slip tensors, which implies close
magnitudes of the 62 and 63 axes. This may explain the local variations of the 63 axes observed on the map (Ritz,
1992). However, the stability of the 61 and the 63 direction shows that the transitions between dominant extensional
and strike slip regimes require a permutation of the principal stress axes 61 and 62 around a constant 3.

The last and still active radial extensional regime affecting the Western Alps has been recognized for over a

decade both through seismotectonic and palaeostress analyses (Baroux et al. 2001; Champagnac et al. 2003;

Champagnac et al. 2004; Delacou et al. 2004; Eva et al. 1998; Selverstone, 2005; Sue et al. 2007; Sue et al. 1999;
Sue and Tricart, 1999; Sue and Tricart, 2002). The area undergoing current extension corresponds in map to the high
chain and to the thickest crust in the Alps (high elevation and deep Moho) (Sue et al. 2007; Larroque et al. 2009).

This still active extension is also linked to the current rapid uplift of the Western Alps and related exhumation, and

has been proposed to be due to gravitational potential adjustments within the West-alpine crustal and/or lithospheric
root (Sue et al. 2007; Champagnac et al. 2007; Vernant et al. 2013; Serpelloni et al. 2013; Fox et al. 2015; Baran et
al. 2014; Schlunegger and Kissling, 2015; Zhao et al. 2015; Chéry et al. 2016; Nocquet et al. 2016).

In an attempt to explain the prior Neogene orogen-parallel extensional pattern in the internal Western Alps,
several studies (Sue et al. 2007; Champagnac et al. 2006) have proposed that the opening of the Ligurian Sea during
Miocene times would act as a free boundary and would have allowed the extension to the Southeast, coeval with an

ongoing plate indentation. However, the timing between the onset of extension in the Alps together with the opening
of the Ligurian Sea and the formation of the arcuate geometry remains poorly constrained. It is, however, likely that

the orogeny in the Apennines (25-0 Ma) and the 50° counterclockwise rotation of the Corsica-Sardinia block and the



Ligurian Alps (Maffione et al., 2008) have further accentuated the arc of the Western Alps at its southern tip
(Schmid et al., 2016). A recent study of the seismic anisotropy within the upper-mantle revealed that the NW-SE
direction which underlines the arcuate shape of the belt and characterizes the southern part of the Western Alps is

also observed within the mantle (Barruol et al. 2004; Qorbani et al. 2015). This implies a coupling between the

upper-crust and the upper-mantle but also suggests that the internal structure of the belt may be controlled by the
mantle flow underneath the southern part of the Alps. Indeed, such a scheme with orogen-parallel normal faulting
developed in the core of an active collision belt has been described in other geodynamic contexts, such as in
Himalaya (Seeber and Pécher, 1998), and could be a systematic response of the upper crust in internal zones of a
collision chain.

In our tectonic scheme, it appears that the arcuate shape of the belt strongly controls the direction of
extension. As similar deformations also affects the inner fringe of the external zone, we propose a partial coupling
between the external and internal arcs. The extensional deformation quickly fades out as we go further south and
west into the External zone where the deformations are mainly compressional or transcurrent. This tends to confirm
that the extension rises up from processes internal to the chain. Indeed, the southern branch of the alpine arc has a
unique situation in the Alps as it shows interferences between local gravity-driven extensional pattern likely related
to internal re-equilibration of the belt with a more regional and older stress field induced by the indentation and
rotation of the Apulia-Adria plate. The kinematics of Apulia-Adria may well have played a fundamental role more
regionally in determining the late stage brittle deformation at the junction between the Western Alps and the
Northern Apennine (Molli et al., 2010). Other major geodynamic events such as the opening of the Liguro-
Provencal basin and the northern Apennines arc development are also related to the final bending and tightening of
the Western Alps arc (Schmid et al. 2016). We suggest integrating all those geodynamic components into a detailed
analysis of the regional stress field evolution during the Neogene in order to better understand the complexity of the

area.

*+  CONCLUSIONS

Structural analysis of late brittle faulting together with palaeostress determinations from inversion of

fault/striae kinematics reveal a complex pattern of deformation in the internal south-Western Alps, behind the



Argentera massif, involving extensional and strike-slip deformations. The extension previously described in the
internal zones at the east of the Pelvoux massif is confirmed further south but is there strongly combined with

westward increasing influence of strike-slip deformation. We propose that those two regimes of deformation are
contemporaneous and highlight interferences between extension parallel to the strike of the belt and probably related
to the indentation itself, and strike-slip strain field essentially driven by the counterclockwise rotation of the Apulia-
Adria plate. We point out the importance of the curved geometry of the belt as the main factor that constrains the
direction of extension and the coupling relationship between the internal and external zones. The South-Western
Alps have a unique tectonic architecture and location with respect to rotation of the Apulia-Adria plate which leads
to the deformation history documented in this work. They represent a transitional zone between extension in the

inner chain and strike-slip/contraction in the outer parts.
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FIGURES CAPTIONS

Figure 1. Simplified tectonic map of the Western Alps outlying the Neogene kinematics. AA — Aar; MB —Mont
Blanc; BL — Belledonne; Px — Pelvoux; AR — Argentera; SFZ - Simplon Fault Zone ; CPF — Crustal Penninic Front.

Adapted from (Collombet et al., 2002; Champagnac et al., 2007)

Figure 2. Simplified geological map of the studied area with the main Alpine tectonic zones and the main supposed-

active faults (after Sanchez et al., 2010). CPF: Crustal Penninic Front (Sue and Tricart, 2003b); PFT: Penninic
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Frontal Thrust; Jz: Jausiers fault; SF: Serenne fault; Bz: Bersézio. Red bold letters A to D refer to locations of
photographs presented in Figure 4. The yellow and orange stars locate the structural examples presented in Figure 5

and 6 respectively.

Figure 3. Map showing the lineaments identified from analysis of shaded Shuttle Radar Topography Mission Digital
Elevation Model (red lines) and aerial photographs from the Institut Géographique National, France (blue lines with
area zoomed as insert). The lineaments are interpreted to be faults based on morphotectonic evidences. The green
dots locate the measurement sites used to compute the palaeostress tensors analysed in this study. The rose-diagrams
illustrate the statistical lineaments directions. CPF: Crustal Penninic Front (Sue and Tricart, 2003b); Bz: Bersézio

fault.

Figure 4. Morphological expression of faulting systems: A, B: Examples of brittle strike-slip structures observed
along the NW-SE lineaments parallel to the Bersezio fault (from (Huet, 2009) with permission); C, D: Examples of

brittle extensional structures trending N-S or N. See Figure 2 for locations.

Figure 5. Mount Arpet site showing an example of two-stages of faulting; extensional deformation followed by
strike-slip deformation (See Figure 2 for location). Top: conjugate normal faults indicate extensional movements
related to an early tectonic stage. Fault/striae pairs measurements along the outcrop lead to an extensional tensor
solution, shown with the histogram of misfits. Bottom: Near-horizontal slickenlines highlight a second tectonic stage

with dominant strike-slip deformation. A second tensor is calculated, which shows a N-S compression axis.

Figure 6. ‘Fouillouse’/‘Col sans nom’ site showing a three-stage evolution along a NW-SE fault (See Figure 2 for
location). (A) General view of the NW-SE trending fault surface with metre-scale tectonic grooves highlighting
oblique strike-slip movement. The stereogram (Wulff projection of the lower hemisphere) shows the measurements

from the fault plane with striae/grooves associated to phases | (black diamonds), 11 (grey diamonds) and Il (white
diamonds). ; (B) Last tectonic movement is confirmed by drag-folds and indicates down-throw to the north-East;

(C) Details illustrating a three stage evolution. Horizontal metre-scale tectonic grooves (l) are overprinted by a

second generation of lower wavelength grooves (1) that moderately plunge towards the SE. Final movement (111) is



locally testified by striae affecting the blocking flank of horizontal grooves; (C) The third movement is confirmed by
drag-folds; Fault orientations and direction of slip are plotted on stereonets (Wulff projection of the lower

hemisphere). Graphical estimations of the pressure (P) and tension (T) axes are also reported.

Figure 7. Strike and dip distributions of faults measured in the studied area. A: Rose diagram of fault strike (by
classes of 10 °) and B: fault dip, with the number of measured planes shown on the radius. C: cumulated percentage

of fault planes as a function of dip.

Figure 8. A: Triangular ‘Frohlich’ diagrams (Frohlich, 1992) illustrating the tectonic regime of the paleostress
tensors calculated from fault-slip data inversion. The vertices of the triangle correspond to the ‘Andersonian
position” with pure strike-slip (vertical 62) in green, pure compression (vertical 63) in red and pure extension
(vertical 1) in blue. Angular distances from the vertices are reported every 10° as thin coloured lines. In blue is the
extensional zone, in red the compressional zone and in green the strike-slip zone. B: Histogram showing the
frequency of paleostress tensors versus their @ ratio (see text). The tensor database displays a wide range of ¢ ratios.
These tensors are separated into two categories: from ¢=0 up to =1 for extensional tensors in blue and from ¢=1
down to @=0 for strike-slip tensors in green. Among extensional tensors, low @ ratios prevail while ¢ values are

more distributed for strike-slip tensors.

Figure 9. A: Statistical distribution of 61 and o3 stress axes directions for the full tensor dataset. The grey colour
indicates tensors for which o1 is close to the vertical (extensional regime) while the red and blue indicate the tensors
for which o2 is close to the vertical (strike-slip regime). The diagrams show a preferential N-S orientation of the o1
axis while the 63 axis appears to be preferentially oriented E-W with some variability between N70° and N120°. B:
Map showing 63 orientations (projected sub-horizontal axis). The colours correspond to those used in figure 8 (blue

is for extension and green for strike-slip). The values of the ¢ ratio are indicated as coloured disks.

Figure 10. Synthetic map of the best regional 63 axes determined from the statistical analysis of the tensor database.
CS: Briancon area between the Pelvoux, Viso and Argentera massifs [Sue and Tricart, 1999; 2002; 2003]. Due to its

internal regional variability the CS dataset has been subdivided into 2 regional stereonets (CS-north and CS-south);



VB: Stress analysis from Bauve et al., 2014; RB all: This study. The thick solid red lines indicate the directions of
o3 for the major orogen-parallel extension signal while the thick solid blue line (CS-north) indicates the direction of

o3 for the minor orogen-perpendicular extension signal. See text for details.
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