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Abstract. Microarray gene expression data can provide insights into bi-
ological processes at a system-wide level and is commonly used for reverse
engineering Gene Regulatory Networks (GRN). Due to the amalgama-
tion of noise from different sources, microarray expression profiles become
inherently noisy leading to significant impact on the GRN reconstruction
process. Microarray replicates (both biological and technical), generated
to increase the reliability of data obtained under noisy conditions, have
limited influence in enhancing the accuracy of reconstruction. There-
fore, instead of the conventional GRN modeling approaches which are
deterministic, stochastic techniques are becoming increasingly necessary
for inferring GRN from noisy microarray data. In this paper, we pro-
pose a new stochastic GRN model by investigating incorporation of var-
ious standard noise measurements in the deterministic S-system model.
Experimental evaluations performed for varying sizes of synthetic net-
work, representing different stochastic processes, demonstrate the effect
of noise on the accuracy of genetic network modeling and the significance
of stochastic modeling for GRN reconstruction. The proposed stochastic
model is subsequently applied to infer the regulations among genes in
two real life networks: i) the well-studied IRMA network, a real-life in-
vivo synthetic network constructed within the Saccharomyces cerevisiae
yeast, and ii) the SOS DNA repair network in Escherichia coli.

Keywords: Stochastic Model, Deterministic Model, S-system.

1 Introduction

Recent advancements in microarray technology have generated a huge amount
of gene expression data allowing analysis of genetic interactions during differ-
ent cellular processes. Although expression profiles are being applied in various
applications, e.g., drug design, its application for reconstruction of Gene Regu-
latory Network (GRN) is still considered as a critical and challenging problem in
systems biology [9]. Although GRN modeling considers gene expression and reg-
ulation as deterministic, a number of experimental substantiations [1,2,38] point
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out the presence of stochastic fluctuations in these processes in both prokary-
otic and eukaroyotic cells. The microarray data shows unpredictable variations,
which are often ascribed to causes that are either biological or technical, or both.
While the biological variations mainly reflect the changes in mRNA levels, the
key reasons for technical variations include sampling, labeling, and hybridiza-
tion [30]. According to Rocke and Durbin [25], the variations can be in the range
20–30% of the original expression value. Hence, it is imperative to account for
this noise for accurate inference of GRNs.

As it is well known, in any biological network, there are two sources of noise,
internal and external, which are also commonly known as intrinsic and extrinsic
noise, respectively [8,10]. The internal noise occurs from the biological reactions
in the system, which is due to small copy number of a few key molecular species.
The noise propagation from biological pathways or environmental fluctuations
leads to external noise. Apart from these two sources of noise, measurement er-
rors are also treated as noise [34]. Signal processing techniques [37], often applied
for analyzing biological systems, are very sensitive to environmental fluctuations
and/or the unpredictable intrinsic noise occurring in certain time periods. During
the modeling, we have considered three different types of noise (in five different
ways) in the proposed Stochastic S-system Modeling. Although, the first and
the simplistic noise, namely the additive noise, have no physical meaning with
respect to GRNs, it essentially mimics the effect of nature’s random processes.
The multiplicative noise, on the other hand, is models the external noise that
gets imposed on GRN. Since noise is widely used to test the concentration of a
gene product, we have evaluated the performance of Stochastic S-system model-
ing with multiplicative noise both in genes’ production and degradation. Finally,
Langevin noise is used to model the internal noise of a network, where this noise
can occur because of small copy number of a few key molecular species. Similar
to testing the proposed stochastic model with multiplicative noise, the model
is also studied with Langevin noise in both production and degradation mode.
After careful observation of the impact of these 5 types of noises, we propose a
new modeling approach having composite noise terms in it, which is capable of
dealing both internal and external noise of a GRN.

The GRN models, based on current state-of-the-art deterministic approaches,
are unable to cater to the inherent stochasticity present in microarray data,
thereby underscoring the need for a suitable stochastic model incorporating the
randomness in the process. Such models have additional term(s) of noise or
probability distribution along with the regular deterministic term. For GRN
modeling, Probabilistic Boolean Network [29] is considered as a common exam-
ple of a discrete stochastic model. Recently, stochastic modeling of GRN was
also carried out using Boolean models [11, 12], Petri nets [14, 15] or other mod-
eling techniques [32,33,36,40]. Further, probabilistic hybrid approaches [13] and
multi-scale hybrid models [16, 24], that include both stochastic and determinis-
tic dynamics, have also been proposed. Recent GRN approaches deal with either
stability of the network or stochastic delayed regulations or both [17, 20, 39].
However, the aforementioned methods, due to using non-differential equation
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models, fail to completely capture the changing behavior of expression profiles.
Hence, ordinary differential equations (ODEs) are essential when continuously
varying quantities and their changing characteristics over time must be captured.
The ODE models show promise in reconstructing GRNs from continuous time-
expression profiles [4–7,18,27]. Recently, stochastic differential equations [32,33]
have been applied for capturing system dynamics. Tian and Burrage [32, 33]
developed a stochastic modeling technique based on the following ordinary dif-
ferential equation describing the dynamics of gene transcript:

dI

dT
= a+ bf(t)−KI (1)

The above stochastic modeling emphasizes the regulations only in production
and fails to capture regulation in the degradation. Using the non-linear S-system
model, we can represent regulations both in the production and degradation
phases. However, the traditional S-system model is deterministic and fails to cope
with noisy microarray data. This paper proposes new stochastic S-system model
and investigates the effect of different types of noise, e.g., additive, multiplicative,
Langevin, in a widely used deterministic S-system model. Both synthetic and real
life networks are considered.

The reminder of this paper is organized as follows: Section 2 highlights the
proposed stochastic S-system models along with the modified numerical inte-
gration. In Section 3, the performance of the proposed model is evaluated using
various synthetic and real networks. Section 4 concludes the paper.

2 Stochastic Modeling of Gene Regulatory Network

2.1 The Model

GRN modeling is considered as a non-linear identification problem with the
presence of numerous interacting genes in the network [3,19]. A promising non-
linear model, the S-system model [27] is capable of capturing the dynamics of
various complex regulations. While the S-system is able to represent both the
production and the degradation phases, it is still a deterministic model and
unable to capture the stochasticity of a real GRN. In this paper, we propose
a novel stochastic S-system model capable of realistically modeling the noisy
variations observed in measured time series data.

Before introducing the stochastic S-system model, we briefly discuss the de-
terministic S-system model. The S-system approach, proposed by Savageau [27],
is well-known for modeling biochemical networks and has attracted significant
attention in the past decade [18, 21, 35]. Considering N as the number of genes
in a network, the S-system model can be described by the following equation:

d
dt
Xi = αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j , i = 1 . . . N (2)
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where, Xi is the expression level of the ith gene. Two non-negative parameters αi,
βi are called rate constants and real-valued exponents gij , hij are referred to as
kinetic orders. The typical values of rate constants and kinetic order parameters
range from 0 to 20 and -3.00 to 3.00, respectively. The term αi

∏
X

gij

j models

the process of RNA production, while the term βi

∏
X

hij

j models the process of
RNA degradation. In production, a positive value of gij implies the activation
from Gene-j to Gene-i, while a negative value of gij indicates the inhibition from
Gene-j to Gene-i. On the other hand, in the degradation phase, suppression and
inhibition on Gene-i from Gene-j are indicated with negative and positive values
of hij , respectively. If gij = 0 (hij = 0), it implies that there is no activation
(inhibition) from Gene-j to Gene-i. For the canonical S-system model, as shown
in Eqn. (2), where all N genes are considered at the same time for modeling,
the set of parameters that defines the model is given by θ={α, β, g, h}. Thus,
to infer a GRN of N genes using the S-system model, 2×N(N + 1) parameters
must be estimated. However, Maki et al. [21] proposed the following de-coupled
S-system model by decomposing the canonical system into smaller problems:

d
dt
Xi = αi

N∏
j=1

Y
gij

j − βi

N∏
j=1

Y
hij

j , i = 1 . . . N (3)

For solving Eqn. (3), Yi=j is obtained by numerical integration, whereas Yi!=j

is obtained by pre-calculations directly via observed times-series data. Although
the accuracy may decrease due to direct estimation rather than numerical calcu-
lation, decoupling greatly reduces the computational burden. In the rest of this
paper, we denote this model (Eqn. (3)) as DSS (Deterministic S-system).

We now write the stochastic differential equations with generalized term [28]
in the following equation:

d
dt
Xi = fi(X,u, t) + µg(Xi)ζi(t) (4)

Here, fi represents the deterministic differential equations to model genetic in-
teractions and µg(Xi)ζi(t) represents its stochastic part. The stochastic part
contains three terms: µ represents noise strength, g(Xi) is the contribution
of signal fluctuation, and ζi(t) is Gaussian white noise with zero mean and
unit variance. Tian [31] considered ζ as a Weiner process W (t) with increment
4W (t)=W (t +4) −W (t) ∼ N(0, t) as a Gaussian random variable. We con-
sider Eqn. (2) as the deterministic function for Eqn. (4) and form the generalized
Stochastic S-system Model as follows:

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µg(Xi)ζi(t), i = 1 . . . N (5)
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While considering only the additive noise, the stochastic model, denoted by SSSa,
is as follows

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µζi(t), i = 1 . . . N (6)

where, g(Xi)=1 in Eqn. (4). We note that, integral of a white noise is Brownian
motion that produces Brownian noise. The key reason of selecting the additive
noise (Wiener process) in the new modeling approach is to imitate the effect of
nature’s random processes. However, we also evaluated the stochasticity with
multiplicative noise and Langevin noise, and later, proposed stochastic S-system
model having hybrid noise terms with deterministic S-system equation.

It may be noted that, both the production and degradation processes can
contribute towards noise and g(Xi) can be considered as originating from either
production or degradation, or both. For ease of understanding, we define ρ(Xi)
and %(Xi) as the noise contributions in production and degradation, respectively:

ρ(Xi) = αi

N∏
j=1

X
gij

j

%(Xi) = βi

N∏
j=1

X
hij

j

(7)

The stochastic S-system model with multiplicative noise and Langevin noise in
production, denoted as SSSmT and SSSLT, can be expressed by the following
Eqn. (8) and Eqn. (9), respectively:

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µρ(Xi)ζi(t), i = 1 . . . N (8)

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µ
√
ρ(Xi)ζi(t), i = 1 . . . N (9)

In most of the existing approaches for GRN modeling, stochastic components are
usually additive noise or degradation process. Here, we consider the stochastic S-
system model with transcription process in terms of multiplicative and Langevin
noise:

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µ%(Xi)ζi(t), i = 1 . . . N (10)

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

 + µ
√
%(Xi)ζi(t), i = 1 . . . N (11)
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We denote the above two models as SSSmD and SSSmT+LD, respectively. The
aforementioned five stochastic S-system equations incorporate the noise either
from production or from degradation or none. Similar to Tian [30], we also
consider the stochastic S-system model with multiple (two) noise terms, denoted
SSSmT+LD, according to the following equation:

d
dt
Xi =

αi

N∏
j=1

X
gij

j − βi

N∏
j=1

X
hij

j

+µ1%(Xi)ζi(t)+µ2

√
ρ(Xi)ζi(t), i = 1 . . . N

(12)
The above equation takes account of noise from both production and degra-
dation. However, the choice of multiplicative noise in production and Langevin
noise in degradation is based on the empirical experimental observation that we
performed on various GRNs.

2.2 Numerical Integration with Stochastic S-system Model

Due to the additional stochastic term in the model equations (Eqns. (6), (8)-
(11)), the stochastic S-system (SSS) model defined in the previous section re-
quires additional parameters to be inferred compared to the traditional S-system
model due to the additional stochastic term in the model equations. In order to
understand the enhancements necessary for numerical integration for the SSS
model, let us first consider the generalized equation of the SSS (Eqn. (4)). Al-
though Eqn. (4) can be solved by numerical integration using any standard tech-
niques, such as Runge-Kutta fourth order equation (RK4), it requires multiple
Gaussian white noise to be generated for single t. To illustrate, let us consider the
four component equations of standard RK4 to calculate numerical integration
at the tth time:

k1 = f(t,X)

k2 = f(t+ h
2 , X + h

2k1)

k3 = f(t+ h
2 , X + h

2k2)
k4 = f(t+ h,X + hk3)

(13)

where h > 0 is the step size. We observe that, evaluation of the function f(t,X)
is required at three different internal time-stamps (i.e., t, (t + h

2 ), and (t + h))
between two consecutive t values (i.e., tn and tn+1). Since, tn+1 = tn + h, we
can safely assume two different internal time-stamps, i.e., t and t + h

2 , other
than the final t (i.e., tT ). Hence, the numerical integration requires two different
noise values for each t. However, since a typical h value is extremely small, our
proposed model can safely assume that the noise at t and t+ h

2 are the same. To
keep the simulation simple, we also consider, in a particular time-stamp t, the
same noise value will have an effect on the concentrations of all N genes.

Although noise affects on certain time-samples, the genes’ concentration in
the subsequent time-stamps will continue to carry forward the effect of noise af-
fected concentrations. Rather than considering the occurrences of random noise,
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we assume that the noise appears in a particular window frame of single dimen-
sion [ts, te] with t0 ≤ ts ≤ te ≤ tT , where ts and te, respectively represent the
start and end time-stamp of the noise window, while t0 and tT represent the
start and end time-stamp of the microarray. The situation, for a single time-
series data, is shown in Figure 1. Since, the biological noise can appear only in
certain samples, we assume that (te − ts) ≤ maxt, where maxt is the maximum
size of the window.

Fig. 1. Noisy Microarray

However, any meaningful conclusion about complex dynamics cannot be de-
rived using a single set of time-course data; multiple time-course data set are
often considered. Hence, for K different data sets, we consider K different single
dimensional window frames for noise to appear. Thus, we define the following
noise matrix:

NS =


NS1,ts

NS1,ts+1 · · · NS1,te

NS2,ts
NS2,ts+1 · · · NS2,te

...
...

. . .
...

NSK,ts
NSK,ts+1 · · · NSK,te

 (14)

where NSp,q is Gaussian white noise with zero mean and unit variance at the
qth time-stamp in the pth data set.

2.3 Inference Mechanism

In order to evaluate the performance of the proposed Stochastic S-system model,
we have used our previously developed optimization technique REGARD (Re-
verse Engineering GRN with Adaptive Regulatory-genes-cardinality) [5]. Both
the stochastic and deterministic S-system models are tested with this REGARD
algorithm. REGARD was developed in [5] based on Trigonometric Differential
Evolution algorithm incorporating various sub-modules for appropriate inference
of the GRNs. It starts with an improved initialization algorithm that includes the
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knowledge of cardinality in the initial seeds. After that, evolution is performed
with trigonometric mutation and cross-over operations. During the evolution, our
proposed cardinality-based fitness criteria is invoked along with the Adaptive-
regulatory-Genes Cardinality (ARGC) algorithm that adapts the cardinality val-
ues based on a probabilistic criteria. We also used a local-search search technique
that fine-tunes best 10% solutions in every iteration. When maximum number of
iterations are completed, the candidate solutions go through our proposed multi-
stage refinement algorithm that further fine-tunes the candidate solutions and
finds single candidate solution. The steps of the REGARD algorithm is shown
in Fig. 2.

 

M
u

lt
is

ta
g

e
 R

e
fi

n
e

m
e

n
t 

 

Initialize population 
with Improved_PI 

Set Ii=MaxI, Ji=0, G=0 

Perform Mutation, 
Crossover and Selection 
using TDE, and select fit 

individuals for next 
generation 

Apply Hill Climbing Local 
Search (HCLS) over best 

10% individuals 

G%L 
=0? 

Update Ii and 
Ji using 
 ARGC 

algorithm 

Stage 1: Apply Refinement 
Algorithm (RA) 

Stage 2: Apply RA again by 
taking the input from Stage 1 

Report individual with lowest 
fitness value as candidate 

solution 

G=G+1 

Yes 

G= 
MaxGen  

or terminal 
condition 

met? 

No 

Yes 

Phase 1 Phase 2 

No 

Fig. 2. Flow-chart of our previously proposed optimization algorithm ‘Reverse En-
gineering GRN with Adaptive-regulatory-Genes Cardinality (REGARD)’ (L in the
flow-chart denotes the update interval for Ii/Ji with ARGC algorithm)
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3 Experimental Results and Discussions

The evaluation of various stochastic S-system models proposed has been per-
formed on GRNs of different sizes: both synthetic and real-life networks. For
synthetic networks, we have considered 2 network sizes and for real life net-
works we again consider two networks: IRMA network in yeast and SOS DNA
repair network in E. coli. First, we generate expression profiles using the newly
proposed stochastic S-system model for the well-studied 5-gene and 20-gene net-
works [18, 22]. Then, the two synthetic networks and two other real-life GRNs
are inferred with the proposed SSS model.

For our experiments, we consider a 5-gene synthetic network, first used by
Kikuchi et al. [18] and commonly employed for many S-system model based
reverse engineering of GRNs. The schematic diagram is shown in Figure 3(a).
Based on the network Figure 3(a), Kikuchi et al. designed a GRN with 13 reg-
ulations, shown in Figure 3(b), with the corresponding S-system parameters of
Table 1. According to Kikuchi et al. [18], this is a typical regulatory system
with gene interaction centering on two genes (genes 1 and 4). X1 is the mRNA
produced from gene 1, X2 is an enzyme protein gene 2 produces, and X3 is an
inducer protein catalyzed by X2. X4 is an mRNA produced from gene 4 and X5

is a regulator protein produced by gene 5. Positive feedback from the inducer
protein X3 and negative feedback from the regulator protein X5 are assumed in
the mRNA production processes of genes 1 and 4. This model has been developed
to analyze the interaction of regulator and effector genes.

 

 

pool4
 + - 

X4(mRNA) pool1 
+ - 

X1(mRNA) 

pool5
 + 

X5(Regulation Protein) pool2
 + X2(Enzyme) 

- - 
pool3

 X3 

Inducer Protein 

(a)

5

43

2

1

(b)

Fig. 3. (a) A GRN of 5 genes (b) Corresponding graphical representation of the GRN,
(Black and grey colored regulations represent interactions in production phase and
degradation phase, respectively, arrow and block ended regulations represent activation
and supression, respectively)

From the S-system parameters of the network (Table 1), we generated 10
datasets from 10 random initial conditions using deterministic S-system model
(i.e., DSS or Eqn. (2)) and proposed Stochastic S-system models (SSS) of various
types of noises (Eqns. (6), (8)-(12)). In addition, we have analyzed the effect of
noise terms in the expression profiles for different levels of noise strengths (i.e.,
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Table 1. S-system parameters for 5-gene synthetic network

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

1 5.00 0.00 0.00 1.00 0.00 -1.00 10.00 2.00 0.00 0.00 0.00 0.00
2 10.00 2.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00 0.00 0.00 0.00
3 10.00 0.00 -1.00 0.00 0.00 0.00 10.00 0.00 -1.00 2.00 0.00 0.00
4 8.00 0.00 0.00 2.00 0.00 -1.00 10.00 0.00 0.00 0.00 2.00 0.00
5 10.00 0.00 0.00 0.00 2.00 0.00 10.00 0.00 0.00 0.00 0.00 2.00

µ=10, 15, 20). The expression profiles for a randomly selected gene (Gene-1) of
single data set for all three noise strength values are shown in Figure 4. While
analyzing the effect of various noises, we observe that effects of additive noise
in the expression profiles are very small for any noise strength. On the other
hand, an abrupt effect in expression profiles is observed for multiplicative noise
in degradation, while significant regular changes are observed for the Langevin
noise in production. The remaining noise types cause irregular changes in the
expression profiles. Furthermore, we note that their expression profiles exhibit
little or no variation and remain close to the original values for µ = 10, whereas
massive fluctuations are noted for µ = 20. Thus, the parameter for noise strength
is set to 15 (i.e., µ = 15) in all the experiments.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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Fig. 4. Expression profiles of Gene-1 for different noise strenght values (a) µ=10, (b)
µ=15, (c) µ=20
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For inferring a network from microarray time-series data, our previously pro-
posed REGARD (Reverse Engineering GRN with Adaptive Regulatory Genes’
Cardinality) method [5] is used for learning the parameters of the stochastic
model, i.e., SSS. The start and end point of noise window is implemented from
3rd till 6th time-stamp for all experiments. The noise matrix is initialized prior
to the inference using zero mean unit variance Gaussian white noise.

3.1 5-Gene Synthetic Network

As mentioned earlier, for the 5-gene network, we used the expression profiles
generated using the proposed stochastic S-system model with multiplicative noise
in production (Eqn. (10)). However, for validation all the proposed stochastic
models are applied separately to the data. The sensitivity-specificity plots are
shown in Figure 5(a) in terms of ROC plots. Since the data is generated with
SSSmT model, inference with SSSmT model exhibits the best performance among
all models, other than SSSmT+LD. The proposed stochastic model SSSmT+LD is
also robust and able to cope with the data generated with a different model (i.e.,
SSSmT). Further, we observe that the precision and F-score for SSSmT+LD and
SSSmT are best among all SSS models. Figure 6 shows the plot of absolute error
between two rate constant values (i.e., α and β) calculated using the equation
|RcT,i−RcI,i|, where RcT,i/ RcI,i indicate the ith rate constant in target network
and inferred network, respectively. Furthermore, average error is calculated as
follows:

AE =
1

|Params|

|Params|∑
i=1

|dT,i − dI,i| (15)

Here, dT,i/ dI,i are the ith parameter values for Target/ Inferred network, |Params|
indicates the total number of parameter of a particular category. For example,
while calculating the average error for rate constant values, |Params| = 2×N ,
for kinetic orders values |Params| = 2×N ×N , and |Params| = 2×N(N + 1)
while all S-system parameters are considered. A comparison of errors for in-
ferring model parameters between deterministic S-system model and proposed
SSSmT+LD, shown in Figure 6, clearly indicates the superiority of the proposed
stochastic modeling over the deterministic models.

Finally, the error between inferred and target expression profile in Figure
7 shows that the magnitude of the error bars to be very small indicating near-
overlap of the two expression profiles. The performance of the proposed SSSmT+LD

is on a par with the SSSmT model while inferring the 5-gene network and robust
enough to withstand the presence of noise in the expression profiles generated
by SSSmT model.

3.2 20-gene Network

The effectiveness of the proposed stochastic model is further evaluated with a
20-gene synthetic network. This 20-gene network, shown in Figure 8, is a as
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Fig. 7. Error at various time-stamps

medium-scale network and has been frequently used to test model performance
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[5,7,22]. For this network, we again generate 10 data sets from 10 different initial
conditions using SSSmT (Eqn. (10)). The evaluation of SSSmT+LD for inferring
the 20-gene network, using the existing REGARD [5], is shown in Table 2, and
indicates that the proposed method with SSSmT+LD is successful in inferring
more regulations and non-regulations than the deterministic S-system model.
The absolute errors with target expression profiles for proposed and existing
methods are shown in Figure 9 for three randomly selected genes. We observe
that, although the errors for the proposed SSSmT+LD are a little higher in the
early stages of introducing noise at t3, the errors for the proposed method are
much smaller compared with the traditional model in the later time-stamp. This
indicates that SSSmT+LD has the ability to rapidly adjust with the noise during
the optimization process.

19
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6 74 8
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13
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1514
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9

Fig. 8. 20-gene network adapted from Noman and Iba [22]. Arrow and block ended
arcs represent activation and suppression, respectively. Black and grey colored arcs
indicate instantaneous activation/supression in production and degradation phases,
respectively.

Table 2. Evaluation of SSSmT+LD for inferring 20-gene network

Method Sn Sp Pr F − score
SSSmT+LD 0.53 0.94 0.39 0.45

DSS 0.29 0.95 0.47 0.36
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Fig. 9. Error at different time-stamps for three randomly selected genes

3.3 IRMA Network in Yeast

The proposed stochastic S-system model is next applied to a real-life biologi-
cal data of Saccharomyces cerevisiae (yeast) called IRMA [3]. This is a 5-gene
network with the genes CBF1, GAL4, SWI5, GAL80, ASH1, regulating each
other. Cantone et al. [3] provided two sets of gene expression profiles, namely
Switch ON and Switch OFF data having 16 and 21 time series data points, re-
spectively. The ON dataset corresponds to the shifting of the growth medium
from glucose to galactose, while the OFF data set corresponds to shifting from
galactose to glucose. In addition to the true 8 regulations, we also consider N
(=5) self-regulations as true positives [5, 6]. Figure 10 shows the ratget IRMA
network [3] and also the networks inferred by the proposed SSSmT+LD and cur-
rent deterministic S-system model. Although the true network is not inferred
by the the proposed method, the number of inferred true regulations and non-
regulations are more than the existing model [5]. Further, the errors for the
proposed method are found to be generally lower than the existing methods, as
shown in Figure 11 and Figure 12.

3.4 SOS DNA repair network in Escherichia coli

Next, we consider the well-studied SOS DNA repair network within Escherichia
coli (E. coli). While the entire DNA repair system of E.coli involves more than
100 genes [23], only 30 of its genes contribute towards key regulations at the
transcription level. We use the expression data set from Ronen et al. [26], which
contains information about 8 genes, namely uvrD, lexA, umuD, recA, uvrA, uvrY,
ruvA, and polB. The data sets are obtained from four different experiments under
various UV light conditions, with the gene expression levels being measured at
50 instants evenly spaced at 6-minute interval. Following [22], we normalize the
input data by dividing the expression profile of each gene by its maximum value.

We calculate the four performance metrics, i.e., sensitivity, specificity, pre-
cision and F-score, according to i) the functional description of each gene in
the original paper [26] and ii) the novel regulations inferred by Perrin et al. [23].
Based on the two above criteria, we reconstruct the target network for SOS DNA
repair network as shown in Escherichia coli in Figure 13. The evaluation of the
proposed SSSmT+LD and existing deterministic S-system modeling approach is
shown in Table 3. We observe that in all the four performance metrics, the
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Fig. 10. IRMA network (a) Target (b) Inferred with proposed SSSmT+LD from ON data
set(c) Inferred with DSS from ON data set (d) Inferred with proposed SSSmT+LD from
OFF data set(c) Inferred with DSS from OFF data set. Arrow ended black lines and
block ended grey lines indicate instantaneous activation and suppression, respectively

proposed SSSmT+LD outperformed the existing method. Since, the expression
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Fig. 11. Error at different time-stamps in IRMA ON dataset
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Fig. 12. Error at different time-stamps in IRMA OFF dataset

data contains noise, the experimental result is the successful application of the
stochastic modeling approach over the deterministic model.

We also show the absolute error in all the time-stamps with all the eight
genes for a single data set in Figure 14. The bar graph indicates that, despite
slightly higher errors in the early stages of the expression profiles, the magnitude
of errors reduces and are near-zero in the subsequent time-stamps. This error
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Table 3. Evaluation of SSSmT+LD for inferring E. coli network

Method Sn Sp Pr F − score
SSSmT+LD 0.40 0.95 0.62 0.43

DSS 0.25 0.93 0.50 0.33

bars shows the ability of the proposed stochastic S-system model to adapt for
inferring real-life gene regulatory network.
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Fig. 14. Error at different time-stamps in SOS dataset

4 Conclusion

Noise is an inherent characteristics of all biological networks. S-system modeling
is specially tailored to model biological process. While there have been efforts
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to incorporate stochastic terms in GRN models, the S-System model in its cur-
rent form is unable to include stochasticity. In this paper, we have developed a
stochastic S-system modeling approach to cope with the inherent noise present
in the microarray data. In order to identify the most suitable stochastic model,
we have tested the performance of the stochastic S-system (SSS) model with
various types of noise including hybrid noise factors. Experimental results show
that the proposed SSS is effective in reconstructing the expressions profiles as
well as inferring higher number of regulations than deterministic modeling. Cur-
rently, studies are being performed to extend and evaluate the technique to large
scale real-life GRNs.
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