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Abstract   Integrated Assessment Models (IAMs) are an important tool to compare the costs and 

benefits of different climate policies. Recently, attention has been given to the effect of different 

discounting methods and damage estimates on the results of IAMs. One aspect to which little 

attention has been paid is how the representation of the climate system may affect the 

estimated benefits of mitigation action. In that respect, we analyse several well-known IAMs, 

including the newest versions of FUND, DICE and PAGE. Given the role of IAMs in integrating 

information from different disciplines, they should ideally represent both best estimates and the 

ranges of anticipated climate system and carbon cycle behaviour (as e.g. synthesised in the IPCC 

Assessment reports). We show that in the longer term, beyond 2100, most IAM 

parameterisations of the carbon cycle imply lower CO2 concentrations compared to a model that 

captures IPCC AR4 knowledge more closely, e.g. the carbon-cycle climate model MAGICC6. With 

regard to the climate component, some IAMs lead to much lower benefits of mitigation than 

MAGICC6. The most important reason for the underestimation of the benefits of mitigation is the 

failure in capturing climate dynamics correctly, which implies this could be a potential 

development area to focus on.  

 

Keywords: Integrated Assessment Models, Climate change, Carbon cycle, Climate model, 

Mitigation, Uncertainty 

mailto:Andries.hof@pbl.nl


2 

1. Introduction 

Integrated Assessment Models (IAMs) describe many of the complex relations between 

environmental, social and economic systems that determine future climate change and 

the effectiveness of climate policy. They are increasingly used to compare the costs and 

benefits of alternative mitigation proposals, and also the balance between emission 

reductions to avoid climate change and adaptive responses to cope with its 

consequences (see e.g. Harremoës and Turner 2001; Hope 2005; Nordhaus 2010; 

Weyant et al. 1996). To explicitly represent all of the known and quantifiable processes 

that contribute to the future state of the climate and associated impacts would be an 

immense challenge, so IAMs typically use relatively simple equations or sets of 

equations to simulate the behaviour of the socio-economic and environmental systems. 

In many IAMs, the carbon cycle and climate components, for instance, consist of only a 

few equations (Goodess et al. 2003). Van Vuuren et al. (2011) and Warren et al. (2010) 

have shown that the different representations of carbon cycle and climate response 

within IAMs can lead to large differences in the climate outcomes of these models.  

This paper builds on this work by focusing on the consequences of the representation of 

the carbon cycle and climate system in IAMs for their evaluation of the benefits of 

climate policy. It is not our aim to explain in detail the differences in climate outcomes 

(since this was done by van Vuuren et al. (2011) and Warren et al. (2010)), but to show 

the consequences of these differences for the cost-benefit applications of IAMs. Earlier, 

Schultz and Kasting (1997) have focused on the implications of the carbon cycle 

representation of one IAM (the 1994 model version of DICE; a model that has now been 

updated) for optimal emission reductions. This study, instead, looks at several IAMs and 

the implications of the differences in both the climate and carbon cycle components 

across the models. For comparison, we also look at other critical assumptions that 

determine the outcome of cost-benefit analyses such as baseline assumptions, 

discounting and damage function (Hof et al. 2008; Hope 2006b; Mastrandrea and 

Schneider 2004; Tol 2008).   

The approach we have taken in this paper is to evaluate the sensitivity of the benefits of 

mitigation in a range of well-known economic IAMs to climate and carbon cycle 

assumptions. The benefits of mitigation (the difference between damage costs between 

a baseline scenario and a low emission trajectory) are a major factor for determining the 

preferred mitigation strategy. In our assessment, we only look at economic IAMs (and 

not on more complex process-based IAMs) because the latter generally do not estimate 

the benefits of mitigation in monetary terms.  

It is not our aim to exactly explore the boundaries of uncertainty or rigorously define the 

shape of the probability distribution of outcomes. Instead we want to elucidate the 

degree to which the different outcomes of economic IAMs are determined by the way 

they represent the carbon cycle and climate system. The IAMs included in this study are 
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PAGE-2002 (Hope 2006a), PAGE09, DICE-2007 (Nordhaus 2008)1, DICE-20092, FUND 2.8 

(Tol 2006), FUND 3.3 (Anthoff and Tol 2009)3and MERGE 5.1 (Manne and Richels 2006).  

As the purpose of IAMs is to integrate existing information in different fields, one may 

argue that IAMs should focus on best-guess values for the carbon cycle and climate 

system and/or to represent the uncertainty ranges reported by assessments that 

synthesise the full spectrum of the relevant literature, specifically the IPCC Assessment 

Reports. In order to obtain a reasonable indication of both best guess values and such 

uncertainty ranges, we use the MAGICC6 climate model (Meinshausen et al. 2011a; 

Meinshausen et al. 2011b), which is specifically calibrated towards IPCC AR4 results in 

terms of radiative forcing efficiencies, climate and carbon cycle responses. While 

MAGICC is still a simple model in comparison to high-complexity general circulation 

models (GCMs) or coupled dynamic vegetation land and ocean carbon cycle models, for 

the variables of interest for this study, Meinshausen et al. (2011a; 2011b) have shown 

that MAGICC6 can successfully emulate the current generation of GCMs (Meehl et al. 

2005) as well as carbon cycle models that took part in the C4MIP intercomparison 

(Friedlingstein et al. 2006). Here, we use a joint distribution of MAGICC6’s radiative 

forcing and climate response parameters that has been constrained by comparison with 

historical observations, i.e. the “illustrative default” case described in Meinshausen et al. 

(2009).  

This paper is organised as follows. In the next section we describe the methodology, and 

give an overview of how the carbon cycle and climate response are modelled in the 

IAMs that are analysed in this study. In Section 3, we present the results and Section 4 

draws conclusions.  

2. Method 

IAMs simulate the chain of processes that begins with a description of human activities 

that give rise to greenhouse gas emissions. These emissions lead to an increase in 

greenhouse gas concentrations in the atmosphere. In IAMs, this is calculated by some 

representation of the carbon cycle and by additional (usually simple) chemistry 

parameterisations for atmospheric abundances of other non-CO2 gases and aerosol pre-

cursors. The changes in greenhouse gas and aerosol concentrations, in turn, lead to a 

radiative forcing. The climate component of the IAMs calculates the effect on near 

surface temperature, and in some cases sea level rise. All IAMs analysed in this paper 

include a module to calculate the costs of reducing greenhouse gas emissions compared 

to the baseline and a module to calculate the monetary damages of climate change. In 

order to compare the costs and benefits of mitigation over time, a discount factor is  

                                                           

1
 Available at http://nordhaus.econ.yale.edu/ 

2
 Available at http://nordhaus.econ.yale.edu/. Note that the DICE-2009 model is a beta-version. 

3
 Both FUND 2.8 and FUND 3.3 are available at http://www.mi.uni-

hamburg.de/FUND.5679.0.html  

http://nordhaus.econ.yale.edu/
http://nordhaus.econ.yale.edu/
http://www.mi.uni-hamburg.de/FUND.5679.0.html
http://www.mi.uni-hamburg.de/FUND.5679.0.html
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 Carbon cycle equilibrium temperature 
response (°C) 

transient 
temperature 
response 

DICE-
2007 

Three-reservoir model 
(atmosphere, upper oceans 
and biosphere, deep oceans), 
calibrated to match carbon 
cycle in MAGICC 4.1 

3.0 Function of RF 
with lag effect and 
heat loss from 
atmosphere to 
oceans 

DICE-
2009 

As in DICE-2007, but re-
calibrated according to 
MAGICC 5.3 and EMICs, 
leading to higher 
concentrations  

3.0 As in DICE-2007, 
but slower 
response 
according to AR4 
results 

FUND 2.8 Impulse-response function 
based on 2x CO2 pulse (Maier-
Reimer and Hasselmann, 1987) 

2.5 Follows 
equilibrium 
temperature with 
a delay 
parameter

1
 of 50 

FUND 3.3 As in FUND 2.8 gamma distribution (8.127, 
0.3508), leading to mode 2.5 
and mean 2.85 

As in FUND 2.8, 
but with 
triangular  
distribution of 
delay parameter 
(25, 75, 125)  

MERGE 
5.1 

Impulse-response function 
based on 1.25x CO2 pulse 
(Maier-Reimer and 
Hasselmann, 1987) 

2.5 As in FUND 2.8, 
but with delay 
parameter of 26 

PAGE-
2002 

Single impulse-response 
function with ‘natural 
emissions’ term to represent 
carbon cycle feedback 

triangular  
distribution (1.5, 2.5, 5), 
yielding a mean of 3.0 

As in FUND 2.8, 
but with 
triangular  
distribution of 
delay parameter 
(25, 50, 75) 

PAGE09 As in PAGE-2002, but with 
‘CO2 concentration gain’ to 
represent carbon cycle 
feedback 

transient climate response 
with triangular distribution 
(1, 1.3, 2.8) leading to a mean 
of 3.0, a 90% range of 1.8 to 
4.7, a min of 1.3 and a max of 
6.7 

As in PAGE-2002 
but with 
triangular 
distribution of 
delay parameter 
(10, 30, 65) 

MAGICC6 Land and ocean carbon cycle 
including CO2 fertilisation, CO2 
chemistry feedback (ocean) 
and temperature feedbacks, 
calibrated towards aggregated 
carbon pools and fluxes of 
C4MIP high-complexity carbon 
cycle models.  

joint distribution of 
parameters with a marginal 
climate sensitivity 
distribution resembling IPCC 
AR4 estimates (median 3 and 
likely range between 2.0 and 
4.5). See “illustrative default” 
case in Meinshausen et al. 
(2009) 

See Fig. 1 in 
Meinshausen et 
al. (2009) 

1
 A delay parameter of x means that given a sustained change in the level of radiative forcing the 

half life in terms of reaching the new equilibrium is ln(2)/x years.  

Table 1. Main characteristics of the selected IAMs with respect to the carbon cycle and climate 

system modelling (adapted from van Vuuren et al., 2011) 
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used. The discount factor enables representing all future costs and benefits in a single 

number, namely the net present value of these future costs and benefits.   

Earlier, Van Vuuren et al. (2011) described for each model how they have represented 

the carbon cycle and climate system. This is summarised in Table 1, with the new 

versions of DICE, PAGE and FUND added.  

We investigate the marginal effect of different climate and carbon cycle representations 

on the benefits of mitigation by varying parameter values for one specific link in the 

causal change – with everything else being set to the same default values (Figure 1; 

default values are marked). This transparent approach highlights the contribution of 

uncertainty in each individual step – but ignores possible non-linear interactions 

between the steps (e.g. the impact of a slow climate response is different for a high or a 

low discount rate).  

 

- Insert Figure 1 abut here -  

 

As indicated in the introduction, we not only look into the uncertainty introduced by the 

carbon cycle and climate system representation, but for comparison also vary the 

baseline, damage function and discount rate as these factors are known to be important 

for the outcomes of cost-benefit analysis. To simplify the comparison, we do not run the 

original models – but recode a stand-alone version of the climate/carbon cycle parts of 

the models in MyM4 (Beusen et al. 2011); the exceptions being both versions of the 

PAGE IAMs and MAGICC6 climate model, of which the original model codes are run. In 

the case of DICE-2007 and DICE-2009, we have tested the recoded models and found 

they produce results identical to the original models. The equations of the stand-alone 

versions are available online in the Electronic Supplementary Material.  

In the experiments, the linking of the different steps as described above can be 

performed easily in the recoded models. Taking the default case as an example, we can 

easily run the recoded FUND 3.3 carbon cycle model driven with emissions data as input 

into the DICE-2009 climate model. Next, the DICE-2009 damage function can be used to 

estimate the damages of temperature projections over time. Finally, a 2.5% fixed 

discount rate is applied to determine the present value of these damages. In this set-up, 

it is relatively simple to replace any of these default elements for the carbon cycle, 

climate system, damage function and discount rate with an alternative set.  For 

MAGICC6 and PAGE, the same approach is used but using soft-linkages (i.e. exchanging 

data files). 

                                                           

4
 MyM is an integrated environment for the development, visualization and application of 

simulations of dynamic systems. More information can be found on http://www.my-m.eu/  

http://www.my-m.eu/
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2.1 Emission scenarios 

As input into our model runs, we use standardised emission scenarios. We focus on the 

calculated damage costs of a baseline scenario, with no explicit mitigation policy, and of 

an ambitious mitigation scenario. The difference in damages between these scenarios 

gives the benefits of mitigation.5  

In our calculations, the default baseline is the SRES B2 illustrative marker scenario and 

the alternative the SRES A2 illustrative marker scenario (Nakicenovic et al. 2000). The A2 

scenario is comparable to the new RCP8.5 – the highest scenario of a the Representative 

Concentration Pathways (RCP) set, recently developed to allow standardised climate 

model runs as input into IPCC 5th Assessment Report (Moss et al. 2010) . The B2 

scenario, in contrast, lies between the two middle RCPs (RCP4.5 and RCP6).  

The contrasting ambitious mitigation scenario used in this study is an overshoot scenario 

developed by the IMAGE model for the ENSEMBLES project to stabilise radiative forcing 

in the long run at 2.6 W/m2, reaching a 2100 radiative forcing level of 2.9 W/m2 (Johns et 

al. 2011; Lowe et al. 2009). In this scenario, CO2 emissions peak in 2015 at about 9 GtC 

and decline sharply to 0.5 GtC at the end of the century. This scenario is among the 

lowest scenarios in the literature; approximately 1GtC/yr higher than the RCP3-PD by 

the end of the 21st century, with RCP3-PD being the lowest scenario in the RCP-set. The 

scenarios run until 2100, after which we assume that emissions remain constant at the 

2100 level.  

Figure 2 shows the CO2 emissions in the different scenarios over time. We consider it 

appropriate to confine ourselves to CO2 only, since this is the most important gas in 

terms of radiative forcing. Moreover, in some of the models covered here (the two DICE 

versions) non-CO2 gases are not modelled. Instead, an exogenous radiative forcing term 

is added to take into account non-CO2 emissions. However, we do acknowledge that 

temperature variations driven by other greenhouse gases and aerosols would modify 

the carbon cycle and climate system response.  

 

- Insert Figure 2 about here -  

 

2.2 Carbon cycle representation 

The first step in the causal chain from emissions to climate change damages is the 

calculation of the atmospheric CO2 concentration as a function of emissions. Table 1 

summarises the representation of the carbon cycle in the IAMs included in our analysis. 

                                                           

5
 More specifically, the benefits of mitigation are presented in this paper as the discounted 

difference of climate change damages in the reference and mitigation scenario as share of the 

present value of GDP, over the time period 2010-2200 
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Van Vuuren et al. (2011) describe experiments that analyse the behaviour of each of 

these models (except DICE-2009, PAGE09 and FUND 3.3, which were not yet available at 

that time). 

In both DICE-2007 and DICE-2009, the carbon cycle is represented by different carbon 

pools, representing the atmosphere, the upper ocean and biosphere (combined), and 

the deep ocean. The parameters in DICE-2009 have been revised in order to match the 

MAGICC 5.3 model and earth system models of intermediate complexity.  

In contrast, MERGE 5.1, FUND 2.8 and FUND 3.3 represent the entire carbon cycle by an 

impulse-response function based on Maier-Reimer and Hasselmann (1987). The 

functions of Maier-Reimer and Hasselmann consist of five integrals, each of which deal 

with a certain fraction of the emissions and are characterised by a typical exponential 

decay time. In the original paper, three sets of parameters were provided for different 

sizes of pulse emission, corresponding to increases in the carbon dioxide concentration 

to 1.25x, 2x and 4x the pre-industrial CO2 concentration, respectively. The need for 

different sets of parameters, depending on the size of the pulse, is a consequence of 

non-linearity of the carbon cycle response. Given the need of simplification, however, 

the IAMs only use one parameter set. The MERGE model uses the parameters derived 

from the 1.25x CO2 pre-industrial pulse, while both versions of the FUND model use the 

parameters corresponding to the 2x CO pre-industrial pulse (note that the parameters in 

FUND 3.3 are based on normal probability distributions, with mean values the same as 

in FUND 2.8). In practise, this means that in FUND, 13% of total emissions remain 

forever in the atmosphere, while 10% is removed in 2 years. In MERGE, 14% of total 

emissions remain forever in the atmosphere, while 9% is removed in 1.7 years.  

Also the two versions of the PAGE model (2002 and 2009) use a pulse-response function 

– but here using only one exponential decay time, in combination with a fraction of the 

emissions that is removed immediately. PAGE-2002 and PAGE09 include an explicit 

representation of carbon cycle feedbacks, by a ‘natural emissions’ term that increases as 

a function of temperature in PAGE-2002, and by a ‘CO2 concentration gain’ that 

increases as a function of temperature in PAGE09. In PAGE09, the strength of the carbon 

cycle feedback is about the same as in PAGE-2002 for high emission scenarios, but lower 

than in PAGE-2002 in the long term for stringent abatement scenarios. 

The FUND 2.8 model (which is identical to the mean settings of the carbon cycle of 

FUND 3.3) is used as default setting. We compare the results of the individual IAMs with 

the 90% confidence interval of the carbon cycle component of MAGICC6. The MAGICC 

model has a process description of carbon flows between the terrestrial vegetation 

stock, the atmosphere and the ocean. The model has been calibrated in order to 

represent the behaviour of ocean and land carbon pools and fluxes of individual more 

complex models from the C4MIP model comparison exercise, as described in 

Meinshausen et al. (2011a; 2011b). 
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2.3 Climate representation 

The climate model component of IAMs defines the relationship between greenhouse gas 

concentration and temperature. Damages are actually determined by the transient 

temperature response, which in all assessed IAMs is a function of the equilibrium 

temperature response and a measure of the response time of the climate system (see 

Table 1). Again, Van Vuuren et al. (2011) describe the results of a set of experiments that 

describe the performance of the climate models in each of the IAMs, mostly in terms of 

the level and timing of warming. 

The equilibrium temperature response is denoted by the equilibrium climate sensitivity 

(Knutti and Hegerl 2008), i.e. the equilibrium change in global mean temperature 

resulting from a radiative forcing corresponding to a doubling of atmospheric CO2 

concentration. In GCMs the climate sensitivity is an emergent quantity but in simple 

climate models (including MAGICC6) and all of the IAMs included in our analysis except 

PAGE09, climate sensitivity is exogenously determined (in addition, MAGICC6 includes 

parameters to capture time-variable effective climate sensitivities).  According to the 

IPCC (2007) the likely range of climate sensitivity is between 2°C and 4.5°C, with a best 

estimate of 3°C. In both DICE models, the climate sensitivity is set at 3.0°C; in FUND 2.8 

and MERGE 5.1 at 2.5°C. The climate sensitivity in FUND 3.3 is given by a gamma 

probability distribution with a mean of 2.85°C and a mode of 2.5°C. PAGE-2002 denotes 

climate sensitivity by a triangular probability distribution with a minimum of 1.5°C, a 

mode of 2.5°C, and a maximum of 5°C. In PAGE09, the climate sensitivity is calculated 

from the transient climate response and feedback response time. The MAGICC6 climate 

model is a more complex model, here constrained by a comparison with historical 

observations, resulting in a joint distribution of underlying parameters as described in 

Meinshausen et al. (2009). Here, we use the “illustrative default” case that implies a 

median of climate sensitivity close to 3°C and a likely range in the marginal distribution 

close to the IPCC Fourth Assessment Report estimate of 2 to 4.5°C – matching the 

posterior distribution in Frame et al. (2006), derived from a uniform prior on the 

transient climate response.  

The investigated IAMs calculate the actual temperature response by applying some kind 

of delay function on top of the equilibrium temperature calculation. Both versions of the 

PAGE model, both versions of the FUND model and MERGE 5.1 describe the actual 

temperature as a constant proportion (the delay parameter) of the equilibrium 

temperature and the temperature of last year. The level of the delay parameter differs 

across the models. MERGE 5.1 uses a delay parameter of 26 (meaning that the actual 

temperature at a particular time is calculated as 1/26 of the equilibrium temperature at 

that time and 25/26 of the realised temperature from the previous year). FUND 2.8 uses 

a delay parameter of 50, resulting in a much slower transient temperature response 

than in MERGE 5.1. In FUND 3.3, the delay parameter is determined by a triangular 

distribution function with a minimum of 25, a mode of 75, and a maximum of 125. 

PAGE-2002 also adopts a triangular distribution function, but with a minimum of 25, a 

mode of 50, and a maximum of 75, while in PAGE09 the minimum is 10, the mode is 30 

and the maximum is 65. Finally, DICE-2007 and DICE-2009 do not adopt a single delay 

parameter, but instead the transient temperature response depends on both a delay 



9 

parameter and the heat loss from the atmosphere to oceans. The transient response 

time of MAGICC6 is more complex than a simple lag function, modelled by a diffusion-

upwelling-entrainment ocean model (Meinshausen et al., 2009). 

It should be noted that the uncertainty in equilibrium climate sensitivity and the earth 

system’s response times are (partially) correlated. A higher equilibrium climate 

sensitivity necessarily suggests a slower temperature response time to explain the 

current level of climate change (although this correlation is complicated by the 

uncertainty in actual forcings, in particular aerosol forcings). Therefore, the differences 

in response time among the IAMs should be interpreted in the light of the differences in 

equilibrium climate sensitivity between the IAMs. For instance, MERGE 5.1 combines a 

relatively low equilibrium climate sensitivity with a relatively fast transient temperature 

response. In the analysis, we use the combination of climate sensitivity and climate 

response for each model as a set. 

In our default calculations, we use the climate model of DICE-2009, simply because this 

is the most recent one. Again, we have included the confidence interval of the MAGICC6 

climate model for comparison.  

2.4 Damage functions 

There are large uncertainties involved in projecting climate change damages, partly 

originating from the uncertainties in damage functions themselves that are used in IAMs 

(Tol et al. 2004). Here, we briefly look into the possible effect of these differences on the 

benefits of mitigation to put the influence of different representations of the climate 

system and carbon cycle in context.  

The cost-benefit IAMs analysed in this study differ with respect to the sectoral and 

regional detail and of the impact categories included in the damage estimates. Global 

damages in DICE are calculated using a single power law function of global temperature 

increase, which is based on regional damages by impact category as projected by the 

RICE model (Nordhaus and Boyer 2000). FUND, MERGE and PAGE do not include a global 

damage function: global damages are obtained by summing regional damages.  

Of all IAMs included in our study, FUND has the most disaggregated damage estimates: 

damages are projected for a wide range of impact categories (but excluding the costs of 

catastrophic events) and for 16 world regions. These damage projections are not only a 

function of global mean temperature, but also of the rate of temperature change and 

per capita income. PAGE includes separate damage functions for market, non-market 

and catastrophic impacts. MERGE includes a market and a non-market damage function. 

Damages in MERGE are a function of both temperature change and per capita income – 

with damages increasing sharply above a certain per capita income threshold.  

With regard to sectoral coverage, the most important distinction between the IAMs is 

whether or not they include the probabilities of catastrophic events. PAGE and DICE 

include this probability, and these models arrive at higher damage estimates than FUND, 

which does not take into account the probabilities of catastrophic events.  
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Given the large differences in methodology of calculating damages, we have chosen to 

use the simple global damage function of DICE-2007 (which is the same as DICE-2009) 

for the default setting. Of all IAMs included in our analysis, this function results in the 

highest mean damages (Hof et al. 2008; Smith et al. 2001). For a representation of low 

damage estimates, as a contrast, we use a simplified version of the equity weighted 

damage function of Tol as depicted in Figure 19-4 in Smith et al. (2001). The equations of 

both damage functions are available online in the Electronic Supplementary Material. 

The two damage functions bracket the whole range of the damage estimates from the 

IAMs included in our analysis, except for the extremes of the probability distributions in 

both PAGE model versions6. Moreover, these two functions have a very different shape. 

The DICE function is used as the default representation. For a more detailed comparison 

of damage functions of different IAMs, we refer to earlier publications of Warren et al. 

(2006), Stern (2006), Watkiss et al. (2005), IMF (2008), and Smith et al. (2001).  

2.5 Discounting method 

Different views exist on what constitutes the best discounting method, if any, for 

intergenerational cost-benefit analyses such as climate change policy (Hoel and Sterner 

2007; Howarth 2003; Nordhaus 2007; Stern 2006; UK Treasury 2003; Weitzman 2001, 

2007). Most studies use the Ramsey equation for determining the discounting method. 

This equation states that the discount rate should be equal to the rate of pure time 

preference plus the negative of the elasticity of the marginal utility of consumption 

times the per-capita growth rate of consumption. Nordhaus uses the estimated market 

return on capital as basis for the appropriate discounting method for both versions of 

the DICE model. In practice, this means that the rate of pure time preference is chosen 

at 1.5% per year and the elasticity of the marginal utility of consumption at -2, leading to 

an average discount rate in the first half of the century of 5.5% per year in the DICE 

models (Nordhaus 2008). Some argue that a lower discount rate should be used for 

climate change policy analysis. For instance, Stern (2006) follows the argument made by 

among others Ramsey (1928), Harrod (1948) and Solow (1974), that the welfare of 

future generations should be treated the same as the current one on ethical grounds. 

Therefore, Stern calibrates the Ramsey equation using a rate of pure time preference of 

0.1% and an elasticity of the marginal utility of consumption of -1.0, resulting in a 

discount rate of 1.3% in the Stern Review (Stern 2006). Other arguments for using a 

lower discount rate than the market interest rate are made by Ackerman et al. (2009), 

Hoel and Sterner (2007), Howarth (2003), Weitzman (2007) and van den Bergh (2010). 

Hoel and Sterner argue that if the relative price of the ecosystem service rises, the 

discount rate used for these services should be lower. Ackerman et al., Howarth and 

Weitzman all argue that the discount rate applied to climate change policy should be 

lower than the market rate because of uncertainty in future consumption. Finally, van 

den Bergh argues that individual time preference is a wrong analogy for social 

discounting, since societies are immortal (implicitly recognised by Stern).  

                                                           

6
 PAGE uses probability distributions to model climate change damage given the large 

uncertainties of the (shape of the) damage function. 
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To reflect the range of different positions, we apply the discounting methods of 

Nordhaus and Stern. Apart from these two discount rates, we also include the 

discounting method for long-term appraisals recommended by the UK Green Book (UK 

Treasury, 2003). This is a decreasing discounting method, starting at 3.5% per year and 

gradually declining towards 2.0% per year after 130 years. For our default calculations, 

we use a simple constant discount rate of 2.5%.  

3. Results 

First, we discuss the sensitivity of the individual steps in the causal chain – baseline 

emissions, carbon cycle component, climate component, and discounting method – on 

climate change damages and the benefits of mitigation. Subsequently, we compare the 

sensitivity of these individual steps with each other.   

3.1 Sensitivity of baseline emissions 

For analysing the sensitivity of the baseline emissions, we analyse the impact of using 

the default B2 emission scenario and the alternative baseline (A2) (see Figure 2). The 

other components in the cause-effect chain of climate change are held constant at their 

default values (see Figure 1). The higher CO2 emissions in the A2 baseline result in a 

higher temperature increase. As expected, the benefits of the mitigation scenario (equal 

to the difference in damages between the baseline and mitigation scenario) are also 

much larger for the A2 baseline: the benefits are 0.9% of GDP for the B2 baseline and 

2.1% of GDP for the A2 baseline (Figure 3).  

 

- insert Figure 3 about here -  

 

3.2 Sensitivity of the carbon cycle 

The carbon cycle model determines the CO2 concentration in the atmosphere as a result 

of emissions. Van Vuuren et al (2011) ran several, more generic experiments with most 

of the models. To understand the impacts of the carbon cycle on the damage costs, we 

briefly discuss the impacts of the different representation of the carbon cycle here for 

the CO2 concentration (note that the newest versions of DICE, FUND and PAGE were not 

included in van Vuuren et al., 2011) – before moving to the additional information on 

the consequences for temperature and damage costs. 

 

The carbon cycle models of all IAMs, with the exception of PAGE-2002, lead to similar 

concentration pathways given a fixed emission pathway (Figure 4).  
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In the mitigation scenario, the range of the peak in CO2 concentrations of all IAMs 

(except PAGE-2002) is 445 ppm to 453 ppm (the 90% uncertainty range of PAGE09 being 

432 to 462 ppm). This peak is reached around 2050 in these IAMs. PAGE-2002 forms an 

exception as the relative strong carbon cycle feedback (see Van Vuuren et al., 2011) lead 

to a situation in which concentration does not peak but keeps rising to 459 to 623 ppm 

in 2200 in the mitigation scenario (which is above the MAGICC6 uncertainty range). This 

effect has been revised downwards in PAGE09. In the short to medium term, the 

concentration levels resulting from the carbon cycle models of the IAMs are within the 

confidence interval of MAGICC6. By 2200, however, most IAMs arrive at lower 

concentrations than MAGICC6. A reason for these lower concentrations in the IAM 

carbon cycle models than in MAGICC in the long run has already been shown in van 

Vuuren et al. (2011) by a simple pulse experiment: the simple carbon cycle 

parameterisations of some IAMs do not capture the slower removal rates at higher CO2 

concentrations and the possible saturation of the available carbon sinks. This was 

reported earlier Schultz and Kasting (1997) for the DICE model.  

 

- insert Figure 4 about here -  

 

The CO2 concentration levels for the baseline scenarios are also similar according to the 

carbon cycle models of the different IAMs. PAGE-2002 forms, again, the exception with 

higher concentrations in the long term (2200). Just as for the mitigation scenario, in the 

long term the carbon cycle models of the IAMs lead to lower concentrations than 

MAGICC6 (PAGE-2002 forms again an exception). However, intercomparisons of the last 

generation of high complexity carbon cycle models (C4MIP) was limited to 2100 and one 

higher monotonously increasing scenario (SRES A2) only. The emulation beyond this 

calibration space is hence inherently uncertain – albeit applying physical process 

parameterisations, even though of very simplified nature, instead of mere statistical fits 

and tests with earlier longer-term carbon cycle intercomparisons (Orr 2002) provide 

some confidence in the validity of these longer-term emulations.  

Figure 5 shows how these differences in CO2 concentrations affect global temperature 

increase (according to the DICE-2009 climate model). As expected due to the small 

differences in concentrations resulting from the carbon cycle models of IAMs, 

temperature differences are small: in 2200, the range of temperature increase in the 

baseline is 3.6 to 3.8°C relative to pre-industrial levels. PAGE-2002 is the only exception 

with a temperature increase of 4.1°C (with a 90% probability range of 3.5 to 4.6°C). As 

can be expected from the concentration results, the temperatures projected by the 

carbon cycle models of the IAMs are lower than projected by MAGICC6 in the long term 

(except for PAGE-2002).  

 

- insert Figure 5 about here -  
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Figure 6 shows damage estimates resulting from the temperature projections (using the 

DICE damage function). The present values of the damage estimates in the baseline are 

(as expected) very similar across most of the models. All estimates are well within the 

range of MAGICC6- related estimates, because the difference in the present value of 

damages is not strongly affected by long term temperature differences due to 

discounting. The differences in the present value for the mitigation scenario are also 

small – again with the exception of PAGE-2002.   

 

- insert Figure 6 about here -  

 

The resulting impact on the benefits of mitigation is correspondingly small and all 

estimates are within the uncertainty range estimated by our default IAM elements in 

combination with MAGICC6’ carbon cycle. All carbon cycle models lead to benefits of 

about 0.9 to 1% of GDP, except both PAGE models, which result in lower mean benefits 

of about 0.8%. For PAGE-2002, this is due to relative high damage projections for the 

mitigation scenario (a result of the high carbon cycle feedback); for PAGE09, this is due 

to the relatively low damage projections of the baseline scenario.  

3.3 Sensitivity of the climate model 

The sensitivity of the climate model has been analysed by providing the climate models 

with the same trajectory of CO2 concentrations, resulting from the carbon cycle model 

of the FUND model (see Figure 1). Again, generic experiments looking at the climate 

model only were run by van Vuuren et al. (2011), and we use the results of their 

experiments to explain the results found here. As shown in Table 1, PAGE-2002, PAGE09 

and FUND 3.3 use a probabilistic function for both the climate sensitivity and transient 

temperature response. For the PAGE model versions, we focus on the 90% confidence 

interval and for FUND 3.3, we include the mean and the mode (best guess) of these 

functions in our analysis.  

Figure 7 shows that the climate models lead to considerable differences in temperature 

outcomes, especially for the baseline. The FUND 2.8 climate model leads to a 

temperature increase of less than 3.3°C by 2200 in the baseline, whereas the climate 

model of PAGE09 leads to an increase of almost 4°C for the mean (with a large 

uncertainty range of 2.5 to 6°C). The MAGICC6 90% uncertainty range for 2200 is also 

large (2.5 to 4.9°C), which indicates the uncertainties in our current understanding of 

the climate system. The climate models of all IAMs fall within this range, although all 

except both versions of PAGE are in the lower half of this range. The finding that the 

climate models of MERGE, FUND 2.8 and the mode of FUND 3.3 lead to the lowest 

temperatures is expected, since these models assume the lowest climate sensitivity (see 

Table 1). In the shorter term, both FUND model versions even lead to temperatures 

below the MAGICC6 uncertainty range – for FUND 2.8, this replicates the finding by van 
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Vuuren et al. (2011). FUND 3.3 leads to even lower temperatures than FUND 2.8; a 

direct consequence of the slower response time in FUND 3.3.  

 

- insert Figure 7 about here -  

 

In the mitigation scenario, temperature differences between the models are very small. 

Interestingly, the 2200 temperature outcome of the mean version of FUND 3.3 now 

exceeds those of the DICE model versions. This again can be explained by the relatively 

slow response time in FUND 3.3., because of which mitigation is less effective. The 

relatively fast response time of MERGE 5.1 leads to higher temperatures in 2050, but 

lower temperature in 2200 compared to the FUND models. With the exception of the 

year 2050, the climate models of all IAMs fall within the uncertainty range of MAGICC6 

in the mitigation scenario.   

The relatively small difference in temperature outcome between the mitigation and 

baseline scenario according to the FUND model versions implies that there is a smaller 

benefit of mitigation compared to other models, as can be seen in Figure 8. The benefits 

of the mitigation scenario (in terms of avoided damage using the DICE damage function) 

of the FUND models are somewhere between 0.4 and 0.5% of GDP. For the DICE-2007 

and PAGE09 climate models, the benefits are about twice as high. The climate model of 

DICE-2009 leads to slightly lower benefits, a result of the somewhat slower temperature 

response time in DICE-2009. The benefits of the climate module in MERGE 5.1, finally, 

are between those in the FUND and DICE models. Even though MERGE 5.1 assumes a 

relatively low climate sensitivity of 2.5°C, the temperature response time is relatively 

fast, which leads to the higher benefits compared to the FUND model versions. The 

benefits of mitigation according to the climate models of DICE and PAGE09 are close to 

the central range as projected by our default IAM elements in combination with 

MAGICC6 as climate module. For the climate modules included in the other models, 

especially FUND, the projections are on the low end or even below the uncertainty 

range of MAGICC6.  

 

- insert Figure 8 about here -  

 

As already noted above, the large differences in the benefits of mitigation caused by 

different climate models can be caused by differences in climate sensitivity and 

differences in temperature response time. To test which of these two factors are more 

important, we ran the climate models again – but this time, with the same climate 

sensitivity of 3.0°C for all models. As both DICE and PAGE model versions and MAGICC6 

already assume a (mean) climate sensitivity of 3.0°C, only the results of MERGE and 

FUND differ in this run.  The empty bars of Figure 8 show the results of setting the 

climate sensitivity to 3.0°C in MERGE and FUND. The mean and mode of FUND 3.3 lead 
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to the same results, since the mode and mean of the temperature response time is the 

same (see Table 1).  

As expected, increasing the climate sensitivity to 3.0°C leads to higher damages for both 

the mitigation and baseline scenario. The net effect leads to higher benefits of 

mitigation. MERGE moves from the lower end of the MAGICC6 uncertainty range to the 

middle and gives now very similar results to DICE and the mean of both PAGE model 

versions. This implies that for MERGE, the relatively low climate sensitivity explains why 

the benefits of mitigation are lower than for PAGE and DICE. The benefits of FUND 2.8 

also increase substantially, although they are still in the lower end of the MAGICC6-

related uncertainty range. For FUND 3.3, the increase in the benefits of mitigation is 

very small. This implies that for FUND 3.3, climate dynamics (i.e. the slow temperature 

response time) largely explains why the benefits of mitigation are small compared to the 

climate models of other IAMs and MAGICC6. Indeed, Table 1 already showed that the 

temperature response time of FUND 3.3 is relatively slow – leading to much lower 

discounted damages in the baseline but only slightly lower discounted damages in the 

mitigation scenario.  

3.4 Sensitivity of the damage function 

We examine the possible effect of the damage estimates by comparing the results of the 

default DICE damage function with the alternative damage function based on the FUND 

model (see Section 2.4). These two damage functions cover the whole range of damage 

estimates of the IAMs included in our analysis, except for the extremes of the 

probability distributions in both PAGE models. The results are shown in Figure 9. 

According to the alternative damage function, the mitigation scenario leads to small 

benefits. The damages in the baseline are also much smaller: about 0.3% of GDP against 

more than 1.4% of GDP for the DICE damage function. The benefits of mitigation are 

therefore smaller according to the alternative damage function (about 0.4% of GDP) 

than according to the DICE damage function (about 0.9% of GDP).  

 

- insert Figure 9 about here -  

 

3.5 Sensitivity of the discounting method 

For analysing the effect of the discounting method on the benefits of the mitigation 

scenario, we computed the difference in discounted impacts between the mitigation 

and baseline scenario for the different discounting methods included in our study. The 

results are shown in Figure 10. As expected, the discounting method of Nordhaus 

(relatively high discount rates) leads to the lowest benefits of mitigation: slightly less 

than 0.6% of GDP. The benefits resulting from the UK Green Book discounting method 

are about 0.9% of GDP. This is comparable to the results of a constant 2.5% per year 
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discount rate. Finally, the discounting method as applied in the Stern Review leads to 

the highest benefits of mitigation of 1.5% of GDP. 

 

- insert Figure 10 about here -  

 

3.6 Synthesis  

Figure 11 compares the relative importance of the different assumptions in the cause-

effect chain of climate change benefits. The purpose is to assess the relative impact of 

different climate change/carbon cycle representations in IAMs. We compare the 

differences due to different representation of the carbon cycle and climate system in 

IAMs to those by other factors.  

 

- insert Figure 11 about here - 

 

Different assumptions of both baseline emissions and discount rate result in a fairly wide 

range of possible values for the benefits of the mitigation scenario. For the high A2 

baseline, the difference in present value of climate impacts are 2.1% of GDP compared 

to the mitigation case, instead of 0.9% for the more average B2 baseline. It should be 

noted that we have not looked into the question whether the mitigation scenario can 

actually be reached from the A2 baseline. In any case, a higher baseline (like A2) also 

leads to higher mitigation costs – and for cost-benefit analysis the difference between 

mitigation costs and avoided damages are important. These trends thus work in 

opposite direction. The strong effect of the discounting method on the present value of 

the benefits of the mitigation scenario is also not surprising, since this has been found in 

numerous other studies as well (Hof et al. 2008; Hope 2006b; Tol 2008).  

An important finding of this study is that the representation of the climate model has an 

almost equally important impact. The MAGICC6 model results indicate the influence of a 

fuller range of uncertainty (including the climate sensitivity range) – but the differences 

between different climate models in IAMs are large as well. Arguably, one may expect 

IAMs to represent the climate system by a “best guess” response derived from more 

complex models. Nevertheless, the climate system as represented by the mean 

calibration of PAGE09 leads to 2.5 times the benefits as the mode climate model of 

FUND 3.3. Needless to say, this has a large impact on the outcomes of cost-benefit 

studies. The effect of different carbon cycle models on the benefits of the mitigation 

scenario between the IAMs is relatively small (about one third of the effect of different 

climate models).     
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4. Conclusions and discussion 

This paper analysed how the benefits of climate change mitigation as projected by well-

known IAMs may be influenced by their representation of the carbon cycle and climate 

system. The main reason for such an analysis is that, while in the past attention has 

been given to the influence of discounting methods and damage functions to the 

outcomes of different IAMs, relatively little attention has been given to the influence of 

the carbon cycle and climate representation. Two recent papers (van Vuuren et al. 2011; 

Warren et al. 2010), however, have shown that the temperature outcome between 

climate models in IAMs can differ substantially as a consequence of different carbon 

cycle and climate system representations. This paper builds on these findings to 

investigate what these differences imply for the outcome of cost-benefit applications.  

The sensitivity of the carbon cycle representation in the IAMs on the benefits of 

mitigation- equal to the difference in damages between the mitigation scenario and 

baseline - is small compared to other factors. There are a few reasons for this. First, the 

differences in CO2 concentration as a result of the carbon cycle differences are relatively 

small. Second, the differences occur for both the baseline and mitigation scenario – and 

therefore part of the impact is offset for the indicator we use here. Finally, long-term 

differences are given much less weight compared to short-term differences due to the 

discount rate. As a result, even though PAGE-2002 does lead to higher mean 

temperatures, due to a relatively strong carbon cycle feedback, this only has a small 

effect on the mean benefits of mitigation. In fact, the carbon cycle model of PAGE-2002 

leads to smaller mean benefits of mitigation than according to all of the other IAMs 

analysed. The mean result and 90% confidence interval for PAGE09 is very similar. The 

carbon cycle representations in MERGE 5.1, FUND 2.8, FUND 3.3, DICE-2007 and DICE-

2009 all lead to similar present values of damages, which are close to the central range 

as projected by the carbon cycle component of the MAGICC6 climate model. It should be 

noted that in the long run, there are noticeable differences between those based on the 

carbon cycle model of MAGICC6 and the carbon cycle models within the IAMs. The 

carbon cycle models of the IAMs generally lead to lower temperatures in the long term.  

In contrast to the impact of the carbon cycle representation, the climate system 

representation does lead to very different results across IAMs. This seems to be 

consistent with the fact that the uncertainty in the climate system is much larger than 

the uncertainty in the carbon cycle (Gregory et al. 2009; Jungclaus et al. 2010). Overall, 

the climate component of some IAMs leads to temperature outcomes that are below – 

or near the very low end – of the MAGICC6 90% confidence interval. This is notably the 

case for the different FUND model versions and can be explained by a relatively slow 

temperature response time (the main factor for FUND 3.3) and a relatively low climate 

sensitivity (the main factor for FUND 2.8). This leads to much smaller benefits of 

mitigation according to the FUND climate model compared to the climate models of the 

other IAMs. For a discount rate of 2.5%, this difference can be up to a factor of 2.5 (for 

higher discount rates, the difference would be smaller).  This means that the effect of 

the (dynamics of the) climate system representation may be almost as high as that of 

discounting. 
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It should be noted that the models examined in this paper do not include an explicit 

land-use model and therefore do not cover the possible connections between the 

energy system, land use and impacts on the carbon cycle/climate system. A well-known 

example of such a feedback is the increased deforestation rate as a consequence of 

increased use of bio-energy (Searchinger et al. 2008; van Vuuren et al. 2007; Wise et al. 

2009).  

What does this imply for the recommendations resulting from the different IAMs? Some 

guidance to policy makers can be given from the results of this paper. So far, discussions 

on interpretation of IAM results seem to focus more on the differences of their 

assumptions for socio-economic parameters. We have shown that the elaboration of the 

climate component in the current IAMs, especially the climate dynamics, does matter 

strongly for their results as well. In comparing the results of different IAMs, one would 

not only need to have a look at differences in baseline or the discount rate that has been 

applied – but also to the climate representation. For instance, the FUND model versions 

lead to lower mitigation benefits than other IAMs and are very close to the low end of 

the uncertainty range of the MAGICC6 model.  This will automatically imply a higher 

preferred emission pathway in cost-benefit applications. Given the role of IAMs 

(integration of information of different disciplines) one may argue that ideally, they 

would represent both the most likely values (according to expert models) and the 

ranges. 
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FIGURE CAPTIONS 

Fig. 1 Overview of the default (denoted by a *) and alternative assumptions 

Fig. 2 CO2 emission trajectories for the two baseline scenarios used in this study and the 

mitigation scenario (emissions after 2100 are assume to be constant at the 2100 level) 

Fig. 3 Climate change damage for the two baseline scenarios and mitigation scenario, and the 

difference between those, according to the default assumptions listed in Fig. 1   

Fig. 4 Impact of carbon cycle model on concentration levels over time for the CO2-only baseline 

scenario and mitigation scenario  

Fig. 5 Impact of carbon cycle model on global temperature increase over time, keeping the other 

assumptions listed at their default values as listed in Fig. 1 (Note: the confidence interval of the 

difference assumes that the distribution of the confidence interval for the baseline and 

mitigation scenario are the same. This is supported by a comparison of the distribution of 

confidence intervals between different scenarios of MAGICC6)    

Fig. 6 Impact of carbon cycle model on cumulative discounted climate change damage over 2000-

2200 for the baseline and mitigation scenario, and the difference between those  

Fig. 7 Impact of climate model on global CO2-induced temperature increase over time, following 

the CO2-only B2 baseline and ENSEMBLES mitigation scenario, keeping the other assumptions 

listed at their default values as listed in Fig. 1 

Fig. 8 Impact of climate model on cumulative discounted climate change damage for the baseline 

and mitigation scenario, and the difference between those  

Fig. 9 Impact of the damage function on climate change damage for the baseline and mitigation 

scenario, and the difference between those  

Fig. 10 Impact of the discounting method on climate change damage for the baseline and 

mitigation scenario, and the difference between those  

Fig. 11 Sensitivity of different assumptions on climate change benefits of mitigation  
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