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Abstract: We analyse the experimental limits on the breaking scale of Pati-Salam ex-
tensions of the Standard Model. These arise from the experimental limits on rare-meson
decay processes mediated at tree-level by the vector leptoquark in the model. This lep-
toquark ordinarily couples to both left- and right-handed SM fermions and therefore the
meson decays do not experience a helicity suppression. We find that the current limits
vary from O(80–2500)TeV depending on the choice of matrix structure appearing in the
relevant three-generational charged-current interactions. We extensively analyse scenarios
where additional fermionic degrees of freedom are introduced, transforming as complete
Pati-Salam multiplets. These can lower the scales of Pati-Salam breaking through mass-
mixing within the charged-lepton and down-quark sectors, leading to a helicity suppression
of the meson decay widths which constrain Pati-Salam breaking. We find four multiplets
with varying degrees of viability for this purpose: an SU(2)L/R bidoublet, a pair of SU(4)
decuplets and either an SU(2)L or SU(2)R triplet all of which contain heavy exotic ver-
sions of the SM charged leptons. We find that the Pati-Salam limits can be as low as
O(5–150)TeV with the addition of these four multiplets. We also identify an interesting
possible connection between the smallness of the neutrino masses and a helicity suppression
of the Pati-Salam limits for three of the four multiplets.
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1 Introduction

The quark-lepton unifying Pati-Salam (PS) gauge symmetry [1, 2] is an interesting modi-
fication of the Standard Model (SM) for a number of reasons. For example, it requires the
introduction of a right-handed neutrino state and therefore can incorporate neutrino mass
in a number of ways. It unifies the now six seemingly disparate multiplets in each gener-
ation of the SM into two which, in the minimal variant of PS, only leads to two Yukawa
couplings. It also appears as a subgroup of a number of possible grand unified theories
(GUTs). An important property of the model is that it unifies quarks and leptons of the
same SU(2) isospin.

Although the PS symmetry is usually considered to be broken at high scales, the
theory naturally can accommodate a conserved global baryon number. Therefore, and
unlike many models of gauge coupling unification, the PS breaking can occur at scales only
a few orders of magnitude above the electroweak scale. Low-scale and high-scale variants of
PS differ in very few ways, traditionally through a modification of the scalar sector and the
inclusion of fermion singlets. However as with all models which unify the SM multiplets,
the PS symmetry in its minimal form necessarily predicts two important mass equalities
not observed experimentally:

mDirac
ν = mu and md = me. (1.1)

The scalar content required in high-scale PS models to break the PS symmetry naturally
leads to a seesaw1 within the neutrino sector and not the up-quark sector, breaking the
first mass relation; see e.g. [3]. Low-scale variants can be modified very simply in order
to achieve a similar effect, although this requires extending the matter sector with, at a
minimum, fermionic singlets. The second mass equality md = me between the down-isospin
partners also needs to be modified to produce a realistic theory

Any explanation of the broken mass degeneracy in the down-isospin sector requires a
modification of the particle content of the theory. By far the most commonly considered
modification is to introduce an additional scalar whose couplings to the down-quarks and
charged-leptons differs by group theoretic factors; see e.g. [2]. This introduces enough
free parameters such that all the masses of SM can arise without issue. An alternative
idea, which we pursue further in this work, was first proposed in [4, 5] where additional
fermionic states are introduced which mix with the charged-leptons inducing additional
seesaw mixing. This similarly allows for a viable mass spectrum for all particles but
additionally can attractively lead to phenomenologically viable PS models at much lower
breaking scales than usually considered.

The limits on the PS breaking scale arise from rare meson decay processes mediated by
leptoquarks. In particular the theory requires the existence of a gauge-boson leptoquark,
Xµ, which mediates these rare meson decays at tree level and with coupling strength similar

1For clarity, the requirement for a seesaw in a mixing matrix is that the singular values of the blocks
making up the matrix satisfy σi(mX) < σ1(mY ) for all i, where mY and mX are the dominant and non-
dominant block(s) respectively and we use the usual notation that σi(. . . ) corresponds to the singular values
of given matrix sorted into ascending order.
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to the strong coupling constant gc. As Xµ couples quarks and fermions of the same isospin,
the dominant decay modes that constrain PS breaking arise from the interactions of Xµ

to the down-quarks and charged-leptons. Signals from up-isospin interactions result in
neutrino (or missing energy) final states which are more difficult to constrain.

Interestingly, the introduction of new physics to break the down-isospin mass degener-
acy can further modify the meson decay rates and hence also the limits on the PS breaking
scale. Ordinarily the PS breaking limits vary between O(100–1000)TeV. However these
mixing effects can reduce these limits down to O(10–100)TeV. Lower PS limits are of
obvious interest as they allow for potential experimental probes of these models at scales
lower than previously anticipated.

Additionally there has been a recent resurgence in interest in low-scale PS models
as the leptoquarks predicted by the theory are promising candidates as explanations of
anomalies in low-energy flavour-physics experiments [6–9]. The vector leptoquark Xµ itself
is an attractive candidate to explain a portion of these anomalies. However, this requires a
mass around Λ ' 30TeV [10] which is naïvely ruled out from rare meson-decay experiments.
Modifications to the PS gauge group itself have been proposed [11–13] in order to allow
for lighter masses of Xµ by modifying the gauge coupling to the different generations or
by embedding the theory in a Randall-Sundrum background allowing for PS breaking in
the TeV range [14]. Alternatively the scalar leptoquark content of the theory has been
considered as a candidate to explain the anomalies [10] in the standard PS scenario, by
assuming some scalars develop significantly smaller masses than the PS breaking scale.
This potentially leads to a hierarchy problem.

The use of charged-lepton mixing in order to both break the down-isospin mass de-
generacy and reduce the allowed scale of PS breaking has already been considered in the
context of the B anomalies for a specific model [15, 16]. The aim of this paper is to thor-
oughly analyse which PS multiplets are viable candidates in breaking the aforementioned
mass degeneracy, and to evaluate the requirements on the couplings introduced in each
case such that this also leads to lower experimentally allowed PS breaking scales. There-
fore while we are motivated by different appealing reasons for low-scale PS, we will only
focus on the requirements such that a reduction in the limits occurs.

Section 2 is an overview of the minimal PS scenario including an examination of the
gauge boson and fermion masses. Section 3 evaluates the experimental limits on PS break-
ing as a function of the free parameters in the theory and determines the impact that
fermionic mixing can have on the limits. Section 4 identifies all possible PS multiplets
of low dimensionality that contain states such that mixing is induced. Finally, section 5
evaluates the requirements on the couplings involving viable multiplets which achieve both
the desired suppression in the PS limits and a viable values for all relevant SM masses.

2 Pati-Salam models

2.1 Basic setup

The Pati-Salam gauge group GPS extends the SM by identifying the SU(3) colour group as
a subgroup of an SU(4) gauge group and extending the electroweak sector to be left-right
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symmetric:
GPS = SU(4)c ⊗ SU(2)L ⊗ SU(2)R . (2.1)

Often a discrete symmetry between the SU(2)L and SU(2)R sectors is imposed but is not
necessary. Under this gauge symmetry the five SM fermion multiplets of each generation
can be unified into two simple multiplets2 under GPS

fL ∼ (4,2,1) and fR ∼ (4,1,2), (2.2)

where L/R indicates both which SU(2) the fields are charged under as well as the chirality.
The breaking of SU(4) to the maximal subgroup SU(3) × U(1)X is phenomenologically
required and under this breaking the fundamental of SU(4) decomposes as

4→ 1−1 ⊕ 31/3 (2.3)

indicating that the SM quarks and leptons can be unified by identifying U(1)X with a
gauged B − L. The SM fermions are embedded into the multiplets given in eq. (2.2) as3

fL =


ur dr
ub db
ug dg
νe e


L

and fR =


ur dr
ub db
ug dg
νe e


R

, (2.4)

with similar embeddings for the other generations. Therefore the gauge transformation
rules for the fields, written as matrix multiplication, are

fL/R → U4

(
fL/R

)
UTL/R (2.5)

where U4,L,R are special unitary matrices for the groups SU(4)c, SU(2)L and SU(2)R re-
spectively. There are multiple choices of scalars which give the correct breaking pat-
terns. A common and near-minimal choice for electroweak symmetry breaking is a complex
bidoublet

φ ∼ (1,2,2) =
(
φ0

1 φ+
2

φ−1 φ0
2

)
, 〈φ〉 =

(
v1 0
0 v2

)
(2.6)

where the superscripts indicate the electric charge Q of each field and φ is written such
that it transforms as

φ→ ULφU
†
R. (2.7)

Two different combinations of scalar multiplets are usually considered for the breaking
of GPS down to GSM. Firstly, and most commonly, two scalars ∆L ∼ (10,3,1) and
∆R ∼ (10,1,3) are employed, where

∆α
L/R = 1√

2


√

2∆α+1/3
11 ∆α+1/3

12 ∆α+1/3
13 ∆α−1/3

14
∆α+1/3

12
√

2∆α+1/3
22 ∆α+1/3

23 ∆α−1/3
24

∆α+1/3
13 ∆α+1/3

23
√

2∆α+1/3
33 ∆α−1/3

34
∆α−1/3

14 ∆α−1/3
24 ∆α−1/3

34
√

2∆α−1
44


L/R

(2.8)

2With the necessary addition of a right-handed neutrino.
3For simplicity we choose to identify the first generation of leptons with the first generation of quarks

and so forth, however alternative assignments are possible [17].
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are symmetric matrices in SU(4) space (written in the defining representation), α= (−1,0,1)
corresponds to the non-trivial SU(2) charge of the scalar (in the adjoint representation) and
the superscripts on each component again corresponds to its electric charge.4 The break-
ing GPS→GSM occurs with a non-zero vacuum expectation value (vev) in the following
components 〈(

∆α=1
L/R

)
44

〉
= vL/R. (2.9)

Alternatively, the scalars χL ∼ (4,2,1) and χR ∼ (4,1,2) can be used:

χ
L/R =


χ2/3
r χ−1/3

r

χ2/3
b

χ−1/3
b

χ2/3
g χ−1/3

g

χ0 χ−


L,R

,
〈
χ
L/R

〉
=


0 0
0 0
0 0

vL/R 0

 (2.10)

where the gauge transformation rules for these scalars are the same as fL/R.
In both cases, ∆R and χ

R would be sufficient without their SU(2)L counterparts as
long as the bidoublet φ is included. Their inclusion however allows for the possibility of
imposing a discrete symmetry between the left and right gauge sectors which would lead
to partial unification of the gauge couplings, gL = gR, at the relevant breaking scale. An
analysis of the renormalisation group running of the gauge coupling constants has shown
that the inclusion of a parity symmetry requires a PS breaking scale of O(1012)GeV in
order for consistency with low-energy measurements of electroweak observables [3], unless
the parity breaking scale is decoupled from the scale of PS breaking [18]. In order to allow
for the scale of PS breaking to be as low as possible we assume that if such a discrete
symmetry exists, then its breaking occurs independently at a higher scale to the breaking
of GPS which allows for the scale of PS breaking to be significantly lowered. However for
generality we will include the SU(2)L scalars which may be predicted by specific GUTs or
lead to unique phenomenology.

In addition to the scalars in eq. (2.10) often Φ ∼ (15,1,1) is included where

Φ = 1
2


Φ0
π + 1√

3Φ0
η + 1√

6Φ0
15

√
2Φ0

12
√

2Φ0
13

√
2Φ2/3

r
√

2
(
Φ0

12
)∗ −Φ0

π + 1√
3Φ0

η + 1√
6Φ0

15
√

2Φ0
23

√
2Φ2/3

b√
2
(
Φ0

13
)∗ √

2
(
Φ0

23
)∗ − 2√

3Φ0
η + 1√

6Φ0
15
√

2Φ2/3
g

√
2Φ−2/3

r

√
2Φ−2/3

b

√
2Φ−2/3

g − 3√
6Φ0

15


〈Φ〉 = vΦ diag

(
1

2
√

6
,

1
2
√

6
,

1
2
√

6
,−
√

3
8

)
(2.11)

such that Φ transforms as
Φ→ U4ΦU †4 . (2.12)

As this scalar transforms in the adjoint representation of SU(4)c, a non-zero vev for Φ will
break this symmetry down to one of its maximal subgroups such as SU(3)c × U(1)B−L.

4Unless stated otherwise superscripts on fields making up a PS multiplet will correspond to its electric
charge Q under GSM.
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The scalar content described above leads to the following symmetry breaking chain

SU(4)c × SU(2)L × SU(2)Ry
〈Φ〉

SU(3)c × SU(2)L × SU(2)R ×U(1)B−Ly〈χR/∆R〉
SU(3)c × SU(2)L ×U(1)Yy〈φ, χL/∆L〉

SU(3)c ×U(1)Q (2.13)

where Y = T3R+ B−L
2 , Q = T3L+Y and the order of breaking is determined by the relative

size of each vev. The inclusion of Φ therefore allows for all possible scales of symmetry
breaking5 starting from GPS down to the broken SM but is only necessary in scenarios where
the SU(2)R gauge boson masses are desired to be smaller than the PS breaking scale.

We now turn to how the mass relations of eq. (1.1) can be avoided. The equality be-
tween down-isospin partners will be addressed further below, however the equality between
up-isospin partners allows us to restrict the scalar content of the theory. If ∆L/R are present,
a Majorana mass term for the neutrinos will be generated via yL/RfL/R (fL/R)c∆L/R

and will lead to a see-saw mechanism between the neutral fermions as the hierarchy
〈∆L〉 � 〈φ〉 � 〈∆R〉 is required due to electroweak precision tests and the Yukawa cou-
plings are fixed by the masses of the up-type quarks. This leads to light, predominantly
left-handed neutrinos, with masses given by

mν ' yL〈∆L〉+ m2
u

yR〈∆R〉
. (2.14)

Considering the third generation of fermions alone, mu = mt ' 175GeV, requires PS
breaking at large scales in order to achieve a viable low-energy neutrino mass spectrum.
Setting 〈∆L〉 = 0 gives a rough lower-bound 〈∆R〉 & 1012 GeV and therefore the scalars
∆L/R are not viable as models of low-scale PS.6

If χL/R are present, a viable neutrino mass spectrum is only possible with the inclusion
of additional particles, for example a left-handed gauge-singlet fermion SL ∼ (1,1,1) for
each fermion generation, as otherwise νL/R are predicted to be Dirac particles with masses
similar to those of the up-type quarks. Light neutrinos can arise due to the inverse and
linear see-saw mechanisms [19–27] if small but non-zero lepton number violating mass terms
are included. This scenario can allow for the PS breaking scale to be much lower, as we
describe below, while allowing for light neutrino masses and therefore we restrict ourselves
to the scalar content described in table 1.

5The vevs of the scalars χR and ∆R directly break SU(4)c⊗SU(2)L⊗SU(2)R down to SU(3)c⊗SU(2)L⊗
U(1)Y.

6A viable neutrino mass spectrum with 〈∆R〉 � 1012 GeV may be possible with a fine-tuned cancellation
between the two terms appearing in eq. (2.14) if yL/R have opposite sign, although we will not consider
this possibility further.
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Φ φ χL χR

SU(4)c 15 1 4 4
SU(2)L 1 2 2 1
SU(2)R 1 2 1 2

Table 1. The scalar content which we utilise and their respective dimensions under each PS gauge
group.

2.2 Yukawa sector

The full Yukawa Lagrangian for the fermions fL, fR and SL and the scalars φ, χL and χR is

Lyuk = Tr
[
y1fLφ (fR)T + y2fL φ

c(fR)T + yRSLχ
†
RfR + yLfLχL(SL)c

]
+1

2µSSL(SL)c+H.c.
(2.15)

where generational indices are suppressed, φc = τ2 φ
∗τ2 and τ2 = εab is the two-dimensional

Levi-Civita symbol.
After spontaneous symmetry breaking, charged-fermion masses arise from 〈φ〉

mu = y1v1 + y2v
∗
2

md = y1v2 + y2v
∗
1

me = md, (2.16)

whereas, within the neutrino sector, mixing between the neutral fermions leads to

1
2
(
νL νcR SL

) 0 mu yLvL
mu 0 yRv

∗
R

yLvL yRv
∗
R µS


ν

c
L

νR
ScL

 . (2.17)

Adopting the hierarchy |µS , yL vL| < |mu| < |yR vR| and setting all parameters to be real
for simplicity leads to

mν1 ' µS
(
mu

yRvR

)2
+ 2 yLvL

yRvR
mu

mν2,3 ' yRvR ± µS (2.18)

if only one generation is considered, where the light state is predominantly made up of νL
and the two heavy states predominantly made up of νR and SL. A viable neutrino mass
spectrum is possible for sufficiently small values of the lepton number violating mass terms
µS and yLvL. These choices are technically natural and allow for the breaking scale vR
(which breaks PS) to be lowered to O(1000)TeV or lower.

2.3 Gauge sector

The kinetic term for each scalar is given by

Ls
kin = (Dµφ)† (Dµφ) +

(
DµχR

)† (
Dµχ

R

)
+
(
DµχL

)† (
Dµχ

L

)
+ 1

2Tr (DµΦ) (DµΦ) ,
(2.19)
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the covariant derivatives are given by

Dµφ = ∂µφ + igLŴLµφ− igRφ ŴRµ

DµχL = ∂µχL + ig4ĜµχL + igLχL(ŴLµ)T

DµχR = ∂µχR + ig4ĜµχR + igRχR(ŴRµ)T

DµΦ = ∂µΦ + ig4
[
Ĝµ, Φ

]
(2.20)

and ŴL[R]µ/Ĝµ are the SU(2)L[R]/SU(4) gauge fields respectively, written as matrices trans-
forming in their defining representation.

After spontaneous symmetry breaking the spectrum of masses and mixings for the
different gauge fields can be calculated. We find

m2
X = g2

4

(1
3v

2
Φ + 1

2v
2
L + 1

2v
2
R

)
(2.21)

where Xµ corresponds to a colour-triplet vector leptoquark with electric charge 2/3,

Ls
kin ⊃

1
2
(
W+
L W+

R

)
µ

g2
L

(
v2
φ + v2

L

)
−2gLgRv1v2

−2gLgRv1v2 g2
R

(
v2
φ + v2

R

)
︸ ︷︷ ︸

(
W−L
W−R

)µ

M2
W± (2.22)

which corresponds to the mixing matrix between the two colour-neutral, electrically-charged
gauge bosons with v2

φ = v2
1 + v2

2 and

Ls
kin ⊃

1
2
(
G15 W3L W3R

)
µ


3
2g

2
4
(
v2
L + v2

R

)
−
√

3
2g4gLv

2
L −

√
3
2g4gRv

2
R

−
√

3
2g4gLv

2
L g2

L

(
v2
φ + v2

L

)
−gLgRv2

φ

−
√

3
2g4gRv

2
R −gLgRv2

φ g2
R

(
v2
φ + v2

R

)


︸ ︷︷ ︸

G15
W3L
W3R


µ

M2
0 (2.23)

which corresponds to the mixing matrix between the three colour- and electrically-neutral
gauge bosons.

While the above equations can be solved numerically, simple analytic expressions can
be derived in certain limits. Assuming a hierarchy in the scales of symmetry breaking,
vEW =

√
v2
φ + v2

L < vR, leads to the following spectrum of gauge boson masses:

m2
γ = 0, m2

Z '
1
2

3g2
Rg

2
4 + 3g2

Lg
2
4 + 2g2

Rg
2
L

3g2
4 + 2g2

R

v2
EW, m2

Z′
' 1

2

(
g2
R + 3

2g
2
4

)
v2
R

m2
W '

1
2g

2
Lv

2
EW, m2

W ′
' 1

2g
2
R

(
v2
R + v2

EW

)
m2
X = 1

2

(2
3v

2
Φ + v2

L + v2
R

)
g2

4. (2.24)

where the hypercharge gauge coupling is given by

g2
Y = 3g2

Rg
2
4

3g2
4 + 2g2

R

. (2.25)
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Figure 1. Plot of the masses of the SM-like gauge bosons mZ and mW (left) and the heavy gauge
bosons mZ′ and mW ′ (right) as a function of the SU(2)R breaking scale vR. Here the masses were
found by numerically solving eqs. (2.22) and (2.23) with gauge couplings given by eq. (2.26) assuming
the normal running of the SM gauge couplings at these energy scales described in appendix D. We
roughly find that vR > 1.2TeV is required for eq. (2.24) to be valid and to ensure the light gauge
fields remain SM-like as indicated by the dashed vertical line, the dashed horizontal lines correspond
to the measured masses of the electroweak gauge fields. We find that the Z ′ gauge field will be
significantly heavier than the W ′ field and a ratio of mZ′/mW ′ ' 3.5. This is due to the additional
mixing effects occurring between the neutral gauge bosons compared to the charged ones.

Note that 〈Φ〉 only contributes to the mass of the vector leptoquark Xµ and otherwise is
completely decoupled from the remaining gauge bosons and fermions.

The gauge couplings of GPS (g4, gL and gR) are related to those of the SM (gc, gw and
gY ) at the scale of PS breaking:

g2
4(µ) = g2

c (µ), g2
L(µ) = g2

w(µ) and g2
R(µ) = 3g2

Y (µ)g2
c (µ)

3g2
c (µ)− 2g2

Y (µ) . (2.26)

As the SU(4) coupling constant is given by the usual colour gauge coupling, at low scales
gc(µ) > gY (µ) and therefore gR(µ) ' gY (µ). Figure 1 plots the masses of the electroweak
gauge bosons of the theory as a function of the SU(2)R breaking scale vR. In order to
decouple vR from significantly impacting the masses of the light, SM-like gauge bosons
we roughly find that vR > 1200GeV is required in order for eq. (2.24) to be a valid
approximation. The heavy neutral gauge boson Z ′ is significantly heavier compared to the
heavy charged gauge boson W ′ and we roughly find a ratio of mZ′/mW ′ ' 3.5 at TeV
scales. Adoption of the hierarchy vΦ � vR would imply that the leptoquark X is heavier
than both the Z ′ andW ′ fields such thatmW ′ < mZ′ � mX . However, were Φ to be absent
or have vΦ < vR, the spectrum of heavy gauge bosons masses would be mW ′ < mX < mZ′

with the ratio mZ′/mX ' 1.3 at TeV scales.

3 Probing Pati-Salam models through rare meson decays

A promising probe of the scale of Pati-Salam breaking is through the contributions of the
gauge and scalar leptoquarks predicted by different realisations of the model to low-energy
hadronic processes. Of particular significance is the gauge boson leptoquark Xµ which must
couple universally to all three generations of fermions. This is unlike the various possible
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qp li

qq lj

XµMpq

Figure 2. Tree-level Feynman diagram of the leptonic decay of a scalar meson Mpq, where qp and
qq correspond to the valence quarks of the meson, to the lepton pair li,j (i, j = e, µ, τ) mediated
by the PS gauge leptoquark Xµ. PS unifies quarks and leptons of similar isospin, therefore the
processes mediated by Xµ at tree-level are easily predicted, e.g. if qq corresponds to an up-type
quark then lj must be a neutrino. The strongest limits on the mass of Xµ arise in the case where
p and q are both down-type quarks, where Mpq = (K0

L, B
0
d, B

0
s , . . . ), and therefore the final state

comprises of charged leptons with opposite sign.

scalar leptoquarks for which the Yukawa couplings to the lighter generations could be
suppressed, perhaps through a flavour symmetry. Additionally as SU(3)c is a subgroup of
the SU(4) appearing in GPS, the coupling strength of the leptoquark Xµ to the SM quarks
is related to that of gc and cannot be treated as a free parameter. Therefore precision
flavour experiments involving the lighter generations provide stringent limits7 on the mass
of the gauge leptoquark Xµ which directly limits the scale of PS breaking (either vΦ or vR)
through eq. (2.24).

3.1 Neutral pseudoscalar meson decays induced by Xµ

The most stringent constraint on the mass of Xµ arises from limits on rare leptonic decays
of pseudoscalar mesons, mediated at tree level by Xµ as shown in figure 2. As Pati-Salam
unifies quarks and leptons with the same SU(2)L/R isospin into the same SU(4) multiplet,
as shown by eq. (2.4), it couples up-type quarks to neutrinos and down-type quarks to
the charged leptons. Therefore the leptonic decay channels induced by Xµ at tree-level
can be predicted based on the valence quark content of the relevant meson. For example,
Xµ will mediate the leptonic decay D0 → νν as both valence quarks are up-type but not
D0 → `+`−. Unsurprisingly the meson decay channels which lead to the most stringent
limits on the mass of Xµ arise from opposite-sign charged-lepton final states where there
is no missing energy, which only occurs in PS for neutral mesons with down-type valence
quarks. As a result, the mass of Xµ is most constrained by measurements of the decays of
K0
L, B

0
d and B0

s mesons whose leptonic decay channels are the most well measured.
7If a scalar leptoquark is present which also mediates the same decay, destructive interference between

the gauge and scalar contribution to the hadronic process can somewhat lower the limits on the mass of
X by up to a factor of 2 [28] depending on the mass(es) and couplings of the relevant scalar(s). In our
analysis we will focus solely on the contribution from the gauge leptoquark and neglect possible regions of
destructive interference with scalar contributions by assuming the masses of the scalars to be heavier than
the gauge leptoquark.
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In appendix B the decay widths for the rare, purely leptonic decays of the relevant
pseudoscalar mesons are calculated. The contribution to the decay widths from the PS
gauge leptoquark in eq. (B.5) depends on both the mass of the leptoquark mX as well as
to the different elements of the CKM-like mixing matrices between d and e, Kde

L/R. These
physical mixing matrices are currently unconstrained and different textures within each
matrix can significantly change the relative strength of specific lepton flavour decay chan-
nels over others for a given meson. As limits and measurements of different processes differ
in sensitivity, the limits on the leptoquark mass (and therefore the scale of PS breaking)
can vary significantly for different choices of the mixing matrices Kde

L/R.
To demonstrate this, we define general unitary matrices for Kde

L/R,

Kde
L/R = K23(θL/R23 , δL/R)K13(θL/R13 )K12(θL/R12 )

=

 c12 c13 c13 s12 s13
−c23 s12 − eiδc12 s13 s23 c12 c23 − eiδs12 s13 s23 eiδc13 s23
−c12 c23 s13 + e−iδs12 s23 −c23 s12 s13 − e−iδc12 s23 c13 c23


L/R

(3.1)

where cx := cos(x) and sx := sin(x) as usual. In principle the matrix Kde
L should contain

all six possible phases as by convention rephasing of quark and lepton fields fixes the
phases appearing in V ckm

L and Ulept
L and therefore no rephasing8 can occur for Kde

L or
Kuν
L . However only one complex phase is important for the discussion below and therefore

we ignore all other possible complex phases which can appear in Kde
L/R.

Table 2 lists the meson decay channels of interest9 alongside either their measured
branching fractions or the current experimental upper limit. Additionally we indicate
which two matrix elements of Kde

L/R are required to be non-zero in order for Xµ to mediate
this process through figure 2. Note that for lepton-flavour violating decays there are two
possible combinations of non-zero matrix elements which mediate a decay which is taken
into account in our calculations. It is clear from table 2 that the decays of K0

L are currently
the most experimentally probed channels, with the lepton-flavour violating decay K0

L → µe

having the most sensitive upper limit of any process.
In contrast the current experimental precision for the decays of B0

d/s is, for most
channels, significantly weaker and will lead to weaker limits. Therefore the lower mass
bound on Xµ will vary most depending on whether the structure of Kde

L/R leads to decays
of K0

L or not. A thorough analysis for general unitary matrices similar to eq. (3.1) for the
PS gauge leptoquark has been performed [29] to find what conditions are required on Kde

L/R

in order to suppress the decays of K0
L, either preventing them completely or significantly

reducing the predicted decay width by removing the helicity-unsuppressed contribution.
8In contrast Kde

R could be chosen to contain one complex phase if the other right-handed physical mixing
matrices are left as general unitary matrices. However a more natural choice of basis would be to rephase
the fields appearing in V ckm

R and U lept
R in analogy with the left-handed mixing matrices.

9All neutral-pesudoscalar mesons will receive a similar contribution however in the cases of other mesons
not listed (such as the π0, η, η′, Υ etc) we find the limits on mX are subdominant compared to the
mesons listed in table 2 when comparing the predicted branching fraction induced by Xµ compared to the
experimental sensitivity.
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Hadronic Process Measured value or upper limit (p, i)(q, j)
B(K0

L → ee) 9.0+6.0
−4.0 × 10−12 (1,1)(2,1)

B(K0
L → µµ) 6.84+0.11

−0.11 × 10−12 (1,2)(2,2)
B(K0

L → µe) < 4.7× 10−12 (1,2)(2,1)/(1,1)(2,2)
B(B0

d → ee) < 8.3× 10−8 (1,1)(3,1)
B(B0

d → µµ) < 3.6× 10−10 (1,2)(3,2)
B(B0

d → ττ) < 2.1× 10−3 (1,3)(3,3)
B(B0

d → µe) < 1.0× 10−9 (1,2)(3,1)/(1,1)(3,2)
B(B0

d → τe) < 2.8× 10−5 (1,3)(3,1)/(1,1)(3,3)
B(B0

d → τµ) < 2.2× 10−5 (1,3)(3,2)/(1,2)(3,3)
B(B0

s → ee) < 2.8× 10−7 (2,1)(3,1)
B(B0

s → µµ) 3.0+0.4
−0.4 × 10−9 (2,2)(3,2)

B(B0
s → ττ) < 6.8× 10−3 (2,3)(3,3)

B(B0
s → µe) < 5.4× 10−9 (2,2)(3,1)/(2,1)(3,2)

B(B0
s → τe) − (2,3)(3,1)/(2,1)(3,3)

B(B0
s → τµ) − (2,2)(3,3)/(3,2)(2,3)

Table 2. Experimental measurements and upper limits on rare leptonic decays of various pseudo-
scalar mesons which form the dominant constraint on the scale of Pati-Salam breaking. The third
column represents which entries of the matrices (Kde

L/R)pi and (Kde
L/R)qj need to be non-zero for

the given decay channel to occur via Xµ where p, q correspond to the valence down-type quarks,
(d, s, b) = (1, 2, 3) and i, j to the final state charged leptons (e, µ, τ) = (1, 2, 3) for the diagram
in figure 2. Lepton-flavour violating decay modes can occur via two different possible diagrams.
For example the process B0

d → µe can arise from the (3, 1) and (1, 2) entries which corresponds to
the couplings b /Xe and d /Xµ leading to B0

d → µ−e+, but can also have a contribution from (3, 2)
and (1, 1) which corresponds to b /Xµ and d /Xe and leads to B0

d → e−µ+.

Two possible scenarios were found. Firstly if

θL23 = θR23 = π

2 , θL13 = θR13 = θ, δL = δ and δR = π − δ (3.2)

is satisfied by eq. (3.1), this leads to

Kde
L =


cL12 cθ sL12 cθ sθ

−eiδcL12 sθ −eiδsL12 sθ eiδcθ

e-iδsL12 −e-iδcL12 0

 and Kde
R =


cR12 cθ sR12 cθ sθ

e-iδcR12 sθ e-iδsR12 sθ −e-iδcθ
−eiδsR12 eiδcR12 0

 .
(3.3)

These matrix structures will not completely prevent the decays of K0
L. However, they will

prevent the helicity-unsuppressed terms from contributing and therefore will be suppressed
by the final-state lepton masses similar to weak decays in the SM. Note that all the entries
of the upper-left 2 × 2 block of Kde

L/R are non-zero, but an important cancellation in the
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amplitude arises as δL/R are exactly out of phase. Note that the (3, 3) entry of both matrices
is zero and therefore for this scenario the decays B0

d → ττ and B0
s → ττ cannot occur. It

is interesting to note that if δ is maximally CP violating then the helicity unsuppressed
contribution completely disappears and therefore there is no contribution to the decay of
K0
L, whereas the helicity-suppressed contribution to this decay is maximised if δ is CP

conserving.
Alternatively the desired decays can be completely prevented with the simple condition

θL13 = θR13 = π

2 (3.4)

which leads to

Kde
L/R =


0 0 1

−c23 s12 − eiδc12 s23 c12 c23 − eiδs12 s23 0
−c12 c23 + e-iδs12 s23 −c23 s12 − e-iδc12 s23 0


L/R

. (3.5)

Here the decays of K0
L trivially do not occur as both the (1, 1) and (1, 2) entries of Kde

L/R are
exactly zero and as can be seen in table 2, Xµ will not mediate the relevant decays. Similar
to the previous scenario the decays B0

d → ττ and B0
s → ττ do not occur. Additionally, the

processes B0
d → (ee, µµ, τe) and B0

s → (τe, τµ) will not occur as the (2, 3) entry is also
zero. Therefore, for low-scale PS, the suppressed decay channels for B0

d/s → ττ are directly
correlated with suppressed decays of K0

L. Increasing the experimental sensitivity of these
channels could therefore provide a powerful test of PS, especially if a non-SM signal was
detected in these channels as no such signal has been seen in the decays of K0

L.
In both scenarios above which lead to the lowest possible limits on the PS gauge

leptoquark, the matrices Kde
L and Kde

R are required to have a similar structure to each
other. The first scenario allows for only four free parameters between the two matrices
whereas in the second scenario six free parameters exist. In order for both these matrices
(which are naïvely unrelated) to have the same structure suggests that a parity symmetry
must be enforced at some scale. The two matrices do not have to be exactly equal to
each other, although this is also possible. However in both scenarios at least one angle
has to be identical for both matrices. As discussed previously it has been found that
enforcing a parity symmetry alongside the PS gauge groups requires parity to be broken at
O(1012)GeV or higher [3, 18]. As we are interested in minimising the scale of PS breaking
it would seem quite coincidental for both Kde

L and Kde
R to be so similar at low scales (and

rather unlikely for them to be exactly equal) with such a high scale of parity breaking.
However, this requires a full analysis of the running of the relevant mixing angles which we
will not explore further. It may be possible that at some high scale Kde

L/R are equal to each
other and after parity breaking some (all) angles are insensitive to running effects whereas
others (none) run significantly, leading to the desired form for the mixing matrices.

In addition to the two scenarios above which completely prevent Xµ from inducing
decays of K0

L we identify two additional scenarios which would prevent the LFV decay
K0
L → µe but not necessarily the decays K0

L → ee or K0
L → µµ. For example if the

conditions
θL12 = θR12 = 0 and θL23 = θR23 = π

2 (3.6)
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are satisfied, this leads to

Kde
L/R =


c13 0 s13

−eiδs13 0 eiδc13

0 −e-iδ 0


L/R

, (3.7)

and the decays K0
L → µe and K0

L → µµ do not occur via Xµ. However the decay K0
L → ee

does occur as suggested by table 2. Similarly if

θL12 = θR12 = π

2 and θL23 = θR23 = π

2 (3.8)

is satisfied, this leads to

Kde
L/R =


0 c13 s13

0 −eiδs13 e
iδc13

e-iδ 0 0


L/R

. (3.9)

The decays K0
L → µe and K0

L → ee will not occur, but K0
L → µµ will, forming a strong

constraint on the mass of Xµ.
Finally as the decay channel K0

L → µe is currently the most precisely constrained of
all relevant meson decay channels the largest lower bound on the mass of Xµ will occur
for Kde

L/R which have a form that maximises this particular decay channel. Table 2, which
indicates which entries of Kde

L/R mediate this decay, suggests that if for example the mixing
matrices were given by

Kde
L/R =

1 0 0
0 1 0
0 0 1

 (3.10)

then the contribution to the decay channel would be maximised. Therefore the current
mass limits on the PS gauge leptoquark (and the breaking scale) can fluctuate between
the mass limits obtained if the mixing matrices are given by eqs. (3.3) and (3.5) up to the
limits obtained if the matrices are given by eq. (3.10).

Table 3 shows the calculated lower bound on the gauge leptoquark masses for the
relevant decay channel with different choices of Kde

L/R corresponding to the five scenarios
above. Maximising the leptoquark’s contribution to K0

L → µe as in eq. (3.10) leads to limits
on the gauge leptoquark mass of roughly 2500TeV, similar to previous studies [17, 30, 31].
The other non-zero decays in this case indicate which other channels will occur in this
scenario: B0

d → τe and B0
s → τµ. More realistically we would expect the matrices Kde

L/R

to be approximately diagonal rather than exactly, and therefore other processes would also
be mediated by Xµ, but the three listed would have the strongest signals.

If Kde
L/R is of the form described in eq. (3.3), decays of K0

L still occur but are helicity
suppressed. This reduces the limits obtained from 2500TeV down to O(100)TeV (with
some sensitivity to the free mixing angles) where notably the channel K0

L → ee leads to
limits on the gauge leptoquark mass of O(10)TeV. This significant reduction compared
to other channels of K0

L is due to the helicity-suppression of electron final states being
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Kde
L =Kde

R =13×3 scenario 1 scenario 2 scenario 3 scenario 4

B(K0
L→ ee) 0 13κKee

1 TeV 0 1817κKee

3 TeV 0
B(K0

L→µµ) 0 177κKµµ

1 TeV 0 0 1900κKµµ

4 TeV
B(K0

L→µe) 2467TeV 230κKµe

1 TeV 0 0 0

B(B0
d→ ee) 0 39.7κBee1 TeV 0 0 0

B(B0
d→µµ) 0 151κBµµ1 TeV 0 0 0

B(B0
d→ ττ) 0 0 0 0 0

B(B0
d→µe) 0 140κBµe1 TeV 0 140κBµe3 TeV 140κBµe4 TeV

B(B0
d→ τe) 12.1TeV 10.6κBτe1 TeV 10.6κBτe2 TeV 0 10.6κBτe4 TeV

B(B0
d→ τµ) 0 11.3κBτµ1 TeV 11.3κBτµ2 TeV 11.3κBτµ3 TeV 0

B(B0
s→ ee) 0 29.5κB

ee
s

1 TeV 29.5κB
ee
s

2 TeV 0 0

B(B0
s→µµ) 0 90.0κB

µµ
s

1 TeV 90.0κB
µµ
s

2 TeV 0
B(B0

s→ ττ) 0 0 0 0 0

B(B0
s→µe) 0 92.3κB

µe
s

1 TeV 92.3κB
µe
s

2 TeV 92.3κB
µe
s

3 TeV 92.3κB
µe
s

4 TeV
B(B0

s→ τe) 0 − 0 0 −
B(B0

s→ τµ) − − 0 − 0

Table 3. Limits on the gauge leptoquark mass mX compared to current measurements (or upper
limits) for the mesons K0

L, B0
d and B0

s . Each column represents different choices for the matrices
Kde
L/R where scenarios 1–4 are given by eqs. (3.3), (3.5), (3.7) and (3.9) respectively. Each scenario

corresponds to possible structures of the mixing matrices which would in some way suppress the
decays of K0

L. In scenario 1 the decays to K0
L are non-zero albeit helicity-suppressed, leading to

mass limits similar to what is obtained from decays of B0
d and B0

s . Scenario 2 completely suppresses
the decays of K0

L and the most significant mass limits now come from the decays of B0
s . Scenario 3

and 4 correspond to examples of mixing matrices which would suppress the decay channel K0
L→µe

but not K0
L→ ee or K0

L→µµ which would form the dominant limit. The first column represents a
scenario which maximises the rate of K0

L→µe decays leading to the largest mass limit on Xµ. In
all the scenarios above the parameter κXα corresponds to the combination of mixing angles relevant
to that decay chain. We find the lower bound on the PS breaking scale to be no smaller than
O(100)TeV. For the final two channels B0

s→ τe/τµ there are currently no measured upper bounds,
however non-zero contributions to these channels are indicated by ‘−’ and their future measurement
will form a constraint for a given choice of Kde

L/R.

significantly larger than for muon final states. For this scenario neglecting the electron
and muon mass, as was done in [29], would suggest that Xµ does not mediate K0

L decays.
However, we find when included they lead to comparable limits for mX to the helicity-
unsuppressed B0

d and B0
s decays. This is due to the larger experimental precision obtained

for K0
L decays and therefore we find that the muon mass cannot be ignored. As mentioned

previously, if δ is maximally violating the helicity-unsuppressed decays of K0
L are forbidden

and in this limit the results of [29] remain valid.
If the mixing matrices are given by eq. (3.5), decays of K0

L do not occur via Xµ either
helicity-suppressed or -unsuppressed. Only five decay channels are non-zero in this scenario
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and the dominant mass limit will arise from decays of B0
s and are of similar order to the

previous scenario: mX ∼ O(100)TeV. The final two scenarios described by eqs. (3.7)
and (3.9) completely suppress the channel K0

L → µe but does not suppress the lepton-
flavour conserving channels of K0

L. Here the resulting mass limits are O(1900)TeV unless
the mixing angles in κ were significantly tuned (e.g. θL12 ' −θR12) in order to suppress
these channels. In all cases the last two channels B0

s → τe and B0
s → τµ are currently

unconstrained by measurement and therefore do not lead to limits on mX . In cases were a
scenario predicts a contribution to these channels, future measurement will be a relevant
constraint which we indicate in table 3 by ‘−’.

For simplicity, the interference between the SM and PS contributions to the decay
channels with lepton-flavour conserving final states has not been calculated. As the PS
contribution to the decay rate is inversely proportional to the fourth power of mX , the decay
rate will decrease by orders of magnitude for small increases in mX . The derived lower
bound on mX from such channels should be understood as a conservative lower bound
and will slightly change by order one factors once the SM contribution is incorporated.
Obviously when the dominant limit arises from a LFV decay channel no such interference
occurs and the derived limit can be considered even more robust.

In all cases, non-zero decay channels listed in table 3 come with factors of κ correspond-
ing to the combination of mixing angles arising from Kde

L/R. These expressions, particularly
in the cases of scenario 1 and 2, are quite complicated due to the large number of free pa-
rameters allowed. Therefore minimising the decay widths as a function of the free mixing
angles is difficult. Instead, we perform a numerical scan of the free parameters in order to
estimate the maximum and minimum lower bound on the mass of Xµ for a given scenario.

Tables 4 and 5 explicitly calculate the leptoquark mass limits for different choices of
the mixing angles appearing in scenario 1 and 2 ordered from largest to smallest limits. The
limit on the leptoquark mass varies for different choices but not significantly. The decay
channel which forms the dominant constraint also varies for different choices of angles,
which we indicate. A numerical scan over the parameter space shows that for scenario 1
the mass limits on Xµ vary from 81–177TeV for different values of the mixing angles. The
fourth entry of table 4 is a benchmark taken from [29] who found in their case a lower bound
mass limit of 86TeV compared to the 117TeV we find. In their analysis they neglected the
final-state muon mass and therefore assumed no induced decays of K0

L from Xµ, whereas
we find, when included, it forms the dominant constraint. When neglected we find a limit
of 84TeV from the process B0

d/s → µµ in full agreement with [29]. For table 4 we find that,
though helicity-suppressed, decays of K0

L are important to consider for PS breaking limits.
For the case of scenario 2 we conducted a similar scan of parameters and found the mass
limits on Xµ varies roughly from 84–102TeV as indicated by table 5.

3.2 Fermion mass degeneracy

Although the dominant constraint on the PS breaking scale arises from pseudoscalar meson
decays, a secondary requirement for a viable Pati-Salam model is to address the lack of
mass degeneracy between fermion pairs with the same SU(2)L/R isospin. As indicated
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scenario 1 Limit on mX Dominant channel
θL12 = 3π

2 , θ
R
12 = 2π, θ = 7π

4 , δ = π 177TeV K0
L → µµ

θL12 = π
4 , θ

R
12 = π

4 , θ = π
4 , δ = 0 164TeV K0

L → µe

θL12 = π
2 , θ

R
12 = π

8 , θ = 0, δ = π
2 145TeV B0

d → µµ

θL12 = 0, θR12 = 0.81, θ = 1.183, δ = 0 117TeV K0
L → µe

θL12 = π
4 , θ

R
12 = π

4 , θ = π
4 , δ = π

2 107TeV B0
d → µµ

θL12 = 2.06, θR12 = 2.4, θ = 5.11, δ = 4.58 81TeV B0
s → µe

Table 4. Limits obtained for the gauge leptoquark mass Xµ for different choices of the mixing
angles appearing in eq. (3.3) ordered from largest to smallest. The decay process from which the
dominant limit arises is also listed. In some cases, even though it is helicity-supressed, the dominant
limit will still arise from K0

L decays. The angles in the fourth row were first used in [29] from which
they obtained a limit of 86TeV from B0

d/s → µµ when the muon and electron mass were neglected.
We find similar limits however we highlight the importance of including the muon mass as the
channel K0

L → µe still forms the dominant limit for this scenario. A numerical scan finds the limits
in this scenario can vary from 81–177TeV.

scenario 2 Limit on
mX

Dominant
channel

θL12 = 2.4, θR12 = 2.3, θL23 = π
2 , θ

R
23 = 0, δL = 2π, δR = 2.77 102TeV B0

s → µe

θL12 = π
9 , θ

R
12 = π

2 , θ
L
23 = 1, θR23 = 0, δL/R = 0 100TeV B0

s → µe

θL12 = π
3 , θ

R
12 = π

6 , θ
L
23 = π

2 , θ
R
23 = 1, δL/R = 0 92TeV B0

s → µµ

θL12 = π
3 , θ

R
12 = π

6 , θ
L
23 = π

2 , θ
R
23 = 1, δL/R = π

2 86TeV B0
s → µµ

θL12 = π
4 , θ

R
12 = π

8 , θ
L
23 = 0, θR23 = 0, δL/R = 0 85TeV B0

s → µe

θL12 = 0.72, θR12 = 3.05, θL23 = 4.02, θR23 = 2π, δL = 0, δR = 3π
2 84TeV B0

s → µe

Table 5. Limits obtained for the gauge leptoquark mass Xµ for some different choices of mixing
angles appearing in eq. (3.5) ordered from largest to smallest. The decay process from which
the dominant limit arises is also listed. Here the decays of K0

L are completely forbidden and the
dominant limit will always arise either from B0

s → µµ or B0
s → µe. Through a numerical scan

we find the mass of the PS leptoquark varies between roughly 84–102TeV depending on different
choices of mixing angles, a much closer range compared to the results of Scenario 2.

by eq. (2.16) the simplest PS models lead to the fermion mass relations

md = me and mu = mDirac
ν (3.11)

for all three generations of SM fermions.
Comparing this prediction to the measured masses of the down-isospin fermions shown

in table 6 for the different generations at different energy scales demonstrates that this tree-
level relation must be broken. As discussed previously, the mass relation between the up-
isospin components can be easily broken due to seesaw mixing in the neutral fermion sector
as demonstrated in section 2.2. In the case of the down-isospin components, with no addi-
tional particle content, the mass relation is unbroken at tree level and holds at the scale of
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µ = mZ µ = 1TeV µ = 10TeV µ = 100TeV µ = 1000TeV
me/md 0.177 0.205 0.230 0.251 0.271
mµ/ms 1.891 2.195 2.454 2.688 2.902
mτ/mb 0.612 0.724 0.823 0.913 0.997

Table 6. Measured mass ratios me/md for each generation at fixed energy scales µ at one-loop and
assuming SM running of the Yukawas. Additional details of the running calculations performed can
be found in appendix D.

PS breaking. In scenarios where PS is broken at high scales, this relation could potentially
be viable as threshold effects as well as renormalisation group running can potentially be
sufficient to explain the observed mass differences of the different generations. PS breaking
scales as low as O(1000)TeV can explain the bottom and tau lepton mass differences [32]
as the two Yukawa couplings unify at around this scale. It therefore could be possible for
high-scale PS models to explain the mass differences between all three generations in the
same way. Table 6 shows that for PS breaking scales below 1000TeV the different gen-
erations of down-quark and charged-lepton Yukawa couplings cannot be equal at the PS
breaking scale and therefore there should be some tree-level explanation for their difference.

The mass relations can be broken at tree level by the existence of additional particle
content, either scalar or fermion, necessarily transforming as complete PS multiplets above
the scale of PS breaking. For example, the inclusion of a scalar (15,2,2) Higgs particle,
sometimes referred to as the Minimal Quark-Lepton Symmetric Model (MQLS), which has
a non-zero vev will induce a Georgi-Jarlskog like texture [33] lifting the degeneracy between
the down quark and charged lepton masses [1, 2]. The additional Yukawa couplings results
in enough freedom such that the mass ratios measured and shown in table 6 can arise.

We explore an alternative possibility first noted in [4, 5] where additional anomaly-
free fermion multiplets transforming under the PS gauge group are introduced. If the
additional multiplets contain components with the same quantum numbers as the down
quarks or charged leptons, mixing effects could induce a see-saw which can decouple the
down-quark and charged-lepton Yukawas, breaking the tree-level mass relations obtained
without their inclusion. In this scenario, both the up- and down-isospin components have
their PS mass relations broken due to see-saw effects, so the breaking of the mass relations
between all SM fermions is explained by a similar mechanism.

An additional consequence of introducing extra fermionic states is that they can cause
the gauge boson leptoquark Xµ to couple in a chiral-like way to the light SM-like fermions.
As an example, consider the introduction of fermion multiplets FL/R that contain compo-
nents E−L/R that have the same quantum numbers as the SM charged leptons:

fL/R =


ur dr
ub db
ug dg
νe e


L/R

⊕ FL/R =


. . .

... . . .
E−L/R

. . .

 . (3.12)

Here both E−L and E−R are required phenomenologically such that no massless charged
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fermion states appear and the exotic multiplets FL and FR need not transform in the same
way. However, the combination must be anomaly free.

If Yukawa interactions connecting the multiplets FL/R and fL/R exist, mass mixing
will be induced as per

LeE =
(
eL EL

)(mee meE

mEe mEE

)(
eR
ER

)
+ H.c. (3.13)

Diagonalising into the mass basis for the charged fermions leads to

(e′L/R)l = cθL/ReL/R + sθL/REL/R (E′L/R)h = −sθL/ReL/R + cθL/REL/R (3.14)

where the subscripts l and h indicate the light and heavy eigenstates respectively. The
pseudoscalar meson decays discussed above are induced by the gauge leptoquark interac-
tions between the colour triplet d and charged lepton e from the multiplet fL/R.

Expanding eq. (B.2) with eq. (3.14) leads to

LXde = g4√
2

(
d′Kde

L /XPL(cθLe′ − sθLE′)) + d′Kde
R /XPR(cθRe′ − sθRE′)

)
+ H.c. (3.15)

for the gauge interactions in the mass basis where generational indices have been suppressed
for simplicity. Because of phenomenological constraints, any fermions with SM quantum
numbers must be significantly heavier than the pseudoscalar mesons whose decays sup-
ply the dominant constraint on PS breaking; therefore, processes such as K0

L → EE or
K0
L → eE are kinematically forbidden. The decay K0

L → ee will exist as before, but now
suppressed by the relevant mass mixing angles. Therefore the only relevant interactions in
eq. (3.15) for meson decay are

LXde ⊃
g4√

2

(
d′ (cθLKde

L ) /XPLe′ + d′ (cθRKde
R ) /XPRe′

)
+ H.c. (3.16)

which will lead to a decay rate given by eqs. (B.14) and (B.16) with the replacement
Kde
L/R → K

de
L/R = cθL/RK

de
L/R. As the mixing angles θL and θR can significantly differ,

this can effectively lead to a chiral coupling between Xµ and the fermions d and e causing
a suppression in the helicity-unsupressed contribution of the total meson decay rates in
eq. (B.5). This therefore allows for an overall weaker lower bound on the leptoquark mass
compared to those in table 3 and therefore the scale of PS breaking. As noted previously,
however, in order to significantly helicity-suppress the decays mediated by Xµ, one of the
angles θL/R is required to be very small e.g. θR . 10−4 in the case of K0

L → µe decays.
Table 7 demonstrates the impact this can have on the mass limits in the extreme

case of an exactly chiral theory (mE → ∞) where for example cθL = 1 and cθR = 0
for all three generations,10 assuming the same matrix textures for Kde

L/R as in table 3.
The leptoquark mass limits are significantly lowered compared to table 3 as the helicity
unsuppressed contribution from eq. (B.14) no longer contributes and therefore the decay

10These limits are also valid for scenarios where quark-lepton unification occurs for only one chirality of
fermions, e.g. a gauge group given by SU(4)L × SU(3)R × SU(2)L × SU(2)R → SU(3)c × SU(2)L × SU(2)R
where the vector leptoquark X couples to only one chirality of fermions.
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Kde
L = 13×3 scenario 1 scenario 2 scenario 3 scenario 4

B(K0
L → ee) 0 13κKee

1 TeV 0 13κKee

3 TeV 0
B(K0

L → µµ) 0 177κKµµ

1 TeV 0 0 177κKµµ

4 TeV
B(K0

L → µe) 194TeV 230κKµe

1 TeV 0 0 0
B(B0

d → ee) 0 0.2κBee1 TeV 0 0 0
B(B0

d → µµ) 0 10.8κBµµ1 TeV 0 0 0
B(B0

d → ττ) 0 0 0 0 0
B(B0

d → µe) 0 10.0κBµe1 TeV 0 10.0κBµe3 TeV 10.0κBµe4 TeV
B(B0

d → τe) 2.7TeV 3.2κBτe1 TeV 3.2κBτe2 TeV 0 3.2κBτe4 TeV
B(B0

d → τµ) 0 3.2κBτµ1 TeV 3.2κBτµ2 TeV 3.2κBτµ3 TeV 0

B(B0
s → ee) 0 0.2κB

ee
s

1 TeV 0.2κB
ee
s

2 TeV 0 0

B(B0
s → µµ) 0 6.5κB

µµ
s

1 TeV 6.5κB
µµ
s

2 TeV 0
B(B0

s → ττ) 0 0 0 0 0

B(B0
s → µe) 0 6.7κB

µe
s

1 TeV 6.7κB
µe
s

2 TeV 6.7κB
µe
s

3 TeV 6.7κB
µe
s

4 TeV
B(B0

s → τe) 0 − 0 0 −
B(B0

s → τµ) − − 0 − 0

Table 7. Limits on the gauge leptoquark mass mX compared to current measurements (or upper
limits) for the mesons K0

L, B0
d and B0

s in the chiral limit (e.g. cθR
= 0) where all decays are now

helicity suppressed. Eeach scenario is given by eqs. (3.3), (3.5), (3.7) and (3.9) respectively. As
all decays are now helicity-suppressed, the dominant decay channel in scenario 1 will arise from
K0
L → µe unless forbidden by a specific choice of κ. As Scenario 2 completely suppresses the

decays of K0
L and now the decays of B0

d/s are helicity-suppressed, the limits on the leptoquark mass
quite substantially decrease, similarly the limits from scenarios 3 and are significantly reduced.
In particular scenario 3 allows for incredibly low mass scales due to the large helicity-suppression
present for electron final-states. The first column represents a scenario which maximises the rate of
K0
L → µe decays leading to the largest mass limit on Xµ which in this case is roughly 200TeV. In

all the scenarios above the parameter κXα corresponds to the combination of mixing angles relevant
to that decay chain. We find the lower bound on the PS breaking scale to be no smaller than
O(10)TeV. For the final two channels B0

s → τe/τµ there are currently no measured upper bounds,
however non-zero contributions to these channels are indicated by ‘−’ and their future measurement
will form a constraint for a given choice of Kde

L/R.

rate is suppressed by the charged lepton masses. Scenario 1, which already had helicity-
suppressed K0

L decays, will have its limits largely unchanged except for when the dominant
channel arises from B0

d/s. If there are no contributions to the decays of K0
L, as in scenario

2, then the helicity suppression on the other decay channels allows for PS breaking scales
as low as O(10)TeV. Interestingly, in these scenarios with a chiral-like coupled Xµ, if there
is a significant contribution to K0

L → ee, then the limits are significantly smaller compared
to K0

L → µµ[µe] due to the large helicity-suppression present for the electron. Therefore
with the presence of exotic fermion multiplets, a signficant contribution to K0

L decays can
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be possible with small leptoquark masses provided it only couples K0
L to electrons. This is

unlike the case without mass mixing where any induced decay for K0
L by Xµ causes mass

limits larger than 1000TeV irrespective of the final decay product. In such a chiral scenario
only one of Kde

L and Kde
R is required to have a matrix structure given by each indicated

scenario as the other is significantly suppressed through seesaw effects. Therefore for
scenarios involving charged-lepton or down-quark seesaws, Kde

L/R do not need to be related
and therefore no parity symmetry needs to be imposed at a high scale.

In tables 8 and 9 the limits onmX are re-evaluated for the same benchmark scenarios in
tables 4 and 5 now assuming an exact helicity suppression. In both scenarios a significant
reduction in the mass limits can occur. This reduction occurs for any choice of mixing
angles in scenario 2, whereas in scenario 1, a significant reduction occurs only when the
dominant decay channel comes from either B0

d or B0
s . In general a reduction in the limits on

mX by a factor of 0.05–0.07 naturally occurs compared to the scenario without additional
mass mixing. We find that the limits on mX can be as low as 5TeV potentially allowing for
discovery signals of different PS particles comfortably within reach of current and possible
future hadron colliders.

Exotic fermion multiplets are therefore an attractive feature for low scale Pati Salam
models. It is curious that they allow for significantly lighter PS breaking scales whilst also
potentially breaking the mass degeneracy amongst the down-isospin fermions. This effect
is possible not only for mixing between the charged leptons as discussed above, but also
if heavy versions of the down quarks, D, were to be included which mix with the light d
quarks. This would lead to a similar reduction in the mass limits on Xµ as above for the
same reasons.

4 Exotic PS fermion multiplets

As discussed above, exotic PS fermion multiplets which contain states with the correct
quantum numbers to mix with the charged leptons or down quarks can simultaneously ex-
plain the experimentally observed mass non-degeneracy between these two types of fermions
as well as lower the phenomenologically-allowed scale of PS breaking. A number of differ-
ent viable PS multiplets are possible; for consistency we require that the multiplets added
do not introduce anomalies and that they allow for a phenomenologically valid mass spec-
trum. For simplicity we focus on small multiplets which transform with no more than two
indices total under all three gauge groups when written in their defining representations.
All possible combinations satisfying this requirement are listed in table 10. We take the
scalar content of the theory to remain unchanged but will note where additional exotic
scalars may be required for a viable model in some cases. Although the PS gauge group
is an attractive subgroup of some GUTs e.g. SO(10) or E6, we will not require success-
ful gauge-coupling unification or partial unification. We will not consider the location of
Landau poles11 or require that the extra exotic fermions fit into complete GUT multiplets.

11These would further motivate considering multiplets of small dimensionality as large multiplets will
have a much more significant impact on RGE evolution relevant for viable GUT theories.
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scenario 1 Limit on mX Reduction Dominant
channel

θL12 = 3π
2 , θ = 7π

4 , δ = π 177TeV 1 K0
L → µµ

θL12 = π
4 , θ = π

4 , δ = 0 139TeV 0.85 K0
L → µe

θL12 = 2.06, θ = 5.11, δ = 4.58 51TeV 0.63 K0
L → µµ

θL12 = 0, θ = 1.183, δ = 0 11TeV 0.09 K0
L → ee

θL12 = π
2 , θ = 0, δ = π

2 8.5TeV 0.06 B0
d → µe

θL12 = π
4 , θ = π

4 , δ = π
2 7.8TeV 0.07 B0

d → µµ

Table 8. Limits obtained for the gauge leptoquark mass Xµ for different choices of the mixing
angles appearing in eq. (3.3) with an exact helicity suppression where we have chosen Kde

R = 03×3.
The decay process from which the dominant limit arises is also listed as well as the percentage
reduction from the non-helicity suppressed scenario given in table 4. In some cases only a small
reduction in the mass limits occurs, this is a result of the Kaon decay channels being helicitiy
suppressed as a result of the structure of the mixing matrices instead of due to a chiral coupling of
Xµ. Only the benchmark scenarios which initially had dominant decay channels arising from Bd or
Bs experience a significant reduction in their limits as they were initially not helicity suppressed.

scenario 2 Limit on mX Reduction Dominant
channel

θL12 = 2.4, θL23 = π
2 , δ

L = 2π 6.2TeV 0.06 B0
s → µe

θL12 = π
9 , θ

L
23 = 1, δL = 0 6.0TeV 0.06 B0

s → µe

θL12 = π
4 , θ

L
23 = 0, δL = 0 6.0TeV 0.07 B0

s → µe

θL12 = 0.72, θL23 = 4.02, δL = 0 5.9TeV 0.07 B0
s → µe

θL12 = π
3 , θ

L
23 = π

2 , δ
L = 0 5.6TeV 0.06 B0

s → µµ

θL12 = π
3 , θ

L
23 = π

2 , δ
L = π

2 5.6TeV 0.065 B0
s → µµ

Table 9. Limits obtained for the gauge leptoquark mass Xµ for some different choices of mixing
angles appearing in eq. (3.5) with an exact helicity suppression where we have chosen Kde

R = 03×3.
The decay process from which the dominant limit arises is also listed as well as the percentage
reduction from the non helicity-suppressed scenarios in table 5. Each benchmark experiences a
significant reduction in their mass limits of over an order of magnitude allowing for extremely light
masses of Xµ and significantly lower scales of PS breaking.

We simply focus on the specific particle content required at low scales sufficient to lift the
mass degeneracy between ` and d and simultaneously lower the scale of PS breaking.

4.1 Fermion extensions

Considering the relevant exotic multiplets indicated in table 10, below we study basic
phenomenological implications of introducing each given multiplet. We indicate heavy,
exotic versions of down quarks, charged leptons and neutrinos by D, E and N respectively.
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PS multiplet A(R) SU(3)⊗U(1)Q decomposition Candidate
fa (1,2,1) 0 1−1/2 ⊕ 1+1/2 6

fα (1,1,2) 0 1−1/2 ⊕ 1+1/2 6

fA (4,1,1) ±1 1−1/2 ⊕ 3+1/6 6

fab (1,3,1) 0 1−1 ⊕ 10 ⊕ 1+1 4

fαβ (1,1,3) 0 1−1 ⊕ 10 ⊕ 1+1 4

fAB (6,1,1) 0 3−1/3 ⊕ 3+1/3 4

fAB (10,1,1) ±8 1−1 ⊕ 3−1/3 ⊕ 6+1/3 4

fAB (15,1,1) 0 3−2/3 ⊕ 10 ⊕ 80 ⊕ 3+2/3 6

faα (1,2,2) 0 1−1 ⊕ 10 ⊕ 10 ⊕ 1+1 4

fAa (4,2,1) ±2 1−1 ⊕ 3−1/3 ⊕ 10 ⊕ 3+2/3 4

fAα (4,1,2) ±2 1−1 ⊕ 3−1/3 ⊕ 10 ⊕ 3+2/3 4

Table 10. Different dimensional representations of fermions f (with indices in their defining rep-
resentation) under PS where a, α and A correspond to SU(2)L, SU(2)R and SU(4)c indices respec-
tively. Multiplets are considered good candidates if they contain states with the same quantum
numbers as either the down quarks or charged leptons, which will mix with its SM counterpart,
when broken to SU(3)c⊗U(1)Q. Additionally the SU(4) anomaly coefficient A(R) for each fermion
is indicated where the sign depends on whether the fermion is left- or right-handed.

We will also briefly comment on the implications for baryon number violation in each case.
As we are only introducing exotic fermions, the Yukawa sector of the Lagrangian is the
only possible area where additional violation could arise.

4.1.1 SU(2)L/R triplets

If a triplet fermion is added, for example ΨR
3 ∼ (1,1,3), the extra terms appearing in the

Yukawa Lagrangian are

Lyuk ⊃ Tr
[√

2yΨ3
(ΨR

3 )cχ†RfR + 1
2µΨ3

(ΨR
3 )c (ΨR

3 )T
]

+ H.c. (4.1)

As ΨR
3 is uncharged under the colour group SU(4)c, it contains no quark states. However,

it contains components which can mix with both the charged and neutral SM leptons

fL/R =


· ·
· ·
· ·
ν e


L/R

, ΨR
3 = 1√

2

(
NR

√
2 (E−L )c√

2E−R −NR

)
(4.2)

where the dotted components of fL/R do not mix with ΨR
3 but the undotted do and

ΨR
3 → UR ΨR

3 U
†
R. Here we have assigned ΨR

3 to be a right-handed fermion without loss of
generality. Expanding out eqs. (2.15) and (4.1) with the parameterisation given in eq. (4.2)
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leads to a mixing matrix given by

LeE =
(
eL EL

)( me 0√
2 yRΨ3

v∗R µΨR3

)(
eR
ER

)
(4.3)

for the charged lepton states and

LνN = 1
2
(
νL νcR N c

R

) 0 mu 0
mu 0 yRΨ3

v∗R
0 yRΨ3

v∗R µΨR3


 ν

c
L

νR
NR

 (4.4)

for the neutral states. If fL, fR and Ψ are the only fermions introduced, the PS symmetry
enforces that the singular values of md and mu are given by the down and up quark
masses respectively. Eq. (4.4) assumes that the fermion singlets SL discussed in section 2,
appearing in the usual low-scale PS scenario, are not included. As can be seen from the
neutrino mass mixing matrix, SL may no longer be necessary for light neutrino masses as
an inverse seesaw arises naturally with the triplet. We therefore neglect SL, and if it were to
be included eq. (4.4) would be trivially extended by the last row and column of eq. (2.17).

The terms introduced in eq. (4.1) do not violate the global U(1)J symmetry which
eq. (2.15) obeys and is the only global accidental symmetry of this Yukawa Lagrangian.
These terms unsurprisingly enforce the assignment

J(ΨR
3 ) = 0 (4.5)

as ΨR
3 transforms as a real representation. Therefore baryon number remains an unbro-

ken global symmetry of the Yukawa sector similar to the vanilla scenario described in ap-
pendix A. Interestingly if the singlet SL is not included, the scalar χL no longer Yukawa cou-
ples to any of the fermions and the relevant term of the scalar potential given in eq. (A.10)
no longer violates the U(1)J global symmetry as we are free to choose J(χL) = −1. The
proton would therefore remain absolutely stable (assuming no additional particle content)
after breaking of the PS symmetry, whereas lepton number would be broken.

If instead an SU(2)L triplet fermion ΨL
3 was introduced, similar conclusions are reached

related to the leptonic mass mixing matrices and baryon number violation.12 The Yukawa
Lagrangian in this case is similar to the one appearing in eq. (4.1) with the replacements
ΨR

3 → (ΨL
3 )c, χR → (χL)∗ and fR → (fL)c leading to the mixing matrix

LeE =
(
eL EL

)(me

√
2 yLΨ3

vL
0 µΨL3

)(
eR
ER

)
(4.6)

for the charged lepton states and

LνN = 1
2
(
νL νcR NL

) 0 mu y
L
Ψ3
vL

mu 0 0
yLΨ3

vL 0 µΨL3


 ν

c
L

νR
N c
L

 (4.7)

for the neutral states.
12However if both ΨL

3 and ΨR
3 are included simultaneously, the Yukawa Lagrangian enforces J(χL) =

J(χR) = 1 and the relevant quartic term of the scalar potential would once again violate U(1)J and therefore
B regardless of the existence of SL.
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If both ΨL
3 and ΨR

3 are included simultaneously the mass mixing matrices for the
charged and neutral sectors are simply a combination of eqs. (4.3), (4.4), (4.6) and (4.7).
Explicitly writing out the mass mixing matrices gives

LeEE =
(
eL EL EL

)
me 0

√
2 yLΨ3

vL√
2 yRΨ3

vR µΨR3
0

0 0 µΨL3


eRER
ER

 (4.8)

for the charged leptons, where EL/R and EL/R correspond to the charged lepton states
appearing in ΨR

3 and ΨL
3 respectively, and

LνN = 1
2
(
νL νcR NL N c

R

)


0 mu yLΨ3
vL 0

mu 0 0 yRΨ3
v∗R

yLΨ3
vL 0 µΨL3

0
0 yRΨ3

v∗R 0 µΨR3



νcL
νR
N c
L

NR

 (4.9)

for the neutral states.

4.1.2 SU(2)L/SU(2)R bi-doublet

If a fermion transforming as a bi-doublet under the two SU(2) gauge groups of PS
Ψ22 ∼ (1,2,2) is added, the Yukawa Lagrangian is extended by

Lyuk ⊃ Tr
[
yRΨ22

fLχR(ΨT
22)c(iτ2) + yLΨ22

Ψ22(iτ2)χ†LfR + µΨ22
Ψ22(iτ2)(Ψ22)c(iτ2)

]
+ H.c. (4.10)

As before, Ψ22 is uncharged under the SU(4)c colour group and therefore only contains
uncoloured states which can mix with the SM leptons:

fL/R =


· ·
· ·
· ·
ν e


L/R

, Ψ22 =
(
−(E−R )c N0

L

(N0
R)c E−L

)
(4.11)

where Ψ22 is written with two raised indices and therefore transforms as Ψ22 → ULΨ22U
T
R .

Expanding out eqs. (2.15) and (4.10) with eq. (4.11) leads to

LeE =
(
eL EL

)( me yRΨ22vR
yLΨ22v

∗
L µΨ22

)(
eR
ER

)
(4.12)

for the charged lepton mass mixing matrix and

LνN = 1
2
(
νL νcR NL N c

R

)


0 mu 0 yRΨ22vR
mu 0 0 yLΨ22v

∗
L

0 0 0 µΨ22

yRΨ22vR yLΨ22v
∗
L µΨ22 0



νcL
νR
N c
L

NR

 (4.13)

for the neutral mass mixing.

– 24 –



J
H
E
P
0
5
(
2
0
2
1
)
1
9
9

Similar to the case of the triplet, eq. (4.10) does not violate the global U(1)J symmetry
(which, recall, is the only accidental symmetry in this Yukawa Lagrangian) and implies

J(Ψ22) = 0. (4.14)

Therefore U(1)J is not violated in the Yukawa Lagrangian and baryon number violation
proceeds through the scalar sector as before. Unlike the scenarios involving only one triplet,
in the absence of the fermion SL, eq. (4.10) still enforces the choice J(χL) = J(χR) = 1 and
therefore baryon number will remain violated if both scalars are included and will proceed
via similar diagrams to those presented in appendix A.

4.1.3 SU(4)c/SU(2)L/R bi-fundamentals

In the case where additional copies of the usual PS fermions exist, there are a number of
different possible scenarios depending on the chirality of the fermions introduced. An even
number of fermion bi-fundamentals needs to be introduced, as can be seen in table 10,
for anomaly cancellation and therefore we focus on the minimal scenario where a pair of
bi-fundamentals are added. If two exact copies of fL and fR are added, that is a left-
handed fermion transforming as (FL)α ∼ (4,2,1) under PS and a right-handed fermion
transforming as (FR)α̇ ∼ (4,1,2) where we explicitly show the dotted and undotted Lorentz
indices for clarity, then the Yukawa Lagrangian is extended by the terms

Lyuk = Tr
[{
yfLfRfL φ (fR)T + ỹfLfRfL φ

c(fR)T + yfRSL χ
†
R fR + yfLfL χL(SL)c

+ (fL → FL) + (fR → FR)
}]

+ 1
2µSSL S

c
L + H.c. (4.15)

with the additional fermion multiplets

fL/R =


ur dr
ub db
ug dg
ν e


L/R

, FL/R =


Ur Dr

Ub Db

Ug Dg

N0 E−


L/R

(4.16)

where Ui and Di (i = r, b, g) have electric charge +2/3 and −1/3 respectively. Note that
no bare mass terms are present in eq. (4.15) and therefore the expansion will be similar
to that of eq. (2.15) in the vanilla PS scenario. In particular all mass terms between the
SM and exotic charged fermions will be related to the electroweak vevs v1 and v2 implying
that the heavy exotic charged fermions E, D and U would be expected to appear near the
electroweak scale which is ruled out phenomenologically.

Alternatively two fermions with the same PS representations but opposite chirality to
the bi-fundamentals already included in PS could be added, that is a right-handed fermion
transforming as (FL)α̇ ∼ (4,2,1) under PS and a left-handed fermion transforming as
(FR)α ∼ (4,1,2). In this case the Yukawa Lagrangian will be similar, albeit with additional
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bare mass and Yukawa terms:

Lyuk = Tr
[{
yfLfRfL φ (fR)T + ỹfLfRfL φ

c(fR)T + yfRSL χ
†
R fR + yfLfL χL(SL)c

+ (fL/R → FR/L & χR → χL)
}

+ µL fL FL + µR FR fR + yLΦ fLΦFL + yRΦ FRΦfR
]

+ 1
2µSSL S

c
L + H.c. (4.17)

Now the exotic charged fermions can have their masses decoupled from the electroweak
scale for large bare mass terms. However as the exotic fermion multiplets transform in the
exact same way as the multiplets containing the SM fields, large values for the bare mass
terms µL and µR will not decouple the masses of the down-quarks and charged-leptons.
However, if the SU(4) adjoint scalar, Φ, is included in the scalar spectrum, its allowed
Yukawa couplings between fL/R and FL/R will lead to a breaking of the mass degeneracy
since 〈Φ〉 ∝ (1, 1, 1,−3). Therefore, in order for such a scenario to be even remotely feasible,
additional scalars beyond that of φ, χL and χR are required so that the down-isospin mass
degeneracy can be broken: a seesaw mechanism as well as the addition of scalars which
induce a Georgi-Jarlskog-like texture are simultaneously required.

The charged-lepton mixing matrix will then be given by

LeE =
(
eL EL

) mf µL −
√

3
2y

L
ΦvΦ

µR −
√

3
2y

R
ΦvΦ MF

(eR
ER

)
(4.18)

where mf = ỹfLfRv1 + yfLfRv
∗
2 and MF = ỹFRFLv1 + yFRFLv

∗
2. The down quark mixing

matrix is given similarly and only differs by group theoretic factors introduced by the
allowed Yukawa couplings of the fermions to Φ:

LdD =
(
dL DL

) mf µL +
√

1
6y

L
ΦvΦ

µR +
√

1
6y

R
ΦvΦ MF

(dR
DR

)
. (4.19)

Similar matrices can be written down for the mass mixing between the neutral fermions
and between uL/R and UL/R:

LνN =


νL
νcR
NL

N c
R

SL



T


0 mx 0 µL−
√

3
2y

L
ΦvΦ yfLvL

mx 0 µR−
√

3
2y

R
ΦvΦ 0 yfRv

∗
R

0 µR−
√

3
2y

R
ΦvΦ 0 MX yFRvL

µL−
√

3
2y

L
ΦvΦ 0 MX 0 yFLv

∗
R

yfLvL yfRv
∗
R yFRv

∗
R yFLv

∗
R µS




νcL
νR
N c
L

NR

ScL


(4.20)

and

LuU =
(
uL UL

) mx µL +
√

1
6y

L
ΦvΦ

µR +
√

1
6y

R
ΦvΦ MX

(uR
UR

)
(4.21)

respectively. The only difference between the up-quark and down-quark mass mixing ma-
trices being mx = yfLfRv1 + ỹfLfRv

∗
2 and MX = yFRFLv1 + ỹFRFLv

∗
2 compared to mf and

MF defined above.
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Let us briefly comment on the implications for such models where mass mixing matrices
occur for all SM fermion types as in eqs. (4.18) to (4.21). Due to the additional mixing
within the up-isospin sector, which have very similar mixing matrices to the down-isospin
sector, we find it very difficult to achieve a viable mass spectrum for all SM fermions in
this scenario. It appears highly unlikely that the inclusion of a pair of bi-fundamental
fermions is able to achieve a chiral-suppression on the experimental limits on mX as well
as a phenomenologically-viable mass spectrum for the SM fermions. Due to the number of
coupled mass mixing matrices as well as the large number of mass parameters, we do not
try to prove this statement. Note, however, that if one of the off-diagonal entries of MdD

is made large (required such that the D′ states do not gain electroweak masses), this also
implies the same thing for MuU . Assuming that this occurs for the bottoem-left entry, we
have that

mu/d '
(
µL +

√
1
6y

L
ΦvΦ

)
−mx/f

(
µR +

√
1
6y

R
ΦvΦ

)−1

MX/F (4.22)

which would imply that the up-quarks and down-quarks have similar masses if the first term
is dominant compared to the second. If instead the second term was dominant compared to
the first, at a minimum, it would be difficult to generate the correct top mass considering
that mx/X are tied to the electroweak scale.

A chiral suppression along with a viable mass spectrum of SM fermions is possible with
the addition of two pairs of SU(4) ⊗ SU(2)L/R PS bi-fundamental fermions on top of the
usual fermions fL and fR as has already been shown in [12], and more recently in [34]. As
two pairs of bi-fundamentals are introduced, more freedom in the mixing matrices allows
for a viable mass spectrum as well as allowing for chiral couplings of Xµ to the light SM-
like fermions. As a non-minimal variant of this model has already been studied within
the literature we do not consider this possibility any further and simply conclude that this
model, in its minimal form, does not appear viable.

It is easy and unsurprising to see that for both eqs. (4.15) and (4.17) the accidental
global symmetry U(1)J is unbroken and therefore for these scenarios all baryon number
violating interactions will proceed similarly to appendix A.

4.1.4 SU(4)c sextet

Adding a fermion which transforms as an SU(4) sextet Ψ6 ∼ (6,1,1), extends the Yukawa
Lagrangian by

Lyuk ⊃ Tr
[
yLΨfL(iτ2)χ†LΨ6 + yRΨ(Ψ˜ 6)c χR(iτ2)(fR)T + 1

2µΨ6(Ψ˜ 6)c Ψ6

]
+ H.c. (4.23)

where (Ψ˜ 6)mn = (Ψ6)ijεijmn. As this multiplet is uncharged under SU(2)L/R, the electric
charge of each component is given by the generator of SU(4) identified with B − L. The
branching rule for this multiplet is

(6,1,1)→ 3+1/3 ⊕ 3−1/3 (4.24)
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when broken to SU(3)c × U(1)Q of the SM. This irreducible representation therefore con-
tains the correct states to mix with the down quarks of the standard model:

fL/R =


· dr
· db
· dg
· ·


L/R

, Ψ6 =



0 (DL,g)c −(DL,b)c DR,r

−(DL,g)c 0 (DL,r)c DR,b

(DL,b)c −(DL,r)c 0 DR,g

−DR,r −DR,b −DR,g 0


(4.25)

where the components D(L/R),i (i = r, g, b) have electric charge −1/3 and Ψ6 → U4 Ψ6 U
T
4 .

The resulting mixing matrix for the down quark and its partners can be found by
expanding eqs. (2.15) and (4.23) with eq. (4.25), giving

LdD =
(
dL DL

)( md yLΨ6v
∗
L

yRΨ6vR µΨ6

)(
dR
DR

)
, (4.26)

and, in the absence of additional fermionic states which mix with `, the singular values of
md are given by the charged-lepton masses.

The additional Yukawa interactions involving Ψ6 lead to explicit violation of the global
symmetry U(1)J : the bare mass term requires J(Ψ6) = 0, while the two Yukawa terms
of eq. (4.23) imply J(Ψ6) = 2 and J(Ψ6) = −2 respectively, assuming the singlet SL is
included for neutrino mass and therefore J(χL/R) = J(fL/R) = 1 is enforced. Therefore
any two of the three terms in eq. (4.23) in combination with the Yukawa couplings of fL/R
to SL in eq. (2.15) leads to baryon number violating interactions. Interestingly for a more
minimal PS model where the only scalars13 present are χR and φ, a global baryon number
is restored in the limit µψ6 → 0 which therefore could be argued to be small from technical
naturalness.

Evaluating the full implications of baryon number violation with a realistic mass spec-
trum for the SM particles is quite complicated for the sextet and beyond the scope of this
work. However, an example diagram for p → π0e+ is shown in figure 3 in the case where
χL is removed. The diagram involves the couplings

L ⊃ yR SL(χ+2/3
R )∗i (uR)i + yRΨ

(
(DL)keR + εijk(Dc

R)i(dR)j
)

(χ+2/3
R )k + µΨ6(DL)i(DR)i

+ H.c. (4.27)

where SU(3) indices are explicitly shown and the above couplings are found by expanding
out eqs. (2.15) and (4.23). This decay diagram leads to an effective four-fermion interaction
very similar to the coloured Higgsino mediated p → K+ν in minimal SUSY SU(5), see
e.g. [35]. As this usually requires very large Higgsino masses (at or larger than the GUT
scale) and the SM quantum numbers of DL and DR are the same as the coloured Higgsino,
we expect that in scenarios where baryon number is not imposed (by setting µΨ to be
small), this diagram alone would likely lead to significant limits on the masses of the
particles running in the loop which would translate into large limits on the PS breaking

13Therefore the Yukawa terms yLΨfLχ†LΨ6 and yLfLχL(SL)c will not be present.
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(uR)
i eR

(uR)
j (dR)

k

(dL)
k (dL)

k

µs µΨ

(χ
+2/3
R )i

(χ
+2/3
R )j

P

π0

Figure 3. An example box diagram of proton decay implied by a PS model extended by a fermionic
SU(4) sextet fermion. The p → π0e+ diagram above is similar to the coloured Higgsino mediated
proton decay, p→ K+ν, predicted by the minimal SUSY SU(5) GUT model which typically requires
GUT scale masses for the Higgsinos, see e.g. [35].

scale. An additional suppression factor of µS appears in figure 3 which is required to
be small for neutrino mass generation which may interestingly connect the large proton
lifetime to the smallness of neutrino mass in this suggested minimal model.

4.1.5 SU(4)c decuplets

Finally we consider the possibility that two fermions of opposite handedness14 transform-
ing as Ψ10

L/R ∼ (10,1,1) are added. The relevant, non-zero terms added to the Yukawa
Lagrangian are

Lyuk ⊃ Tr
[√

2yRΨ10
Ψ10
L
χ
R(iτ2)(fR)T −

√
2yLΨ10

(fL)T (iτ2)χ†LΨ10
R

+ µΨ10Ψ10
L Ψ10

R +
√

6yΦΨ10
L Φ Ψ10

R

]
+ H.c. (4.28)

Similar to the case of the sextet above, these multiplets are uncharged under SU(2)L/R and
therefore the branching rule for their breaking to SU(3)c ⊗U(1)Q is simply given by

(10,1,1)→ 61/3 ⊕ 3−1/3 ⊕ 1−1. (4.29)

These multiplets therefore contain the necessary states to mix with both the down quarks
and the charged leptons:

fL/R =


· dr
· db
· dg
· e


L/R

, Ψ10
L/R = 1√

2



· · · Dr

· · · Db

· · · Dg

Dr Db Dg

√
2E−


L/R

(4.30)

where the components D(L/R),i (i = r, b, g) have electric charge −1/3. Contained in Ψ10
L/R

is an exotic colour sextet Dirac fermion, which is embedded in the upper-left 3× 3 block of
14Both are required for anomaly cancellation.
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the second multiplet in eq. (4.30). If such a sextet was discovered alongside heavy copies of
the charged leptons and down quarks it would suggest the existence of these exotic fermion
multiplets within a PS symmetry.

In this scenario, the mixing matrices for the charged leptons and down quarks are
related to each other as they exist in the same multiplet. The charged lepton mixing
matrix is given by

LeE =
(
eL EL

) mF

√
2 yLΨ10v

∗
L√

2 yRΨ10vR µΨ10 −
√

3
2 yΦvΦ

(eR
ER

)
(4.31)

and the down quark mixing matrix is of a similar form and only differs by some group
theoretic factors

LdD =
(
dL DL

) mF yLΨ10v
∗
L

yRΨ10vR µΨ10 −
√

1
6 yΦvΦ

(dR
DR

)
(4.32)

where mF is enforced by the PS symmetry to appear in both mass matrices and its sin-
gular values are no longer necessarily given by the charged-lepton or down-quark masses
individually. Note that, similar to the case of the bi-fundamental, a Georgi-Jarlskog like
texture will occur with the inclusion of the scalar Φ. Unlike the bi-fundamental scenario
however, extra group theoretic factors between the two mass matrices exist even without
the inclusion of Φ and therefore it is not required for a breaking of the down-isospin mass
degeneracy (though it may be needed to achieve a phenomenologically viable spectrum of
masses). Additionally as E and D are contained in the same multiplet, there will be gauge
interactions between the two mediated by Xµ similar to e and d.

The colour sextet fermion ψ develops a mass given by mψ = µΨ10 +
√

1
6yΦvΦ and there-

fore the mass spectrum of the exotic states depends on the relative sizes of the dimensionful
parameters yRΨ10vR, µΨ10 and yΦvΦ.15 For example assuming µΨ10 > yΦvΦ � yRΨ10vR leads
to a mass spectrum where the colour sextet would be the heaviest of the three exotics and
the heavy, charged leptons would be the lightest.

The global symmetry U(1)J remains unbroken in the Yukawa sector and enforces the
charge assignment

J(Ψ10
L ) = J(Ψ10

R ) = 2 (4.33)

regardless of whether SL is included or not and therefore baryon number remains an ac-
cidental symmetry of the Yukawa sector. The additional multiplets Ψ10

L/R do not contain
any neutral states under U(1)Q and there are no lepton number violating terms present
in eq. (4.28). This is easy to see as in the absence of SL the Yukawa Lagrangian obeys a
secondary global symmetry

J ′(φ, Φ) = 0, J ′(fL, fR) = 1, J ′(χL, χR) = −3 and J ′(Ψ10
L ,Ψ10

R ) = −2. (4.34)

15For phenomenological reasons the parameters me and yLΨ10v
∗
L are required to be smaller in size than

these parameters.
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PS multiplet e− E mixing d−D mixing
(1,1,3) 4 6

(1,3,1) 4 6

(1,2,2) 4 6

(6,1,1) 6 4

(10,1,1) 4 4

Table 11. Summary of the results of section 4.1 which indicates which viable fermion extensions
lead to a seesaw with the charged leptons by adding heavy states E or with the down quarks by
adding heavy states D, required to explain the lack of mass-degeneracy predicted by PS. Including
an SU(2)L/R triplet or bi-doublet will induce e−E mixing and including an SU(4) sextet will lead to
d−D mixing. Including two SU(4) decouplet fermions of opposite chirality or will lead to ‘coupled’
e− E and d−D mixing.

Lepton number can be identified as L = 1
4(J ′ − 3T ) such that

L(fL/R) =


0 0
0 0
0 0
1 1

 and L(Ψ10
L/R) =


−1 −1 −1 0
−1 −1 −1 0
−1 −1 −1 0

0 0 0 1

 (4.35)

which is unbroken by 〈χL, χR〉 and therefore νL and νR develop a Dirac mass of order mu.
Therefore, for a realistic model, SL or some other lepton number violating physics needs
to be included in order to break L = 1

4(J ′ − 3T ) and allow for small neutrino masses. If
SL is included the neutrino mass matrix is given by eq. (2.18) as before. Baryon number
violation will therefore proceed similarly to appendix A and therefore will lead to the same
order of magnitude limits on the relevant quartic coupling of the scalar potential.

5 Fermion mixing

From the results of section 4.1 only a few PS multiplets lead to mass mixing in the charged-
lepton and/or down-quark sectors in the desired way. Table 11 summarises viable multiplets
from the ones considered and indicates in which sector mixing will occur. Charged-lepton
mixing exclusively will occur with the addition of SU(2)L/R triplets or bidoublets and in the
down-sector exclusively with the addition of SU(4) sextets.16 Mixing will occur in both sec-
tors either through a combination of the aforementioned multiplets or (minimally) with17

the addition of a pair of SU(4) decuplets or with a pair of SU(4)⊗SU(2)L/R bi-fundamental
fermions, though only the former can generate a viable SM fermion mas spectrum.

We analyse, where possible, the conditions necessary on the parameters of the La-
grangian which lead to the desired effects of decreasing the experimentally allowed PS

16With the caveat that the additional baryon number violating Yukawa interactions do not lead to proton
and neutron decay rates larger than the experimental bounds.

17Note that in this case the mass mixing between d−D and e−E will be ‘coupled’ and the mass mixing
matrices only differ by group theoretic factors.
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breaking scale through helicity suppression and generating a viable fermion mass spec-
trum through mixing for all SM-like particles. We will separately consider the validity of
charged-lepton mixing and down-quark mixing and finally comment on the more general
scenarios where mixing occurs for both fermion types.

5.1 e− E mixing

Mixing with heavy exotics within the charged-lepton sector will arise if at least one
SU(2)L/R triplet or SU(2)L/R bi-doublet is included. As the minimal low-scale PS model
already requires an additional singlet SL for viable neutrino mass, it would be attractive if
these more complicated multiplets could allow for a viable mass spectrum for the neutral
and charged leptons without the need for the singlet SL. In this situation we parametrise
the general mass mixing matrix for the charged leptons as

LeE =
(
eL EL

)(mee meE

mEe mEE

)
︸ ︷︷ ︸

(
eR
ER

)
+ H.c.,

MeE (5.1)

where the different elements of MeE in terms of Lagrangian parameters are given in sec-
tions 4.1.1 and 4.1.2 for each possible case we have considered. Additionally we parametrise
the diagonalisation matrices for MeE

U †LMeE UR = diag(. . . ) = Mdiag
eE , (5.2)

by

UL/R =
(
V W

X Y

)
L/R

(5.3)

where the unitarity condition on U implies V V † + WW † = XX† + Y Y † = 1. Therefore
the relationship between the interaction and mass eigenstates for the charged leptons is
given by

eL/R = VL/R e
′
L/R +WL/RE

′
L/R (5.4)

with e′L/R (E′L/R) corresponding to the light (heavy) mass eigenstate. The fields eL/R
correspond to the uncoloured components of fL/R charged under SU(4) which couple to
dL/R via Xµ.

Therefore the relevant physical mixing matrices between the light, SM-like states and
down quarks relevant for meson decays is given similarly to the vanilla PS scenario by

Kde
L = (UdL)† VL, Kde

R = (UdR)† VR (5.5)

where now the matrices VL/R are no longer unitary. The condition required for a chiral
suppression to occur in the relevant pseudoscalar meson decays is for one of Kde

L/R to satisfy

‖Kde
L/R‖ � 1 (5.6)
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such that the helicity-unsuppressed contribution to each decay is sufficiently reduced as
discussed in section 3.2.

The limits on heavy charged-leptons are model-dependent but in all cases far exceed the
masses of the SM charged leptons. For example for an SU(2)L triplet the limits are roughly
800GeV [36] and reduce down to 300GeV in the case of vector-like lepton doublets [37].
We will conservatively assume that the masses of the heavy charged-lepton states all exceed
1TeV, this obviously requires at least one block appearing in MeE to have all its singular
values larger than 1TeV.

Comparing the general form of MeE in eq. (5.1) to those derived for the cases of either
SU(2)L/R triplet or the bi-doublet given in eqs. (4.3), (4.6) and (4.12) respectively, we
see that two possible mass terms can be significantly larger than the electroweak scale:
either the Yukawa couplings yRΨ3

vR or yRΨ22
vR proportional to the scale of SU(2)R breaking

(which is absent in the case of the SU(2)L triplet), or the bare mass terms µΨ3 and µΨ22

which are completely unconstrained. Therefore the correct phenomenological masses for
the heavy charged leptons are possible in the scenarios where ‖yRΨ3

vR, y
R
Ψ22

vR‖ ≥ 1TeV
or ‖µΨ3 , µΨ22‖ ≥ 1TeV. In all cases the mass term generated by vR appears on the off-
diagonal of MeE , either in the top-right entry in the case of the bi-doublet extension and
in the bottom-left entry for the case of an SU(2)R triplet. Although this term is absent
in the case of the SU(2)L triplet, it may be generated in the bottom-left entry of MeE

by assuming a modified scalar sector, which we discuss further below, and therefore the
discussion below remains relevant for this exotic fermion choice. The bare mass terms µΨ3

and µΨ22 appear in the bottom-right entry in all three cases. We suppress the labels Ψ3
and Ψ22 below and write yRΨvR and µΨ for simplicity.

Consider first the scenario where µΨ is taken to be larger than all other mass terms,
e.g. µΨ = mEE > meE , mEe, mee. Following the results from appendix C.1 the resultant
masses for the seesaw states are approximated by18

ml '
∣∣∣∣mee −

meEmEe

mEE

∣∣∣∣ and mh ' mEE . (5.7)

Using eq. (C.4) the mass eigenstates relate to the interaction eigenstates by

eL '
(

1− 1
2

(
meE

mEE

)2
)

︸ ︷︷ ︸ e
′
L +

(
meE

mEE

)
︸ ︷︷ ︸E′L

VL WL (5.8)

for the left-handed states and

eR '
(

1− 1
2

(
mEe

mEE

)2
)

︸ ︷︷ ︸ e
′
R +

(
mEe

mEE

)
︸ ︷︷ ︸E′R

VR WR (5.9)

for the right-handed states. One generation of fermions with real parameters has been
assumed for simplicity in order to establish viability. Similar conclusions are reached for

18mh is the mass of the heavy fermion, not the Higgs boson.
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multi-generational scenarios where each entry of MeE is promoted to a block matrix of
appropriate dimension. The one-dimensional equivalents of VL/R and WL/R are indicated
and, as can be seen in this scenario where the bare mass is the dominant term in the
charged-lepton seesaw, both the left- and right-handed light charged lepton mass states
are predominantly made up of the fields eL/R embedded in fL/R. Therefore, while this
would lead to a very mild suppression in the PS mass limits as VL/R are slightly suppressed
compared to the scenario without charged-lepton mass mixing (where VL/R = 1), the mass
limits obtained for Xµ will be of similar size to those appearing in table 4 and therefore
the limits will remain at around O(100–1000)TeV depending on the structure of Kde

L/R.
Alternatively, yRΨvR can be the dominant mass term within MeE which corresponds to

one of the off-diagonal terms in our parametrisation. Following a similar procedure we find

ml '
∣∣∣∣mEe −

meemEE

meE

∣∣∣∣ (5.10)

and

eL ' −
mEE

meE︸ ︷︷ ︸ e′L +
(

1− 1
2

(
mEE

meE

)2
)

︸ ︷︷ ︸E
′
L

VL WL

eR '
(

1− 1
2

(
mee

meE

)2
)

︸ ︷︷ ︸ e
′
R +

(
mee

meE

)
︸ ︷︷ ︸E′R

VR WR (5.11)

for the scenario where meE is dominant and

ml '
∣∣∣∣meE −

meemEE

mEe

∣∣∣∣ (5.12)

and

eL '
(

1− 1
2

(
mee

mEe

)2
)

︸ ︷︷ ︸ e
′
L +

(
mee

mEe

)
︸ ︷︷ ︸E′L

VL WL

eR ' −
mEE

mEe︸ ︷︷ ︸ e′R +
(

1− 1
2

(
mEE

mEe

)2
)

︸ ︷︷ ︸E
′
R

VR WR (5.13)

if mEe is dominant. In both cases, one of eL/R is predominantly made up of the light
mass state e′L/R while the opposite chirality is predominantly made up from the heavy
mass state E′R/L. VL or VR are now significantly different in size from each other, where
one will be suppressed compared to the other. If meE is the largest term then VL � VR
and the leptoquark Xµ will strongly couple e′R and d′R but not e′L and d′L and vice versa
for mEe dominance. Therefore the desired helicity suppression in meson decays induced
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by Xµ will occur for the hierarchy yRΨvR > µΨ leading to decreased PS breaking limits,
potentially as low as those appearing in table 7. Both an SU(2)R triplet or the SU(2)L/R
bidoublet are therefore viable candidates as one off-diagonal term is proportional to vR and
therefore can be large in size. In the case of an SU(2)L triplet, assuming no modification to
the scalar fields, the only mass term not tied to the electroweak scale is µΨ and therefore
helicity suppression in the relevant meson decays will not occur as µΨ must be dominant
phenomenologically.

For a multi-generational scenario all terms in MeE are promoted to block matrices and
using the results in appendix C.2 we find for ‖mEe‖ > ‖mee, meE , mEE‖

mL ' meE −mee

(
m−1
Ee

)
mEE (5.14)

and

e′L '
(
1− 1

2
(
meem

−1
Ee

) (
meem

−1
Ee

)†)
OL︸ ︷︷ ︸ eL +meem

−1
EeOL︸ ︷︷ ︸ EL

VL WL

e′R ' −m−1
EemEE OR︸ ︷︷ ︸ eR +

(
1− 1

2
(
m−1
EemEE

) (
m−1
EemEE

)†)
OR︸ ︷︷ ︸ER

VR WR (5.15)

where OL/R and OL/R are the unitary matrices which diagonalise the light and heavy mass
blocks which appear after block diagonalisation, e.g. O†LmLOR = diag(. . . ). For obvious
reasons these expressions are only valid when mEe is nonsingular. Similar expressions
for meE dominance can be derived quite simply and the results only differ by the same
permutations of parameters as between eqs. (5.10) and (5.11).

One last potential scenario which will lead to the heavy lepton masses exceeding 1TeV
occurs for the tuned case yΨvR ' µΨ. Consider for example when mEe ' mEE and are
both dominant in MeE . We find for one generation

ml '
∣∣∣∣mee −meE√

2

∣∣∣∣ (5.16)

and

eL ' −
(

1− 1
4

(
meE +mee

mEe

)2
)

︸ ︷︷ ︸ e
′
L + 1

2

(
meE +mee

mEe

)
︸ ︷︷ ︸E′L

VL WL

eR '
1√
2︸︷︷︸ e
′
R + 1√

2︸︷︷︸E
′
R

VR WR (5.17)

with similar results if meE ' mEE except for the reassignments L↔ R on the fields above.
Here the mass eigenstate e′R is made up of a roughly equal amount of the fields eR and
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ER and therefore while the mixing parameter VR is decreased, it remains an order one
number. The overall strength of Kde

R will be lowered, however the helicity-unsuppressed
contribution for each meson decay will remain dominant as it is several orders of magnitude
larger than the helicity-unsuppressed contribution, as discussed in section 3.2. Therefore
we find that in order for helicity suppression to allow for decreased experimental limits on
the PS breaking scale, the hierarchy yRΨvR � µΨ is required.

We will therefore adopt the hierarchy ‖yRΨvR‖ > ‖yΨvL, me, µΨ‖ below in order to
helicity suppress the mass limits of Xµ, further requiring the correct down-quark and
charged-lepton masses with appropriate SM-like weak couplings as a secondary condition
will further restrict the parameters in each mass mixing matrix.

Specifically for the case of an SU(2)R triplet, adopting the above hierarchy in MeE

leads to the light-mass block approximately given by

m` ' −
1
vR
md (YΨ3)−1µΨ3 (5.18)

where we have introduced three generations of the triplet ΨR
3 and YΨ3 corresponds to

a 3 × 3 matrix further assumed to be nonsingular. Unless stated otherwise yΨ and YΨ
will distinguish between when one or three generations of exotic fermions are introduced
respectively. Within eq. (5.18) we have used the relation me = md which is enforced by the
PS symmetry and therefore the singular values of md are given by the down-quark masses
run up to the PS breaking scale. Similarly the singular values of the light block m` must be
given by the masses of the charged-leptons at the same scale. An unavoidable consequence
of eq. (5.18) is that it necessarily predicts that all generations of charged leptons have
masses strictly lighter than their corresponding generation of down-quark. We prove this
result in appendix C.3. While this is accurate for the first and third generations, this mass
hierarchy is flipped in the second generation as shown in table 6 where the muon is heavier
than the strange quark at least for energy scales below 1000TeV which we are considering.

Therefore we find that eq. (5.18) is unable to reproduce the correct charged-lepton
masses if me = md is enforced by the PS symmetry to give the down-quark masses. The
alternative seesaw scenario where ‖µΨ3‖ > ‖YΨ3vR‖, although unable to lead to the desired
chiral suppression in the PS breaking scale, is also unable to reproduce the correct muon
and strange masses as it requires m` ' md. Therefore a potential hybrid scenario where
the hierarchy in the singular values between Y R

Ψ3
vR and µΨ3 flips for the second generation

compared to the first and third would also not be viable. Similar arguments apply to
the SU(2)L triplet, which was already unable to give sufficiently heavy masses to the
charged-lepton partners. Therefore both triplet scenarios are unable to reproduce the
correct charged-lepton masses in their minimal form. This is a direct consequence of the
zero entry appearing in the mass matrix MeE but applies to any similar scenario with
quark-lepton mass unification and exotic mass mixing. Similar arguments apply to the
scenario where both an SU(2)L and SU(2)R triplet are added as in eqs. (4.8) and (4.9) and
therefore we find that SU(2)L/R triplets require a more exotic scalar sector such that all
mass terms in the Yukawa Lagrangian can be generated.
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5.1.1 Top-right dominance: bi-doublet fermions

Turning to the case of the SU(2)L/R bi-doublet, now each entry of the charged-lepton mass
matrix MeE is non-zero. The choice ‖YΨ22vR‖ > ‖µΨ22‖, such that the desired suppression
in the PS limits occurs, implies that the top-right entry of MeE is the dominant block, as
can be seen in eq. (4.12). Therefore the light mass block is given by

m` ' Y L
Ψ22vL −

1
vR
µΨ22(Y R

Ψ22)−1md (5.19)

where again the PS symmetry enforces me = md. Now with the addition of the mass
term Y L

Ψ22
vL the correct charged-lepton masses can be generated. For example in the limit

µΨ22 → 03×3 the charged lepton masses are simply given by

m` ' Y L
Ψ22vL (5.20)

and therefore the effect of the seesaw inMeE is to completely disassociate the mass origin of
the SM-like charged leptons from the down quarks as now they arise from different Yukawa
couplings and vevs and implies that vL & mτ .

Using appendix C.2, the mass states of the light leptons relate to the interaction
states by

e′L ' −(OeL)†X eL + (OeL)†
(
1− 1

2XX
†
)
EL

e′R ' (OeR)†
(
1− 1

2Z
†Z
)
eR − (OeR)†Z†ER (5.21)

where OeL/R diagonalise the light mass block and

X ' 1
vR
µΨ22

(
Y R

Ψ22

)−1
+ vL
v2
R

Y L
Ψ22m

†
d[(Y

R
Ψ22)†]−1(Y R

Ψ22)−1,

Z ' 1
vR

(Y R
Ψ22)−1md + vL

v2
R

(Y R
Ψ22)−1[(Y R

Ψ22)†]−1µ†Ψ22
Y L

Ψ22 (5.22)

and we have expanded up to second order in X and Z. In this seesaw regime, the light
left-handed lepton states measured in experiments are predominately made up of EL
appearing in the bi-doublet whereas the right-handed light states are predominately made
up of eR appearing in fR which interacts with Xµ.

For clarity, the relevant physical mixing matrices are given by

Kde
L ' −(UdL)†X †OeL, Kde

R ' (UdR)†
(
1− 1

2Z
†Z
)
OeR and UPMNS ' N †ν

(
1− 1

2XX
†
)
OeL,

(5.23)
where Nν corresponds to the relevant non-unitary submatrix of the neutral fermion diag-
onalising matrix for the active neutrinos. Therefore in this scenario the deviation from
unitarity of the PMNS matrix arising from mixing in the charged lepton sector and the
suppression of the matrix Kde

L is determined by the smallness of the matrix X . In eq. (5.22)
we have included the second order terms in the expansion as for sufficiently small values in
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the matrix µΨ22 this deviation will be dominated by the second-order term. As Y L
Ψ22

vL and
md are fixed to give the correct SM charged-lepton and down-quark masses respectively,
the second order term is therefore fixed for a given choice of Y R

Ψ22
vR and therefore can place

a lower bound on the scale vR required to satisfy both PMNS unitarity constraints and
lead to the desired chiral suppression in the rare meson decays which constrain PS.

The neutrino mass matrix with the addition of the fermion bi-doublets is given by
the block matrix equivalent of eq. (4.13) which specifically for the hierarchy ‖Y R

Ψ22
vR‖ >

‖mu, Y
L

Ψ vL‖ > ‖µΨ22‖ leads to the following four mass blocks (after block diagonalisation):

m1,2 ' vR Y R
Ψ22 ν1/2 '

1/i√
2

(νL ±N c
R)

m3 '
vL
vR

(
Y L

Ψ22(Y R
Ψ22)−1mu +mT

u

[
Y L

Ψ22(Y R
Ψ22)−1

]T)
ν3 ' νcR

m4 '
1

vLvR
µΨ22

[
(Y L

Ψ22)Tm−1
u Y R

Ψ22 + (Y R
Ψ22)T (mT

u )−1Y L
Ψ22

]−1
µTΨ22 ν4 ' NL. (5.24)

Here there is a heavy pseudo-Dirac pair with degenerate masses to the heavy charged
leptons, a light neutrino block with mass arising from a linear seesaw mechanism whose
mass eigenstate is predominantly made up of νR. and an even-lighter neutrino mass block
which is predominantly made up of NL appearing in the bi-doublet. Therefore

mν4 � mν3 � mν1 , mν2 (5.25)

where mν4 corresponds to the three light neutrinos observed through oscillation experi-
ments. A more complete expression for the relationship between the neutrino mass and
interaction eigenstates can be found at the end of appendix C.4. In appendix C.4 we argue
that the above scenario where µΨ22 is significantly smaller than all other mass parameters,
which will lower the experimental limits on PS breaking, is the only scenario which allows
for an experimentally valid spectrum of active neutrino masses unless a PS breaking scale
larger than 1011 GeV is adopted. It is quite striking that the only hierarchy of parame-
ters which allows for both low scale PS breaking and appropriately light active neutrino
masses, when bi-doublet fermions are introduced, is the same hierarchy that will lead to
a suppression in the experimental limits on the PS breaking scale. Additionally, in the
limit µΨ22 → 03×3 where the lightest neutrinos are massless at tree-level, there is an ad-
ditional global symmetry conserved in the Yukawa Lagrangian and therefore taking this
mass matrix to be small is technically natural.

The correct charged-lepton masses for each generation and the active neutrino mass
limits and differences can both be achieved with the addition of the bi-doublet without
needing to introduce any additional states, such as the singlet SL. Eqs. (5.19) and (5.24)
can be solved simultaneously for the three unknown blocks Y R

Ψ22
, Y L

Ψ22
and µΨ22 with the

assumed hierarchy between each block. In the one generational scenario, the masses of the
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Figure 4. Plot of the required size of µΨ22 in GeV as a function of vR in TeV in the one generational
scenario where yRΨ22

= 1 has been assumed (left) and the masses of the intermediately heavy neutrino
as a function of the same scale (right). Different lines correspond to different choices for the value
of the neutrino masses and we have fixed m` ' 1GeV, mb ' 4GeV and mt ' 173GeV in order to
reproduce the correct tau, bottom- and top-quark masses. Requiring sufficiently light neutrinos is
only possible when µΨ22 is sufficiently small which also happens to be the requirement in order to
helicity-suppress the experimental limits on PS breaking.

two lightest neutrino states and the light charged lepton state are given by

mν3 '
vL
vR

2yLΨ22
mt

yRΨ22

(5.26)

mν4 '
1

vLvR

µ2
Ψmt

2yLΨ22
yRΨ22

(5.27)

m` ' vLyLΨ22 −
µΨmb

vRyRΨ22

(5.28)

where we have fixed the masses of the quarks to the top- and bottom-quark respectively.
Setting m` ' 1GeV in order to reproduce the correct tau mass and mb ' 4GeV and
mt ' 173GeV leads to figure 4 where we find the required size of µΨ22 as a function of
yRΨ22

vR for different choices of the light neutrino mass. We find for sub-eV neutrino masses,
setting vR to be between 1–100TeV requires µΨ22 to be below the MeV scale. Due to the
small size of µΨ22 required from neutrino mass limits, the term µΨ22md/y

R
Ψ22

vR entering the
charged lepton masses is negligible compared to yLΨ22

vL and therefore the correct charged-
lepton masses are easily possible. As discussed, such small values of µΨ22 required for
neutrino mass quite conveniently also lead to a chiral suppression in the PS breaking scale.
The mass of the intermediately heavy neutrino, ν3, will vary only with the size of yRΨ22

vR
as all other parameters are related to SM masses. The predicted mass of mν3 lies roughly
between the MeV and GeV scales depending on the vR breaking scale, with larger scales
of SU(2)R breaking corresponding to lighter masses as demonstrated in the second plot of
figure 4. We note that for this proposed scenario, the quark masses arise from the vevs
v1 and v2 from φ whereas the charged-lepton masses predominately arise from the vev vL
appearing in fL.

The lightest neutrino mass eigenstate arises predominantly from the state NL appear-
ing in the bi-doublet fermion Ψ22 and therefore, as phenomenologically required, will have
SM-like weak interactions. The left-handed charged-lepton mass eigenstates arise pre-
dominantly from the state EL which appears in the same bi-doublet as NL, as shown in
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eq. (4.11), additionally they form an SU(2)L doublet with each other after SU(2)R break-
ing. The (pseudo-unitary) PMNS matrix is identified from the coupling of W±L to NL and
EL as

UL =
(
1− η′

)
U †N

(
1− η′

)
OeL (5.29)

where
η′ ' 1

2XX
† (5.30)

measures the deviation from unitarity arising from mixing. We find the deviation to be the
same in both sectors, at least at the lowest order, as explained in appendices C.2 and C.4.
As usual UN and OeL are the unitary matrices which diagonalise the light mass blocks in
each sector of the block-diagonal mass matrices.

Writing

UL =
[(
1− η′

)
U †N

(
1− η′

)
OeL

] [
(OeL)†UNU †NO

e
L

]
=
[(
1− η′

)
U †N

(
1− η′

)
UN
]
U †NO

e
L

'
(
1− η′ − U †Nη

′ UN
)
U †NO

e
L

= (1− η)UPMNS (5.31)

allows us to estimate the deviation from unitarity by (1− η), as is usually done, where

η ' η′ + U †Nη
′ UN (5.32)

and we identify the combination U †NOeL with the unitary PMNS matrix as usual.
The left plot of figure 5 shows the deviation from unitarity as a function of X '

µΨ22(Y R
Ψ22

)−1 where we have fixed UN = 1 for simplicity. We further assumed that Y R
Ψ22

was diagonal with entries close to unity such that the vev of vR can be as small as possible.19

We then performed two scans over different values of vR ranging from 1TeV to 104 TeV. In
the first scan (in blue) we randomly scanned over the entries of µΨ22 and therefore do not
generate the correct neutrino mass spectrum but establishes the relationship between η and
µΨ22 . The second scan (in red) had µΨ22 fixed for a given vRY R

Ψ22
through a Casas-Ibarra

parametrisation in order to generate the correct charged lepton and neutrino masses. The
resultant PMNS matrix was compared to the experimental limits on the deviation from
unitarity, ηexp which we take from [38], and we find that the region which leads to a viable
mass spectrum for the SM leptons predicts a deviation of unitary many orders of magnitude
below the current limit. This is due to the deviation being proportional to the small matrix
µΨ22 . For alternative models where, for example, the size of µΨ22 and therefore ‖X‖F is not
fixed to be small by requiring small neutrino masses (through the introduction of additional
neutral lepton mass mixing), deviation from unitarity limits constrain

‖X‖F . 10−1. (5.33)

19For a non-degenerate spectrum of singular values in YΨ22 , requiring all the masses of the heavy charged
leptons to be larger than 1TeV requires larger vR breaking scales, e.g. if σ1(YΨ22 ) = 1/100 then this requires
vR ≥ 100TeV.
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Figure 5. Plot of the deviation of unitarity (left) as a function of X where points in blue correspond
to a random scan on the entries of µΨ22 and Y RΨ22

whereas points in red correspond to the region
which gives the correct charged-lepton and neutrino masses through a Casas-Ibarra parameterisa-
tion. We find that there are no limits on the scale vR from unitarity violation and furthermore
the region with a viable neutrino mass spectrum predicts a deviation of unitarity many orders of
magnitude less than the experimental precision. The (right) plot shows the generated X through
the Casas-Ibarra parameterisation as a function of vR which leads to a viable charged-lepton and
neutrino mass spectrum. As the deviation of unitary is given by η ' X 2, the deviation at all scales
is significantly smaller than the current experimental limits. ‖ · ‖F corresponds to the Frobenius
norm of the given matrix which we use to present the data and the limits on the deviation indicated
by the dashed green line is taken from [38].

Figure 6 plots the experimental limits on the mass of Xµ as a function of X where again
points in blue have the entries of µΨ22 randomly scanned over and points in red correspond
to where µΨ22 has been fixed by through a Casas-Ibarra parameterisation. We find that the
only region of parameter space which allows for a low-scale seesaw in the charged lepton
and neutrino masses also happens to be the region where the limits on the mass of Xµ have
been completely helicity suppressed to their lowest values. The plot on the left and right
represent two different choices of Kde

L/R where we find the same behaviour regardless of the
form of Kde

L/R. For some more complicated scenario where the entries of X are not related
to the smallness of neutrino mass, deviation from unitarity limits require ‖X‖F . 10−1

and therefore would at a minimum lead to the limits decreasing by about a factor of a
half compared to the limits obtained without any charged-lepton mixing. For values where
‖X‖F . 10−2 the limits on the mass of Xµ are decreased by about an order of magnitude
and for ‖X‖F . 10−3 the limits are completely helicity suppressed to their lowest values.

Therefore we find that with the addition of fermionic SU(2)L/R bi-doublets to the usual
PS fermions the singlet SL is no longer necessary for the generation of neutrino masses.
The down-quark, charged-lepton and neutrino masses can all be successfully generated for
low scales of PS breaking only in the region where ‖µΨ22‖ is smaller than all other mass
parameters, and this region also leads to an order of magnitude reduction in the limits
on mX through helicity suppression. The smallness of the entries of µΨ22 can be justified
through technical naturalness, since a new global symmetry is recovered (which can be
identified with a type of lepton number) when they are taken to zero. In this limit the
active neutrino become massless, however other massive Majorana neutrinos are present.
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Figure 6. Plot of the experimental limits on mX as a function of X where we have assumed
Kde
L/R = 1 (left) and mixing angles given by the fifth row of tables 5 and 9 (right). Points in blue

correspond to a random scan over µΨ22 in order to establish its variation whereas points in red
correspond to where the entries of µΨ22 are fixed through a Casas-Ibarra parameterisation to give
a valid neutrino mass spectrum. We find that all regions which lead to a viable neutrino mass
spectrum also imply that the limits on the mass of Xµ are completely helicity suppressed. This
remains true for any choices of the physical mixing matrices Kde

L/R. The horizontal dashed green
lines corresponds to the limits obtained without helicity suppression, as in tables 3 to 5, and the
horizontal dashed purple lines corresponds to the limits calculated with exact helicity suppression
as in tables 7 to 9. For large values of ‖X‖F the limits on the mass of Xµ approach their usual
values whereas for values where ‖X‖F . 10−3 the limits on mX are almost identical to the limits
obtained with exact helicity suppression.

A number of predictions for the exotic fermions can be made in the scenario where
only fL/R and Ψ22 are present. Firstly heavy charged-lepton partners and pseudo-Dirac
pairs of heavy neutrinos are predicted to have the same masses as each other at the scale of
SU(2)R breaking and additional, intermediately heavy neutrinos are predicted to exist with
masses between MeV to GeV which are sufficiently heavy to not violate any cosmological
bounds. For more complicated scenarios with additional fermions (but the same charged-
lepton mass mixing matrix), where the size of X is not tied to the smallness of neutrino
mass, we find that unitarity deviation constraints begin to constrain the overall size of X
and imply that the limits on mX must be reduced by at least a factor of a half.

5.1.2 Bottom-left dominance: SU(2)L/R triplet fermions

The analysis of the alternative scenario where the mass matrix Y R
Ψ vR appears in the

bottom-left entry of MeE (such as when an SU(2)R triplet is added) follows very simi-
larly to the above, with only a few key differences. As mentioned previously, the scalar
content we have chosen is unable to generate a viable charged lepton mass spectrum in the
case of the triplets due to the lack of an eLER or ELeR mass term in the Yukawa sector,
as per eqs. (4.3) and (4.6). However, these missing mass terms can be generated through
a modified scalar sector. For example, if χL ∼ (4,2,1) is replaced with χ′ ∼ (4,2,3) then,
as was first noted in [16], the missing mass term in the top-right entry of MeE in eq. (4.3),
proportional to vL, is generated for the case of an SU(2)R triplet. Similarly, if χR ∼ (4,1,2)
is replaced with χ′′ ∼ (4,3,2) then the missing mass term in the bottom-left entry of MeE ,
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proportional to vR, is generated for the case of an SU(2)L triplet. We therefore assume
that all mass terms are generated in what follows, with a Y R

Ψ3
vR mass matrix appearing

in the bottom-left entry of MeE in eq. (4.6), but remain agnostic about the scalar sector
which generates it.

We shall also not undertake a detailed study of the requirements for neutrino masses
in these modified scenarios, but make the following brief observations: a crucial difference
between the triplet and bi-doublet scenarios is that the neutral lepton mass mixing matrix
in the case of triplets is given by an inverse/linear seesaw similar to eq. (2.17), with the
exception that the terms are also related to the charged-lepton mass mixing matrix. In
appendix C.5 we argue that, unlike the bi-doublet case, the mass mixing matrices in this
scenario are such that low-scale seesaws for the neutrinos and charged leptons are unable
to correctly reproduce the SM lepton masses. A viable setup therefore requires additional
physics to further decouple the charged- and neutral-lepton mass mixing matrices, for
example with the addition of singlet fermions SL [16] which also appear in the usual low-
scale PS particle spectrum. Introducing SU(2)L or SU(2)R triplets therefore requires both
a modification of the scalar content of the theory (to generate a viable charged-lepton mass
spectrum), as well as additional fermionic states to generate sufficiently light neutrinos for
low scales of PS breaking.

We therefore assume some additional physics is included in the neutrino sector to allow
for a viable mass spectrum and simply comment on the implications of a charged-lepton
mass matrix of the form

LeE =
(
eL EL

)( md Y L
Ψ3
vL√

2Y R
Ψ3
v∗R µΨ3

)(
eR
ER

)
, (5.34)

where the dominant seesaw term is in the bottom-left entry has on the limits on PS breaking
through mX .

Adopting the hierarchy ‖Y R
Ψ3
‖ > ‖md, µΨ3 , Y

L
Ψ3
vL‖, necessary for a chiral suppression

to occur, leads to
m` ' vLY L

Ψ3 −
1
vR
md(Y R

Ψ3)−1µΨ (5.35)

for the light states after diagonalisation. The relationship between the interaction and
mass eigenstates is now given by

e′L ' (OeL)†
(
1− 1

2XX
†
)
eL − (OeL)†X EL

e′R ' −(OeR)†Z† eR + (OeR)†
(
1− 1

2Z
†Z
)
ER (5.36)

where OeL/R diagonalises the light mass block,

X ' 1
vR
md

(
Y R

Ψ3

)−1
+ vL
v2
R

Y L
Ψ3µ

†
Ψ3

[(Y R
Ψ3)†]−1(Y R

Ψ3)−1

Z ' 1
vR

(Y R
Ψ3)−1µΨ3 + vL

v2
R

(Y R
Ψ3)−1[(Y R

Ψ3)†]−1m†dY
L

Ψ3 (5.37)
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and we have expanded up to second order. The physical mixing matrices are now given by

Kde
L ' −(UdL)†

(
1− 1

2XX
†
)
OeL, K

de
R ' −(UdR)†ZOeR and UPMNS ' N †ν

(
1− 1

2XX
†
)
OeL.

(5.38)
The notable differences to the results in the previous section where the top-right entry
of MeE is dominant are: (i) the leptoquark Xµ now effectively only couples to the left-
handed states (compared with right-handed previously), and (ii) the parameter controlling
the deviation from unitarity for the PMNS and the parameter determining the degree
of helicity suppression in meson decays are different. Unitarity deviation is determined
by X , which is given at lowest order by X ' md(Y R

Ψ3
vR)−1, while the degree of helicity

suppression in the Xµ couplings is given by Z ' (Y R
Ψ3
vR)−1µΨ3 . In the previous scenario

of top-right entry dominance, both are controlled by X which in that case was given by
X ' (Y R

Ψ3
vR)−1µΨ3 . Unlike before where µΨ3 could be lowered, the only way to decrease

the deviation from unitarity is by increasing the scale vR as md is fixed by the SM down-
quark masses. This leads to larger masses for the leptoquark Xµ, and thus experimental
limits on the deviation will more strongly constrain the allowed scales of SU(2)R breaking.
As before, the degree of helicity suppression is controlled by Z ∼ (Y R

Ψ3
vR)−1µΨ3 but now

there are no constraints on Z from unitarity deviation.
The two plots of figure 7 show the size of X as a function of vR where as before we

consider the singular values in Y R
Ψ3

to vary between 0.1 and 1. Points in blue correspond
to X at first order where

X (1) ' md(Y R
Ψ3vR)−1 (5.39)

and points in light purple correspond to where X has been calculated up to second order
where

X (2) ' X (1) + vL
v2
R

Y L
Ψ3µ

†
Ψ3

[(Y R
Ψ3)†]−1(Y R

Ψ3)−1. (5.40)

As µΨ3 is a free parameter — it is not fixed from the requirement of a viable neutrino mass
spectrum — for regions where ‖µΨ3‖ � ‖md‖ the second order term in Z can dominate
leading to larger levels of unitarity deviation. Of course for larger values of µΨ3 the degree
of helicity suppression in the limits on mX also decreases leading to larger limits on the PS
breaking scale. The right plot of figure 7 shows the level of unitarity deviation in the most
experimentally constrained entry of η and it shows that for all values of vR the deviation
is below the current experimental limit. Unlike the previous scenario, as µΨ3 enters X
at second order, large values of µΨ3 are not constrained by requiring |ηij | < |ηexp

ij |. For
vR ∼ 1TeV and large values in the entries of µΨ3 , the deviation from unitarity in the most
constrained entry of η is roughly one order of magnitude below the current experimental
limits. For small values of µΨ3 (which correspond to the region which helicity suppresses the
limits onmX) the predicted deviation in unitarity is roughly an order of magnitude smaller.
Unlike the previous scenario, however, figure 7 demonstrates that as the constraints on ηexp

get stronger, they will lead to constraints on the allowed magnitude of vR. This will require
limits several orders of magnitude stronger than the current ones.

Similarly to the scenario with top-right dominance, the level of chiral suppression in
the couplings of Xµ is controlled by Z ' µΨ3(Y R

Ψ )−1. The left plot of figure 8 demonstrates
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Figure 7. Plots of the variation of X (left) and the variation of the most experimentally constrained
entry of η (right) as a function of vR. Points in blue correspond to where ‖µΨ3‖ < ‖md‖ and
therefore X ' X (1) and points in purple correspond to the opposite regime where X ' X (2) where
we have scanned over the entries of µΨ3 only requiring ‖µΨ3‖ < ‖Y RΨ3

vR‖ such that the seesaw
assumption is satisfied. Here there are no current experimental constraints on X from unitarity
deviation however future constraints on η will begin to constrain vR.

that the variation in the limits on mX vary in the exact same way as figure 6 and requiring
complete helicity suppression in the limits on mX requires ‖Z‖F . 10−3 as before.

Whereas in the bi-doublet scenario the smallness of µΨ22 could be directly con-
nected to the light neutrino masses, here we find additional physics is required for a
phenomenologically-viable neutrino mass spectrum. Therefore the relationship between
the bare mass term µΨ3 and the light neutrino masses cannot be established without prop-
erly considering the possible hierarchies of parameters in the full neutrino mass matrix,
which is itself model dependent. While we do not thoroughly analyse the neutrino mass
matrix of a more complete model, we note that [16] found that if an SU(2)R triplet, Ψ3,
was extended with additional fermionic singlets (such that the full Yukawa Lagrangian
was given by a combination of eqs. (2.15) and (4.1)) a viable neutrino mass spectrum was
recovered for ‖µΨ3‖ . 1GeV which would suggest that Z � 10−3 and therefore the limits
on mX will be helicity suppressed to their lowest values. However we note that the limit
µΨ3 → 0 does not recover a global symmetry of the Lagrangian as it does in the bi-doublet
case and therefore it is unlikely that the smallness of µΨ3 can be related to the smallness
of neutrino mass. It may be possible that there are multiple regions in which viably light
neutrino masses are recovered, some of which require the entries of µΨ3 to be large, which
would not lead to a reduction in the limits on mX . While the smallness of µΨ3 cannot be
guaranteed by the smallness of the active neutrino masses, as in the bi-doublet scenario,
the work in [16] at least indicates that there is a region of parameter space which recovers
all SM fermion masses with µΨ3 small enough to reduce fully the limits on mX .

Therefore exotic PS fermion multiplets which introduce additional states which mix
with the SM charged and neutral leptons are an attractive method for reducing the limits
on PS breaking. As both multiplets considered contain both charged and neutral states, the
mixings within both sectors are now coupled. Requiring a valid neutrino-mass spectrum
leads to a chiral suppression in the limits on mX . In the case of additional SU(2)L/R bi-
doublets, a chiral suppression can be motivated through technical naturalness arguments.
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Figure 8. Plot of the limits on mX as a function of ‖Z‖F assuming that Kde
L = 1. As the extent

of chiral suppression in the couplings of Xµ to e′R and d′R is controlled by Z, requiring full helicity
suppression in the limits on mX requires ‖Z‖F . 10−3 as in the previous section. Unlike the
previous section Z is not constrained by limits on unitarity deviation.

In the case of additional SU(2)L/R triplets, the usual PS scalar content is ruled out phe-
nomenologically. However, if the scalar and fermion sectors are modified appropriately the
desired masses and chiral suppression can be achieved. Although not linked to any techni-
cal naturalness arguments, previous studies with the triplets and more exotic scalar content
suggest that a viable neutrino mass spectrum will still lead to a complete chiral suppression
in the limits on mX . Due to the fact that the mass hierarchy between the down quarks
and charged leptons differs between the different generations, the correct masses are most
naturally generated for the two fermion types by having their masses arise from different
Yukawa couplings and vevs. In the two scenarios considered above, viable charged-lepton
and down-quark masses implied that the masses of all quarks arise from couplings of fL/R
to φ with vevs v1 and v2, whereas the lepton masses are related to couplings of the relevant
fermions to χL with vev vL, suggesting the hierarchy v1,2 � vL & 1GeV.

5.2 d−D mixing: sextet fermions

Mixing between the down quarks and heavy exotic partners is similar to the scenarios above
involving lepton mixing. A number of possible fermion extensions lead to d − D mixing.
Here we will focus on the feasibility of d − D mixing alone in generating both a viable
SM mass spectrum and a suppression of the mass limits on mX which occurs through the
addition of the SU(4) sextet fermions, but may also occur with higher dimensional PS
multiplets. The results for down-quark mixing will follow very similarly to section 5.1.2.
As can be seen in eq. (4.26), yRΨ6

vR appears in the bottom-left entry of MdD.
Writing the down-quark mass mixing matrix similarly to the case of the charged leptons

LdD =
(
dL DL

)(mdd mdD

mDd mDD

)
︸ ︷︷ ︸

(
dR
DR

)
+ H.c.

MdD (5.41)

and noting that the entries of eq. (4.26) appear similarly to the case of MeE above allows
us to draw the same conclusions which we will summarise. Limits on exotic quark states
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exceed 1TeV [39] and therefore for phenomenological reasons a seesaw in MdD is required.
As before the only two entries of MdD not tied to the electroweak scale are yΨ6vR and µΨ6

and, as discussed, a significant chiral suppression in limits on the PS breaking scale will
only occur for the scenario where ‖yRΨ6

vR‖ > ‖md, y
L
Ψ6
vL, µΨ6‖.

This hierarchy implies the down-quark masses are given upon diagonalisation by

md ' yLΨ6v
∗
L −me (yRΨ6vR)−1µΨ6 (5.42)

where the PS symmetry enforces that the singular values of me give the correct charged-
lepton masses at the appropriate scale in the case where there are no additional multiplets
that induce e−E mixing. For the same reasons as with the SU(2)L/R triplets, the correct
down-quark masses cannot be recovered in the limit yLΨ6

vL → 0 as this would imply

md ' −me (yRΨ6vR)−1µΨ6 (5.43)

suggesting all three generations of down-quarks are lighter than the corresponding gener-
ation of charged-lepton, as discussed in appendix C.3. In section 4.1.4 the constraint from
baryon number violation suggested that imposing baryon number conservation required
suppressing the Yukawa interactions of χL to the fermions (for example by removing the
scalar). However as phenomenologically the mass term yLΨ6

vL is required in order to gen-
erate a viable charged-lepton and down-quark mass spectrum, this suggests that models
involving just d−D mixing through the introduction of SU(4) sextets are likely ruled out
by proton lifetime measurements. An analysis of all possible proton and neutrino decay
diagrams in the region where the correct down-quark and charged-lepton masses arise is
beyond the scope of this work. If the dominant decay channels are two-body decays which
proceed via d = 6 effective four-fermi interactions similar to figure 3, estimates from [40]
suggest that for TeV scale new physics the product of Yukawa couplings within the relevant
loop diagram must satisfy Y . 10−6. As yLΨ6

vL is related to the down-quark masses in this
case and for low scales of vR, yRΨ6

is required to be close to unity such that the heavy D
states are sufficiently heavy naïvely suggests difficulty in suppressing the decays.

If a viable model involving the SU(4) sextets exists which can suppress the dangerous
proton decay diagrams whilst generating the appropriate charged-lepton and down-quark
masses in the regime where the mass term |yRΨ6

| is dominant, the requirements for a chiral
suppression in the limits on mX would follow almost identically to the e− E mixing case
above. For small values of µΨ6 the couplings of Xµ to d′R and e′R will be suppressed and
decreasing the experimental limits to their lowest value would roughly require

‖Z‖F ' (Y R
Ψ6)−1µΨ6 . 10−3. (5.44)

The only difference between d−D and e− E mixing will be in the deviation of unitarity,
where e − E mixing is constrained by deviation of unitarity in the PMNS whereas d −D
mixing is constrained by deviation within the measured CKM matrix,

VCKM ' (UuL)†
(
1− 1

2XX
†
)
OdL (5.45)
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where

d′L ' (OdL)†
(
1− 1

2XX
†
)
dL − (OdL)†X DL

d′R ' −(OdR)†Z† dR + (OdR)†
(
1− 1

2Z
†Z
)
DR (5.46)

and

X ' 1
vR
mX

(
Y R

Ψ

)−1
+ vL
v2
R

Y L
Ψ µ
†
Ψ[(Y R

Ψ )†]−1(Y R
Ψ )−1

Z ' 1
vR

(Y R
Ψ )−1µΨ + vL

v2
R

(Y R
Ψ )−1[(Y R

Ψ )†]−1m†dY
L

Ψ . (5.47)

In section 5.3 which involves coupled e − E and d − D mixing we find that limits from
CKM unitarity deviation lead to very similar constraints on the level of mixing within the
theory and therefore we find that d−D mixing would be equally viable to the e−E mixing
above in the absence of proton decay issues.

5.3 Coupled e− E and d−D mixing: decuplet

Coupled mass mixing, which we define as scenarios which involve the introduction of
exotic PS multiplets which contain both D and E states within the same multiplet,
occurs with the addition of a pair of opposite-chirality SU(4) decuplets or with pairs
of SU(4) ⊗ SU(2)L/R bi-fundamentals with appropriate chiral structure. There is an
additional subtlety for such coupled scenarios compared to the previous analyses. Due
to the coupled nature of the exotic states D and E there exist additional relevant gauge
interactions with the leptoquark Xµ.

Consider the full fermion kinetic Lagrangian with the addition of SU(4) decuplet
fermions Ψ10

L/R:
Lf

kin = ifL/R /DfL/R + iΨ10
L/R

/DΨ10
L/R (5.48)

with covariant derivative given by

/DΨ10
L/R = ∂µΨ10

L/R + ig4ĜµΨ10
L/R + ig4Ψ10

L/R(Ĝµ)T (5.49)

for the decuplets, which transform as Ψ10
L/R → U4Ψ10

L/RU
T
4 . Expanding out eq. (5.49) and

leaving only the interactions of interest gives

Lf
kin ⊃

g4√
2

(
d /XPL/Re+

√
2D /XPL/RE

)
+ H.c. (5.50)

and therefore the exotic states D and E within Ψ10
L/R have similar gauge interactions to

Xµ as the states d and e within fL/R. Due to the mass mixing present in MdD and MeE in
eqs. (4.31) and (4.32) between the states fL/R and Ψ10

L/R, the physical mass states e′, E′, d′
and D′ are admixtures as before. Writing(

e

E

)
L/R

=
(
V e
L/Re

′
L/R +W e

L/RE
′
L/R

Xe
L/Re

′
L/R + Y e

L/RE
′
L/R

)
and

(
d

D

)
L/R

=
(
V e
L/Rd

′
L/R +W e

L/RD
′
L/R

Xe
L/Rd

′
L/R + Y e

L/RD
′
L/R

)
(5.51)
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for the unitary diagonalisation matrices as usual leads to
g4√

2

(
d′L

(
(V d
L )†V e

L +
√

2(Xd
L)†Xe

L

)
/Xe′L + (L↔ R)

)
(5.52)

for the gauge interactions between the physical SM-like states d′ and e′. We have once again
neglected to write the similar gauge interactions which contain the heavy states D′ or E′ as
by assumption the relevant mesons are kinematically forbidden from decaying into them.

Therefore the relevant mixing matrices are now given by

Kde
L/R = (V d

L/R)†V e
L/R +

√
2 (Xd

L/R)†Xe
L/R. (5.53)

Due to the second term which now appears in eq. (5.53) (which arises from the components
of d′ and e′ contained within the states D and E), the resultant mixing matrix can only be
made helicity-suppressed if and only if a hierarchy in both V and X occurs, e.g. ‖V d

R‖ �
‖V e

R‖ and ‖Xd
R‖ � ‖Xe

R‖. This is unlike the previous scenarios where the additional
multiplets included did not induce any new interactions between Xµ and exotic states with
down-quark and charged-lepton quantum numbers. For scenarios where the D and E states
are introduced through two different PS multiplets, no such gauge interactions will occur
and the requirements for a helicity suppression in the relevant meson decays will be given by
a combination of the results in sections 5.1 and 5.2. Therefore what follows will be specific
to ‘coupled’ scenarios where the new states D and E transform within the same multiplet.

Consider the mass mixing matrices between the down-quark and charged-lepton states,
in the three-generational scenario, which arises from the inclusion of a pair of SU(4)
decuplets:

MeE =

 mF

√
2Y L

Ψ10v
∗
L√

2Y R
Ψ10vR µΨ10 −

√
3
2 YΦvΦ

 and MdD =

 mF Y L
Ψ10v

∗
L

Y R
Ψ10vR µΨ10 −

√
1
6 YΦvΦ

 .
(5.54)

Previously it was found that a hierarchy where ‖Y R
Ψ10vR‖ is larger than all other entries of

MdD or MeE is required for a helicity suppression to occur, and therefore for a reduction
in the experimental mass limits of Xµ. If such a hierarchy is assumed for the entries of
MdD and MeE above, the unitary block diagonalisation matrices are given by

U e,dL '
(
13×3 − 1

2XX
† X

−X † 13×3 − 1
2X
†X

)
and U e,dR '

(
−Z 13×3 − 1

2ZZ
†

13×3 − 1
2Z
†Z Z†

)
(5.55)

where the explicit forms for X and Z in the case of U eL/R and UdL/R can be easily derived
from appendix C.2. As always, due to the assumption that there is a seesaw where ‖Y R

Ψ10vR‖
is dominant in both MdD and MeE , the parameters X and Z are small: ‖X , Z‖ � 1.
Comparing eq. (5.55) with eq. (5.51) implies

‖V e
L‖ ' ‖V d

L‖ ' 1, ‖V e
R‖ ' ‖V d

R‖ ' 0 (5.56)

and
‖Xe

L‖ ' ‖Xd
L‖ ' 0, ‖Xe

R‖ ' Xd
R ' 1. (5.57)
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Therefore under the assumption that the mass term proportional to the SU(2)R breaking
is dominant for both MdD and MeE (which previously led to a helicity-suppression with
‖Kde

R ‖ � 1 for cases of uncoupled e − E or d −D mixing), we find no suppression in the
relevant mixing matrices:

‖Kde
L ‖ ' ‖Kde

R ‖ ' 1 (5.58)

which is due to the second contribution to Kde
L/R appearing in eq. (5.53). Physically it is

very simple to see why this occurs. Assuming that the bottom-left entries of MdD and
MeE are both dominant in a seesaw implies that the light mass states d′L, d′R, e′L and
e′R are predominately composed of dL, DR, eL and ER respectively. However dL and eL
are contained in the same PS multiplet and DR and ER are also contained within a PS
multiplet together. As such, the gauge leptoquark Xµ couples to both chiralities of fermion
mass states with little suppression. If instead the bottom-right entries of MdD and MeE

are assumed dominant, for the same reasons as presented in section 5.1, the desired helicity
suppression in the relevant meson decays will not occur.

From the above arguments it is clear that, for scenarios with coupled mixing in the
down-quark and charged-lepton sectors, a chiral-suppression in the relevant meson decays
is not possible if both mixing matrices MdD and MeE in eq. (5.54) are assumed to have
the same seesaw structure. However, note that the entries of the two mixing matrices
differ by combinations of group theoretic factors from the Yukawa couplings of the adjoint
scalar Φ. Therefore it is in principle possible for there to be sufficient tuning of the mass
parameters, particularly the parameters in the second row of MeE and MdD, such that the
seesaw structure in the two mass matrices differs.

To demonstrate this for one-generation of fermions, assume that the hierarchy of pa-
rameters in µΨ10 , y

R
Ψ10

vR and yΦvΦ is such that

µΨ10 −
√

1
6yΦvΦ ≥ 10 yRΨ10vR ≥ 100

(√
1
2µΨ10 −

√
3
4yΦvΦ

)
(5.59)

is satisfied (taking each combination to be real and positive). This corresponds to the
hierarchy mDD > mDd,mEe > mEE . Under this assumption, the bottom-left entry of
MeE is at least an order of magnitude larger than the other entries of the charged-lepton
mass mixing matrix. In addition, the bottom-right entry of MdD is dominant in the down-
quark mass mixing matrix. This certainly requires a degree of tuning between the mass
parameters µΨ10 and yΦ vΦ and also implies that the adjoint scalar Φ is required in such
a theory in order to introduce the required Georgi-Jarlskog-like factors. Now the unitary
block diagonalisation matrices differ from eq. (5.55):

U eL '
(
13×3 − 1

2XX
† X

−X † 13×3 − 1
2X
†X

)
, U eR '

(
−Z 13×3 − 1

2ZZ
†

13×3 − 1
2Z
†Z Z†

)
,

UdL '
(
13×3 − 1

2XX
† X

−X † 13×3 − 1
2X
†X

)
, UdR '

(
13×3 − 1

2Z
†Z Z†

−Z 13×3 − 1
2ZZ

†

)
. (5.60)

Consequently
‖V e

L‖ ' ‖V d
L‖ ' 1, ‖V e

R‖ ' 0, ‖V d
R‖ ' 1 (5.61)
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and
‖Xe

L‖ ' ‖Xd
L‖ ' 0, ‖Xe

R‖ ' 1, ‖Xd
R‖ ' 0 (5.62)

and therefore ‖Kde
L ‖ ' 1 and ‖Kde

R ‖ ' 0 as required. Again this is simple to see given that
in this case the light mass states are predominately composed of eL, ER, dL and dR, due
to the seesaw assumption. Therefore the leptoquark Xµ will strongly couple to left-handed
states20 (as eL and dL are in the same PS multiplet) whereas there will be a suppression in
its right-handed couplings (as ER and dR are not within the same PS multiplet). Therefore,
scenarios with coupled mass mixing matrices between the down-quark and charged-lepton
sectors are able to generate the desired chiral couplings of Xµ for a tuned selection of certain
mass parameters within the theory. To reiterate, this kind of tuning is required only when
the extra states, D and E, reside in the same PS multiplet. A similar tuning was required
in [12, 34], such that the mass mixing matrices in the down-quark and charged-lepton
sectors had different seesaw structures, in order to achieve a chiral suppression the limits
on mX for the case where multiple pairs of bi-fundamental PS fermions were introduced.
We therefore find this to be a general requirement for models with coupled e−E and d−D
mixing, when a chiral suppression in the couplings of Xµ is desired.

Importantly, the addition of Ψ10
L/R implies the existence of a Dirac colour-sextet fermion

with electric charge 1/3. Its mass is given by

mψ = µΨ10 +
√

1
6yΦvΦ (5.63)

and therefore requiring that the sextet is sufficiently heavy leads to constraints on the
singular values of µΨ10 . The mass limits for a colour sextet fermion vary from roughly
100GeV if stable on collider length scales [41] up to a TeV [42] for large couplings and
possibly in the multi-TeV range [43]. However if a hierarchy similar to

µΨ10 −
√

1
6yΦvΦ � yRΨ10vR �

√
1
2µΨ10 −

√
3
4yΦvΦ (5.64)

is required, mψ is already required to be at least at the multi-TeV scale considering the
limits on the SU(2)R breaking scale. Therefore regions of parameter space which lead to
the desired chiral suppression of Xµ will naturally require the colour-sextet masses to be
sufficiently large.

Let us estimate whether this hierarchy of mass parameters, though somewhat tuned, is
able to successfully reproduce the correct SM fermion mass hierarchies as well as generate a
chiral suppression in the couplings of Xµ in the multi-generational scenario. For simplicity,
put the bottom-right entry of MeE to be exactly zero (the maximally tuned case), that is:

µΨ10 −
√

3
2YΦvΦ = 03×3. (5.65)

This implies that the bottom-right entry of MdD is given by

µΨ10 −
√

1
6YΦvΦ = 2

3µΨ10 (5.66)

20The light left-handed mass states will therefore also behave correctly in weak interactions.
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and consequently
mψ = 4

3µΨ10 . (5.67)

The two mass mixing matrices, MeE and MdD, now simplify to

MeE =
(

mF

√
2Y L

Ψ10v
∗
L√

2Y R
Ψ10vR 03×3

)
and MdD =

(
mF Y L

Ψ10v
∗
L

Y R
Ψ10vR

2
3µΨ10

)
. (5.68)

We require that ‖
√

1
2 mF , Y

L
Ψ10

vL‖ < ‖Y R
Ψ10

vR‖ < 2
3‖µΨ10‖ in order for the dominant entries

of each mass matrix to be different. This hierarchy leads to

m` '
√

2Y L
Ψ10vL (5.69)

for the charged-lepton mass matrix and

md ' mF −
3
2vLvRY

L
Ψ10 (µΨ10)−1 Y R

Ψ10 (5.70)

for the down-quark mass mixing matrix.
As the dominant block is in the bottom-left entry, the relationship between the in-

teraction and mass eigenstates for the SM-like charged leptons is given identically to sec-
tion 5.1.2:

e′L ' (OeL)†
(
1− 1

2X
e(X e)†

)
eL − (OeL)†X eEL

e′R ' −(OeR)†(Ze)† eR + (OeR)†
(
1− 1

2(Ze)†Ze
)
ER (5.71)

with X e ' mF (YΨ10vR)−1 and Ze ' vL
v2
R

(Y R
Ψ10

)−1((Y R
Ψ10

)†)−1mFY
L

Ψ10
at leading order. The

light down-quark mass eigenstates are instead given by

d′L ' (OdL)†
(
1− 1

2X
d(X d)†

)
dL − (OdL)†X dDL

d′R ' (OdR)†
(
1− 1

2(Zd)†Zd
)
dR + (OdR)†(Zd)†DR (5.72)

with X d ' 3
2vLY

L
Ψ10

(µΨ10)−1 and Zd ' 3
2vR(µΨ10)−1Y R

Ψ10
. The physical mixing matrices

are therefore given by

Kde
L ' (OdL)†

[(
1− 1

2X
d(X d)†

)(
1− 1

2X
e(X e)†

)
+ X d(X e)†

]
OeL,

' (OdL)†OeL

Kde
R ' (OdR)†

[
(Zd)†

(
1− 1

2(Ze)†Ze
)
−
(
1− 1

2(Zd)†Zd
)
Ze
]
OeR

' (OdR)†
(
(Zd)† −Ze

)
OeR

VCKM ' (UuL)†
(
1− 1

2X
d(X d)†

)
OdL and UPMNS ' N †ν

(
1− 1

2X
e(X e)†

)
OeL (5.73)
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where the two terms appearing in Kde
L/R are generated from the gauge interactions D /XE

and d /Xe as explained above. This features the Xµ coupling being predominately to d′L
and e′L as expected, with a strong suppression of its coupling to d′R and e′R.

Additionally, the unitarity deviation in the PMNS mixing matrix is given almost iden-
tically to section 5.1.2, where it was quantified by X ' 1

vR
md(Y R

Ψ3
)−1, compared to the cur-

rent scenario where X e ' 1
vR
mF (Y R

Ψ10
)−1. Note also that combining eqs. (5.69) and (5.70)

leads to
md ' mF −

3
2
√

2
vRm` (µΨ10)−1 Y R

Ψ10 , (5.74)

which, combined with ‖Y R
Ψ10

vR‖ < ‖µΨ10‖, implies that mF ' md, since the singular values
of m` are of similar order to md. Therefore the constraints on the SU(2)R breaking scale,
vR, from the deviation of the PMNS matrix follows essentially identically to section 5.1.2
and therefore figure 7 is also valid for this scenario. Therefore for all values of vR which are
at the TeV scale or higher, there are no constraints arising from the deviation of unitarity
from the PMNS matrix.

Due to the additional down-quark mixing, there are also constraints from the deviation
from unitarity of the CKM matrix. In this case, the deviation is determined by the matrix
X d ∝ vLY

L
Ψ10

(µΨ10)−1 where again vLY
L

Ψ10
is proportional to the charged-lepton mass

matrix, m`. Now, µΨ10 is related to the colour-sextet fermion mass scale from eq. (5.67).
In figure 9 we measure the level of deviation through the parameters

ηrj = 1−
∑
i

|(VCKM)ji|2 and ηck = 1−
∑
i

|(VCKM)ik|2. (5.75)

The strongest experimental limits on ηr/c come from the sum of the squares of the first
row or column of the CKM matrix. However, due to the much larger masses of the third
generation of quarks, we find that deviations in the sum of the third row and column
of the CKM matrix lead to stronger constraints on X d. We find that ηr3 and ηc3 place
almost identical limits on the magnitude of ‖X d‖F and therefore only plot one for brevity.
Using [44] places the limit

− 0.01 . η
r/c
3 . 0.09 (5.76)

and therefore we conservatively set the limit |ηr/c3 | < 10−2 at the PS breaking scale. Figure 9
therefore sets a rough limit of ‖X d‖F . 10−1 in order to prevent significant deviation
occurring for the CKM matrix. This can be compared to the limits from PMNS deviation
which currently lead to no derived limits on vR.

The implications for the experimental limits on mX can also be very easily determined
from the results derived in section 5.1 and the explicit derivations of Kde

L/R derived in
eq. (5.73). From the results in figure 8 it is clear that in order for a substantial chiral
suppression to occur in the limits on mX , where Kde

R ' (OdR)†ZOeR, we roughly require
‖Z‖ . 10−2. The expression for Kde

R given in eq. (5.73) in this case is of a identical form
with

Kde
R ' (OdR)†

(
(Zd)† −Ze

)
OeR ≡ (OdR)†Z10O

e
R. (5.77)

Therefore we clearly require that ‖Z10‖ . 10−2 in order for the desired chiral suppression
to occur. This will clearly be satisfied if both Zd and Ze individually satisfy this
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Figure 9. Plot of the deviation of unitarity in the CKM matrix as a function of ‖X d‖F where
the dashed green line roughly indicates the current experimental limit. The CKM matrix deviation
is measured as the difference in the sum of the squares of each row and column. Even though
it is currently the least constrained, the sum of the squares of the third row and column provide
the strongest bounds on the deviation due to the large masses of the third generation of quarks
compared to the first and second generation. This plot indicates that ‖X d‖F . 10−1 is required.
The limits for CKM matrix elements are taken from [44].

requirement, and we do not consider a scenario with a tuned cancellation between the two
matrices. By inspection, from the definitions of Zd and Ze in eqs. (5.71) and (5.72) this
will be trivially satisfied by Ze, as it contains terms which are at most at the GeV scaled
which are suppressed by terms which are at a minimum at the TeV scale, but in the case
of Zd roughly implies the hierarchy

‖vRY R
Ψ10
‖

‖µΨ10‖
. 10−2 (5.78)

and therefore we require the colour-sextet masses to be at least two order of magnitude
larger than the mass term proportional to the SU(2)R breaking term, if a full suppression
in the experimental limits on mX is desired.

However note that here we are assuming that µΨ10 =
√

3
2YΦvΦ where vΦ is a vev which

breaks SU(4) and therefore contributes to the mass of Xµ. Therefore the gauge leptoquark
mX will roughly develop a mass at the same order as the colour-sextet fermion mψ, which
will typically be a stronger limit on mX than the experimental constraints, for many choices
of Kde

R . For example, if vR ' 5TeV, a large chiral suppression requires µΨ10 to be roughly
two order of magnitude larger than this, implying that mψ ' mX & 500TeV. Therefore
a mild suppression in the limits on mX is expected due to the required hierarchy between
YΨ10vR and µΨ10 (and therefore YΦvΦ). Only for situations where the mixing angles in Kde

R

are such that the experimental constraint on mX are initially close to their largest value,
e.g. Kde

R = 13×3, will this lead to a suppression in the limits on mX . We therefore find that
it is possible for the leptoquark Xµ to develop a chiral coupling to the SM-like fermions
and requires a tuning between the mass matrices µΨ10 and YΦvΦ. However, while this may
lead to a suppression in the decay rates of the relevant mesons, the large hierarchy required
between vΦ and vR requires mX & 100TeV at a minimum.
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5.4 Comparison to the literature

Attempts to lower the scale of Pati-Salam breaking have had a recent resurgence within
the literature. Our work focuses primarily on addressing two questions related to this.

Firstly, we re-evaluated the current experimental constraints on the PS breaking scale
in section 3 in order to find the minimum allowed scale of PS breaking. Similar calculations
have already appeared within the literature, most recently in [29, 31] for the case where
Xµ couples to both chiralities of SM fermions. Our analysis extends these results and
calculates similar limits in the case of chiral (V −A or V +A) couplings of Xµ, establishing
up-to-date lower bounds on mX , as presented in section 3.2 and tables 8 and 9. Secondly,
we have studied the interpolation between the two cases where Xµ couples either vectorially
or chirally to d and e, in order to establish how the experimental limits on mX decrease
as the couplings of Xµ become more chiral-like, as presented in figures 6 and 8. This has
implications for the phenomenological analyses within section 5 and for model building in
similar scenarios.

The results in sections 4 and 5 complement and extend past analyses on the same idea,
as we now outline. To the best of our knowledge, the idea to break the down-isospin mass
degeneracy with additional fermionic degrees of freedom was first introduced in [4, 5] where
additional SU(2)L/R bi-doublet fermions were introduced, similar to sections 4.1.2 and 5.1.1
and appendix C.4. We build on this work through a detailed exploration of the charged-
lepton and neutrino mass mixing matrices that arise. We prove that there is only one
hierarchy of parameters which prevents the active neutrinos from developing large masses
as well as generating the correct down-quark and charged-lepton masses. We show that this
hierarchy of parameters also implies a full suppression in the experimental limits on mX ,
therefore identifying an interesting connection between the helicity-suppressed PS limits
and the smallness of neutrino mass. SU(2)L/R triplet fermions similar to sections 4.1.1
and 5.1.2 and appendix C.5 were first introduced in [15] for the left-right asymmetric
version of GPS, SU(4)c ⊗ SU(2)L ⊗ U(1)X , in the context of the flavour anomalies in b →
sµµ. We find when extending this model to the left-right symmetric version of GPS that,
without extra degrees of freedom, there is no parameter space which generates the correct
neutrino, charged-lepton and down-quark masses simultaneously. This complements the
follow-up analysis of [16], where additional fermion singlets were introduced, such that the
fermion content contained sub-GeV sterile neutrinos, allowing for b→ cτν to be mediated
by scalar leptoquarks within the theory. Our results indicate that this appears to be
the simplest model with SU(2)L/R triplet fermions which is phenomenologically viable,
suggesting that modifications to b→ cτν naturally occur in this model. The analysis
for the case of SU(4) sextet and decuplet fermions in sections 4.1.4, 4.1.5, 5.2 and 5.3
in the context of breaking the down-isospin mass degeneracy as well as lowering the PS
breaking limits has not appeared in the literature, to the best of our knowledge. Finally, in
section 4.1.3 we find that two extra SU(4)c ⊗ SU(2)L/R bi-fundamental fermion multiplets
are not phenomenologically viable in agreement with the results of [12, 34]. From the above
results we conclude that models with PS breaking close to the TeV scale favour fermion
multiplets which induce charged-lepton mixing. For cases where D and E states reside
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within the same PS multiplet, we show that lowering the PS scale occurs through a tuning
of mass parameters requiring additional scalar fields.

A detailed examination of the link between the experimental limits on mX and the
breaking of the down-isospin mass degeneracy is interesting, as Pati-Salam is one of the
simplest models involving quark-lepton unification not constrained to have GUT scale
breaking. For now we simply comment on the potential viability of Xµ as a mediator21 of
the b→ sµµ anomalies. Firstly, we find that the SU(4) sextet appears to be not be viable
phenomenologically if a helicity suppression in the relevent meson decays is desired, and
therefore certainly cannot explain the anomalies in its minimal form. The SU(4) decuplet
can lead to a chiral suppression in the experimental limits of Xµ. However, as we find
that mX must exceed 100TeV at a minimum, in this scenario the gauge leptoquark is
simply too heavy to provide a viable explanation. As mentioned, the triplet scenario has
already been studied in this context [15, 16] and it was found that leptoquark masses within
12 . mX . 31TeV are viable if Kde

L has a structure similar to eq. (3.5). Our evaluation of
the experimental limits on mX , for the matrix texture Kde

L considered by [15, 16], indicates
that mX can be as low as 5TeV and therefore this scenario is viable. When introducing
bi-doublet fermions, the gauge leptoquark Xµ now couples predominantly to right-handed
leptons. However, the dominant effect appears to stem from couplings to left-handed
leptons [46] and, therefore, although we find that this scenario is the most attractive in
lowering the PS limits, it appears unlikely to be a viable scenario if one wishes for (a light)
Xµ to play a role in the anomalies. We therefore summarise that PS extended by SU(2)L/R
triplets (and additional fermion singlets) appears to be the simplest UV model capable of
explaining the B-meson anomalies if the gauge leptoquark predicted plays a dominant role
in the b→ s`` anomalies.

While a gauge mediated solution is attractive, the scalar content of PS is less con-
strained and necessarily includes a number of scalar leptoquarks. These scalar leptoquarks
alone are able to explain the anomalies, see e.g. [10], and therefore scenarios, such as
with additional fermion bi-doublets, may still remain viable if the anomalies arise from
interactions of the scalar leptoquarks. A decrease in the experimental limit on mX is not
necessarily required in this case, as scalar masses are not constrained by the PS breaking
scale. However, we note that a helicity suppression in the PS limit is still favourable in
these cases as it may help prevent the generation of a gauge hierarchy problem between a
large PS breaking scale and the small scalar leptoquark masses assumed. We leave a full
analysis of the ability of each model to explain the flavour anomalies, when the full particle
spectrum is considered, to future work.

5.5 Connection to SO(10)

While we are motivated by the experimentally attractive prospect of lowering the scale of
PS breaking to be as low as possible, here we briefly consider how the exotic fermionic
multiplets proposed could fit into an SO(10) GUT and mention any obvious problems. We

21As explained in [45], combined explanations of b → sµµ and b → cτν solely from the interactions of
Xµ are highly disfavoured and prefer mX . 6TeV, which is in tension with the mass limits on mX derived
in section 3.
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note the smallest dimensional multiplets of SO(10) which contain each exotic multiplet as
well as additional states this would predict. It is well known that two standard PS fermion
multiplets fit into the spinorial

16→ (4,1,2)⊕ (4,2,1) = fL ⊕ fR (5.79)

of SO(10). The fundamental representation of SO(10),

10→ (1,2,2)⊕ (6,1,1) = Ψ22 ⊕Ψ6, (5.80)

contains both the bi-doublet and sextet fermion states. While we find that the bi-doublet
fermion is the most attractive candidate in lowering the PS breaking scale, the sextet
fermion leads to undesirable proton decay diagrams. Some mechanism would therefore be
desirable in order to significantly increase the masses of the D states from the sextet, and
not the E and N states from the bi-doublet, in order to prevent large proton decay widths.
This cannot be through different bare mass terms, e.g. µΨ22 � µΨ6 ' 1016 GeV, as the
SO(10) symmetry now enforces the two terms to be equal.

The adjoint representation

45→ (1,3,1)⊕ (1,1,3)⊕ (15,1,1)⊕ (6,2,2) ⊃ Ψ3L ⊕Ψ3R (5.81)

contains both the SU(2)L and SU(2)R triplet fermions. Interestingly, the additional
(15,1,1) fermion contains a neutral state and therefore will contribute to the full neu-
trino mass matrix. As we found that the triplets alone are unable to generate a viable
neutrino mass spectrum, due to the various mass equalities predicted, it is convenient that
the minimal SO(10) multiplet which contains these states also contains additional neutrino
states which could possibly generate a viable spectrum of masses. The (6,2,2) fermion will
likely require a similar mechanism to the (6,1,1) fermion in order to significantly increase
its mass compared to the triplets within the theory. Finally the SU(4) decuplets first ap-
pear in the 120 representation of SO(10). This representation also contains the bi-doublet
fermion which will itself allow for the generation of chiral-like couplings of Xµ as well as
generate neutrino masses, which the decuplet fermions do not. An interesting possible
direction of future work is to analyse the feasibility of embedding such low-scale variants of
PS into an SO(10) GUT in such a way that the required fermion states do not develop GUT
scale masses whereas any fermion in a given embedding which may mediate proton decay,
or similar undesirable processes, have masses developed at the SO(10) breaking scale.

6 Conclusion

We have studied the implications of introducing additional fermionic states to the usual
Pati-Salam fermion multiplets. In particular we have focused on multiplets of relatively low
dimensionality which contain partner states to the charged-leptons and/or down-quarks.
The implications of mixing effects induced by these states were extensively studied, par-
ticularly with a focus on the feasibility of lowering the scale of PS breaking. We identified
four multiplets in principle that allow for the possibility of a suppression in the PS limits
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where at most two extra fermion multiplets per generation are added. Of the four, the
inclusion of an SU(2)L/R bi-doublet alone can lead to a valid mass spectrum for all SM
particles and a significant reduction in the PS limits. The decuplet, requires the addition
of extra singlet states (at a minimum) for neutrino mass, the inclusion of a scalar that
induces a Georgi-Jarlskog like texture (such as Φ) and is only able to reduce the limits on
mX for some choices of Kde

L/R and for a tuning between mass parameters. The remaining
two multiplets, the SU(2)L and SU(2)R triplets, require both a modification of the scalar
sector for a viable charged-lepton mass spectrum as well as additional fermionic states for
a viable neutrino mass spectrum. A common feature of all scenarios was the existence
of scalars χL and χR in order to generate a viable down-quark and charged-lepton mass
spectrum. Therefore three SU(2)L Higgs doublets are predicted.

The most attractive models, the SU(2)L/R bidoublet or triplets, contain only additional
leptonic states, inducing both e − E mixing as well as mixing within the neutrino sector.
While both these models have already appeared in the literature, we have extended these
analyses by rigorously studying the requirements for viable mass spectra of the down-
quarks, charged-leptons and neutrinos as well as the implications for the PS breaking scale
limits. We identify an attractive connection between the smallness of neutrino mass and the
helicity suppression of the limits on mX which, particularly in the case of the bi-doublet,
necessarily has a chiral-like coupling of Xµ to the SM fermions.

The sextet option leads to mixing in the down-quark sector alone but we find that this
likely leads to large proton decay widths in the only region which can generate a viable
mass spectrum. Finally the scenario with fermion decouplets, which leads to both d −D
and e − E mixing, was considered. It also includes additional exotic states potentially
discoverable at current and future colliders. The regime of interest, where the limits on PS
breaking can be lowered, is very sensitive to future experimental limits on SU(2)R breaking
scale vR and relies on a tuning of mass parameters.

We find that a chiral suppression in the PS breaking limits can reduce the usual limits
of 81–2467TeV, depending on the structure of Kde

L/R, down to as low as 5.6–194TeV. An
attractive property of models which lead to a chiral suppression is that only one of Kde

L/R

is required to have a specific structure. Without a chiral suppression, the lowest PS limits
obtained required both of Kde

L/R to have a specific structure which might suggest a parity
symmetry in conflict with the assumed low-scale setup.

A more in-depth examination of baryon number violation implications in the case with
SU(4) sextets is desired before it can be ruled out as a low-scale candidate. Additionally,
due to the mass mixing induced, collider constraints for other particles predicted (such as
theW ′ and Z ′) could lead to significantly smaller mass limits than what is usually expected.
Exploring the reach of the LHC and future colliders for these extended PS scenarios with
chiral-like gauge couplings may be required.

Acknowledgments

This work was supported in part by the Australian Research Council. TPD thanks John
Gargalionis for helpful discussion and advice during the early parts of this work and Graham
White for email correspondence.

– 58 –



J
H
E
P
0
5
(
2
0
2
1
)
1
9
9

A Baryon number violation

In order to assess the implications for baryon number violation arising from the unification
of quarks and leptons within PS we consider the Yukawa and kinetic portion of the La-
grangian, and the scalar potential separately. Consider first the electroweak sector of the
Yukawa Lagrangian:

Lyuk,ew = Tr
[
y1fLφ (fR)T + y2fL φ

c(fR)T
]

+ H.c. (A.1)

This Lagrangian is invariant under a single global U(1)J transformation

fL → eiθJfL, fR → eiθJfR and φ→ φ (A.2)

and therefore the J charge of each field can be chosen such that

J(fL) = J(fR) = 1 and J(φ) = 0. (A.3)

As φ is uncharged under the SU(4) of Pati-Salam and the global symmetry J , the vev 〈φ〉
also does not break either symmetry e.g. J(〈φ〉) = T (〈φ〉) = 0, where T corresponds to
the fifteenth generator of SU(4) identified with B − L. Baryon and lepton number can be
identified as different linear combinations of J and T

B = 1
4(J + T ) and L = 1

4(J − 3T ) (A.4)

such that

B(fL) = B(fR) =


1/3 1/3
1/3 1/3
1/3 1/3
0 0

 and L(fL) = L(fR) =


0 0
0 0
0 0
1 1

 (A.5)

as required for the embeddings of SM fermion in fL and fR defined in eq. (2.4). As the
electroweak Yukawa Lagrangian is invariant under both J and T independently in both
the broken and unbroken phase, it is clearly also invariant under a linear combination of
the two and therefore all interactions conserve both B and L.

Turning to the remaining terms in the Yukawa Lagrangian,22

Lyuk,ps = Tr
[
yRSLχ

†
RfR + yLfLχL(SL)c

]
+ 1

2µSSLS
c
L + H.c. (A.6)

the global symmetry U(1)J is unbroken with the additional charge assignments

J(χL) = J(χR) = 1 and J(SL) = 0 (A.7)

where the B and L numbers of each component of χL/R are identical to those of fL/R.
The scalars χL and χR are charged under both J and T , such that 1

4(J + T )(〈χL/R〉) =
B(〈χL/R〉) = 0, whereas 1

4(J − 3T )(〈χL/R〉) = L(〈χL/R〉) 6= 0. Therefore B is conserved by
22Adopting the scalar and fermion particle content detailed in section 2.1.
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the Yukawa Lagrangian at all scales whereas lepton number is spontaneously broken at the
scale of SU(2)R breaking. Baryon number being an accidental symmetry of the PS Yukawa
Lagrangian is a feature which appears to be insensitive to the choice of scalars used to break
the PS symmetry. If the scalars ∆α

L/R defined in eq. (2.8) were present instead of χL/R
(often considered in high-scale PS models) identical conclusions are reached with baryon
number remaining an accidental symmetry of the Yukawa sector while lepton number is
spontaneously broken.

The kinetic portion of the Lagrangian

Lkin = i
∑
F

F /DF +
∑
S

(DµS)†(DµS), (A.8)

where F = (fL, fR, SL) and S = (χL, χR, φ, Φ), does not violate B−L = T as it is a gauge
symmetry. However it is easy to show that it also conserves a global B + L = 1

2(J − T )
symmetry where

(B + L)(Ĝµ) =


0 0 0 −2/3
0 0 0 −2/3
0 0 0 −2/3

2/3 2/3 2/3 0 ,

 (A.9)

as every gauge field is uncharged under U(1)J and Ĝµ corresponds to the SU(4)c gauge
fields. The gauge fields of SU(2)L and SU(2)R are uncharged under J and T and therefore
uncharged under B and L. As the gauge interactions conserve both B − L and B + L

simultaneously they necessarily conserve B and L separately and therefore there is no
gauge-mediated baryon- or lepton-number violation predicted by PS, though these may
appear if PS is embedded into some GUT at a higher scale, with the effects suppressed by
the relevant unification scale (see e.g. [47]).

A comprehensive analysis of the scalar potential including minimisation of the potential
is beyond the scope of this work. Of all the possible gauge invariant terms within the scalar
potential, we find only one term23 which will violate U(1)J for the charge assignments
imposed by the Yukawa Lagrangian:

V (φ,Φ, χL, χR) ⊃ λ̃LR (χL)Aa(χL)Bb(χR)Cα(χR)DβεABCDεabεαβ , (A.10)

where (A,B, . . . )/(a, b, . . . )/(α, β, . . . ) correspond to SU(4)/SU(2)L/SU(2)R indices respec-
tively. As J(χL/R) = 1 is required by the Yukawa sector, the existence of this term in the
scalar potential violates J by four units and therefore violates B by one unit.

Therefore proton and neutron decay diagrams can exist within low-scale PS and will
involve a combination of the couplings yR, yL and λ̃LR. This requires the existence of both
χL and χR. Models with only χR included (required for PS breaking) have exact proton
stability assuming no additional particle content. Additionally, baryon number can be
easily imposed when both scalars are present by setting λ̃LR → 0 which is not constrained

23Additionally there are two extra possible terms λ̃L(χL)4 = λ̃L (χL)Aa(χL)Bb(χL)Cc(χL)DdεABCDεabεcd
and λ̃R(χR)4 = λ̃R (χR)Aα(χR)Bβ(χR)Cγ(χR)DδεABCDεαβεγδ which would also break U(1)J however we
find them to be identically zero once contracted.
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by any other phenomenology and is technically natural and therefore insensitive to quantum
corrections. Constraining the allowed size of λ̃LR from the current experimental constraints
on rare proton and neutron decays is beyond the scope of this work. However, this was
briefly looked at in [5] for a similar model where they found λ̃LR ≤ 10−5 as a constraint
arising from N → eeν. PS models therefore are relatively unconstrained by baryon number
violating decays compared to GUT scenarios and other experimental measurements (or lack
thereof) are required in order to constrain the scale of PS breaking.

We note that the scalar potential must satisfy additional phenomenological bounds
beyond the suppression of baryon number violation. In particular, due to the multiple
SU(2)L doublets which appear in the theory, the masses of the physical scalars which
arise after minimisation of the scalar potential must be sufficiently heavy as they mediate
various flavour-changing processes at tree-level, for example neutral-meson mixing. These
constraints are identical for all left-right symmetric extensions of the SM which contain,
at a minimum, a scalar bi-doublet and have been extensively studied [48–52]. Recent
studies on the masses of the additional physical scalar fields [53] with flavour changing
couplings puts a lower bound on its mass scale of O(20)TeV. Although this limit requires
masses to be somewhat larger than the electroweak scale, it has been pointed out [52]
that quartic couplings in the scalar potential can generate mass contributions proportional
to the SU(2)R breaking scale for these scalars and therefore large masses can naturally
be generated. Regardless, while such constraints are important for low-scale left-right
symmetric models, of which PS is an example, they have no impact on the experimental
limits on the scale of PS breaking and therefore we do not consider them further.

B Pseudoscalar meson decay calculations

The leptoquark Xµ couples to the fermions embedded in fL/R through their kinetic terms
in the Lagrangian

Lf
kin = ifL /DfL + ifR /DfR (B.1)

where the covariant derivatives for fL/R are defined similarly to χL/R given in eq. (2.20).
Expanding out eq. (B.1) explicitly with the fermion multiplets given in eq. (2.4) and leaving
only the interactions of interest gives

Lf
kin ⊃

g4√
2

(
d /XPLe+ d /XPRe

)
+ H.c., (B.2)

where colour and generational indices have been suppressed. Here the fields d and e rep-
resent the gauge eigenstates. Rotating to the mass eigenstates leads to

LXde = g4√
2

(
d′i (Kde

L )ij /XPLe′j + d′i (Kde
R )ij /XPRe′j

)
+ H.c. (B.3)

where now the generational indices are explicitly shown and primed fields represent mass
eigenstates.24 The matrices Kde

L/R are CKM-like mixing matrices between the down-type

24Where there is no chance of confusion between gauge and mass eigenstates, fields will remain unprimed
for both basis.
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quarks and charged leptons. The existence of both left- and right-handed couplings to Xµ

leads to two different mixing matrices which, without a parity symmetry, are not necessarily
equal. The matrices can be expressed in terms of the unitary matrices used to diagonalise
the mass matrices e.g. (U iL)†MiU

i
R = Md

i = diag(. . . ). For the case of GPS in total there
are eight different physical mixing matrices (compared to the two of the SM) given by

V ckm
L = (UuL)† UdL, V ckm

R = (UuR)† UdR, Kde
L = (UdL)† U eL, Kde

R = (UdR)† U eR
Ulept
L = (UνL)† U eL, Ulept

R = (UνR)† U eR, Kuν
L = (UuL)†UνL, Kuν

R = (UuR)† U eR (B.4)

where UνL/R is a 3× (3 +n) matrix due to the possible seesaw nature of the neutrino sector
and the upper-left 3× 3 block of Ulept

L is given by the PMNS matrix.
For a pseudo-scalar meson Mpq, where qp and qq correspond to the valence quarks of

the meson e.g. B0
d = Mbd, the partial width for the two-body decay Mpq → `+i `

−
j is given

by [28, 54]
ΓMpq→`+i `

−
j

=
mMpq

16π λ(mMpq ,m`i ,m`j )
∑
h

|Mpq,ij |2 (B.5)

where

λ(mMpq ,m`i ,m`j ) =
√[

1−
(
µ`i + µ`j

)2
] [

1−
(
µ`i − µ`j

)2
]

(B.6)

and µX = mX/mMpq . For the decay of a scalar to two fermions the sum over helicity states
is given by∑

h

|Mpq,ij |2 =
(
1− µ2

`i − µ
2
`j

)[
|ML

pq,ij |2 + |MR
pq,ij |2

]
− 2µ`iµ`j

[
ML

pq,ij

(
MR

pq,ij

)∗
+MR

pq,ij

(
ML

pq,ij

)∗ ]
(B.7)

where
Mpq,ij ≡ML

pq,ij u(p`j )PL v(p`i) +MR
pq,ij u(p`j )PR v(p`i). (B.8)

The matrix elements of the axial and pseudoscalar currents for the relevant mesons are
given by [17, 28]

〈0|dpγµγ5dq|Mpq〉 = ifMpq(p
µ
`j

+ pµ`i)

〈0|dpγ5dq|Mpq〉 = −ifMpqmpq (B.9)

where fMpq is the meson’s decay constant and mpq = m2
Mpq

/(mqp +mqq). Combining these
matrix elements with figure 2 and eq. (B.3) leads to

ML/R
pq,ij = fMpq

[
Rpqmpq

(
M

L/R
P

)
pq,ij
−
{
m`j

(
M

L/R
A

)
pq,ij
−m`i

(
M

R/L
A

)
pq,ij

}]
(B.10)

where (
M

L/R
A

)
pq,ij

= ∓ g2
4

4m2
V

(
Kde
L/R

)
pi

(
Kde
L/R

)∗
qj(

M
L/R
P

)
pq,ij

= ∓ g2
4

2m2
V

(
Kde
L/R

)
pi

(
Kde
R/L

)∗
qj

(B.11)
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and Rpq is a factor introduced to account for the running of the strong coupling from the
high scale, µ ∼ mX , down to the relevant hadron mass scale, µ ∼ mMpq . This leads to
an enhancement in the pseudoscalar-current matrix element in eq. (B.9) [28, 30] but no
enhancement for the axial current which does not run due to the Ward identity of QCD [55].

To demonstrate, for the leptonic decays of K0
L the correction factor is given by

RK0
L

(mK0
L
, mX) = R(mK0

L
, mc; 3)R(mc, mb; 4)R(mb, mt; 5)R(mt, mX ; 6) (B.12)

where
R(µ1, µ2; nf ) = [gc(µ1)/gc(µ2)]8/b(nf ), (B.13)

b(nf ) = 11− (2/3)nf and nf corresponding to the number of active quark flavours in each
energy regime.

As Xµ couples to both left- and right-handed quarks and leptons, two different types of
contributions can be seen in eq. (B.10). The first term does not depend on the masses of the
final state leptons and corresponds to the helicity-unsuppressed contribution and only exists
if both Kde

L/R exist, which is only possible if Xµ couples to both fermion chiralities. The
last two terms are proportional to the final state charged lepton masses. This corresponds
to the helicity-suppressed contribution which arises from a mass insertion and only requires
one of Kde

L/R to exist. It is forbidden in the limit of massless final-state leptons, in complete
analogy to weak meson decays in the SM. If the final state particle masses are ignored, the
decay width is given purely by the helicity-unsuppressed contribution, and can be simplified
to [28, 29, 31]

ΓHU
Mpq→`+i `

−
j

=
mMpq

[
g4(mX)

]4
f2
Mpq

m2
pq

64πm4
X

R2
pq

(∣∣∣Kde
L

∣∣∣2
pi

∣∣∣Kde
R

∣∣∣2
qj

+
∣∣∣Kde

R

∣∣∣2
pi

∣∣∣Kde
L

∣∣∣2
qj

)
. (B.14)

In the limit where Xµ couples to only one chirality of fermions25 similar to the weak
force, ML/R

P = 0 but one of ML/R
A remains nonzero. This results in the total decay width

depending only on the helicity-suppressed terms appearing in eq. (B.10). The usual result
for helicity-suppressed meson decays is recovered

ΓHS
Mpq→`+i `

−
j

=
mMpq

[
g4(mX)

]4
f2
Mpq

256πm4
X

√[
1−

(
µ`i + µ`j

)2
] [

1−
(
µ`i − µ`j

)2
]

×
[(

1− µ2
`i − µ

2
`j

) (
m2
`i +m2

`j

)
− 4µ`iµ`jm`im`j

]
(B.15)

which, in the limit m`j > m`i , is well approximated by

ΓHS
Mpq→`+i `

−
j
'
mMpq

[
g4(mX)

]4
f2
Mpq

256πm4
X

m2
`j

(
1−

m2
`j

m2
Mpq

)2(∣∣∣Kde
∣∣∣2
pi

∣∣∣Kde
∣∣∣2
qj

)
, (B.16)

25This is a special case of the general case which occurs for example by setting Kde
R = 03×3 but Kde

L

remains unitary.
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where Kde corresponds to either Kde
L or Kde

R depending on which chirality of fermions Xµ

couples to. Comparing eqs. (B.14) and (B.16) unsuprisingly suggests that generically the
helicity-unsuppressed contribution is expected to dominate:

RHU/HS = ΓHU

ΓHS '
4m2

pqR
2
pq

m2
`j


∣∣∣Kde

L

∣∣∣2
pi

∣∣∣Kde
R

∣∣∣2
qj

+
∣∣∣Kde

R

∣∣∣2
pi

∣∣∣Kde
L

∣∣∣2
qj∣∣Kde

L

∣∣2
pi

∣∣Kde
L

∣∣2
qj +

∣∣Kde
R

∣∣2
pi

∣∣Kde
R

∣∣2
qj


︸ ︷︷ ︸

.

κ (B.17)

For example, for K0
L → µe we roughly find RHU/HS ' 104 κ where κ corresponds to the

combination of mixing matrices involving Kde
L/R above. However the helicity unsuppressed

contribution can be sub-dominant if the couplings are strongly suppressed for one chirality
over the other e.g. |Kde

L |pi/qj 6= 0 and |Kde
R |pi/qj ' 0. In such scenarios the limits for

the vector leptoquark mass (and the therefore the PS breaking scale) will be significantly
decreased due to a reduction in the decay rate with RHU/HS < 1. However this would
require the hierarchy

4m2
pqR

2
pq

m2
`j

<
1
κ

(B.18)

implying a difference in the couplings of Xµ to fL and fR of several order of magnitude
at least.

In order to numerically find the lower-bound mass range for Xµ we fix the values of
the total decay width of each relevant meson to the experimentally observed central values

ΓTOT
K0
L

= 1.29× 10−17 GeV, ΓTOT
B0
d

= 4.33× 10−13 GeV and ΓTOT
B0
s

= 4.36× 10−13 GeV,
(B.19)

which we take from the PDG [44]. The parameter Rpq which appears in the helicity-
unsuppressed contribution to a given decay and is defined in eq. (B.12) requires running
from the scale µ = mX down to µ = mMpq and the gauge coupling constant g4 is related
to the strong coupling constant at the scale of PS breaking:

g4(mX) = gc(mX) = 2
√
π

(17
2 + 7

2π log
[
mX

90

])−1/2

RK0
L
' 0.51

(17
2 + 7

2π log
[
mX

90

])4/7

RB0
s
' RB0

d
' 0.37

(17
2 + 7

2π log
[
mX

90

])4/7
(B.20)

where mX is in units of GeV and for simplicity we assume the one-loop SM running of the
gauge coupling constant gc which can be found in appendix D. We calculate lower bound
limits on the leptoquark mass by numerically solving eqs. (B.5) and (B.20) as a function
of the leptoquark mass and comparing to the experimental limits listed in table 2.
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C Various seesaw properties

C.1 Singular values in one generation

Consider the matrix M ∈M2(C) given by

M =
(
a b

c d

)
. (C.1)

This matrix can be diagonalised via its singular value decomposition:

U †LM UR = Md =
(
ml 0
0 mh

)
. (C.2)

There exist exact analytic expressions for UL, UR, ml andmh for this 2×2 matrix, however
in the seesaw limit where the absolute value of one entry of eq. (C.1) is significantly
larger than the others, these expressions can be significantly simplified by writing them
as perturbation series. For example, in the limit where |d| � |a|, |b|, |c| we find for the
unitary-diagonalisation matrices

UL =

1− 1
2

∣∣∣ac∗+bd∗|d|2
∣∣∣2 ac∗+bd∗

|d|2

−
(
ac∗+bd∗
|d|2

)∗
1− 1

2

∣∣∣ac∗+bd∗|d|2
∣∣∣2


︸ ︷︷ ︸
QL

√ ml

|ml| 0
0

√
mh

|mh|


︸ ︷︷ ︸

KL

+ O(ε3)

UR =

1− 1
2

∣∣∣ab∗+cd∗|d|2
∣∣∣2 (

ab∗+cd∗
|d|2

)∗
−ab∗+cd∗

|d|2 1− 1
2

∣∣∣ab∗+cd∗|d|2
∣∣∣2


︸ ︷︷ ︸
QR


√

m∗
l

|ml| 0

0
√

m∗
h

|mh|


︸ ︷︷ ︸

KR

+ O(ε3) (C.3)

where QL/R removes the off-diagonal entries ofM , KL/R is required to ensure the remaining
diagonal entries are real and positive and ε ∼ 1

|d| . The singular values of M written up to
sub-subleading order are

ml =
∣∣∣∣∣a− bc

d
− a

2

(
|b|2 + |c|2
|d|2

)∣∣∣∣∣ +O(ε3)

mh =
∣∣∣∣∣d+ 1

2

(
|b|2 + |c|2

d∗

)
+ a∗bc

|d|2

∣∣∣∣∣ +O(ε3). (C.4)

Note that in the type-I seesaw scenario (a = 0, b = c = mD, d = mR), eq. (C.3) implies
U †L = UTR and therefore the (now symmetric) matrix M can be diagonalised either by
UTRMUR or U †LMU∗L with the singular values of eq. (C.4) simplifying to

ml =
∣∣∣∣∣m2

D

mR

∣∣∣∣∣+O(ε2)

mh =
∣∣∣∣∣mR + |mD|2

mR

∣∣∣∣∣+O(ε2) (C.5)

as expected.
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The results above can be applied to find similar expressions for UL, UR, ml and mh

in scenarios where different entries of M are the largest in the seesaw through appropriate
permutations. For example consider when |c| � |a|, |b|, |d|, as before there exist UL and
UR which diagonalise M , however we note that eq. (C.2) can be rewritten,

U †L

(
a b

c d

)
UR = U †L

(
b a

d c

)
τ1 UR = (U ′L)†

(
b a

d c

)
U ′R = diag(ml, mh) (C.6)

where τ1 corresponds to the first Pauli matrix.
The results in eqs. (C.3) and (C.4) can now be applied to eq. (C.6) as c is assumed to

be the largest entry of M . Therefore ml and mh are given by the expressions in eq. (C.4)
with the permutations a↔ b and c↔ d, and the unitary diagonalisation matrices are given
by U ′L = UL and U ′R = τ1 UR taken from eq. (C.3) with similar permutations. Applying
a similar procedure for |b| � |a|, |c|, |d| we find that U ′L = τ1 UL and U ′R = UR and the
results from eqs. (C.3) and (C.4) are valid with permutations a ↔ c and b ↔ d. Finally
when |a| � |b|, |c|, |d| we find U ′L = τ1 UL and U ′R = τ1 UR with the permutations a ↔ d

and b↔ c applied to eqs. (C.3) and (C.4).

C.2 Singular values for multiple generations

Consider now a general matrix MB ∈ Cm×n which can be partitioned into a 2 × 2 block
matrix of the form

MB =
(
Am1×n1 Bm1×l1
Cl1×n1 Dl1×l1

)
(C.7)

where the subscripts on the matrix blocks correspond to their dimensions, m1 + l1 = m,
n1 + l1 = n and D is restricted to be nonsingular. This matrix can be block diagonalised by

Q†LMBQR = MD = diag(mL, mH) =
(

mL 0m1×l1
0l1×n1 mH

)
(C.8)

where mL and mH now correspond to m1 × n1 and l1 × l1 block matrices respectively and
0n1×l1 corresponds to a matrix of zeroes with dimension n1×l1. Unlike in the 2×2 case, ex-
act analytical expressions for the block matricesmL andmH or the diagonalisation matrices
QL and QR do not exist. However in the seesaw limit, where the lightest singular value of
the square block D is assumed to be significantly larger than the largest singular value of all
other blocks, a similar perturbative expansion can be derived. This is done by assuming, as
an ansatz, that the block matrices UL and UR have a similar form to the matrices appearing
in eq. (C.3)26 in combination with the conditions U †L(MBM

†
B)UL = diag(mLm

†
L, mHm

†
H)

and U †R(M †BMB)UR = diag(m†LmL, m
†
HmH) which allows UL/R to be solved separately

from each other.

26In other words that UL and UR can be written perturbatively in terms of an expansion parameter ε
related to the seesaw in M .
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In this limit, ||D|| � ||A,B,C||, we findMB can be fully diagonalised at sub-subleading
order by

UL '
(
1n×n − 1

2XX
† X

−X† 1n×n − 1
2X
†X

)
︸ ︷︷ ︸

QL

(
VL 0
0 WL

)
︸ ︷︷ ︸

KL

UR '
(
1n×n − 1

2Z
†Z Z†

−Z 1n×n − 1
2ZZ

†

)
︸ ︷︷ ︸

QR

(
VR 0
0 WR

)
︸ ︷︷ ︸

KR

(C.9)

where

X = (AC† +BD†)(DD†)−1 ' BD−1

Z = (D†D)−1(B†A+D†C) ' D−1C. (C.10)

Similar to the 2 × 2 case, QL/R remove the off-diagonal entries of MB, KL/R diagonalise
the blocks mL/H via (V/W )†LmL/H (V/W )R = md

L/H = diag(. . . ) and the expression for
VL/R and WL/R depends on the structure of the submatrices mL and mH .

Applying eqs. (C.9) and (C.10) to eq. (C.8) gives the light and heavy submatrices at
sub-subleading order as per

mL '
(
A−BD−1C − 1

2
(
BD−1(D†)−1B†A+AC†(D†)−1D−1C

))
mH ' D + 1

2
(
CC†(D†)−1 + (D†)−1B†B

)
+ 1

2
(
(D†)−1D−1CA†B + CA†BD−1(D†)−1

)
. (C.11)

Note that eq. (C.11) agrees with eq. (C.4) in the special case where MB ∈ C2×2, i.e. all the
blocks of MB are just complex numbers, A→ a . . .D → d.

In the special case of eq. (C.7) where B = CT = mD (implying n1 = m1), A = ∅n1×n1

and D = MR is a symmetric matrix, which occurs in the n-dimensional type-I seesaw model
of neutrino mass, U †L = UTR and mL and mH simplify to at sub-subleading order

mL ' −mDM
−1
R mT

D

mH ' MR + 1
2
(
mT
Dm

∗
D(M∗R)−1 + (M∗R)−1m†DmD

)
(C.12)

where MR = MT
R has been used. Therefore the usual results are recovered in this case and

we find them to be in full agreement27 with [56] which derived an algorithm to find the
light and heavy mass matrices in neutrino seesaw models at arbitrary order.

In a similar way to the case with M ∈ C2×2, the results above can be extended to
find mL, mH , UL and UR in situations where the norm of different blocks in eq. (C.7) are

27We also find agreement in the case where A = AT 6= 0n×n which for example is relevant in hybrid
type-I+II models.
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Dominant Block Permutations (U ′L, U ′R)
A A↔ D & B ↔ C (/1(l1,m1)UL, /1(n1, l1)UR)
B A↔ C & B ↔ D (/1(l1,m1)UL, UR)
C A↔ B & C ↔ D (UL, /1(n1, l1)UR)
D − (UL, UR)

Table 12. Required rotations on UL and UR and permutations of block elements for the formulas
in eqs. (C.9) to (C.11) to be valid for different block elements assumed to be the nonsingular-square
dominant block of MB in seesaw scenarios. /1(l1,m1) is defined in eq. (C.13) and here l1 is taken to
be the dimension of the dominant square matrix block and (m1, n1) corresond to the dimensions of
the matrix block diagonally opposite.

dominant.28 Once again consider a scenario where ||C|| � ||A,B,D|| (and C is square)
and note that

MB =
(
Am1×l1 Bm1×n1

Cl1×l1 Dl1×n1

)
=
(
Bm1×n1 Am1×l1
Dl1×n1 Cl1×l1

)(
0n1×l1 1n1×n1

1l1×l1 0l1×n1

)
︸ ︷︷ ︸

/1(n1,l1)

. (C.13)

Therefore eqs. (C.9) to (C.11) are valid if U ′L = UL, U ′R = /1(n1, l1)UR and the permutations
A ↔ B and C ↔ D are performed, where (U ′L)†MB U

′
R = diag(mL, mH). This can be

performed for any of the four blocks of MB being dominant and the results for this are
summarised in table 12.

C.3 Gap properties between the charged leptons and down quarks

Below we briefly prove the claim that, in the triplet scenario, the charged-lepton mass
matrices defined in eq. (4.3) imply that the SM-like charged lepton masses must be lighter
than the down-quark masses for all generations. This arises due to the zero block appear-
ing in their mass matrices diagonally opposite the dominant block in the seesaw. Unlike
the previous section which relied on an approximate block diagonalisation technique with
neglected higher-order terms, the results below are exact statements that do not rely on
any perturbative arguments. We closely follow the work presented in [57] which proved a
similar gap property specifically for the type-I seesaw symmetric mass matrix, which we
will generalise to an arbitrary complex matrix relevant to our charged-lepton seesaw.

We state without proof three matrix properties related to the Courant-Fischer-Weyl
min-max theorem:

• For two hermitian n× n matrices A and B, if C = A+B then

ak + b1 ≤ ck ≤ ak + bn (C.14)

28This is with the caveat that MB can be partitioned such that the dominant block has a well defined
inverse.
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where xi corresponds to the i-th largest eigenvalue of the matrix X and k ≤ n. For
k = 1 this reduces to the special case

min(A) + min(B) ≤ min(A+B) (C.15)

where min(X) = x1.

• For all A ≥ 0 and B ∈Mn(C), if C = B†AB then

akmin(B†B) ≤ ck. (C.16)

• If Q is an n× n submatrix of the N ×N matrix M then

mk ≤ qk ≤ mN−n+k (C.17)

for every k ≤ n, this is known as the Cauchy interlacing theorem.

Additional details including proofs for some of these properties can be found in [57].
We take the mass mixing matrix MeE to have the same structure as the case of an

SU(2)R triplet defined in eq. (4.3):

MeE =
(
mee 03×3
mEe mEE

)
, (C.18)

where we are assuming three generations of the exotic triplet fermion and therefore each
block is 3 × 3 and we further assume mEe is nonsingular. As discussed in section 5.1, in
order to achieve the desired helicity-suppression in the PS limits we require the hierarchy
‖mEe‖ > ‖mee, mEE‖ to be satisfied which implies

σn(mee), σn(mEE) < σ1(mEe) (C.19)

where σi(X) corresponds to the i-th largest singular value of the matrix X and n = 3. This
defines a seesaw in MeE with mEe as the dominant block.

The bottom-right sub-matrix of(
MeEM

†
eE

)−1
=
(
· ·
· m−1

EEmEem
−1
ee (m†ee)−1m†Ee(m

†
EE)−1 +m−1

EE(m†EE)−1

)
(C.20)

which we will label as X satisfies the property defined in eq. (C.17), where the dots corre-
spond to sub-matrices which are not relevant. As the sub-matrix X has dimensions n× n
and the full matrix has dimensions 2n× 2n the interlacing theorem implies

xn−k ≤ m2n−k (C.21)

where we have chosen k = n−k in eq. (C.17). AsMeE(M †eE)−1 is Hermitian, its eigenvalues
correspond to the squared singular values of MeE . Furthermore, from simple properties of
eigenvalues, the i-th largest eigenvalue of an n×n matrix M−1 corresponds to the (n-i)-th
smallest eigenvalue of M . Therefore eq. (C.21) implies

xn−k ≤
1

σk(MeE)2 . (C.22)
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Applying eq. (C.15) to xn−k leads to the inequality[
m−1
EEmEem

−1
ee (m†ee)−1m†Ee(m

†
EE)−1

]
n−k

+ min(m−1
EE(m†EE)−1) ≤ xn−k (C.23)

and now with repeated applications of eq. (C.16) to the first term of eq. (C.23) leads to([
m−1
ee (m†ee)−1

]
n−k

min
(
mEem

†
Ee

)
+ 1

)
min(m−1

EE(m†EE)−1) ≤ xn−k (C.24)

which implies
1

σn(mEE)2

(
σ1(mEe)2

σk(mee)2

)
≤ 1

(σk(MeE))2 (C.25)

and therefore

σk(MeE) ≤ σk(mee)
σn(mEE)√

σ1(mEe)2 + σk(mee)2 < σk(mee)
σn(mEE)
σ1(mEe)

(C.26)

where we have used the seesaw assumption that σn(mee, mEE) < σ1(mEe).
The exact same procedure can be applied to the matrix (M †eE)−1MeE which instead

leads to the inequality

σk(MeE) ≤ σk(mEE) σn(mee)√
σ1(mEe)2 + σk(mEE)2 < σk(mEE) σn(mee)

σ1(mEe)
. (C.27)

Combining eqs. (C.26) and (C.27) leads to an upper-bound on the k-th largest light singular
value of MeE

σk(MeE) < min [σk(mee)σn(mEE), σk(mEE)σn(mee)]
σ1(mEe)

≤ σn(mee)σn(mEE)
σ1(mEe)

. (C.28)

Comparing eq. (C.28) to the charged-lepton mass matrix in the case of the SU(2)R triplet
in eq. (4.3) leads to the strict inequality

σk(ml) < σk(md)
(

σ3(µΨ)
vR σ1(YΨ)

)
(C.29)

and as the singular values of each matrix correspond to the physical masses, each light
lepton mass of a given generation must be strictly lighter than the corresponding down-
quark mass of the same generation. This is due to the seesaw assumption which enforces the
fraction in brackets to be strictly smaller than one. As shown in table 6 the charged-lepton
and down-quark mass hierarchies change between generations at low scales, therefore due
the PS symmetry, a matrix of the form in eq. (C.18) is phenomenologically ruled out.

Although not relevant in our analysis, a similar procedure can be applied to the Her-
mitian matrices (M †eE)MeE and MeE(M †eE) to derive inequalities on the masses of the n
heavy states of MeE and for example leads to

σn+1(MeE)≥max
(√

σ1(mEe)2+σ1(mee)2,
√
σ1(mEe)2+σ1(mEE)2

)
>σ1(mEe) (C.30)
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Therefore the strict hierarchy implied by these inequalities leads to the ‘gap property’

σ1(MeE) ≤ ... ≤ σn(MeE) ≤ σn(mee)σn(mEE)
σ1(mEe)

� σ1(mEe) < σn+1(MeE) ≤ ... ≤ σ2n(MeE)

(C.31)
which does not rely on any perturbative arguments and we emphasise that these results are
only valid for ‘type-I like’ scenarios where the entry diagonally opposite the dominant block
is zero. Our results agree with the gap properties derived in [57] in the type-I limit which
assumes mee = (mEE)T = mD and mEe = mR and recovers the usual type-I hierarchy.

C.4 Lepton masses with additional bi-doublets

The neutrino mass matrix which arises with the addition of an SU(2)L/R bi-doublet to the
usual PS fermions fL/R is given by

LνN = 1
2
(
νL νcR NL N c

R

)


0 mu 0 yRΨ22vR
mu 0 0 yLΨ22v

∗
L

0 0 0 µΨ22

yRΨ22vR yLΨ22v
∗
L µΨ22 0



νcL
νR
N c
L

NR

 (C.32)

where we have labelled the fields as in eq. (4.11). A phenomenologically-viable mass spec-
trum for the heavy charged lepton states requires either yRΨvR or µΨ to have masses at a
TeV or above as discussed in section 5.1 for the charged-lepton mass mixing matrix

LeE =
(
eL EL

)( md yRΨ22vR
yLΨ22v

∗
L µΨ22

)(
eR
ER

)
. (C.33)

The parameter mu is fixed by the up-quark masses due to the PS symmetry, md is fixed
by the down-quark masses, yLΨ22

vL is tied to the electroweak scale, yRΨ22
vR can at most be

the size of SU(2)R/PS breaking and µΨ22 is unconstrained.
Different hierarchies between the parameters appearing in eq. (C.32) lead to different

neutrino mass phenomenology and here we show that only one possibility allows for a
viable mass spectrum for the charged leptons as well as sufficiently light neutrino masses
assuming a low scale PS breaking. We will use a one-generational example for illustrative
purposes as the same statements hold true for the more complicated multi-generational
scenario. As discussed in section 5.1 at least one of yRΨ22

vR or µΨ22 must have masses at
least an order of magnitude larger than the electroweak scale such that the charged lepton
partners are sufficiently heavy phenomenologically.

Firstly in the scenario where |µΨ| � |yRΨ22
vR, y

L
Ψ22

vL, mu| the light, charged-lepton
masses are given by

m` ' md − vLvR yLΨ22(µΨ22)−1yRΨ22 (C.34)
and diagonalising eq. (C.32) leads to two different pairs of pseudo-Dirac neutrinos with
masses given at first order by

m1,2 ' µΨ22 ν1,2 '
1√
2
NL ±

1√
2
N c
R

m3,4 ' mu ν3,4 '
1√
2
νL ±

1√
2
νcR. (C.35)
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Therefore the lightest neutrino masses would be predicted to have masses and splittings
similar to the up-quark sector. The above equation is true irrespective of the hierarchy
between the non-dominant parameters yRΨ22

vR, y
L
Ψ22

vL and mu. Therefore we find that this
hierarchy of couplings does not lead to the desired seesaw required to explain the lightness
of the active neutrino masses for any scale of PS breaking.

Turning to the alternate possibility where |yRΨ22
vR| � |µΨ22 , y

L
Ψ22

vL, mu| the charged
lepton masses are now given by

m` ' yLΨ22vL −
mdµΨ22

yRΨ22
vR

. (C.36)

Here we find two different neutrino mass regimes depending on the hierarchy between the
non-dominant parameters |µΨ22 | and |yLΨ22

vL|.
For the hierarchy |yRΨ22

vR| � |µΨ22 | > 2|yLΨ22
vL| the physical neutrino states have

masses given at first order by

m1,2 ' yRΨ22vR ν1,2 '
1√
2
νL ±

1√
2
N c
R

m3,4 '
mu

yRΨ22
vR

(
µΨ22 ± yLΨ22vL

)
ν3,4 '

1√
2
NL ±

1√
2
νcR (C.37)

where the above results are insensitive to the relative size of |mu| to |yLΨ22
vL| and |µΨ22 |.

Sufficiently light neutrinos now implies the ratio
mν

mu
' µΨ22

yRΨ22
vR
' 10−11 (C.38)

where we have estimated mν . 10−9 GeV from known neutrino upper mass limits and
mu ' 170GeV in the case of the top quark. This consequently implies that

m` ' yLΨ22vL (C.39)

for the charged-lepton masses as the second term in eq. (C.36) will be highly suppressed.
Therefore in order to recover the correct charged-lepton masses we require yLΨ22

vL ' 1GeV
for the tau lepton and as we have assumed |µΨ22 | > |yLΨ22

vL| this necessarily implies

|µΨ22 | > 1GeV (C.40)

and therefore
|yRΨ22vR| > 1011 GeV (C.41)

using eq. (C.38). Therefore for |µΨ22 | > |yLΨ22
vL|, sufficiently light neutrino masses are only

possible for very large SU(2)R/PS breaking scales.
Alternatively the hierarchy |yRΨ22

vR| � |yLΨ22
vL| > 1

2 |µΨ22 | leads to

m1,2 ' vR yRΨ22 ν1,2 '
1√
2
νL ±

1√
2
N c
R

m3 '
vL
vR

2yLΨ22
mu

yRΨ22

ν3 ' νcR

m4 '
1

vLvR

µ2
Ψ22

mu

2 yLΨ22
yRΨ22

ν4 ' NL (C.42)
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where again the results are insensitive to the overall size of mu as long as it is smaller than
yRΨ22

vR. This scenario therefore leads to the neutrino mass hierarchy

mν4 � mν3 � mν1,2 (C.43)

Sufficiently light neutrinos implies

mν

mu
yLΨ22vL ' 10−11 GeV ' 1

2
µ2

Ψ22

yRΨ22
vR

(C.44)

for the same estimates. Once again this implies that the second term in eq. (C.36) will be
subdominant and therefore the charged lepton masses are given by m` ' yLΨ22

vL. Now light
neutrinos are possible for low PS breaking scales for similar reasons to the usual inverse
seesaw mechanism, for example for yRΨ22

vR ' 10TeV we can estimate

µΨ22 ' 4.4× 10−3 GeV. (C.45)

Therefore we find for a mass matrix of the form in eq. (C.32), only one hierarchy of
parameters leads to a viable neutrino mass spectrum for low scales of PS breaking. As
this requires the term µΨ22 to be very small, this also conveniently leads to a helicity-
suppression in the PS mediated rare meson decays, and therefore allows the limits for PS
breaking to be significantly lowered as discussed in section 5.1.

In the multi-generational scenario we find the block diagonalisation of eq. (C.32),
assuming the hierarchy ‖Y R

Ψ22
vR‖ � ‖Y L

Ψ22
vL‖ > ‖µΨ22‖,29 is given at first order by

m1,2 ' vR Y R
Ψ22

m3 '
vL
vR

(
Y L

Ψ22(Y R
Ψ22)−1mu +mT

u

[
Y L

Ψ22(Y R
Ψ22)−1

]T)
m4 '

1
vLvR

µΨ22

[
(Y R

Ψ22)T (mT
u )−1Y L

Ψ + (Y L
Ψ22)Tm−1

u Y R
Ψ22

]−1
µTΨ22 (C.46)

for each mass block where Y L/R
Ψ22

, mu and µΨ22 are now matrices of appropriate dimension.
We estimate the relationship between the mass and interaction eigenstates for the

relevant light neutrinos states to be

ν4'U †N
[
µΨ22(yRΨ22)−1

]†
νcL−

1
2U
†
N

[
Y L

Ψ22(yRΨ22)−1([yRΨ22 ]†)−1µ†Ψ22

]†
νR

+U †N
[
1− 1

2µΨ22(Y R
Ψ22)−1([Y R

Ψ22 ]†)−1µ†Ψ22

]†
N c
L

ν3'O†3
[
Y L

Ψ22(Y R
Ψ22)−1

]†
νcL−

1
2O
†
3

[
Y L

Ψ22(Y R
Ψ22)−1([Y R

Ψ22 ]†)−1µ†Ψ22

]†
N c
L+O†3

[
mT
u (Y R

Ψ22)T−1
]†
NR

+O†3
[
1− 1

2
(
Y L

Ψ22(Y R
Ψ22)−1([Y R

Ψ22 ]†)−1(Y L
Ψ22)†+mT

u (Y R
Ψ22)T−1([Y R

Ψ22 ]∗)−1m∗u

)]†
νR

(C.47)
29More accurately, the hierarchy between each matrix required for a low scale spectrum is given by
‖µΨ22 (yRΨ22vR)−1mu‖ < ‖vLvR

(
Y LΨ22 (yRΨ22vR)−1mu + [Y LΨ22 (yRΨ22vR)−1mu]T

)
‖ for non-commuting matri-

ces. This should in general imply the hierarchy ‖µΨ22‖ < ‖Y LΨ22vL‖ however.
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using a perturbative seesaw expansion where U †N and O3 diagonalise the lightest and next-
to-lightest mass blocks of the neutrino mass matrix after block diagonalisation. Therefore
for the lightest neutrino states, ν4, the deviation from unitarity between its couplings to
the SM charged leptons, which are predominantly made up of EL which weakly couples to
NL, is given at lowest order by the matrix

η ' 1
2µΨ22(Y R

Ψ22)−1
(
µΨ22(Y R

Ψ22)−1
)†
. (C.48)

This determines the degree of non-unitarity in the physical PMNS matrix which stems
from mixing effects within the neutral sector. As the fermion bi-doublet also introduced
additional exotic charged-lepton states, there will additionally be mixing effects within the
charged sector which leads to additional non-unitarity effects for the PMNS. Interestingly,
as shown in section 5.1.1 we find the deviation of non-unitarity within the charged lepton
sector to be the same as in the neutral sector above implying

UPMNS ' (1− η)U †N (1− η)OeL. (C.49)

Figure 10 plots the norm of the required matrix µΨ22 for a given choice of vR and Y R
Ψ22

which leads to a viable mass spectrum for the active neutrinos where we have fixed the
lightest neutrino mass to

mν1 = 10−10 GeV (C.50)

and assumed a normal ordering for the remaining masses. The matrix Y R
Ψ22

was randomly
scanned over for a degenerate spectrum such that the singular values of the matrix were
within an order of magnitude to each other. The SU(2)R breaking scale vR was scanned
between 1–104 TeV and µΨ22 was fixed by

µΨ22 = U∗νm
1/2
ν A

[
YLm

−1
u Y R

Ψ22 + (Y R
Ψ22)T (mT

u )−1YL
]1/2

(C.51)

through a Casas-Ibarra parametrisation [58]. Here Uν corresponds to the unitary matrix
which diagonalises the lightest neutrino mass block, mν is a diagonal matrix composed
of the assumed neutrino masses and A is a random orthogonal matrix. The left plot of
figure 10 shows that as vR increases, the singular values of µΨ22 must increase for a fixed
neutrino mass scale. As a result at around 103 TeV, the singular values of µΨ22 become
larger than Y L

Ψ22
spoiling the required hierarchy of scales for light neutrinos at low scales.

The right plot of figure 10 plots the same scale as a function of Rν where

Rν =
∏
i

mi

minput
i

(C.52)

where mi corresponds to the mass of the i-th generation of the three active neutrinos
numerically calculated after diagonalising the mass matrix andminput

i to the masses inputed
via the Casas-Ibarra parameterisation. Clearly larger scales for vR are unable to reproduce
the correct neutrino masses. For all points considered the light states from the charged-
lepton mass matrix reproduce the charged-lepton masses with me ' Y L

Ψ22
to a high degree

of accuracy. Therefore the neutral- and charged-lepton mass matrices generated in the
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Figure 10. The Frobenius norm of the matrix µΨ22 generated through a Casas-Ibarra parametri-
sation as a function of vR (left) and Rν as a function of the same scale (right), where Rν is defined
in eq. (C.52). Here we have randomly scanned over a degenerate spectrum for Y RΨ22

such that the
heavy charged lepton partners have masses at around the scale vR. For larger values of vR the
generated µΨ22 develops singular values larger than the required hierarchy ‖Y LΨ22

‖ > ‖µΨ22‖ where
Y LΨ22

vL is fixed to give the correct SM charged-lepton masses and the resultant neutrino masses
begin to disagree with experimental values.

scenario with additional fermionic bi-doublets are viable candidates for a low-scale PS
setup provided that

yRΨ22vR . 103 TeV. (C.53)

C.5 Lepton masses with additional triplets

The neutrino mass matrix which arises with the addition of SU(2)L/R triplets is given by
the usual linear/inverse seesaw:

LνN = 1
2
(
νL νcR N c

R

) 0 mu yLΨ3vL
mu 0 yRΨ3v

∗
R

yLΨ3vL y
R
Ψ3v
∗
R µΨ


 ν

c
L

νR
NR

 (C.54)

where we have labelled the fields as in eq. (4.2) and the PS symmetry enforces that the
singular values of mu are given by the up-quark masses. As discussed in sections 4.1.1
and 5.1, both yLΨ3vL and yLΨ3vR are required in order to generate a phenomenologically
valid charged lepton mass spectrum. Both terms will not be present if the usual scalars
χ
L/R are assumed and therefore require a more exotic choice of scalars. For example if
χL ∼ (4,2,1) is replaced with χ′ ∼ (4,2,3) in the case of the SU(2)R triplet as was
done in [16], the missing mass term in the Yukawa Lagrangian will now be generated. We
will therefore assume in what follows that the scalar spectrum is such that all the terms
appearing in eq. (C.54) are present. Consequently the charged lepton mass matrix will be
given by

LeE =
(
eL EL

)( md

√
2 yLΨ3

vL√
2 yRΨ3

v∗R µΨ3

)(
eR
ER

)
(C.55)

where now the top-right entry is non-zero and therefore a valid spectrum of charged-lepton
masses is possible, unlike before.
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Unlike the usual low-scale PS setup, as described in section 2.2, the neutral lepton mass
mixing matrix is related to a charged lepton mass mixing matrix and a viable neutrino mass
spectrum may not be possible whilst simultaneously generating a viable charged-lepton
mass spectrum. As in appendix C.4 we analyse all possible hierarchies of parameters in
the two mass matrices in order to establish whether a viable charged-lepton and neutrino
mass spectrum can be simultaneously generated for the SM-like states for low scales of
PS breaking.

In the scenario where µΨ3 is the dominant block in each mass matrix, there are multiple
different possible neutrino mass regimes depending on the hierarchy between the non-
dominant parameters.

Firstly if |µΨ3 | > |mu| > |
(yLΨ3

vL)2

µΨ3
,

(yRΨ3
vR)2

µΨ3
| is satisfied the mass states are given at

first order by

m1 ' µΨ ν1,2 ' N c
R

m2,3 ' mu ν3,4 '
1√
2
νL ±

1√
2
νcR (C.56)

and therefore this hierarchy is ruled out as the light neutrinos would be pseudo-Dirac with
masses comparable to the up-quark sector.

If instead |µΨ3 | > |
(yRΨ3

vR)2

µΨ3
| > |mu| is satisfied the mass spectrum is now given by

m1 ' µΨ3 ν1,2 ' N c
R

m2 '
(yRΨ3

)2v2
R

µΨ3

ν2 ' νcR

m3 '

∣∣∣∣∣∣ 1
v2
R

(
mu

yRΨ3

)2

µΨ3 −
2vL
vR

yLΨ3
mu

yRΨ3

∣∣∣∣∣∣ ν3 ' νL (C.57)

which is rather interesting as the lightest mass state contains a term linearly (rather than
inversely) proportional to the dominant term in the seesaw but is still small due to the
hierarchy in the non-dominant parameters. The SM charged lepton has a mass given by

m` ' md − vLvR
yLΨy

R
Ψ

µΨ
(C.58)

by diagonalising eq. (C.55). These equations can be solved for yLΨ3
vL and yRΨ3

vR as a
function of µΨ3 for the required lepton masses. In the case of the third generation where
md ' 4.2GeV, mu ' 173GeV, m` ' 1.7GeV and setting mν ' 10−10 GeV leads to

(yLΨ3
vL)2

µΨ3

' 10−14 GeV and
(yRΨ3

vR)2

µΨ3

' 1014 GeV (C.59)

which implies that µΨ > 1014 GeV by the initial seesaw assumption, therefore requiring both
a viable charged-lepton and neutrino mass spectrum with µΨ dominant is only possible for
high scale PS breaking scenarios. The final possible hierarchy where |µΨ3 | > |

(yLΨ3
vL)2

µΨ3
| >

|mu| is also unviable for similar arguments.
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The alternative scenario where |yRΨ3
vR| is the dominant term in the mass matrix re-

covers the usual inverse/linear seesaw

m1,2 ' yRΨ3vR ν1,2 '
1√
2
N c
R ±

1√
2
νcR

m3 '

∣∣∣∣∣∣ 1
v2
R

(
mu

yRΨ3

)2

µΨ3 −
2vL
vR

yLΨ3
mu

yRΨ3

∣∣∣∣∣∣ ν3 ' νL. (C.60)

and the lightest charged-lepton mass is given by

m` ' vLyLΨ −
1
vR

mdµΨ
yRΨ

. (C.61)

The lightest neutrino state is now suppressed by the scale yRΨ3
vR as usual, it is quite

interesting that the lightest neutrinos in eqs. (C.57) and (C.60) have identical masses for
completely different hierarchies of parameters.

For three generations of each fermion multiplet the light mass blocks are given by

mν '
1
v2
R

mu[(Y R
Ψ3)T ]−1µΨ3(Y R

Ψ3)−1mT
u −

vL
vR
mu[(Y R

Ψ3)T ]−1(Y L
Ψ3)T − vL

vR
Y L

Ψ3(Y R
Ψ3)−1mT

u

(C.62)
for the neutrinos and

m` ' Y L
Ψ3vL −

1
vR
md(Y R

Ψ3)−1µΨ3 (C.63)

for the charged leptons.
For a given choice of vRY R

Ψ3
, the unknown matrices vLY L

Ψ and µΨ are fixed by solving
the above equations. Due to the complexity of solving the above matrix equations we
solve eqs. (C.62) and (C.63) numerically where we assume a normal ordering for the light
neutrino masses and fix the lightest neutrino mass to

mν1 = 10−10 GeV. (C.64)

The left plot in figure 11 plots the Frobenius norm of the required matrix µΨ3 (in blue)
required in order to solve the two above equations for different choices of vRY R

Ψ3
. The

orange line corresponds to ‖µΨ3‖F = ‖vRY R
Ψ3
‖F and for any choice of vRY R

Ψ3
the required

size of µΨ3 in order to solve the above equations is larger, destroying the hierarchy assumed
in deriving eqs. (C.62) and (C.63). The right plot of figure 11 plots

Rν/e =
∏
i

mi

minput
i

(C.65)

where mi corresponds to the numerically computed mass for the i-th generation of lepton
and minput

i corresponds to the experimental values for the masses inputted (run up to the
appropriate scale). The charged lepton masses which result are significantly departed from
their SM values whilst the neutrino values are well predicted, this is a coincidence due
to the light neutrino mass block having the same formula regardless of the hierarchy30

between ‖µΨ3‖ and ‖Y R
Ψ3
vR‖ as can be seen in eqs. (C.57) and (C.60).

30‖Y RΨ3vR‖ > ‖mu‖ is always satisfied in our scan.
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Figure 11. Plot of the Frobenius norm of µΨ3 generated by solving eqs. (C.54) and (C.55) (left)
as a function of the scale vR with a random scan over Y RΨ3

with degenerate singular values and a
plot of Rν/e (right), defined in eq. (C.65), as a function of the same scale. The orange line in the
left plot corresponds to ‖µΨ3‖F = ‖Y RΨ3

‖F vR and therefore at all scales considered the required
size of µΨ3 spoils the assumed hierarchy of parameters in order to achieve an inverse/linear seesaw.
Though Rν ' 1, the resultant charged-lepton masses after diagonalisation are signficantly differnet
to their input values and therefore we find that additional triplets to the usual PS fermions alone
are not sufficient to lead to a viable mass spectrum for all SM fermions (due to the quark-lepton
symmetry assumed).

The light, charged-lepton mass block however is different depending on the hierarchy
and we therefore find that due to the SM parameters mu and md entering eqs. (C.54)
and (C.55) as well as requiring viable correct charged-lepton and neutrino masses upon
diagonalisation is not possible for low seesaw scales (for the entries of Y R

Ψ3
vR which we

scanned over). Though unlikely, it may be possible that special textures within Y R
Ψ3
vR could

lead to valid charged-lepton and neutrino masses for the appropriate hierarchy of block
matrices. Therefore the addition of triplets to the usual PS multiplets will in general require
additional physics, in [16] for example an additional fermionic singlet SL was introduced
and a viable mass spectrum for the leptons was recovered. The addition of both an SU(2)L
and SU(2)R triplet was found to lead to an unviable mass spectrum for the scalars χL and
χR, if more exotic scalars were introduced such that all mass terms in the Yukawa sector
were generated, a viable mass spectrum would likely be generated for a specific hierarchy
of parameters which may or may not lead to a chiral suppression of the Xµ mass limits as
with the bi-doublet. In this case however the neutrino mass matrix would not be given by
an inverse/linear seesaw and would be similar to eq. (4.9) with additional entries.

D Running of gauge and Yukawa couplings

In order to estimate the running of the relevant SM parameters up to the potential scale
of PS breaking we solve the simultaneous differential equation

µ
dx

dµ
= 1

(4π)2β
(1)
x + . . . (D.1)

where for simplicity we restrict ourselves to the one-loop renormalisation group equations.
We make two reasonable assumptions on the running of each parameter: the exotic PS
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particle content does not significantly affect the running of the SM parameters below the
scale of PS breaking we are interested in (due to their masses) and secondly as a simplifying
assumption, we only include the contribution from the top-quark Yukawa coupling and
gauge couplings in the evaluation of all relevant parameters due to its dominant role.

The beta functions β(i)
x have been extensively studied for the SM [59–62], at one-loop

the beta functions which are non-zero when only the gauge and top-quark couplings are
included31 are

β(1)
gi = bi

[
gi(µ)

]3
β(1)
yd,i

= yd,i(µ)
(
ai
[
yu,3(µ)

]2 − {1
4
[
g1(µ)

]2 + 9
4
[
g2(µ)

]2 + 8
[
g3(µ)

]2})
β(1)
y`,i

= y`,i(µ)
(

3
[
yu,3(µ)

]2 − 9
4
{[
g1(µ)

]2 +
[
g2(µ)

]2})
β(1)
yu,i = yu,i(µ)

(
(3ai − 2ci)

[
yu,3(µ)

]2 − {17
20
[
g1(µ)

]2 + 9
4
[
g2(µ)

]2 + 8
[
g3(µ)

]2})
β

(1)
θi

= θi(µ)
(
ci
[
yu,3(µ)

]2)
. (D.2)

Here yd,i = (yd, ys, yb) and similarly for the charged-lepton and up-type Yukawa couplings,
θi = (θ13, θ23, θ12) are the CKM mixing angles and

ai =


3 i = 1, 2
3
2 i = 3

, bi =



41
10 i = 1

−19
6 i = 2

−7 i = 3

and ci =
{

3 i = 1, 2
0 i = 3

(D.3)

where the gauge coupling g1 is given as it usually is in SU(5) normalisation: g2
1 = 5/3g2

Y .
The beta functions (at one-loop) for the CP-violating CKM parameter δCKM and all the
parameters related to the neutrino sector are zero for our stated assumptions and therefore
will not run. The parameters in eq. (D.2) are run up from µ = mZ with initial values taken
from [63] which utilised the Mathematica package RunDec to evolve the QCD parameters
up to mZ ' 91.19GeV in the MS scheme and are summarised in table 13.

The results of eqs. (D.1) and (D.2) are shown in figure 12 for the Yukawa couplings,
gauge couplings and relevant CKM parameters run from µ = mZ up to µ = 1000TeV.
The points on the left plots correspond to the results obtained using RunDec at two-
loops [63] at 1, 3 and 10TeV in the SM. The plots on the right correspond to the ratio
of the running parameter to its initial value at µ = mZ . The quark Yukawa couplings
all significantly decrease as the energy scale increases whereas the charged-lepton Yukawa
modestly increase. Due to the approximations we assume in eq. (D.2), the ratios β(1)

x /x

are equal for the first and second generations of quark Yukawas, all three generations of
charged-lepton Yukawas as well as between θ13 and θ23.

31Additionally as in [60], terms smaller than O(10−3) in βx/x were approximated to zero for simplicity.
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Figure 12. Plot of the numerical running of various SM parameters (left) (run up from µ = mZ) at
one-loop as a function of the energy scale µ. The points correspond to values taken from [63] at 1, 3
and 10TeV with their respective 1σ uncertainties, where the running was performed to two-loops
to demonstrate the accuracy of our one-loop approximations. Also shown are the ratios (right) of
the run parameter against its initial value at µ = mZ .

As is often chosen, we work in a basis where the Yukawa coupling matrix for the
up-type quarks and charged leptons is diagonal. Therefore the running of each relevant
Yukawa coupling matrix, for the SM fermions, at a given energy scale is given by

Yu(µ) = diag
[
yu(µ), yc(µ), yt(µ)

]
Yd(µ) = V †CKM

[
θq12(µ), θq23(µ), θq13(µ), δCKM(µ)

]
diag

[
yd(µ), ys(µ), yb(µ)

]
Y`(µ) = diag

[
ye(µ), yµ(µ), yτ (µ)

]
(D.4)

where we use the numerical results from solving eqs. (D.1) and (D.2) using table 13 as the
initial values.
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µ = mZ

g1 0.461425+0.000044
−0.000043

g2 0.65184+0.00018
−0.00017

g3 1.2143+0.000044
−0.000043

µ = mZ

yu 7.4+1.5
−3.0 × 10−6

yc 3.6+0.11
−0.11 × 10−3

yt 0.9861+0.0086
−0.0087

yd 1.58+0.23
−0.10 × 10−5

ys 3.12+0.17
−0.16 × 10−4

yb 1.639+0.015
−0.015 × 10−2

θq12 0.22735+0.00072
−0.00071

θq23 4.208+0.064
−0.064 × 10−2

θq13 3.64+0.13
−0.13 × 10−3

δCKM 1.208+0.054
−0.054

µ = mZ

ye 2.79+0.000015
−0.000016 × 10−6

yµ 5.90+0.000019
−0.000018 × 10−4

yτ 1.00+0.00090
−0.00091 × 10−2

θ`12 0.59+0.0136
−0.0133

θ`23 0.84+0.0192
−0.0332

θ`13 0.15+0.0023
−0.0023

δPMNS 3.87+0.6632
−0.4887

∆m2
21/eV2 7.39+0.21

−0.20 × 10−5

∆m2
31/eV2 2.523+0.032

−0.030 × 10−3

Table 13. Values used for the SM parameters at µ = mZ in the MS scheme taken from table 1 of [63]
for the gauge couplings, quark and charged-lepton parameters with their respective 1σ uncertainty.
The neutrino parameters with their 1σ uncertainty are taken from [64], which are not measured at
µ = mZ , however as the PMNS parameters do not significantly run at low energies [65] (in the SM)
we take these values to be valid at this scale.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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