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A decade ago, at a major international conference, we
vividly remember a symposium on psychiatric Artificial
Intelligence (AI) drawing a crowd of seven people—
including the four speakers. Today one might get the
impression that every other funding proposal is required to
include at least some degree of Al-based analyses. At a time
when 17 of the 29 hot topics listed by the most recent
Gartner Hype Cycle for emerging technologies [l]—an
indicator of perceived innovation—are either Al technolo-
gies (e.g., Generative Adversarial Networks) or include Al
as a core component (e.g., autonomous driving), there is no
shortage of promises. In both psychiatry and medicine in
general, expectations to move beyond classical group-level
statistics and enter the promising future of personalized
medicine are high. Although AI has not yet fully hit
mainstream psychiatric research, the availability and
advancement of technology and methods have indeed led to
a growing adoption of Al methods and agreement on best
practice [2-4]. Despite this progress and some promising
first applications (e.g., in suicide prediction [5]), translation
to clinical practice has been hampered by a large degree of
estimate variability and diagnostic heterogeneity.

In the following, we will argue that the current draw-
backs in psychiatry arise not primarily from a lack of
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methodological advancement and genuine clinical potential
for Al in psychiatry, but from fundamental issues pertaining
to sample size, model construction, evaluation practice, and
the conceptualization of mental disorders. To overcome
these challenges, we outline concrete steps towards an Al
ecosystem that promotes a coordinated collaboration within
the field to pave the way for better translation of Al solu-
tions into clinical practice (see Fig. 1). Built upon four
supporting pillars; collection, construction, evaluation, and
translation, this ecosystem provides a framework for data
collection, harmonization and sharing, guidelines for model
construction, evaluation and distribution, methods for par-
sing heterogeneity as well as ethical and transparency
standards.

Explaining the translational roadblock

In the social and medical sciences, in light of the recent
replication crisis, a failure to replicate results has rendered
many discoveries from group-based statistical analyses void
[6]. While machine learning’s goal of optimizing model
performance for previously unseen data integrates replica-
tion directly into model development, which in theory,
should render it more robust to replication failure, analyses
drawing on larger samples has revealed substantial over-
estimation of model performance for many landmark stu-
dies. For example, at a recent international machine learning
competition, participants sought to classify major depres-
sive disorder (MDD) patients from healthy controls using
structural Magnetic Resonance Imaging data (N partici-
pants = 2240) [7]. In contrast to numerous smaller studies
showing accuracies of more than 80-90%, the winning
entry ceiled at only 65% accuracy. This effect was
demonstrated again on a large structural imaging sample
from the UK biobank (N >3400), finding accuracies of only
50-60% across classification targets [8].

These findings lead to two important questions. Firstly,
where in the analysis pipeline are we most susceptible to
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Fig. 1 Artificial intelligence ecosystem in psychiatry. Outline of an Al ecosystem with four supporting pillars: collection, construction,
evaluation, and translation. Exemplarily, two clinical sites are shown in light green in the bottom row. Top row illustrates mainly off-site, cloud-

based infrastructure in light blue.

overestimating model performance in small sample size
studies? Secondly, are these overestimations and sub-
sequent replication failures distinct to structural imaging
studies or should we expect to see this same phenomenon
with other data modalities, also? A recent study empirically
addressed both points [7]. First, the authors demonstrate that
predictive structural imaging studies of MDD are prone to
systematically overestimating model performance on smal-
ler samples. Second, this effect arises not primarily from
small training samples, but is due to too small test sets.
Third, this statistical effect is generalizable and contingent
on the cross-validation cycle itself rather than the phenotype
or data modality used for model training. Thus, the results
are likely to generalize across all areas of psychiatric
research (from models using imaging, to proteomics, and to
routine clinical data).

In addition to these statistical properties, the translational
abilities of any AI model are dependent upon the clinical
utility and construct validity of a diagnostic category, its
related illness trajectories, and the degree of heterogeneity
contained within each. This latter point partially explains
why smaller more homogeneous test samples overestimate
the true predictive ability of a model compared to accuracy
estimates attained on larger more heterogeneous samples
reflective of the true patient population [9]. Therefore, it is
likely that the underlying causes of therapeutic response and
illness trajectories vary qualitatively and quantitatively
between different, more homogeneous subsamples of these
categories. Outside of applied Al, this is already recognized
as a major obstacle to translatable clinical research and has
sparked many theoretical considerations such as the
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Research Domain Criteria, the Roadmap for Mental Health
Research in Europe, or the Hierarchical Taxonomy of
Psychopathology. These problems cannot be eliminated
easily but require novel approaches to the classification and
stratification of psychiatric disorders, including e.g., nor-
mative modeling approaches [10] (see Construction below).

Establishing an Al ecosystem
Collection

While often dismissed as too costly and impractical, feasi-
bility of large-scale data acquisition heavily depends on data
modality and existing infrastructure. For example, system-
atically making routine patient data and electronic health
records available will enable dramatic increases in sample
size and coverage of potential patient subpopulations,
thereby outweighing the often lower quality of this data. In
the same vein, building on high-throughput omics platforms
or mobile sensing technology (e.g., from smartphones and
watches) will allow us to cost-efficiently gather ecologically
valid physiological and phenotype data in real-time. We
have already seen the great efficacy of data sharing within
large consortia in genetics (e.g., PGC) and neuroimaging
(e.g., ENIGMA). Similar initiatives and protocols have not
yet been established for EHR and eHealth data but will be
integral to an Al ecosystem. In cases where data remains
limited due to scarcity of the outcome or patient group (e.g.,
patient subgroups with certain comorbidities), harmonizing
data acquisition protocols will be key to training machine
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learning models based on data from multiple sources—
especially with regard to the reduction of epistemic uncer-
tainty. Wherever acquisition protocols differ, we must
ensure the development of methods for harmonizing the
data itself. However, as data collection is increasingly
organized through large initiatives such as the UK Biobank,
we must not reduce our efforts in establishing more and
secure infrastructure to upload and share data from small
studies. This is important since smaller studies often
investigate important mental disorders, comorbidities with
low incidence, or causal mechanisms that we are less likely
to capture in large-scale consortia. Studies by Chekroud
et al. [11] or Miotto et al. [12] show the great potential large
but clinically relevant samples can have but as of now,
those are the exception rather than the rule, and similar
efforts are needed across all areas of psychiatry.

Construction

In addition to collecting more data, the issue of sample size
can also be dealt with at the model construction stage. This
is especially relevant when dealing with highly specific
questions (e.g., a distinct type of psychotherapeutic inter-
vention) or low-incidence disorders where we cannot collect
large amounts of data. Methods for dealing with small
training samples have been discussed in previous works [4].
To summarize, one might try to generate synthetic
training data through data augmentation or leverage larger
training samples from another task through transfer learn-
ing. Additionally, formally incorporating (causal) domain
knowledge gained from basic research directly (e.g.,
selecting features that have shown to be relevant for a
specific task across studies through meta-analytic approa-
ches [13]) into machine learning models also holds great
promise to dramatically decrease the number of training
samples required [14]. In addition, federated or collabora-
tive learning allows us to train an algorithm across multiple
sites by passing a model trained on one site to the next for
further training without the need to exchange sample data,
thereby alleviating data protection issues whilst maximizing
training sample size. This approach is especially appealing
at a time when the importance of protecting sensitive data is
increasingly recognized. Easy-to-use platforms like Coin-
stac [www.coinstac.org] or DataSHIELD [www.datashield.
ac.uk] that allow federated learning have started to emerge
and will integrate nicely into an Al ecosystem.

Also crucial for an Al ecosystem are ways in which we
can parse population heterogeneity. From a methodological
perspective, we can differentiate two approaches. First,
traditional clustering methods can reveal more homo-
geneous patient subgroups. Depending on the clustering
approach and data used, subjects in these groups might
share specific symptoms, a common genotype, or a similar

neurobiology that is clinically informative yet evades
symptom-based diagnostic categories. At the symptom
level, some studies already suggest that symptom clustering
might enhance the prediction of antidepressant treatments
[15]. While easily lending itself to a transdiagnostic view,
jointly modeling biological and deep phenotype data with
multi-view methods such as Canonical Correlation Analysis
or Partial Least Squares Regression show promise for
uncovering transdiagnostic modes of covariation between
biological data and behavioral phenotypes. Embedding
these low-dimensional representations within supervised
prediction frameworks may assist in overcoming population
heterogeneity and help decrease our dependency on large
training and testing samples.

Second, normative modeling [10] quantifies the degree to
which individuals deviate from the expected population
distribution, thus, allowing symptoms in individual patients
to be recognized as extreme values within a distribution.
Unlike clustering approaches, normative modeling does not
require a consistent pattern of deviation and can therefore
accommodate for the heterogeneity across patients. While
normative modeling provides a highly effective and prin-
cipled approach to the quantification of deviation, a direct
translation to clinically useful machine learning models
must still be developed.

Finally, clinically useful predictive models need to pro-
vide uncertainty estimations for their predictions. We not
only need to know how accurate a model is, but how
confident it is in its prediction, and whether or not this
confidence aligns with the true probability of an event
occurring. For example, imagine a model that is highly
accurate and deployed in a clinic. It predicts that a high-risk
patient will not respond to a first line treatment, but instead,
to a first-generation treatment with a high side-effect profile.
In this situation, a clinician needs to make a nuanced
decision that weighs up the associated risks against the
potential benefits of the treatment. If a model turns out to be
only 51% confident in its prediction, even though on
average it is 80% accurate, the weighting that a clinician
should give to the model should not be high. However,
many models currently used in psychiatry (e.g., support
vector machines, random forests etc) are poorly calibrated
by virtue of their underlying mathematics, meaning that
they may be highly confident in their decision when the true
probability of an event occurring in the population is
actually not much better than chance. This is a seldom
discussed issue in computational psychiatry with far
reaching implications for clinical decision making [16].

Evaluation

As one of the fundamental problems of overestimating
model performance has its roots primarily in the evaluation
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framework itself, a concise Al ecosystem needs to provide
guidelines and an independent infrastructure to adequately
evaluate model performance. While the Focus Group on
artificial intelligence for health (FG-AI4H) has begun to
outline a standardized assessment framework for the eva-
luation of AI models in partnership with the World Health
Organization, simple online model-sharing platforms already
enable the upload of machine learning models for evaluation
by others (e.g., the PHOTON AI model repository; www.
photon-ai.com/repo). Extending such initiatives into largely
automatized Al assessment infrastructure would allow for
highly efficient and transparent model evaluation at scale. To
foster transparency, journals and funding agencies ought to
ensure that all code is available on request or provided in an
online repository upon submission. Finally, the increasing
availability of easy-to-use, open-source machine learning
frameworks (e.g., the mlr3 R package [mlr3.mlr-org.com],
the PHOTON AI framework [www.photon-ai.com] or
tidymodels [www.tidymodels.org/]) will continue to sim-
plify robust and replicable machine learning analysis.

In addition to performance-based evaluation (e.g., model
accuracy), we also need to assess the clinical utility of a
model through practical questions. For example, can we
easily use the model without data protection issues? Does
the model provide uncertainty estimates and calibrated
predictions? Is the model clinically useful, i.e., does it
provide us with information we cannot otherwise obtain
and/or outperform clinicians in the field? Does the model
provide information that effectively supports and augments
the clinician? For example, will a costly case/control bio-
marker model trained on diagnostic labels that are already
provided by clinicians actually tell them anything that
improves their clinical decision-making process? In situa-
tions where biomarkers are of prognostic/predictive value,
above and beyond that of cheap and easily accessible rou-
tine clinical data, is the increase in prognostic certainty
justified by the increased health economic costs and inva-
siveness to obtain these markers at the individual patient
level? Overall, questions and measures of clinical utility
should be asked and assessed in the same way that we
examine a model’s predictive performance. Incorporating
clinical utility-based evaluation into existing guidelines will
be fundamental to progress from proof-of-concept studies to
clinical translation.

Translation

Moving predictive models from bench to bedside can be
accomplished in a number of ways. Online risk calculators
are simple and cost-effective ways of supporting patient
care and have already been used for the detection of indi-
viduals developing psychosis in secondary mental health
care [17]. More complex predictive models can be provided
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through the same infrastructure that is already used for
model evaluation. Patients’ data could be uploaded to these
online models which in turn provide individual predictions.
Whenever data privacy is a concern, those models need to
also be made available offline. Ultimately, predictive
models should be incorporated into Al-based clinical deci-
sion support systems (CDSS) for integration into a clin-
ician’s workflow. If designed properly, these Al-based
CDSS could also facilitate continuous evaluation through
feedback loops whilst also improving model performance
over time. In addition, providing predictive algorithms with
an individual patient’s long-term outcomes and symptom
developments would signify a major step towards parsing
diagnostic and population heterogeneity. Importantly, as the
role of Al in medical care expands, we need to establish
ethical standards that balance patient autonomy and foster
clinician and patient trust.

Conclusion

Against the background of fundamental issues regarding
sample size, model construction, evaluation practice, and
the conceptualization of mental disorders, the clinical
success of Al in psychiatry will depend on the timely
creation of an Al ecosystem that addresses these founda-
tional issues hampering the validity and reliability of the
current literature. For the field to emerge from the hype,
through the trough of disillusionment and into a plateau of
productivity, we propose four foundational pillars to bol-
ster the field. First, building upon existing data collection
initiatives and consortia, we need to address the issue of
small training samples by incentivising researchers to
harmonize protocols and data acquisition, not only making
sure to collect bigger data, but more clinically relevant
data for model training. Second, at the model construction
phase we need to take advantage of methods such as
transfer learning and data augmentation that mitigate some
of the detrimental effects of small sample sizes. A simple,
safe, and open-sourced federated learning infrastructure
would instantly help overcome this problem as it would
allow for the training of Al models without the need to
share data. In addition, transdiagnostic clustering and
normative modeling approaches may provide a framework
to address the long-standing issue of diagnostic hetero-
geneity. Further, using algorithms that are well calibrated
and thus able to provide estimates of uncertainty are of
crucial importance if to ever be deployed clinically. Third,
we must ensure reproducibility of machine learning ana-
lyses through the use of code sharing and model evaluation
infrastructure. Extending existing model repositories
would enable large-scale, independent model evaluation
and standardized guidelines for rating the clinical utility of
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Al solutions. This will help ensure their alignment with the
needs of patients and clinicians outside of the academic
community. Fourth, integrating models into Al-based
CDSS will help transform the way we treat and diagnose
patients. Ensuring data privacy and patient autonomy at
this level is of utmost importance to generate trust toward
this new technology. Importantly, in all areas, leading
consortia and machine learning groups show that many of
the solutions already exist and are actively developed.
Building an Al ecosystem based on these advances has
grown from a daunting challenge into a unique opportunity
for psychiatry in the decade to come.
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