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Systematic misestimation of machine learning performance
in neuroimaging studies of depression
Claas Flint 1,2, Micah Cearns 3,4, Nils Opel1, Ronny Redlich1, David M. A. Mehler1, Daniel Emden1, Nils R. Winter1, Ramona Leenings1,
Simon B. Eickhoff5,6, Tilo Kircher7, Axel Krug 7, Igor Nenadic7, Volker Arolt1, Scott Clark3, Bernhard T. Baune1,4,8, Xiaoyi Jiang2,
Udo Dannlowski1 and Tim Hahn1

We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger
samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker
performance than the numerous small-scale studies. Here, we systematically investigated this effect focusing on one of the most
heavily studied questions in the field, namely the classification of patients suffering from Major Depressive Disorder (MDD) and
healthy controls based on neuroimaging data. Drawing upon structural MRI data from a balanced sample of N= 1868 MDD patients
and healthy controls from our recent international Predictive Analytics Competition (PAC), we first trained and tested a classification
model on the full dataset which yielded an accuracy of 61%. Next, we mimicked the process by which researchers would draw
samples of various sizes (N= 4 to N= 150) from the population and showed a strong risk of misestimation. Specifically, for small
sample sizes (N= 20), we observe accuracies of up to 95%. For medium sample sizes (N= 100) accuracies up to 75% were found.
Importantly, further investigation showed that sufficiently large test sets effectively protect against performance misestimation
whereas larger datasets per se do not. While these results question the validity of a substantial part of the current literature, we
outline the relatively low-cost remedy of larger test sets, which is readily available in most cases.
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INTRODUCTION
In psychiatry, we are witnessing an explosion of interest in machine
learning (ML) and artificial intelligence for prediction and biomarker
discovery, paralleling similar developments in personalized medicine
[1–4]. In contrast to the majority of investigations employing classic
group-level statistical inference, ML approaches aim to build models
which allow for individual (i.e., single subject) predictions, thus
enabling direct assessment of individual differences and clinical
utility [5]. While this constitutes a major advancement for clinical
translation, recent results of large-scale investigations have given rise
to a fundamental concern in the field: Specifically, machine learning
studies including larger samples did not yield stronger performance,
but consistently showed weaker results than studies drawing on
small samples, calling into question the validity and generalizability
of a large number of highly published proof-of-concept studies.
The magnitude of this issue was impressively illustrated by the

results of the Predictive Analytics Competition (PAC 2018;
Supplementary appendix B) in which participants developed
machine learning models to classify healthy controls (HC) and
depressive patients (MDD) based on structural MRI data from N=
2,240 participants. Despite the best efforts of ~170 machine
learners in 49 teams from around the world, performance ranged
between 60 and 65% accuracy in a large, independent test set.

This is in strong contrast to the numerous smaller studies showing
accuracies of 80% or more [6–8].
Further empirical studies focusing on other disorders support

this observed effect of performance deterioration with increas-
ing sample size: In a large-scale investigation, Neuhaus &
Popescu [9] aggregated original studies across disorder cate-
gories, including schizophrenia (total observation N= 5563),
MDD (N= 2042), and attention deficit hyperactivity disorder
(ADHD, N= 8084), finding an inverse relationship between
sample size and balanced accuracy (schizophrenia, r=−0.34;
MDD, r=−0.32; and ADHD, r=−0.43). Similar results were
observed in a recent review of 200 neuroimaging classification
studies of brain disorders, finding a general trend towards lower
reported accuracy scores in larger samples [10]. Given that
model performance would be expected to increase with more
data, these results hint at a fundamental issue hampering
current predictive biomarker studies in psychiatry.
From a methodological point of view, it has been known since

the early 90’s that training samples should be large when there is
a high number of features (i.e., measured variables) and a complex
classification rule being fit to a dataset [11]. Recent works have
further reiterated this point [12]. Moreover, these effects may have
been further amplified by certain cross-validation schemes. For
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example, Kambeitz et al. [13] observed higher accuracy estimates
in studies using hold-out cross-validation strategies compared to
10-fold and leave-one-out (LOOCV), whilst Varoquaux et al.
observed that LOOCV leads to unstable and biased estimates,
concluding that repeated random splits should be preferred [14].
Although these findings have sparked in-depth conceptual

considerations [15], empirical investigations of this problem have
been limited to specific cross-validation schemes and small test
set sizes [16]. Here, we aim to systematically investigate the
effects of both train and test set sample sizes on machine learning
model performance in neuroimaging based MDD classification. In
addition, as it is possible that effects of systematic misestimation
have arisen due to suboptimal pipeline configurations (i.e., the
disproportionate use of LOOCV and linear support-vector
machines on samples containing more predictors than observa-
tions), we also test a further 48 different pipeline configurations to
quantify the influence of these additional factors. To demonstrate
that this effect was not dependent on the data or any pipeline
configurations used in our analyses, we repeat the process using a
dummy classifier. To quantify the magnitude of these effects in
each configuration, we drew samples of various sizes from the
PAC dataset—mimicking the process by which researchers would
draw samples from the population of ML studies reported in the
literature. The resulting probability distributions are investigated.

MATERIALS AND METHODS
To investigate the effects of both train and test set sample sizes on
machine learning model performance in neuroimaging based
MDD classification, we repeatedly drew samples of different sizes
from the PAC dataset to imitate the procedure reported in the
literature. Subsequently, the resulting probability distributions are
investigated.

Dataset description
The PAC dataset comprised anonymized, pre-processed MRI data
of N= 2240 individuals obtained from two large, independent,
ongoing studies—the Münster Neuroimaging Cohort [17, 18]
(N= 724 MDD; N= 285 HC) and the FOR2107-study [19] (N= 582
MDD, N= 649 HC). Case/control status was diagnosed with the
SCID-IV [20] interview employed by trained clinical raters in both
studies. In both cohorts, exclusion criteria were any neurological or
severe medical condition, MRI contraindications, substance-
related disorders, Benzodiazepine treatment and head injuries.
For healthy controls, any current or previous psychiatric disorder
or use of any psychotropic substances. The Münster Neuroimaging
Cohort was scanned at one single MRI-scanner with the same
sequence, while the FOR2107-study was scanned at two
independent sites [21], yielding 3 different scanner types/
sequences. The structural T1-weighted magnetic resonance
imaging (MRI) scans were pre-processed with the CAT12 toolbox
(http://www.neuro.uni-jena.de/cat, r1184) using default parameters
to obtain modulated, normalized grey matter segments (resolution
1.5 × 1.5 × 1.5mm3) which were used for the present analysis.
Furthermore, age, gender, scanner type, and total intracranial
volume (TIV) were provided.
The FOR2107 cohort project was approved by the Ethics

Committees of the Medical Faculties, University of Marburg and
University of Münster.

Machine learning pipeline
To ensure the unbiased approximation of the model’s perfor-
mance in previously unseen patients (i.e., model generalization),
we trained and tested all models in a pipeline to prevent
information leaking between patients used for training and
validation. To avoid a confounding effect due to an imbalance
in the sample, we used random under-sampling in a first step to
obtain a balanced sample of 934 MDD cases and 934 healthy

controls (HC) (see Supplementary appendix A for summary
statistics). To reduce the computational effort, all images have
been scaled down to a voxel size of 3 × 3 × 3mm3. Following,
every image was converted to a vector, where every voxel served
as a feature. After background elimination (features with no
variance), 58,255 features remained. For standardization, the
features were scaled to have zero mean and unit variance. Finally,
a linear support-vector machine (SVM) with default parameters
(Scikit-learn [22], v0.20) was trained and model performance was
calculated and analysed in the subsequent analyses. The effect of
varying scanner-distributions across samples was found to be
negligible (see Supplementary appendix D).

Overall sample size effects
To first examine the effects of overall-set size, we randomly
sampled the PAC dataset in steps of 1 from N= 4 to 150. For each
N value, we created 1000 balanced samples. This yielded 147,000
random samples with equal numbers of patients and healthy
controls. Applying the SVM pipeline described above to each of
these samples independently allowed us to obtain a distribution
of accuracy scores for each N value, respectively. On each sample,
one SVM was trained with default parameters using LOOCV. Thus,
we trained a total of 11,315,000 SVMs. Since the computational
effort increases quadratically with increasing sample size, and in
addition, the most recent neuroimaging ML studies using LOOCV
rarely exceed N= 150, we decided to stop at this value. Following,
we evaluated the distribution of accuracy scores estimated for
each sample size (N= 4–150).

Training set size effects
Second, to examine the effects of training set size, we varied the
size of each training set and then tested performance on a fixed
hold-out set. Specifically, we randomly sampled the PAC dataset in
steps of 1 from N= 4–150 as was done in the previous analysis.
For each N value, we created 1000 balanced samples and used
each of them to train different models. To then test the effects of
training set size on test set performance, we tested each trained
model on a balanced test set of N= 300. From the resulting
distributions, we quantified the probability of overestimating
accuracy as a function of training set size.

Test set size effects
To assess the effects of test set size on classification accuracy, we
randomly sampled a balanced group of 300 subjects from our full
sample of 934 MDD cases and 934 HC’s. From this sample, we
randomly sub-sampled test sets of N= 4 to 150 in steps of 1. For
each value of N, we took 1000 samples, resulting in the creation of
147,000 random test samples. From the remaining 784 MDD cases
and 784 HC’s, we took out another 20% sample (MDD= 157 and
HC= 157). The prediction of this sample provides a reliable basis
for overall performance estimation and allows for a comparison
with the results obtained from smaller samples. We then trained a
single SVM on the remaining sample (MDD= 627, HC= 627). The
trained SVM was then tested on each test set sample (N= 4–150).
From the resulting test set accuracy distributions, we derived the
probability of obtaining accuracy scores between 50 and 90%
accuracy by chance. See Fig. 1 for an overview of all analyses.

Generalizability of statistical effect
Alternative pipeline configurations. As we have attempted to hold
other components of the modelling process constant so any
observed effects of systematic misestimation can be attributed to
sample size alone, it is also possible that our results may be
dependent on the basic configuration of our machine learning
pipeline (e.g., the use of a linear SVM, default hyperparameters,
and LOOCV). Therefore, we trained a further 48 pipeline
configurations, including the use of both linear and radial basis
function SVMs and a Random Forest classifier, all of which have
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demonstrated their efficacy in neuroimaging classification studies
[13]. Within these configurations, we conducted dimensionality
reduction using principal components analysis as well as f-test
based feature selection. This allowed us to assess whether our
findings were being confounded by the large number of
predictors used in the main analysis. For further information see
Supplement Appendix F and for all results see supplementary
results F.1, supplementary Figs. F4–F51 and Tables F9–F56.

Dummy classifier. In order to show that the observed effects
were not specific to the PAC dataset or any of the alternative

pipeline configurations in these analyses, we repeated the
procedures described above with a dummy classifier. Our dummy
classifier assumed a prior probability for MDD vs control
classification based on the percentage proportion of each class
in the training data (prevalence). As the dataset was balanced with
random under-sampling, the prior and subsequent ground truth
of the model was equal to exactly 50%. This approach allowed us
to compare our distribution of dummy performance estimates
derived from our subsample analysis to this ground truth value.
Importantly, this approach allows for the quantification of
accuracy misestimation as a function of sample size completely

Fig. 1 Workflow to investigate the correlations between sample size and misestimation. First the effect of misestimation is investigated
over the whole classification process ((1) Overall sample size analysis). Following the process of training and testing is evaluated seperatly ((2)
Training set sample size analysis, (3) Test set sample size analysis).
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independent of any unique characteristics that may be specific to
the PAC dataset or our pipeline configurations. Therefore, we can
then be sure that any subsequent changes in classifier perfor-
mance are attributable to sample size alone.

RESULTS
Overall sample size effects
In the overall sample size analysis using LOOCV, we were able to
show that the risk of overestimating the classifier performance
increases with decreasing overall sample size (Fig. 2a, Supple-
ments Table C2a). Specifically, accuracies of 70% or higher are
observed with a probability of 13% on sample sizes of N= 20
whereas this probability is reduced to 2% for sample sizes of N=
100. In addition, the sample size has a profound impact on the
variability of accuracy estimates: For samples of size N= 20,
accuracies ranged from 10 to 95% (standard deviation=15%)
while for samples of N= 100, accuracies ranged between 35 and
81% (standard deviation= 6%) (Fig. 2b, Supplementary Table C2b).
Note that this effect is symmetrical and also applies to the
underestimation of performance (Fig. 2b). In addition, the results

of the dummy classifier (Fig. 2c, d, Supplementary Table C3) show
that the observed overestimation effect is a general effect of
sample size as previously pointed out by Varoquaux [16]. As the
regularization of the SVM is sensitive to the total number of
outliers, which may increase in parallel with sample size, we
conducted an additional analysis with adjusted C parameters, with
the observed effect remaining constant across these analyses (see
Supplementary Fig. E1 and E2).

Training set size effects
When examining the effects of training set size (N= 4–150) using
a large test set for evaluation (N= 300), we did not observe any
systematic misestimation (Fig. 3a, Supplementary Table C4a). In
fact, models trained on virtually any training set size from N=
4–150 were sufficient to obtain maximum model performance.
However, increasing training sample size decreased the prob-
ability of obtaining very low performance estimate. For training
sets of size N= 20, accuracies ranged from 32 to 69% (standard
deviation= 7.1%) while for training sets of N= 100, accuracies
ranged between 51 and 70% (standard deviation= 3.0%) (Fig. 3b,
Supplementary Table C4b). In accordance with the overall sample

Fig. 2 Effects of varying overall sample sizes employing LOOCV. a Probabilities for linear SVMs to yield an accuracy exceeding a certain
threshold as a function of sample size employing LOOCV. b Minimum, maximum and mean results for the linear SVMs as a function of sample
size employing LOOCV. c Probabilities for dummy classifiers to get an accuracy above a certain chance level related to the size of the used
sample. d Minimum, maximum and mean results for the dummy classifiers related to the size of the used sample size for training and testing.
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size analysis, the results of the dummy classifier (Fig. 3c, d,
Supplementary Table C5) showed that this observed effect was
general in nature.

Test set size effects
For our analysis varying test set size, we found a similar pattern of
systematic misestimation as that in our first overall sample size
analysis using LOOCV. With a sample size of N= 20, we obtain
results of 70% accuracy or higher with a probability of 30%, whilst
the mean accuracy on the full dataset (N= 268) was only 61%.
This probability dropped to 13% when the test sample size was
N= 100. For test sets of size N= 20, accuracies ranged from 35 to
95% (standard deviation= 10%) whilst for test sets of size N=
100, accuracies ranged from 51 and 79% (standard deviation=
4%) (Fig. 4b, Supplementary Table C6b). Running the analysis
again using our dummy classifier, we were able to show that the
general pattern of systematic misestimation was independent of
the specific dataset used (Fig. 4c, d, Supplementary Table C7).
To show the independent and generalizable character of the
observed effect, we repeated the analysis on the 48 unique
pipeline configurations discussed above (see Supplementary

appendix F). Specifically, the results are comparable to the
originally used configuration, i.e., an SVM with a linear kernel
and no preprocessing. Finally, our analysis of scanner sites
revealed no effects on model performance (see Supplementary
appendix D).

DISCUSSION
Sparked by the observation that machine learning studies drawing
on larger neuroimaging samples consistently showed weaker
results than studies drawing on smaller ones, we drew samples of
various sizes from the PAC dataset, thereby mimicking the process
by which researchers would draw samples from the population of
ML studies reported in the literature. When applying a linear SVM
with LOOCV, as is the most common approach in the neuroimaging
literature [10], we observed a higher risk of misestimations, which
may lead to artificially high performance estimates in smaller
samples. Importantly, our analyses revealed that this is primarily
due to a small test set, not training set size. Generally, this shows
that a small test sample size may explain many of the highly
optimistic results published in recent years. When considering the

Fig. 3 Results as a function of training set sizes with a fixed test set size of N= 300. a Probabilities for linear SVMs to yield an accuracy
exceeding a certain threshold as a function of training sample size. b Minimum, maximum and mean results for the linear SVMs as a function
of training sample size. c Probabilities for the dummy classifier to get an accuracy above a certain chance level related to the size of the
training set size. d Minimum, maximum and mean results for the dummy classifier related to the size of the used sample size for training.
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well-established effect of publication bias, even if underestimated
results are equally as likely, they will have a significantly lower
chance of being published.
Our results are the first to disentangle the effects of training and

test set size effects which are typically inseparable in common
cross-validation frameworks such as LOOCV. This delineation of
effects enabled two important insights for biomarker discovery and
outcome prediction. First, researchers need to validate their models
on large, independent test sets. Our results indicate that in the PAC
dataset, a test set size of N= 100 was already sufficient to lower the
probability of obtaining artificially good performance (i.e., 70% or
higher) to 13%. With a median N of less than 100 in many published
studies [10], this may seem challenging. However, online infra-
structure for independent machine learning model evaluation is
available (e.g., www.photon-ai.com/repo). If researchers open-
source their models, anyone—independent of technical knowledge
or machine learning expertise—can evaluate them. This way, large
independent test datasets can be obtained in a short time without
the need for data sharing. This is not restricted to neuroimaging
data, but any machine learning model. In addition, efforts from
consortia will also help to mitigate this problem and should be
considered by machine learning practitioners.

Second, the size of the training set alone cannot serve as an
indicator of later model performance. Larger training sets are
more likely to generalize to new data and broaden model scope
(i.e., about which groups within a population a given model can
make reasonable predictions), however, in the current analysis, the
linear rule learned by an SVM on high-dimensional neuroimaging
data could be approximated with only a handful of samples. From
a training set size of 30 onward, we no longer observed any
increase in model performance. This somewhat counterintuitive
effect arises whenever a simple rule is approximated. For higher
complexity models (i.e., models capable of learning more complex
rules), we, of course, expect performance increases as training
sample size increases. However, considering the results of the
PAC competition (Supplementary appendix B), high complexity
models such as Deep Learning approaches did not yield higher
performance when trained with ~1000 samples. Thus, we
conclude that simple models are competitive for sample sizes of
up to N= 1000 for this particular classification problem. Whether
more complex rules can be discovered beyond this point or
whether other fundamental issues hamper biomarker discovery in
psychiatry (cf. e.g., biotype identification [19] and normative
modelling approaches [23]) remains an open question.

Fig. 4 Results as a function of variable test set sizes with and a fixed classifier. a Probabilities for linear SVMs to yield an accuracy exceeding
a certain threshold as a function of test sample size. b Minimum, maximum and mean results for the linear SVMs as a function of test sample
size. c Probabilities for the dummy classifier to get an accuracy above a certain chance level related to the size of the test set size. d Minimum,
maximum and mean results for the dummy classifier related to the size of the used sample size for testing.
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An intuitive criticism of our main analyses would be that it has
merely replicated methods similar to those of previous low-quality
works (for example, studies using only linear SVMs with default
parameters, tested in LOOCV schemes, on samples with many
more predictors than observations). Whilst this pipeline config-
uration was used in the current analysis to (a) hold constant
properties, that if varied, may have been indistinguishably
responsible for changes in accuracy misestimation, and (b)
replicate the most commonly used ML pipeline configuration in
our field, it was important to conduct complementary analyses to
rule out these confounds. Therefore, we tested a further 48 ML
pipeline configurations (see Supplementary appendix F) using
both linear (a linear SVM) and non-linear (a radial basis function
SVM and a Random Forest) classifiers. In addition, we conducted
PCA based dimensionality reduction as well as f-test based feature
selection within these classifiers to delineate whether our findings
were confounded by the large size of the predictor space relative
to our number of observations. Importantly, all pipeline config-
urations demonstrated the same pattern of systematic misestima-
tion as that in our main analyses. The second potential criticism of
the current work is that these findings may merely be modality-
specific, limiting the generalizability of these findings across
domains. However, the use of a dummy classifier that completely
ignored the input predictor space (the voxels), and instead,
classified samples based only on their prevalence in training
(MDD= 50%, Control= 50%), showed the same pattern of sample
size based systematic misestimation across all pipeline configura-
tions, thus, demonstrating a generalizable statistical effect
regardless of the data modality used.
Given the profound effect of the test set size on systematic

misestimation, it is important to consider why an effect of
overestimation may arise. Previous work by Schnack and Kahn [24]
suggests that patient characteristics in smaller samples tend to be
more homogenous. In the case of small N, participants may be
more likely to be recruited from the same data collection site and
of a similar age (for example, in the case of a university recruited
convenience sample). In addition, stringent recruitment criterion
may be easily met, resulting in a well-defined phenotype that is
not truly representative of the parent population of interest. Whilst
this explanation makes sense for samples collected in this manner,
it fails to explain why we observed this phenomenon in our
random sampling procedure, and more importantly, with our
dummy classifiers that paid no attention to participants, their
characteristics, or the inputted predictor variables. This observa-
tion suggests a mechanism for systematic misestimation that is
not just sample/patient-specific or contingent on sample homo-
geneity, but instead, inherent in the natural variation that arises in
small test samples. Indeed, this effect is known as sampling error,
and as demonstrated by Combrisson et al. [25] can lead to an
effect whereby we exceed a machine learning model’s chance
level, purely by chance.
In addition to sample size, other issues such as data leakage

[13], are likely contributing to the systematic overestimation seen
in the literature. Dedicated cross-platform software to help avoid
data leakage is freely available (e.g., PHOTON, www.photon-ai.com
or Scikit-learn [22]). Finally, code should be made available on
request or provided in an online repository (e.g., GitHub or GitLab)
upon submission for review. In addition, a more elaborate
evaluation framework including the analysis of model scope
assessment as well as incremental utility and risk analysis is
needed to move the field beyond proof-of-concept studies. The
success of current translational efforts in neuroimaging and
psychiatry will crucially depend on the timely adoption of
guidelines and rules for medical machine learning models (for
an in-depth introduction, see [15]).
In summary, our results indicate that—while many of the most

highly published results might strongly overestimate true
performance—evaluation on large test sets constitutes a

straightforward remedy. Given that simple, low-complexity
models such as linear SVMs did not gain from larger training set
size, researchers should not discard their models due to low
training N but seek evaluation on a large test set for any model
showing good performance.
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