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Manage Toxic Adverse Events
following Cancer Immunotherapy
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Valesca Retèl, Daan van den Broek, and Maarten IJzerman

Background. Although immunotherapy (IMT) provides significant survival benefits in selected patients, approxi-
mately 10% of patients experience (serious) immune-related adverse events (irAEs). The early detection of adverse
events will prevent irAEs from progressing to severe stages, and routine testing for irAEs has become common prac-
tice. Because a positive test outcome might indicate a clinically manifesting irAE that requires treatment to (tempo-
rarily) discontinue, the occurrence of false-positive test outcomes is expected to negatively affect treatment outcomes.
This study explores how the UPPAAL modeling environment can be used to assess the impact of test accuracy (i.e.,
test sensitivity and specificity), on the probability of patients entering palliative care within 11 IMT cycles. Methods.

A timed automata-based model was constructed using real-world data and expert consultation. Model calibration
was performed using data from 248 non–small-cell lung cancer patients treated with nivolumab. A scenario analysis
was performed to evaluate the effect of changes in test accuracy on the probability of patients transitioning to pallia-
tive care. Results. The constructed model was used to estimate the cumulative probabilities for the patients’ transition
to palliative care, which were found to match real-world clinical observations after model calibration. The scenario
analysis showed that the specificity of laboratory tests for routine monitoring has a strong effect on the probability
of patients transitioning to palliative care, whereas the effect of test sensitivity was limited. Conclusion. We have
obtained interesting insights by simulating a care pathway and disease progression using UPPAAL. The scenario
analysis indicates that an increase in test specificity results in decreased discontinuation of treatment due to suspicion
of irAEs, through a reduction of false-positive test outcomes.
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Non–small-cell lung cancer (NSCLC) is associated with
significant mortality. The incidence of lung cancer is esti-
mated to be 11.6% of all new cancer diagnoses worldwide
and is considered the leading cause of cancer-related mor-
tality.1 Until September 2018, in the Netherlands, the
first-line treatment in the metastatic disease setting (stage
IV NSCLC) was chemotherapy with platinum doublets in
patients without a targetable mutation, and patients pre-
senting with a targetable mutation (e.g., epidermal growth
factor receptor or anaplastic lymphoma kinase mutation)
received a targeted therapy (e.g., erlotinib, crizotinib, or

gefitinib).2 Since then, the treatment landscape has funda-
mentally changed with the introduction of immunother-
apy, which now has become a standard treatment.
Initially, nivolumab and pembrolizumab were approved
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in the second-line setting, but, since 2018, immunotherapy
based on PD-L1 expression with or without added doub-
let chemotherapy has been the standard first-line treat-
ment. Clinical studies have shown that about 20% to
40% of patients respond to immunotherapy, with
substantially prolonged survival benefit. Despite the
clinical benefits of the use of immunotherapy treatments,
immunotherapy is also known to be associated with
immunogenic reactions that severely affect treatment
schedules and outcomes.3 To manage immunotherapy-
related adverse events (irAEs), suspicion of irAEs is deter-
mined using a standardized set of blood tests. However,
no clear guidance is available on aspects such as the fre-
quency of tests, required test specifications, or interpreta-
tion of results. This might result in suboptimal diagnostics
and outcomes, in terms of survival.4

At the Netherlands Cancer Institute, a diagnostic
panel was implemented and routinely used at 2-weekly
intervals. Test outcomes are used to aid clinical decision
making on treatment continuation, to confirm the suspi-
cion of an irAE, and to grade the severity of an irAE.
The diagnostic panel aimed to detect irAEs in an early
stage to improve clinical management and outcomes.
The diagnostic kit covers a broad spectrum of blood
markers. Some of these tests are used in a different set-
ting (e.g., screening for irAE without clinical complaints)
as compared with their original routine use, which could
result in suboptimal performance in detecting irAEs. In
addition, there are no data on the optimal frequency
and use of diagnostic tests for irAEs. Hence, there is an
interest in optimizing the diagnostic workflow to, for
example, reduce unnecessary testing. Optimizing the
test sequence using a prospective or retrospective study

design to test different diagnostic setups would be
unfeasible given the number of possible diagnostic stra-
tegies, time, and financial constraints. In such cases, it
is possible to construct simulation models based on
real-world data to evaluate diagnostic strategies aimed
at the detection of irAEs on disease management and
patient outcomes.

This study explores the use of UPPAAL to model
diagnostic strategies. UPPAAL was developed by com-
puter scientists at Uppsala University (Sweden) and
Aalborg University (Denmark).5 The UPPAAL software
uses a distributed modeling paradigm that allows for
modeling a system using networks’ of timed automata
(TA). The UPPAAL tool enables modelers to construct
networks of TA. These networks consist of a finite set of
automata with real-valued clocks and constraints.
Automata can be seen as a state in which a predefined
process will be executed automatically (e.g., changing an
integer according to a predefined function). Within the
network, clock values increase with equal speed, and
clock values can be compared with integers to control
transitions between automata.6 Moreover, in these net-
works of TA, communication channels are used to allow
for multiple types of synchronization signals that allow
for communication between different automata in the
network. Generally, TA models consist of multiple
templates, with each template containing a network of
automata used to model a specific function. The commu-
nication channels allow different templates to communi-
cate with and influence each other. The ability to model
substructures makes UPPAAL especially suited for mod-
eling complex structures in which multiple agents have
the ability to influence each other (e.g., a clinical path-
way). In addition, UPPAAL provides extensive model-
checking capabilities, which allow model developers to
check the reachability of states or pathways. UPPAAL
provides an environment that aids interdisciplinary com-
munication (e.g., by using multiple templates to model
subprocesses while using a graphical user interface). The
heterogeneous treatment path and importance of event
timing in the detection of irAEs requires a flexible mod-
eling approach. In the field of health economics, patient-
level Markov models, discrete event simulations (DES),
or agent-based models are generally applied approaches
when flexibility is required. A unique benefit of TA-
based models over the currently preferred modeling
approaches is the compositional model structure that
allows modeled agents to interact with and influence
each other through communication channels. This
compositional nature of TA-based models makes them
more flexible to adjust and also allows modeling of a
continuous process that involves multiple decisions, as in
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the case of treatment of advanced cancers. A downside
of TA-based models is the limitation in statistical distri-
butions, which are limited to a uniform and exponential
distribution in UPPAAL. However, in UPPAAL, there
are workarounds that allow for the incorporation of
other statistical distributions into the model.7

Our research aims to use a TA-based routine to model
the clinical-diagnostic pathway of irAEs and to populate
and calibrate the model using real-world survival data.
This model will then be used to demonstrate the feasibility
of UPPAAL by evaluating different test scenarios with
increasing diagnostic performance of a broad spectrum of
irAEs tests. We hypothesize that a TA-based model cre-
ated in UPPAAL will be versatile enough to capture the
complexity of the clinical path and decision making.

Methods

Study Cohort

The model was developed using a cohort of patients
treated with nivolumab through the compassionate use
program and regular care, containing 248 patients. A
description of the study cohort, response assessment,
and safety assessment was published in Lung Cancer in
2017.8 Of these patients, 133 were recruited through
the compassionate use program, whereas 115 patients
started treatment in regular care. All patients received at
least 1 line of previous treatment (chemotherapy) before
nivolumab. In August 2015, nivolumab was available
through the compassionate access program by Bristol-
Myers-Squibb in 8 different hospitals in the Netherlands
(NCT02475382). In this program, patients who had
received at least 1 previous line of anticancer treatment
were eligible to receive nivolumab if they had a good clini-
cal performance with no or mild symptoms (World Health
Organization performance status 0–1) and had adequate
lab values for blood markers specific for organ

(dys)function (e.g., aspartate aminotransferase, alanine
aminotransferase, or creatinine).9 Data used in this study
were limited to data acquired by the Netherlands Cancer
Institute.

As part of routine care, patients were seen in the hos-
pital every 2 wk, and laboratory tests were administered
at baseline and every 2 wk thereafter. The laboratory
assessment consisted of 30 blood tests including hematol-
ogy, clinical chemistry, and hormonal measures, as
depicted in Table 1.

Disease progression was monitored through com-
puted tomography imaging at 6 wk, 12 wk, 3 mo, 6 mo,
9 mo, 12 mo, and 15 mo after initiation of IMT. IMT
was ceased in patients presenting with progressive dis-
ease. When any grade of irAE was clinically confirmed,
patients were either withdrawn from IMT for the dura-
tion of a recovery period, which could take up to 5 wk,
or IMT therapy was ceased definitively, and the patients
proceeded to the next line of treatment. The NSCLC
treatment landscape is heterogeneous. Therefore, in this
model, the assumption is made that patients will transi-
tion to palliative chemotherapy after IMT is ceased defi-
nitively. During recovery, patients received appropriate
treatment to recover from the incurred irAE. In practice,
patients continued to the next line of therapy after dis-
continuation of IMT; in the model, we refer to this next
line of treatment as ‘‘palliative care,’’ since only the IMT
phase was incorporated in the model. The data used
from this cohort included the time on treatment in weeks,
the frequency, and the incidence of toxicities and pro-
gressive disease. All relevant irAEs incorporated in the
model are described in Table 2.

Expert Consultations

A multidisciplinary team involving experts in computer
science, medical oncology, laboratory medicine, epide-
miology, and decision science was involved in the

Table 1 A description of the biomarker test panel used in the detection of immune related Adverse Events

Category Measured Biomarkers

Blood count Hemoglobin, hematocrit, erythrocytes, MCV, leukocytes, neutrophil granulocytes,
thrombocytes, cell differentiation

Liver function Bilirubin, ALP, ASAT, ALAT, YGT, LDH
Clinical chemistry CRP, creatinine, GFR, urea, sodium, potassium, phosphate, magnesium, glucose,

total protein, albumin, calcium
Special chemistry ACTH, cortisol

MCV, mean corpuscular volume; ALP, alkaline phosphatase: ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; YGT,

gamma-glutamyl transferase; LDH, lactate dehydrogenase; CRP, C-reactive protein; GFR, glomerular filtration rate; ACTH,

adrenocorticotropic hormone.
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development of the model. During the model develop-
ment phase, 5 meetings were arranged with the multidis-
ciplinary team, in which the research questions, model
structure, model inputs, and results were discussed.

Model Construction

Although TA-based models have been established in
other fields, in decision science, TA-based models have
rarely been used or published. The care pathway
described in this study consists of 2 distinct events that
are monitored independently during the treatment pro-
cess (i.e., the development and detection of irAEs and
the development and detection of disease progression).
Markov or DES models use ‘‘events’’ or ‘‘timing of
events’’ to dictate the flow of patients through the model.
Most of these models are built around 1 decision and
process (i.e., a flow of subsequent actions). However,
these models are less able to model asynchronous, paral-
lel processes with multiple decision points and events
causing an interruption of a process at arbitrary
moments. A DES model does provide a more flexible
approach, and depending on software-specific abilities, a
DES model should be able to reflect the 2 independent
subroutines. However, it would require a more complex
model structure for which competing risks are defined
for each combination of events. When using a Markov
model, short cycle times could be used to allow for the
evaluation of events at each cycle. However, a Markov
model is less able to capture complex pathways with
time-varying probabilities. UPPAAL provides the ability
to model independent processes asynchronously, while
synchronization channels can be used to interrupt pro-
cesses in subroutines when necessary. Other merits of
using UPPAAL are the ability to create substructures
that represent a specific aspect of the simulated pathway
and its model-checking engine. The ability to model sub-
structures aids interdisciplinary communication, since
each substructure is assigned its own template in a gra-
phical user interface. In addition, the model-checking
engine enables model developers to check the reachabil-
ity of each state or pathway. A high-level overview of the
clinical pathway is depicted in Figure 1. This high-level
overview was translated into 6 templates used to capture
different parts of the clinical pathway. In our model, the
IMT is stopped if the patient has received 11 cycles of
IMT, the patient develops progressive disease, or treat-
ment is ceased because of irAEs. Therefore, our model
adopts a time horizon of 66 wk, that is, 11 treatment
cycles with a duration of 6 wk per cycle. A comprehen-
sive overview of all transition probabilities, time

constraints, and the underlying data source is provided
in Table 3.

The 6 templates in the model are referred to as
‘‘Protocol,’’ ‘‘Patient,’’ ‘‘Toxic,’’ ‘‘Test,’’ ‘‘Monitor,’’ and
‘‘Progression Check.’’ Each of these templates fulfills a
specific role in the model. The Protocol template is built
to indicate whether a patient should receive tests aimed
at the detection of irAEs, move to a recovery state, or
transition to palliative care. The Patient template keeps
track of the physical state of a patient (e.g., the grade of
irAE incurred). The Toxic template determines whether
a patient will incur a certain irAE. For patients who
would develop an irAE, the template is also used to
determine the point in time at which the irAE will mani-
fest itself, simulate the progression of the irAE to a more
severe grade, and determine whether a patient will
recover once the patient enters the recovery phase. The
Test template simulates outcomes of tests aimed at the
detection of irAEs. The Monitor template is used to log
the time patients spend in palliative care, which was

Figure 1 High-level overview of the clinical pathway. One
IMT cycle consists of 6 wk of treatment with nivolumab. A
test to detect progressive disease is performed once during
every treatment cycle, and tests to detect irAEs are performed
every 2 wk. All patients who are diagnosed with progressive
disease, or who incur a specific irAE a third time, or who incur
an irAE for a sixth time, transition to palliative care. Solid
lines are used to depict standard transition options, and the
dashed line represents a conditional transition (i.e., the
transition depends on the outcome of a separate process, in
this case, the detection of progressive disease). IMT,
immunotherapy; irAE, immune-related adverse event.
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chosen as the primary model outcome. Disease progres-
sion is modeled using the Progression Check template, in
which the probability of disease progression is derived
from patient data and decreases over time (Table 3). An
extensive model description was published in an online
repository.10

Modeling of irAEs and Recovery

The severity of irAEs is described in grades ranging from
grade 0 to grade 5. The absence of an irAE is defined as
grade 0, whereas grade 5 is used to represent death
caused by an irAE.11 Within our model, grade 3, 4, and 5
irAEs are aggregated in a ‘‘grade3_and_4’’ irAE, because
all of these grades of irAEs manifest with severe physical
ailments that requiring clinical management. IrAEs prog-
ress from stage 1 to stage 3 within prespecified time inter-
vals. The described time intervals are based on the
average time between irAE development and presenta-
tion of severe physical symptoms (i.e., grade 3 irAEs).
Therefore, patients transition from grade 1 to grade 2
and from grade 2 to grade 3 in 0.5 times the time it takes
from irAE development until symptomatic disease (i.e.,
grade 3 irAEs; Table 2, ‘‘Time between Development
and Grade 3–4 AE’’ column).

As shown in Figure 1, patients in whom 1 of the tests
results in a positive outcome can either enter a recovery
phase or transition to palliative care. During the recovery
period, patients are withheld from IMT for a duration of
5 wk. Patients who are diagnosed with an irAE within
the first IMT cycle transition to a ‘‘fast recovery’’ state,
in which the recovery period is reduced to 2 wk. The fast
recovery state is introduced to resemble clinical decision
making during the first IMT cycle. During the first cycle,
physicians strive to optimize the chances of IMT to have
a beneficial effect. During recovery, the test for disease
progression continues according to the 6-wk schedule,
and patients diagnosed with progressive disease during
recovery transition to palliative care directly. Recovery
from irAEs in the recovery phase is dependent on a pre-
specified probability. This recovery probability is based
on the IMT cycle number, the grade of irAE, and the
number of previous irAEs (Table 3). A transition to pal-
liative care is made when recovery from the irAE fails.
IMT treatment is ceased indefinitely after entering pallia-
tive care. Moreover, the model allows for recovery of the
same type of irAE twice, and patients are allowed to
recover 5 times from any combination of irAEs included
in the model. In case a specific irAE occurs for the third
time or a patient develops an irAE for the sixth time, a
transition to palliative care is made directly without
entering the recovery phase.

Model Calibration

Because the accuracy of the diagnostic pathway (i.e., the
combined accuracy of the tests and interpretation of test
results by a physician) aimed at the detection of irAEs is
unknown because of a paucity of information regarding
the accuracy of tests in this specific application (i.e., the
detection of irAEs and the influence of a physician inter-
preting these test results), model calibration is performed
to improve the accuracy of the diagnostic path and
ensure the internal validity of the model by comparing
the model output to real-world patient data. The model
was calibrated by changing the input values for the sensi-
tivity and specificity of the diagnostic pathway and com-
paring the probability of patients entering palliative care
over time. The cumulative probability of patients enter-
ing palliative care over time is calculated based on real-
world data using R statistical software version 3.6.1 and
the ecdf function included in the stats package.12,13

Within UPPAAL, a query is run to simulate 11 treat-
ment cycles (i.e., 66 wk) and 100,000 patients. The prob-
ability of entering palliative care over time is retrieved
directly from the query output in UPPAAL. Model out-
puts are compared with real-world data through data
visualization using the ggplot2 package (version 3.2.1) in
R.14 The model calibration is considered successful when
the model outputs are within the confidence bounds sur-
rounding the real-world patient data. Confidence bounds
are generated according to the Dvoretzky–Kiefer–
Wolfowitz inequality.15

One of the shortcomings of using only the test out-
comes is the incapability of expressing the overall physi-
cal state of the patient, which might be of great influence
concerning the decision on treatment continuation. In
practice, test results are interpreted by a physician; this
interpretation step is likely to result in an increase in the
accuracy of the diagnostic process. Herein we define the
accuracy of the diagnostic process as the accuracy of the
test after interpretation of the test results by a physician.
The accuracy of the diagnostic process is expressed in
terms of test sensitivity and specificity. Conversely, the
test accuracy is still used to refer to the sensitivity and
specificity of each test when outcomes are solely com-
pared with the threshold values for disease detection.
Since the accuracy of the diagnostic process is unknown,
we adjusted this accuracy until the described model out-
comes closely match the observed patient data.

Scenario Analysis

A scenario analysis is performed to assess the influence
of changes in diagnostic accuracy, that is, the sensitivity
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and specificity of the diagnostic process on the probabil-
ity of patients entering palliative care within 66 wk of
IMT. The scenario analysis makes use of a query, which
provides the probability of patients entering palliative
care within 66 wk. For this scenario analysis, 14 scenar-
ios with different input values for the test sensitivity and
specificity are drafted, including 2 sensitivity values to
represent a high and low test sensitivity. The scenario
analysis includes 7 specificity values chosen after empiri-
cal tests during model calibration show that a specificity
lower than 88% results in a probability of 1 that patients
would enter palliative care before week 66.

Results

Model Construction

As described in the Methods section, the constructed
model consists of 6 templates, with each template fulfill-
ing a specific function in modeling the clinical pathway.
Here, we describe 2 templates in more detail to provide
insight into the inner workings of the model.

Figure 2 depicts the template used to model the 6 dif-
ferent diagnostic processes that correspond to the irAEs
included in the model. The template is replicated 6 times
during a simulation, and each copy of the template is
assigned an irAE through an identifier ([id]). Each test
template is initiated in the ‘‘Start’’ location, and all tests
are performed simultaneously when a signal is received
through the synchronization channel indicated by ‘‘test?’’
When this synchronization signal is received, a transition
is made from the start location to the location indicated
by ‘‘irAE present?’’ The test outcomes depend on the
presence of an irAE; in the model, ‘‘g[id]’’ is used to indi-
cate the grade of irAE for each of the irAEs included in
the model. In case a patient presents with the irAE corre-
sponding to the respective test, the patient will follow the
path ‘‘g[id].0.’’ Patients free of the irAE continue
through the path indicated by ‘‘g[id]==0.’’ For patients
who present with an irAE, the test outcomes depend on
the test sensitivity defined by ‘‘sens[id].’’ Patients present-
ing with an irAE transition to the location ‘‘Positive’’ in
case of a positive test result. The probability of this true-
positive test result is equal to the test sensitivity, whereas
the probability of a false-negative test result (i.e., a tran-
sition to the location ‘‘Negative’’) is equal to 1 minus the
test sensitivity. Patients free of an irAE follow the path
downward from ‘‘irAE present?’’ and can receive either a
true-negative (transition to the location ‘‘Negative’’) or
false-positive test result (i.e., transition to the location
‘‘FalsePos’’). The probability of receiving a true-negative
test result equals the specificity of a test (spec[id]). The

probability of receiving a false-positive test result is
equal to 1 minus the test specificity. From the location
‘‘Positive,’’ ‘‘FalsePos,’’ or ‘‘Negative,’’ the patient returns
to start. This transition automatically updates the values
of ‘‘r,’’ which represents the grade of irAE incurred, and
‘‘rr,’’ which represents the number of times a specific
irAE occurred.

The test protocol template as depicted in Figure 3 is
initiated in the ‘‘Start’’ location. This template is used to
simulate the IMT treatment cycles and interpretation of
test results. The actions taken in the test protocol depend
on a time in weeks indicated by ‘‘period.’’ During IMT,
patients receive tests every 2 wks aimed at the detection
of irAEs. The tests are performed when the patient tran-
sitions from the location ‘‘Neutral’’ to the location
‘‘Check.’’ During this transition, the communication
channel ‘‘test!’’ is activated. Test results are evaluated in
the location ‘‘Check.’’ Depending on the test result,
patients can either continue the standard test sequence

Figure 2 Template ‘‘Test,’’ a simulation of tests aimed to
detect immune-related adverse events (irAEs) based on the test
sensitivity, specificity, and presence of an irAE. Solid line:
transition path; dashed line: transition based on a probability
of that line being executed. Green text: guards, a requirement
that must be met to allow the transition to occur. Orange text:
probability, the probability with which a transition will occur.
Blue text: update, once the transition occurs, the defined
parameters will receive an update. Light-blue text:
synchronization, the transition name followed by a ‘‘?’’ is a
receiving channel, and the transition will take place once the
synchronization signal is received. If the name is followed by a
‘‘!,’’ the channel will be used as a broadcasting channel, and a
synchronization signal will be sent once the transition occurs.
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when no irAEs are found, that is, the patient transitions
to the location ‘‘Wait’’ through the path indicated
by ‘‘allvalues0()’’. Go into a fast recovery phase
‘‘FastRecover’’ if the patient is diagnosed with an irAE
during the first treatment cycle (path: !allvalues0 &&
cycle\=1). Enter the normal recovery phase ‘‘Recover’’
if the patient is diagnosed with a grade 1 irAE, is diag-
nosed with an irAE fewer than 3 times, and has com-
pleted at least 1 IMT cycle (path: somevalue1() &&
maxtwice() && cycle .1). Patients diagnosed with a
grade 2 or 3 irAE, who have been diagnosed with an
irAE fewer than 3 times, and who have completed at
least 1 IMT cycle have an equal probability of 0.5 of
either entering the recovery phase (location: Recover) or
transitioning to palliative care (location: Palliative). This
probability of 0.5 is indicated by the number 50 near the
dashed arrows. Patients who receive a third positive test
result for one of the included irAEs or who are diag-
nosed with an irAE for the sixth time transition to pallia-
tive care (location: Palliative) directly. The fast recovery
period is defined to last 2 wk, as defined by the guard
‘‘period.=2’’ and the invariant ‘‘period\=2’’, meaning
the transition has to occur when the value of period
equals 2. The standard recovery period is defined to last

5 wk (guard: period.=5, invariant: period\=5). The
probability of recovery depends on the grade of irAE
and the number of times the patient is diagnosed with
the irAE. This probability is looked up in a table using
the notation c[g[id]][rec[id]], in which ‘‘c’’ indicates the
probability of recovery based on ‘‘g,’’ which represents
the grade of irAE, and ‘‘rec’’ represents the number of
real detected irAEs (i.e., the number of previously
incurred true-positive test results).

Model Calibration

The model was calibrated by comparing the cumulative
probability distribution of patients entering palliative
care over time to observed patient data. Ultimately, a
sensitivity and specificity of 85% and 91% provided a
satisfactory fit, respectively. The choice was based on the
visual fit of the model outcome as compared with patient
data and its corresponding confidence bounds. However,
after calibration, the model still underestimates the prob-
ability of patients entering palliative care slightly between
week 8 and 48 of IMT and overestimates this probability
from week 50 until week 66. Figure 4 depicts the cumula-
tive probability distribution of patients entering palliative

Figure 3 Template ‘‘Protocol,’’ which simulates the test protocol and clinical decision making. Solid line: transition path; dashed
line: transition based on a probability of that line being executed. Green text: guards, a requirement that must be met to allow for
the transition to occur. Orange text: probability, the probability with which a transition will occur. Blue text: update, once the
transition occurs the defined parameters will receive an update. Light-blue text: synchronization, the transition name followed by
a ‘‘?’’ is a receiving channel, and the transition will take place once the synchronization signal is received. If the name is followed
by a ‘‘!,’’ the channel will be used as a broadcasting channel, and a synchronization signal will be sent once the transition occurs.
Pink text: invariant, an upper limit for the maximum time until the next transition has to occur from this location.
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care over time, derived from patient data and model
outcomes.

Scenario Analysis

A scenario analysis was performed to evaluate the effect
of the accuracy of the diagnostic process on the probabil-
ity of patients entering palliative care. Table 4 depicts the
probability of patients entering palliative care within 11
IMT cycles given a combination of sensitivity and speci-
ficity values for the diagnostic process (i.e., test results,
including interpretation of test results by a physician).
Our results show that changes in test specificity can have

a significant effect on the probability of patients entering
palliative care within 11 IMT cycles, with a difference of
15% between a test specificity of 88% and 99% (Table
4). Moreover, there was no significant difference between
the scenario with the high sensitivity and low sensitivity
in patients entering palliative care before week 66 of
IMT, ceteris paribus.

Discussion

Managing IMT-induced irAEs is one of the great chal-
lenges in cancer management today. Several attempts
have been made to predict patients’ susceptibility to

Figure 4 Model calibration, the probability of patients transitioning to palliative care over time. The blue line represents patient
data, the orange line depicts model output, and the black lines represent the confidence bounds surrounding the patient data
based on the Dvoretzky–Kiefer–Wolfowitz inequality. The model calibration was performed using the accuracy of the diagnostic
process. Satisfactory results (i.e., model outputs are located within confidence bounds surrounding the patient data over the full
66-wk period) were provided using a sensitivity and specificity of 85% and 91%, respectively. Model outcomes were derived
using the query: E[\=66;100 000](max:paltime).

Table 4 Outcomes of the scenario analysis. The probability of patients transitioning to palliative care within 11 IMT cycles
given a pre-specified combination of sensitivity and specificity of the diagnostic path. The specified diagnostic accuracy of the
diagnostic path was applied to all six tests corresponding to the six immune related adverse events included in the model. Model
outcomes were derived using the query Pr[\=66](\.Protocol.Palliative). The top row represents the test specificity, the left
most column represents the two scenarios including a high and low sensitivity

Probability of Patients Transitioning to

Palliative Care within 11 Treatment Cycles

Specificity

0.88 0.90 0.92 0.94 0.96 0.98 0.99

Sensitivity 0.60 0.99 0.99 0.98 0.95 0.89 0.84 0.83
0.90 0.99 0.99 0.98 0.95 0.89 0.84 0.83
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irAEs in the treatment of solid tumors using immune
checkpoint inhibitors. A variety of biomarkers have been
studied in this context, including pretreatment serum
antibody levels in melanoma patients16 and baseline
thyroid peroxidase, thyroglobulin, follistatin, and human
interferon-inducible protein-10 levels in NSCLC
patients.17,18 Moreover, a review by von Itzstein et al.19

demonstrated the large variety of biomarkers studied
in relation to the diagnosis and prediction of irAEs.
Although predictive biomarkers might aid the identifica-
tion of patients with a high susceptibility for irAEs, mon-
itoring is still needed to identify any occurring irAEs. To
our knowledge, there are no previous studies that have
aimed to construct a model to analyze the development
and detection of IMT-induced adverse events in lung
cancer patients. In this article, we present a model that
can eventually be used to evaluate the influence of test
accuracy, timing, and composition of the diagnostic test
panel on treatment continuation. Optimization of the
diagnostic test panel might ultimately lead to a cost
reduction through less frequent testing or a reduction in
biomarkers included in the test panel. In addition, as
depicted in Table 1, the current diagnostic panel consists
of 30 biomarkers assigned to 1 of 4 analysis categories
(i.e., blood count, liver function, clinical chemistry, and
special chemistry). Although the current model aggre-
gates all relevant biomarkers and their interpretation into
a single test per irAE, an extension of the proposed model
could be used to evaluate the added value of each individ-
ual biomarker in the diagnostic panel. Currently, a physi-
cian needs to analyze results from all biomarkers included
in the diagnostic panel, resulting in a complex decision
scheme. However, optimization of the diagnostic panel
results in removal of tests with little added value from the
test panel, resulting in a potentially less complex decision
scheme. Although optimization of the test sequence would
be unfeasible in prospective or retrospective studies
because of the number of possible diagnostic strategies, a
modeling approach allows for the evaluation of a large
number of test sequences with less financial and time con-
straints. Our results indicate the feasibility of developing
and calibrating a TA-based model developed in UPPAAL
to simulate IMT in lung cancer patients, including disease
progression and development of irAEs.

During model development, the probability of com-
pleting all 11 IMT treatment cycles was chosen as the
outcome parameter to calibrate the model and compare
different scenarios. This parameter was chosen in combi-
nation with the time horizon, which was limited to the
IMT treatment period. It is known that the care pathway
in NSCLC is very heterogeneous, and various treatment
options are available after IMT. This heterogeneity in

therapeutic pathways makes it unfeasible to include all
relevant pathways in the model and to incorporate the
effect of IMT on quality of life and survival during sub-
sequent treatment lines. In the model, it is assumed that
a 5-wk treatment cessation during a recovery period does
not influence treatment outcomes. However, ceasing
treatment too early might result in withholding a poten-
tially beneficial treatment from patients.

With regard to model calibration, the model still
slightly underestimates the probability of patients transi-
tioning to palliative care during the period of week 8 to
week 48 of treatment. Conversely, the model slightly
overestimates this probability for the remaining 18 wk.
These differences might be explained by 3 modeling
challenges.

First, the diagnostic process of irAE detection is diffi-
cult, and there is a lack of strict guidelines on restarting
IMT after a patient recovers from an irAE. Second,
irAEs occur with a relatively low incidence, and patients
are more likely to stop IMT because of disease progres-
sion. This might result in an underestimation of the
probability of developing irAEs or the probability of
recurrence after recovery. In the data set used during
model construction, the percentage of incurred irAEs
ranged from 0.4% up to 6.5% for individual irAEs,
whereas in total, 18.1% of patients incurred an irAE.
This low prevalence directly affects the uncertainty
regarding the timing of events and the probability of
occurrence. However, this does not affect the viability of
UPPAAL in modeling the clinical pathway or the ability
to calibrate the model. Third, little is known about the
actual sensitivity and specificity of the diagnostic process
in this specific setting, mostly because thresholds for dis-
ease detection are derived from other patient groups or a
healthy population. In addition, because test results con-
tribute to the decision-making process, the sensitivity
and specificity of the diagnostic process can never be
100%, as many other factors influence the decision on
treatment continuation. Moreover, within this process, it
is unclear how much the true diagnostic accuracy of the
tests is influenced by the physician, since the data used
during model construction provide information only on
the actual clinical decision. Although the true accuracy
of the test is unknown, the model could be used to assess
the influence of removing a test or changing the test fre-
quency on the probability of completing all IMT cycles
on cohort level.

We performed the scenario analysis to evaluate the
influence of the accuracy of the diagnostic process on the
probability of patients transitioning to palliative care.
This scenario analysis shows a strong influence of test
specificity, although the influence of test sensitivity did
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not appear to affect model outcomes. These results
match our expectations given the low incidence of irAEs.
The absence of an effect of test sensitivity might partially
be explained by the low incidence of irAEs. However,
the relatively high test frequency is also likely to lower
the effect of changes in test sensitivity on model out-
comes, as this could limit the impact of false-negative
test results on model outcomes. Moreover, the direct
effect of test sensitivity is not fully captured by the out-
come measure, because a low test sensitivity might only
delay the time until the irAE is detected in the model.
This delayed detection could occur through a positive
test later on or due to a symptomatic presentation of the
irAE. Hence, the influence of the sensitivity of the diag-
nostic path on the probability of patients entering pallia-
tive care before week 66 is limited. However, there is a
difference in the recovery probability depending on the
grade of irAE at the time of diagnosis. Therefore, a high
test sensitivity might allow for the earlier identification of
irAEs (i.e., lower grade), resulting in more patients suc-
cessfully recovering from the irAE and completing the 66
wk of IMT. Unfortunately, the low incidence of irAEs
reduces the effect size of the sensitivity on cohort level.

In the currently used protocol, patients provide a
blood sample every 2 wk. However, the blood samples
are obtained at random time points throughout the day,
depending on the patient’s appointment. The accuracy of
the test might be influenced by this inconsistency in tim-
ing, since it is known that some blood values fluctuate
during the day because of biological variability or under
the influence of external factors (e.g., food or beverages).
With the introduction of a new test to the test panel, it is
key to keep an eye on the influence of the test on clinical
decision making. A diagnostic test will provide added
value only if it provides actionable results and when a
physician acts on these results, in combination with tests
already used. In patients with stable disease or response,
it might be detrimental to stop IMT because of an irAE
in cases of a lower grade or relatively harmless irAE.

Modeling the care pathway and evaluating treatment
protocols might be helpful for identifying the most
optimal test strategy, based on the composition of the
diagnostic kit. Moreover, it would be unfeasible and
potentially unethical to evaluate all options in a trial-
based setting. Herein we present how UPPAAL can be
used to develop a model that emulates the clinical path-
way. As with most model-based evaluations, the general-
izability of the results strongly depends on the underlying
data, the alignment of the model structure with real-
world clinical guidelines and pathways, and assumptions
about the prior knowledge of physicians using the
diagnostic information. Although we do not expect

significant differences in the prevalence of irAEs or pro-
gressive disease, the clinical pathways and the prior
knowledge of physicians do differ between health ser-
vices. Because the diagnostic accuracy largely depends on
the interpretation of results by a physician, and clear gui-
dance regarding the interpretation of the test is lacking, it
is expected that there will be differences in management
between physicians, not only on an international level but
also on an institutional level. In this study, the diagnostic
accuracy was estimated in the model calibration and
reflects the average accuracy of the diagnostic path for
the group of physicians involved in the treatment of the
study cohort. It is likely that physicians working in
another health service have different experience and prior
knowledge, and the generalizability of the current study
critically depends on the extent of clinical expertise and
variation in prior knowledge. Future work will involve
expanding the model to identify the optimal diagnostic
strategy in terms of costs and outcomes.

In conclusion, we have shown that it is worthwhile to
construct a TA-based model to emulate complex clinical
decisions in the management of NSCLC using UPPAAL.
Based on assumptions that can be changed and adapted
in the model, we calibrated the model using real-world
data. The scenario analysis indicated that the effect of
test accuracy on the probability of lung cancer patients
treated with immunotherapy transitioning to palliative
care is predominantly dependent on the test specificity.
Moreover, the influence of test sensitivity is limited, and
a high test specificity is important to prevent the too-
early termination of IMTs.
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