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Abstract We demonstrate a technique for investigating the energetics of flagella or cilia. We

record the planar beating of tethered mouse sperm at high resolution. Beating waveforms are

reconstructed using proper orthogonal decomposition of the centerline tangent-angle profiles.

Energy conservation is employed to obtain the mechanical power exerted by the dynein motors

from the observed kinematics. A large proportion of the mechanical power exerted by the dynein

motors is dissipated internally by the motors themselves. There could also be significant dissipation

within the passive structures of the flagellum. The total internal dissipation is considerably greater

than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the

dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in wildtype samples,

indicating that ion-channel regulation by cysteine-rich secretory proteins controls energy flows

powering the axoneme.

Introduction
In their journey towards the oocyte, sperm propel themselves by beating a whip-like flagellum. This

motility is essential for successful fertilization and is fundamental to reproduction. Understanding

sperm motility is essential for improving male infertility treatments, animal breeding, and wildlife

conservation (Gaffney et al., 2011). Despite the vast body of work on the structure and function of

different parts of the axoneme – the internal ‘engine’ powering the flagellum (Brokaw and Kamiya,

1987; Okagaki and Kamiya, 1986; Yagi et al., 2005) – and other accessory structures that surround

the axoneme, such as the outer dense fibers (Zhao et al., 2018) and the fibrous sheath (Eddy et al.,

2003), the mechanisms that control the complex beating patterns observed in flagella remain poorly

understood (Brokaw, 2009; Lehti and Sironen, 2017; Lindemann and Lesich, 2016; Lin and Nicas-

tro, 2018). It is, however, recognized that mechanical properties of the flagellum and its surround-

ings play a crucial role in determining sperm motility (Gaffney et al., 2011). Measurements of the

mechanical behavior of single flagella in living sperm have however remained a critical bottleneck.

We demonstrate here a set of powerful new tools that enable detailed calculation of the mechani-

cal energetics of single sperm flagella from high-resolution optical microscopy. Automated image-

analysis tools have long been used to study sperm movement (Katz et al., 1975; Katz and Over-

street, 1981; Overstreet et al., 1979). Computer-aided sperm analysis systems are today used

extensively in clinical settings to rapidly assess the viability of samples containing hundreds of cells in

a single field of view (FOV) (Amann and Waberski, 2014). These high-throughput techniques,

Nandagiri et al. eLife 2021;10:e62524. DOI: https://doi.org/10.7554/eLife.62524 1 of 40

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.62524
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


however, do not resolve flagellar motion. Improvements in digital imaging and storage have now

placed within reach the high-speed, high-resolution, and long-exposure imaging that researchers of

flagellar propulsion have long sought (Gray, 1955; Gray, 1958; Brokaw, 1966; Rikmenspoel et al.,

1960). A wide range of digital image processing algorithms are now available (Gonzalez et al.,

2004) that can be combined with high-performance parallel computing to analyze thousands of

video frames with little manual intervention (Baba and Mogami, 1985; Riedel-Kruse et al., 2007;

Saggiorato et al., 2017; Hansen et al., 2018; Sartori et al., 2016). We have implemented these

image-analysis techniques to automatically extract centerlines of sperm flagella in every video frame.

To quantitatively analyze beat patterns in a statistically meaningful way, we need to image swim-

ming sperm over several beat cycles. While rapid progress is being made on full three-dimensional

tracking (Muschol et al., 2018; Dardikman-Yoffe et al., 2020; Gadêlha et al., 2019), it is unlikely

that sufficient beat cycles can be reliably recorded with freely swimming sperm that can quickly

move out of focal plane or the FOV (Mondal et al., 2020). Instead, we image flagella beating freely

in the focal plane in cells tethered chemically at their heads to a glass slide. Our tethered-cell assay,

in principle, permits imaging single cells until they stop beating. We report here results obtained by

analyzing large numbers of (~50) beat cycles in single tethered sperm in freshly prepared samples

when they are most vigorous (Gaikwad et al., 2020).

Beating patterns in sperm flagella have been studied previously to investigate changes induced

by environmental factors (Bukatin et al., 2015; Smith et al., 2009; Saggiorato et al., 2017) or by

gene mutations (Krähling et al., 2013; Lim et al., 2019). We build here on the suggestion that the

technique of proper orthogonal decomposition (POD) can be applied on the time-resolved tangent-

angle profiles of flagellar centerlines to analyze their kinematics (Ma et al., 2014; Werner et al.,

2014; Saggiorato et al., 2017). POD is widely applied in the analysis of turbulent flows (Lum-

ley, 1967; Holmes et al., 2012) and other fields (Baumberg and Hogg, 1994; Jolliffe, 2002) to

reduce complexity of spatiotemporal patterns and represent them with a much smaller set of num-

bers, while still retaining accuracy. To objectively compare flagellar beating patterns, we apply POD

to unambiguously identify the mean beat cycle of each sperm from the time series of the tangent-

angle profiles of its flagellar centerline. We can compute average cycles of any kinematic or dynamic

quantity derived from the tangent-angle profiles. We further introduce a technique to consistently

represent the POD shape modes with smooth Chebyshev polynomials to ensure that the tangent-

angle profile is sufficiently smooth and its spatial derivatives can be computed without spurious arti-

facts. The tangent-angle profile obtained thus is consistent with the rigid-body kinematics of the stiff

head region. This Chebyshev-POD (C-POD) technique allows for efficient calculation of geometric

quantities such as the local curvature and kinematic quantities such as the velocity components, at

any material point on the centerline.

Our approach for calculating forces and energetics from the measured beating patterns stems

from ideas discussed originally by Machin, 1963. We use the geometric and kinematic data to deter-

mine the hydrodynamic resistance offered by the external fluid medium using resistive force theory

(RFT) (Gray and Hancock, 1955; Lighthill, 1976) and further calculate internal forces by applying

conservation principles. This requires a model for the mechanical behavior for the flagellar body.

Several models have been proposed that consider the flagellum to be an ‘active’ material

(Camalet et al., 1999; Camalet and Jülicher, 2000; Lindemann, 1994a; Lindemann, 1994b;

Sartori et al., 2016; Chakrabarti and Saintillan, 2019). These are based on different models for

motor forcing in the axoneme and the regulation of their kinetics. We propose instead a different

approach that is agnostic to the nature of motor activity and avoids invoking the assumption that

the flagellar material is active. We consider the motion of the non-motor passive material of the fla-

gellum under the action of the unknown forces exerted by the axonemal motors. This allows us to

use well-established principles for the continuum material stress in the passive flagellar material. The

resulting Soft-Internally -Driven-Kirchhoff-Rod (SIDKR) model leads to an energy balance across the

flagellum, which we then use to determine the spatiotemporal distribution of motor power across

the flagellum over its mean cycle.

We have used this approach to analyze flagellar beating patterns of sperm from wildtype (WT)

and Crisp2 knockout (KO) mice. The cysteine-rich secretory proteins (CRISPs) are a group of proteins

that are predominantly expressed in the male reproductive tract (Gaikwad et al., in preparation).

Crisp2 is incorporated into the sperm acrosome, connecting piece and the outer dense fibers of the

sperm tail. It is known that the deletion of Crisp2 in mice leads to compromised sperm function,
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including altered sperm motility (Hu et al., 2018; Lim et al., 2019). The precise effect on flagellar

function, however, is unknown.

Our observations with these sperm reveal intriguing new information: there is considerable intra-

cellular friction within the flagellum. This challenges the widely held view that the hydrodynamic

resistance offered by the viscous fluid medium outside is the sole dissipative sink that must be over-

come by the continual driving provided by the dynein motors. Further, the flagellar filament is also

conventionally regarded as an elastic body that perfectly stores energy temporarily by bending. Our

findings suggest instead that internal friction within the passive structures of the flagellum, and

within the motors themselves, may be as large as the external hydrodynamic friction. These are in

line with recent observations also made in algal cilia (Mondal et al., 2020). These sources of internal

dissipation could therefore play a significant role in determining beating patterns in sperm

(Camalet and Jülicher, 2000). This insight could be vital for understanding dramatic changes in fla-

gellar beating patterns induced by changes in the medium (Smith et al., 2009) or the proximity of

surfaces (Nosrati et al., 2015; Denissenko et al., 2012).

Theoretical model
The soft, internally driven Kirchhoff rod model
Flagellar motion is driven internally by the action of dynein motors distributed within the axoneme.

The sperm body is treated as a slender, flexible filament immersed in a viscous fluid (Figure 1). It is

assumed that the passive material of the sperm body is a Kirchhoff rod (Audoly and Pomeau, 2010;

Malvern, 1969; O’Reilly, 2017), that is, it is inextensible and each of its material cross-sections

remains rigid and planar, while rotating with respect to each other about the rod axis as it bends

and twists. The passive Kirchhoff rod has external as well as internal surfaces. It is driven by axone-

mal motors acting on its internal surfaces and the resulting motion is resisted by the hydrodynamic

forces that act on its external surface (Figure 1) as well as the stresses that arise to resist material

deformation as the rod bends.

The instantaneous space curve of the axial centerline of the filament, rðs; tÞ, is parameterized by

its arc length variable, s, defined such that s ¼ 0 at the tip of the head, and s ¼ L at the tail end. A

local material frame is attached to each cross-sectional plane and is specified by a triad of unit vec-

tors, dk, where k ¼ 1; 2; 3. In general, the smooth variation of these vectors with s at any instant of

time, t, is specified in terms of the Darboux vector, W, where qdk=qs ¼ W � dk. The components Wk

of the Darboux vector are the generalized curvatures. Since we shall only consider motion of the rod

in the x� y plane, we align the material frame at each cross-section with the Frenet–Serret frame

Figure 1. Schematic representations for the Soft, Internally driven Kirchhoff rod model. (A) Geometric variables defined along the centerline. (B) An

arbitrary control volume used for deriving the equations of the model: the volume consists of the passive flagellar material; hydrodynamic forces act on

the external surface while axonemal motors act on the internal surfaces. The passive material adjacent to the cross-sectional faces at either end exerts

stresses on those faces.
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associated with each point on the axial curve. For this choice, d1 ¼ t ¼ q r=qs, the unit tangent vec-

tor to axial curve. The other two vectors, d2 ¼ n and d3 ¼ b, are the normal and binormal vectors,

which span the cross-sectional plane. The Darboux vector for the Frenet–Serret frame is

W ¼ Tðs; tÞ d1 þ Cðs; tÞd3, where C and T are the curvature and torsion profiles at any time. For pla-

nar motion, b ¼ ez (pointing out of the plane of the page) is a constant; hence, T ¼ 0. The geometry

of a planar Kirchhoff rod at any instant is thus fully specified by the curvature, C. The velocity of a

point on the centerline, vðs; tÞ ¼ qr=qt. Cross-sectional planes can rotate relative to each other.

Then, qdk=qt ¼ !� dk, where !ðs; tÞ is the instantaneous angular velocity of a cross-sectional plane

at s. It can further be shown that ! and W satisfy the compatibility relation (Powers, 2010),

q!

qs
¼

X3

i¼1

qWi

q t
di : (1)

For planar motion, where ! ¼ !ez,

q!

q s
¼ qC

q t
: (2)

For inertialess rods, consideration of the conservation of linear momentum for a segment of the

rod where s2 ½s1; s2� formally yields the following equation (see Appendix 1):

fa þ fh þ fe þ qF

qs
¼ 0 ; (3)

where faðs; tÞ and fhðs; tÞ are the force distributions per unit length on the cross-section at any s due

to the surface tractions exerted by internal motor activity and the external hydrodynamic resistance,

respectively. Other external forces, such as the force exerted by a tethering traction at a wall, are

accounted for by the distribution feðs; tÞ. The passive stress in the Kirchhoff rod results in a force, F,

exerted on a cross-section by the material on its aft side. The gradient with respect to s of F in the

momentum balance thus describes the net restoring force per unit length on a cross-section due to

passive internal stresses resisting deformation. From conservation of angular momentum, we obtain

(Appendix 1):

ma þ mh þ me þ t�F þ qM

qs
¼ 0 ; (4)

where maðs; tÞ and mhðs; tÞ are the torques per unit length exerted by the surface tractions due to the

internal motors and the external viscous hydrodynamic resistance; me is the torque distribution due

to other external forces. The torque on a cross-section exerted by the passive material stresses on

its aft side is M, and its gradient in the equation above is the net restoring torque distribution.

Energy conservation further shows that at any cross-section, in general,

q�

qt
þ qu

qt
¼ pa þ phd þ pe þ ps� q ; (5)

where �ðs; tÞ is the local elastic energy per unit length (i.e., the elastic storage density) of the rod and

uðs; tÞ is the thermal internal energy density. On the right-hand side, q is the net rate of heat removal

per unit length of the rod by the surroundings, while each of the remaining terms is, respectively,

the mechanical power per unit length delivered into the rod cross-section by the action of the

motors, the hydrodynamic and non-hydrodynamic external forces, and the passive material stress.

The motor power distribution, pa, is the key unknown in our study. The hydrodynamic power distri-

bution is related to the corresponding force and torques distributions:

phd ¼ v � fhþ! �mh : (6)

The other external mechanical power pe is similarly related to the external force and moment dis-

tributions, fe and me. The net rate of work done on a cross-section by the action of the local stress

gradient is
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ps ¼ q ðv �FÞ
qs

þ q ð! �MÞ
qs

: (7)

The sign convention used here is that mechanical power due to work done on a cross-section of

the rod and tending to increase the local internal energy storage is positive whereas the power due

to work done by that cross-section to overcome resistances leading to a decrease in stored energy

is negative. Due to its purely dissipative nature, phd is therefore always negative at any s and t. In our

study, the external force and moment due to the tethering constraint exerted on the head cannot

be measured directly. The mechanics of this tether could be complex and, at any instant of time, pe

may be positive or negative. However, over a full cycle, we expect net work to be done by the cell

against the tethering constraint. The key advantage in treating the motor contribution as a forcing

that is external to the passive material of the Kirchhoff rod is that we can treat the active forcing as

an unknown to be extracted from experimental data in a model agnostic manner while applying

well-established concepts to treat passive material stresses within the Kirchhoff rod. The passive

stress tensor can be formally split into an elastic part and a part that provides internal dissipation, so

that the total material torque, M ¼ Mel þ Mid. It can be shown that Equation (62) is satisfied when

the elastic torque arising from the passive material stress is such that

q�

qt
¼ Mel � q!

qs
¼ Mel � qW

qt
; (8)

and the dissipative part of the material stress is such that

qu

qt
¼ Mid � q!

qs
� q ¼ �pid � q ; (9)

where pid denotes the rate of internal frictional dissipation per unit length. Since the material of the

Kirchhoff rod is passive, the Second Law of Thermodynamics requires that pid � 0 everywhere

(Chaikin and Lubensky, 1995). Since the dynein motors are excluded from the control volume in the

analysis above, pid does not include any dissipation that occurs within the motors themselves. We

shall later discuss how we separately obtain the motor dissipation.

Constitutive relations
Although presented in the context of a sperm body, the equations above are generally valid of any

inertialess, internally driven Kirchhoff rod. To proceed further, we make several constitutive assump-

tions that are specific to the case of a sperm cell tethered at its head. The sperm body is assumed to

be composed of a head region, s 2 ½0; sN�, and a flagellar tail region, s 2 ðsN; LÞ, with sN denoting the

location of the neck junction between the two regions. We assume that the head is a rigid body. In

our experiments, cells are further tethered at a point in the head region, and the head can rotate rig-

idly about this tether point. Therefore, although the angular velocity ! 6¼ 0 in the head region, rigid-

body kinematics dictates that q!= qs ¼ 0 everywhere in the head region. Hence, from Equation (48),

qWk=qt ¼ 0 across the head. Therefore, for planar beating, q!=qs ¼ qC=qt ¼ 0 across the head. The

flagellar tail is flexible and not subject to the kinematic constraints above.

The head does not contain internal motors, which are all distributed only along the tail region.

Therefore, fa, ma, and pa are all zero for s 2 ½0; sN�. In the flagellar tail, each dynein motor is assumed

to act on the internal surfaces of a cross-section such that the forces exerted at its two ends are of

equal magnitude but in opposite directions. Therefore, fa ¼ 0. However, the net torque they exert is

not zero, and therefore ma 6¼ 0, which serves to drive the filament’s motion. The external hydrody-

namic force distribution is given by RFT (Gray and Hancock, 1955; Lighthill, 1976):

fh ¼ � zt tt þ zn d� ttð Þ½ � � v ; (10)

where the tangential and normal hydrodynamic friction coefficients in an infinite fluid medium of vis-

cosity, m, are zt ¼ 2p�= lnð2L=aÞ and zn ¼ 4p�=½lnð2L=aÞþ 1=2�, respectively. For sperm tethered to a

glass slide, the no-slip condition at the slide surface creates an additional resistance to fluid flow.

Katz et al., 1975 obtained the following RFT approximations for the friction coefficients for motion

of a slender body in a plane parallel to a wall and at a distance of h from it:
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zt ¼
2p�

ln2h=a
; zn ¼

4p�

ln2h=a
: (11)

These coefficients have previously been used in a number of studies, notably by Jülicher and co-

workers (Riedel-Kruse et al., 2007) for analyzing experimental data on wall-tethered sperm and,

more recently, by Mondal et al., 2020, for tethered axonemes isolated from cilia. The cross-sec-

tional radius of the cylindrical filament, a, is further not constant along the sperm body. For our cal-

culations here, only the variation of the radius in the tail region is relevant. We assume a linear taper

along the flagellum, that is, for s� sN,

aðsÞ ¼ ðaN � aTÞ
L� s

L� sN
þ aT : (12)

where aN and aT are the radii at the neck and the tail tip. When a sperm tethered at its head beats in

a plane parallel to the wall, h ¼ aN, is constant (Appendix 2).

The rigid head region requires no further constitutive assumptions. The tail region can deform

and therefore requires a constitutive model that relates its material stresses to its deformation. The

simplest constitutive model for the elastic stress in a passive material is the Hookean model, which

leads to a linear relation between the elastic material torque and the local curvature. The corre-

sponding elastic energy distribution must be consistent with Equation (8). Thus, in the tail region,

Mel
i ¼

X3

i¼1

kiWidi ; � ¼
X3

i¼1

kiW
2

i

2
: (13)

where ki is an elastic stiffness coefficient. The simplest constitutive model for the dissipative stress

that satisfies the condition imposed by the Second Law that the dissipation rate is always positive

leads to the following expression for the dissipative part of the internal torque:

Mid ¼ h
q!

qs
; (14)

where h>0 is the internal friction coefficient per unit length. Taken together, the constitutive equa-

tions above are equivalent to modeling the Kirchhoff rod as a passive viscoelastic Kelvin–Voigt solid

(Bird et al., 1987). For the linear taper assumed in the tail region, the elastic stiffness and internal

friction coefficients can be shown to vary with the radius as a4. That is,

kðsÞ ¼ kN

aðsÞ
aN

� �4

hðsÞ ¼ h
N

aðsÞ
aN

� �4

(15)

where kN and h
N
are the values of the elastic stiffness and frictional coefficients at the neck. For pla-

nar motion, M ¼ M ez, and the relations above reduce to

Melðs; tÞ ¼ kðsÞC ; �ðs; tÞ ¼ kðsÞ C
2

2
; Midðs; tÞ ¼ hðsÞ q!

qs
: (16)

We make a few other simplifying assumptions. The head and tail ends are free; F and M are,

therefore, zero at the two ends. The external surface traction due to tethering at the wall acts at a

single location, sE, on the head and is zero elsewhere, that is,fe ¼ Fe dðs� sEÞ and me ¼ Me dðs� sEÞ.
The system is further isothermal and changes in the internal thermal energy of the body are negligi-

ble, that is, qu=qt¼ 0 in Equation (62) and Equation (9). This means that any internal frictional heat

generation is, therefore, instantaneously balanced by, q, the heat removal from the passive flagellar

material to its surroundings. Further, the ratio of the contributions from the external hydrodynamic

moment, mh, and the hydrodynamic force, fh, to the total hydrodynamic power, that is, the ratio

j! �mhj= jv � fhj, is expected to scale as a=L� 1. The contribution of mh in Equation (60) to the hydro-

dynamic dissipation is, therefore, neglected. The momentum and energy balance equations for the

rigid, passive, head region on which the external tether force acts, and the viscoelastic, untethered,

internally driven tail region are summarized in Appendix 1. We next describe our approach to quan-

tifying the kinematics of the beating patterns recorded in experiments and then using these along

with the momentum and energy balances to obtain the dynamics and energetics of sperm.
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Kinematics from image analysis and POD
In Materials and methods, we describe in detail the image-analysis and data-processing algorithms

used to obtain power distributions from microscope videos of tethered sperm samples from WT and

Crisp2 KO mice. Briefly, the image-analysis algorithm is used to process videos of single sperm cells

tethered to a glass surface and beating in the focal plane of the microscope and extract centerlines

of sperm bodies in every video frame. This raw data is first analyzed for head region separately to

determine its motion as a rigid body. Twentieth-order Chebyshev polynomials are fitted through

these centerlines to construct smooth tangent-angle profiles (see Figure 1A) of the flagellar tail

region. These Chebyshev polynomials are designed to be consistent with the rigid-body kinematics

of the head region.

In general, the POD is an order-reduction technique that optimally approximates spatiotempo-

rally varying data. In our C-POD approach, we apply POD on the time-dependent Chebyshev coeffi-

cients to represent the deviation of  ðs; tÞ, the time-resolved tangent-angle profile of the centerline

from its time average,  0ðsÞ, as a weighted sum of M orthogonal shape modes (see C-POD of the

tail region). In other words,

 ðs; tÞ ¼  0ðsÞþ
XM

m¼1

BmðtÞ mðsÞ : (17)

The set of ‘shape modes’,  m, m ¼ 1 . . .M, is optimal in the sense that, for any given M, the

approximation above is guaranteed to deviate least from the original data than any other expansion

in terms of another set of M mutually orthogonal basis functions (Holmes et al., 2012;

Werner et al., 2014). We describe, in Materials and methods, the C-POD method to obtain the

shape modes, each of which is a 20th order, Chebyshev polynomial that is consistent with the head

region executing rigid-body rotation. The corresponding time-dependent weights of the shape

modes are referred to as ‘shape coefficients’. With the smooth C-POD tangent profiles, we can effi-

ciently compute at any s and t, geometric and kinematic quantities in the beating plane, such as the

curvature C and its derivatives with respect to s or t, the flagellar velocity v, and the cross-sectional

angular rotation rate, !.

Dynamics and energetics from measured kinematics
The hydrodynamic force distribution, fh, is first calculated using Equation (10) and the expressions

for the tangential and normal friction coefficients. Using Equation 3 together with the boundary con-

dition that FðL; tÞ ¼ 0 at the tail tip, we then obtain

Fðs; tÞ ¼
Z L

s

fhðs0; tÞds0 ; (18)

for all s in the tail region. The moments, Mel and Mid, and the elastic energy density � are calculated

using the constitutive Equations (13) and (14) and the elastic stiffness and internal dissipation pro-

files, kðsÞ and hðsÞ, in Equation (15) along with the values of the parameters, kn and h
n
. The total

bending moment, M ¼ Mel þ Mid.

The energetic variables are then calculated as follows. In the tail region, the rate of change of the

elastic storage density, �, and the power dissipated due to internal friction per unit length are (from

Equations 8 and 9), respectively,

q�

qt
¼ kðsÞC qC

qt
; pid ¼ �hðsÞ q!

qs

� �2

: (19)

We henceforth denote the rate of elastic storage density as _�. The external hydrodynamic dissipa-

tion due to flagellar motion, phd, is calculated using v and fh in Equations (60). Consistent with their

dissipative natures, phd and pid are always negative. The gradient in the mechanical power due to the

internal force and bending moment, ps, is obtained using Equation (61). There are no other external

forces acting on the freely beating tail. The external power distribution, pe, is therefore zero at all

points in the tail region. The energy balance, Equation (62), can be rearranged as follows for the tail

region:
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paðs; tÞ ¼ _� � ps � phd � pid : (20)

The active power distribution along the tail can be obtained with all the terms on the right-hand

side determined from centerline kinematics as described above.

The integrals of each term in the equation over the entire tail region give the instantaneous net

rates of change of the energetic variables. For instance, the net instantaneous storage rate,

_EðtÞ ¼
R L

sN
_� ds. The instantaneous total hydrodynamic and passive internal frictional dissipation rates,

Phd and Pid, and the net active power, Pa, are similarly calculated by integrating the distributions phd,

pid, and pa over the tail region, respectively. We can similarly obtain rates over just the mid-piece or

over the principal piece alone. We further define and calculate

PmdðtÞ ¼
Z L

sN

min ðpa;0Þds ; PmiðtÞ ¼
Z L

sN

max ðpa;0Þds : (21)

As we shall show later, the active power distribution is not always positive, and Pmd, the integral

of pa over its negative values is the total rate at which energy is dissipated within the dynein motors

themselves. We will show below that, Pmi, the integral over the positive values of pa is the actual

instantaneous power input from the dynein motors into the filament that is necessary to overcome

all the different sources of dissipation. We shall refer to Pmd and Pmi as the motor dissipation and

the motor input, respectively.

Besides the various sources of energy dissipation in the tail region, there is also dissipation

against the hydrodynamic and tethering forces acting across the head region. Since the head is mod-

eled as a rigid, passive body, there is no elastic storage or internal dissipation in that region, nor is

there any active motor power. Thus the work required to move the head against the hydrodynamic

and tethering forces must come from the force, FN, and the moment MN, exerted by the flagellum

on the head at the neck junction. Hence, the instantaneous power dissipated by the head against

the hydrodynamic and external tethering forces,

Phd
H

þ Pe
H
¼ Pd

H
¼ � vN �FN þ !NMNð Þ ; (22)

the power delivered on to head by the force acting on the neck junction. Since F and M must be

continuous across the neck junction, FN ¼ FðsN; tÞ using Equation (70) and MN ¼ MelðsN; tÞþMidðsN; tÞ
calculated using Equation (16).

The physical boundary conditions at the tail end of the flagellum are FðL; tÞ ¼ 0 and MðL; tÞ ¼ 0.

Integrating Equation (71) over the entire tail region with these boundary conditions at the tail end,

and Equation (66) at the head end, and noting that Pa ¼ Pmd þ Pmi, we obtain, at any t,

Pmi ¼ _E � Pd
H
� Phd � Pid � Pmd : (23)

The time averages of these instantaneous power functions over a single cycle are referred to as

their ‘cycle-means’. These cycle-means are denoted by an overline. Since the motion of the flagellum

is periodic but noisy, there is no net storage of elastic storage in the flagellum over many cycles,

that is, the average of the cycle-mean, _E, over several cycles must be zero. The cycle-means of the

dissipation rates are, however, not zero. Therefore, neglecting the fluctuations due to _E, we calcu-

late the cycle-mean of the motor input as the power input required to balance the dissipations due

to head motion, external hydrodynamic resistance and internal friction, and the dissipation within

the motors:

P
mi ¼ � P

d

H
þ P

hd þ P
id þ P

md
� �

: (24)

The average of the cycle-means over all beat cycles is identically equal to the time average over

the entire duration of observation and will be referred to as such and denoted by a double overline

(e.g., P
hd
) .

In Results, we compare the relative magnitudes of these different dissipations. The results are

obtained with the medium viscosity, � ¼ 10
�3 Pa s. The radius at the neck and at the tail end are
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an ¼ 0:57 mm and at ¼ 0:18 mm, respectively (Gu et al., 2019). The total body length L for each sam-

ple is taken to be the maximum observed length in the sample video and is around 120 mm. There

are few measurements of the bending stiffness for sperm flagella in the literature. The stiffness of fla-

gella in mouse sperm is reported to be between that of bull (1.5 � 103 Pa mm4) and rat (3 �10
4 Pa

mm4) sperm (Lindemann and Lesich, 2016). We use their geometric mean 7� 10
4 Pa mm4 as the
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Figure 2. Key variables of the Chebyshev polynomial-based proper orthogonal decomposition (C-POD) of experimental tangent-angle data. (A) Time-

averaged tangent-angle profiles for five wildtype (WT) (continuous curves) and five knockout (KO) (dashed curves) samples. (B) First (top) and second

(bottom) C-POD shape modes for WT (continuous curves) and KO (dashed curves) samples; the colors are as in (A). (C) Cumulative accuracy of the

C-POD representation for WT and KO samples; the colors are as in (A). A representation using the first four modes captures 95% or more of the

observed centerline shapes for all samples. (D) Five shape cycles for a single WT sample in the parameter space defined by the time-dependent

coefficients of the first two C-POD shape modes. The zero-crossing of the second modal coefficient marks the start of a new cycle. (E) Contributions of

the first four modes to the tangent angle at the midpoint of the sperm body in the five tangent-angle cycles in (D): the horizontal line in the top plot is

the time-averaged tangent angle for this WT sample. The starting time of the i th cycle is denoted as t0i , and its duration (i.e., cycle time) is Ti.

The online version of this article includes the following source data for figure 2:

Source data 1. Numerical data for Figure 2A, B.

Source data 2. Numerical data for Figure 2C.

Source data 3. Numerical data for Figure 2D.

Source data 4. Numerical data for Figure 2E.
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value for kN in calculations here. There are, however, no clear measurements yet of the internal

bending friction coefficient, h
N
. We report below the results obtained for flagellar energetics with

both h
N
¼ 0 and 103 Pa s mm4 and discuss the reasons why the latter value may be realistic.

Results

POD enables identification of beat cycles
Figure 2 summarizes generic observations on the C-POD shape modes and their coefficients. In all

the results presented here, the arc-length coordinate s along the centerline is normalized by the

maximum observable length of the whole flagellum in the entire duration of a sample video. The

mid-piece region corresponds approximately to values of s in the range 0.1–0.3, and the principal

piece extends from s ¼ 0:3 to s ¼ 0:85.

Mouse sperm heads have distinctive falciform (hook) shapes (Woolley, 2003). In the image-proc-

essing protocol we have followed, all video frames are initially digitally rotated or reflected such that

the head is on the left end of the body with the hook facing concave downward. For most of the WT

and KO samples, the time-averaged tangent angles ( 0ðsÞ) are observed in Figure 2A to consistently

first increase with s around the mid-piece region before decreasing in the principal piece. Since the

local curvature C ¼ q =qs, the gradient of the tangent angle with respect to s, Figure 2A shows

that the time-averaged shape for these samples is curved such that it is concave in the anti-hook

direction in the mid-piece and concave in the pro-hook direction in the principal piece. The mean

shapes thus show that the asymmetric spatial bias in the beating pattern over time is not uniform

across the flagellum. In the one outlier KO sample (KO-5) in Figure 2A, however, the mean shape is

anti-hook concave throughout. Intrinsic net asymmetry in flagellar beating is well known in sperm in

many mammalian species, even when uncapacitated. Our observation that the mean shape is curved

with an anti-hook (ventral) concave shape is consistent with the observations of Woolley, 2003 that,

in mouse sperm, the flagellum bends at the neck more on the ventral side than on the other.

The periodic beating of the flagellum about the mean shape is described by the C-POD shape

modes and their time-dependent coefficients. The shapes of the first two shape modes ( 1ðsÞ and

 2ðsÞ) in Figure 2B are qualitatively similar across the WT and KO samples. The key advantage of

using the POD method to represent beating patterns is its optimality: a significant proportion of the

beating pattern can be studied and understood by considering just a few shape modes. Figure 2C

plots the cumulative contribution of the shape modes to the overall accuracy in capturing the full

centerlines. Just the first two modes achieve a capture efficiency greater than 92% for all the WT

samples, and for three out of the five KO samples. Even for the other two KO samples these domi-

nant shape modes account for more than 85% of the observed beating patterns. Across all samples,

the first four modes describe at least 95% of the beating patterns. We therefore calculate all kine-

matic, dynamic, and energetic quantities using the first four shape modes and their time-dependent

coefficients.

As pointed out by Werner et al., 2014 and Ma et al., 2014, the periodicity in the beating pat-

tern is clearly brought out by plotting the coefficients B1ðtÞ and B2ðtÞ of the two dominant modes

against one another. For any sperm sample, the trajectory traced out in B1-B2 phase space consists

of loops, one for each beat cycle (e.g., Figure 2D). We choose here to demarcate the start and end

time for each beat cycle as the time at which the polar angle in the B1-B2 phase space crosses zero.

This choice means that, in each sperm sample, the shape at the start of a beat cycle always corre-

sponds mostly to the shape of the first dominant mode (with minor contributions from modes higher

than the second; Figure 2E). Thus, the overall time series for any quantity can be split into individual

beat cycles, as demonstrated in Figure 2E. Although Figure 2D, E shows only a few cycles for clar-

ity, the C-POD technique applied to tethered sperm makes it possible to systematically accumulate

data for large numbers of beat cycles and quantitatively compare, in a statistically meaningful sense,

individual sperm samples within a genotypical population and also compare one genotypical popula-

tion with another.
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Active power distribution provides evidence for energy dissipation by
dynein motors
We first present the spatiotemporal variations typically observed in all our samples in the energetic

quantities. Figure 3 plots the kymographs for the different energetic contributions obtained with

the scaling estimate of the internal friction coefficient, h
n
¼ 10

3 Pa s mm4, over several beat cycles

for one of the WT samples. Similar results are obtained for all the other samples. The banded

Figure 3. Spatiotemporal distributions of the rates of (A) hydrodynamic dissipation, (B) elastic storage, and (C) internal dissipation, and (D) the active

power along the flagellum of a wildtype sperm over several beat cycles: red indicates positive rates, while blue indicates negative rates. The data in (C)

and (D) have been obtained using the scaling value of 103 Pa s mm4 for the internal friction coefficient.

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data for all kymographs.
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structures in these kymographs provide a visual confirmation of the spatiotemporal periodicity of the

energy variables corresponding to the periodic beating of the flagellum.

In Figure 3A, the hydrodynamic power distribution, phd, is always negative: that is, every part of

the flagellum is at all times working against the hydrodynamic forces exerted externally by the vis-

cous environment provided by the ambient fluid. This work done on the fluid is dissipated away by

fluid friction. The elastic storage rate per unit length, _� at any location s, however, alternates

between positive (red) and negative (blue) values in Figure 3B. As a bending wave propagates

through that location, the local curvature at that s increases, leading to potential energy being

stored elastically and a positive rate of _� at that location. As the filament begins to relax and

straighten out, the stored elastic energy is released and begins decreasing, leading to negative _� val-

ues there. The filament then proceeds to bend in the other direction at that point, leading to a sec-

ond positive growth of _� within the same beat cycle, followed by a negative phase in _� as the

filament relaxes back towards being undeformed and straight at that location. Thus, at any s in

Figure 3B, each beat cycle consists of two successive positive and negative growth rate phases in _�.

Comparing the bands in Figure 3B with those in Figure 3A, it is clear that every single planar

wave that propagates down the filament is associated with a pair of hydrodynamic dissipation peaks:

the contribution of any single location to the hydrodynamic dissipation peaks as the filament moves

quickly while bending and relaxing back on one side, and then again, on the other side. These bands

are mirrored in Figure 3C, which plots pid, the distribution of power dissipated due to internal fric-

tion. This frictional dissipation, calculated with h
n
¼ 10

3 Pa s mm4, is due to relative motion between

adjacent cross-sectional planes of the flagellar material, which also peaks at a location when a bend

towards one side or the other propagates past that point.

The external and internal dissipations and temporary elastic storage of energy must together be

supported by the mechanical power input provided by the dynein motors acting on the microtubule

surfaces of the flagellum. Figure 3D plots the distribution of the net active power density pa, across

the filament. Interestingly, we find that the pa distribution displays clear negative bands that repeat-

edly occur in all beating periods and are spread throughout the filament. The positive domains (red)

of the pa kymograph in Figure 3D represent mechanical power being delivered on the passive parts

of the filament by the motors. In those regions, the motors cause relative sliding of microtubule dou-

blets to rotate the local cross-sectional planes in the same sense as the torques they exert, that is,

since pa ¼ ! � ma, pa is positive at a cross-section when both the rotational velocity of that plane, w,

and the torque per unit length, ma, exerted by the dynein motors in that plane have the same sign.

On the other hand, where pa is negative (blue) in Figure 3D, w and ma are opposite in sign. At any

such point, work is being done by the rest of the flagellar material on the axonemal motors, driving

them back against the torque they continue to exert. We observe this behavior consistently in all

beat cycles and for all WT and KO samples.

The energy transferred back as mechanical work on the motors can neither be stored either within

the dyneins nor converted back to chemical free energy (i.e., ATP): it must be therefore quickly dissi-

pated locally within the axoneme itself. This axonemal motor dissipation is measured by the negative

domains of pa and is denoted here as pmd. This is a second source of dissipation within the flagellum

and is distinct from the dissipation, pid, that is due to internal friction arising from the relative

motions of all the other structures in the flagellum that surround the axonemal motors, such as the

microtubules, the outer dense fibers, etc. By adding together the pa distribution over all the loca-

tions where it is negative, we can calculate, Pmd, the instantaneous rate of energy dissipation due to

the dynein motors themselves. The sum of Pmd and Pid is the total mechanical power dissipated

within the whole flagellum.

POD enables statistics of beating patterns and energetic variables
The qualitative features of the distributions of the key energetic variables discussed above are com-

mon to both WT and KO samples. Before identifying significant differences between the beating

patterns and energetics of the genotypes, it is worth examining the sample-to-sample variability

within each population. Figure 4A shows the mean cycle of the beating pattern in physical x-y space

for each sperm sample in our study. Flagellar centerlines at the same value of the fractional duration

of the mean beat cycle have the same color in Figure 4A. This fractional duration of the mean cycle

is referred to as the time phase and is denoted as t. To obtain the mean centerline shape at a
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Figure 4. Mean cycles of beat patterns and energetics. (A) Each colored curve shows the mean shape at a particular phase of the mean cycle for the

five wildtype (WT) (top row) and knockout (KO) (bottom row) samples. The color bands around each curve indicate the standard error in the mean

component. (B) Mean cycles for the magnitudes of the net elastic storage (yellow), hydrodynamic dissipation (black), internal frictional dissipation

(magenta), and active power (red) in WT (top panel) and KO (bottom panel) sperm samples corresponding to those in (A). Bands show standard errors

in means. (C) Statistical distributions of cycle times and dissipation rates in each of the WT (top panel) and KO (bottom panel) samples. The box-plots

Figure 4 continued on next page
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particular value of t, we collect, at that t, the x and y coordinates obtained (using Equation 44) for

all the beat cycles, and then calculate their mean values. The bands in Figure 4A around the mean

centerlines are the standard errors in the mean (SEM) y coordinates at each s. Our procedure for

identifying the start and end of each beat cycle thus enables calculation and comparison of average

beating patterns.

The difference between the mean beat patterns of the WT and Crisp2 KO samples is striking. The

KO samples exhibit a smaller amplitude across the entire flagellar tail. In Figure 4B, C, we apply the

idea of calculating mean cycles to the energetic variables calculated from the four-mode C-POD of

the tangent-angle profiles. Figure 4B compares the mean cycles in the net rates of elastic storage,

( _E; yellow), hydrodynamic (Phd; black) and internal frictional (Pid; magenta) dissipations, and the net

rate of motor power input (Pa; red curves). At each time phase, t, in a beat cycle, these mean rates

are calculated by collecting the values of _E, Phd, Pid, and Pa from all the cycles and averaging those

values. No distinctive common patterns are immediately apparent across the WT or KO samples in

Figure 4B. In 7 of the 10 samples, the minimum value in Pa (Pa
min; black symbols in Figure 4B) occurs

close to the beginning or end of the cycle, when the first shape mode is dominant, suggesting that

the first shape mode could be associated with a state of minimum power input. In two of the KO

samples (KO-1 and KO-5), however, the net motor power remains nearly constant over the entire

cycle.

It is visually apparent from Figure 4B that the mean cycles of the energy flows vary considerably

from sample to sample. We plot the distributions of cycle times for each of the WT (Figure 4C; top

panel, i) and KO (bottom panel, i) samples. Also shown as box-plots are the statistical distributions

of the magnitudes of the cycle-averaged hydrodynamic, passive internal friction and motor dissipa-

tion powers. The cycle power in any single cycle is calculated by integrating an instantaneous power

with respect to time over that cycle and dividing by the cycle time for that cycle. In the following sec-

tions, we use this data to answer two questions. Firstly, how large are the internal dissipations due

to passive and motor friction relative to the external hydrodynamic dissipation? Secondly, what is

the effect of the Crisp2 gene deletion on flagellar energetics?

Internal dissipation is larger than external hydrodynamic dissipation
The novel finding in Figure 4B, C is that, for any WT or KO sample, the magnitudes of the internal

frictional and motor dissipations are comparable to or larger than the dissipation in the external

fluid. Before we examine this further, it must be reiterated that the results in Figure 4 for these dissi-

pation rates depend on the values of the material parameters kn and h
n
. As previously mentioned,

we have used here kn ¼ 7� 10
4 Pa mm4 based on experimental measurements elsewhere

(Lindemann and Lesich, 2016). While the existence of internal friction in the fluid-filled region

around the axoneme is expected (Riedel-Kruse et al., 2007; Mondal et al., 2020), direct measure-

ments of the value of h
n
are not available.

For the same sperm motion quantified by the tangent-angle C-POD, we have calculated the ener-

getics with different values of h
n
, ranging from zero to values well above the scaling estimate of 103

Pa s mm4. For any value of h
n
, we robustly find negative domains in the active power distribution, pa.

However, as Figure 5A shows, for the 10 sperm samples studied, the minimum value of the net

motor power delivered in a mean cycle, Pa
min, has a strongly negative value when h

n
is much smaller

than 103 Pa s mm4. For such values of h
n
, there is a significant portion of the mean cycle when Pa is

Figure 4 continued

present the median (red line), the first and third quartile (bottom and top box edges), and minimum and maximum (lower and upper whiskers) values

for 40–60 cycles. Outliers that are more than 1.5 times the interquartile range away from the top or bottom of the box are indicated by red crosses. The

notch extremes correspond to q2 � 1:57ðq3 � q1Þ=
ffiffiffi
n

p
, where q1, q2, and q3 are the first, second (median), and third quartiles, respectively, and n is the

number of observations (McGill et al., 1978).

The online version of this article includes the following source data for figure 4:

Source data 1. Numerical data for Figure 4A.

Source data 2. Numerical data for Figure 4B.

Source data 3. Numerical data for Figure 4C (cycle times).

Source data 4. Numerical data for Figure 4C (hyd. dissn., motor dissn., and int. dissn.).
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Figure 5. External versus internal dissipation in flagella. (A) Effect of the value of internal friction coefficient, h
N
, on the minimum value of the net active

power required to overcome dissipation for wildtype (WT) (blue) and knockout (KO) (red) samples. At each h
N
, and for each sample, the minimum in the

mean cycle of the net active power, Pmin, is normalized by the time average of the motor input, P
mi
, over all cycles. The vertical line is the scaling value

Figure 5 continued on next page
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negative. This would mean that, in that phase of the mean cycle, the axoneme does not drive the

motion of the flagellum, but rather, the majority of the motors are being driven backward. The over-

all motion of the flagellum during that phase of the cycle is powered mostly by the release of the

potential energy stored elastically in the body of the flagellum. This appears to be physically unreal-

istic. On the other hand, Figure 5A shows that, above h
n
¼ 10

3, although pa has negative domains,

the net instantaneous power is always positive since its minimum value in the mean cycle, Pa
min, is

positive. With a value of h
n
> 10

3, the motion of the flagellum is always driven by the power input

from the axoneme at all times during the beat cycle.

In Figure 5B, D, we plot results for the energetic variables obtained with h
n
¼ 0 and 103 Pa s

mm4. With either value of h
n
, Figure 5B shows that time averages, P

mi
, of the net motor power input

(Equation 73), calculated across all beat cycles in each sample, appear positively and linearly corre-

lated with time averages, P
hd
, of the hydrodynamic dissipation rate. This suggests that average

hydrodynamic dissipation, which only needs the application of RFT, can be used as an indicator of

the average motor input, which requires a more involved calculation. We find that the dissipation at

the head against hydrodynamic and tethering forces is just a small fraction of the hydrodynamic dis-

sipation across the tail region (Figure 5). Therefore, the excess of the time-averaged motor power

input above the hydrodynamic dissipation is required to primarily overcome the different sources of

internal dissipation in the tail.

Two different statistical approaches are possible for comparing the different kinds of dissipations

within a genotypical population and for comparing the energetics across the WT and KO mice

sperm. In the first approach, we can compare the population means of the time averages of samples.

We recall that, for any single sperm sample, the arithmetic mean of the cycle-means of a quantity

over all the cycles of that sample is the same as the time average for that sample. Within each geno-

type, a one-way ANOVA reveals that, for all the different energetic quantities, the time-average val-

ues of the individual sperm samples are distinctly different from the overall population mean for that

genotype obtained by pooling all the cycles from the samples together (p � 10
�4; Appendix 2). In

other words, there is significant sample-to-sample variation in the time averages of the energetic

quantities. Due to the large sample-to-sample variation within each population, the standard devia-

tions are large and although differences between the levels of the different sources of dissipation

appear visually apparent, they are statistically not significant due to the small number of sperm sam-

ples (Figure 5). We, therefore, need to take the second approach and pool together all the individ-

ual cycles from each sample in a genotype to create a much larger set of individual time cycles for

each genotype. With this approach, a clear picture emerges with statistical significance judged by

Figure 5 continued

of 103 Pa s mm4. (B) Correlation of time averages of the hydrodynamic dissipation and net active power for hN ¼ 10
3 Pa s mm4 (top) and 0 (bottom). The

lines are linear fits through data for both species. (C) Comparison of the external hydrodynamic dissipation (black) with the motor (blue) and passive

internal frictional (magenta) dissipations obtained with h
N
¼ 10

3 Pa s mm4 (left) and 0 (right). The bars represent the averages of the cycle-means of

dissipations pooled from all the five sperm samples in each genotype; the error bars represent 1 standard deviation in each direction in the set of

pooled cycle-means. (D) Statistical distributions of the cycle-means of powers from the WT (dark color boxes) and KO (light color boxes) samples

pooled together over the entire tail (left), mid-piece (middle), and principal piece (right). The top and bottom panels are for h
N
¼ 10

3 Pa s mm4 and 0,

respectively. In (C) and (D), unpaired two-tailed t-tests are used to compare population means; **** refers to a significance level of p � 10
�4 , ***

p � 10
�3, ** p � 10

�3, *p � 0:05. Differences are not significant (n.s.) when p>0:05.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Numerical data for Figure 5A.

Source data 2. Numerical data for Figure 5B.

Source data 3. Numerical data for Figure 5C.

Source data 4. Numerical data for Figure 5D.

Figure supplement 1. Comparison of population means of time-averaged dissipations obtained with the five wildtype and Crisp2 knockout mice
sperm samples obtained with (A) hN=10

3 Pa.s.m4 and (B) hN = 0 Pa.s.m.

Figure supplement 2. Comparison across genotypes of population means of time-averaged powers obtained with the five wildtype and Crisp2
knockout mice sperm samples o hn=10

3 Pa.s.m4 is shown in A and hn = 0 Pa.s.m4 in B.

Figure supplement 3. Comparison of pooled averages of the cycle-means of hydrodynamic dissipation in the tail (black) and dissipation at head due

to hydrodynamic and tethering resistances (purple): p � 10
�3, *p � 0:05. hn=10

3 Pa.s.m4 is shown in A and hn = 0 Pa.s.m4 in B.
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unpaired, two-tailed Student’s t-tests (p � 10
�4; Appendix 2). We observe in Figure 5C that motor

dissipation is substantial when compared with the hydrodynamic dissipation. In the WT samples,

with either value of h
n
, the motor dissipation (135 fW) is clearly larger than the hydrodynamic dissipa-

tion (89.1 fW). In the KO samples, the motor dissipation (48.7 fW) is smaller than the hydrodynamic

dissipation (66.3 fW), but of comparable magnitude. As discussed earlier, h
n
¼ 10

3 Pa s mm4 is the

critical value in Figure 5A that is required to achieve a beat pattern wherein motors deliver net posi-

tive power across the whole beat cycle. Figure 5C shows that, at this value of h
n
, dissipation due to

internal friction (magenta) dominates above either motor (blue) or hydrodynamic dissipation (black

bars) in either WT or KO samples. The data in Figure 5C thus leads us to conclude that, in wall-teth-

ered WT as well as Crisp2 KO mice sperm beating in an aqueous medium, the total internal dissipa-

tion due to motor and internal friction is considerably larger than the external hydrodynamic

dissipation.

The box-plots in Figure 5D summarize the statistics of the entire pool of cycle-averaged powers

for each genotype obtained with h
n
¼ 10

3 Pa s mm4 (top panel) and with zero internal friction

(bottom panel). We find that the net input from the dynein motors in sperm from Crisp2 KO mice is

significantly smaller than the power input in the corresponding WTs. This is observed over the entire

tail. We further find that each kind of dissipation – hydrodynamic, motor, or internal friction – is

smaller in sperm from Crisp2 KO mice. These observations in Figure 5D are consistent with those in

Figure 4A that the Crisp2 KO samples have smaller beating amplitudes over the entire flagellum.

The rapidity of the beating, that is, the mean beat frequency, could also be an important factor in

determining the rate of energy dissipation. In the samples studied here, however, due to the large

variability in cycle times, we do not find a significant difference (p>0:01 in a Student’s t-test; Appen-

dix 2) between the population means of the cycle times (0.16 s and 0.18 s for WT and KO, respec-

tively) or their reciprocals (7.19 Hz and 7.2 Hz, respectively) even after pooling the cycle times from

the samples from each genotype together.

Further analysis of the spatial distribution of the dissipations between the mid-piece and principal

piece is shown in Figure 5D and Table S-3. In both genotypes, the hydrodynamic dissipation occurs

primarily due to the motion of the principal piece as expected. In contrast, most of the motor dissi-

pation appears to occur in the mid-piece region in the WT population (average of 110 fW compared

to 25.1 fW in the principal piece). In the KO samples, on the other hand, motor dissipation in both

mid-piece and principal piece is similar (averages of 29.1 and 19.5 fW, respectively). With h
n
¼ 10

3

Pa s mm4, the average internal dissipation in the WT population in the mid-piece (108 fW) is similar

to that over the entire principal piece (131 fW). However, in the KO population, the internal dissipa-

tion in the mid-piece (32.4 fW) is much lower than in the principal piece (168 fW) . This latter value is

also higher than average internal dissipation in the KO samples, despite their more vigorous motion.

The physical significance of this spatial distribution of the motor dissipations or the variations

between the WT and KO species are not clear at this stage and require further detailed

investigation.

Discussion
In recent years, a number of studies have used image analysis of flagellar or ciliary waveforms to

quantify beating patterns (Brumley et al., 2014; Sartori et al., 2016). Particle tracking

(Guasto et al., 2010) or particle image velocimetry (Drescher et al., 2010) techniques have further

provided a detailed picture of the dynamic velocity fields around beating filaments. These measure-

ments have provided rich information on the nature of the beating patterns themselves (Ma et al.,

2014; Werner et al., 2014; Wan et al., 2014) and on hydrodynamic quantities, such as the total

hydrodynamic dissipation and flow features such as hydrodynamic singularities, vortices, etc.

(Ishimoto et al., 2017; Brumley et al., 2014; Gallagher et al., 2019). Such measurements have fur-

ther been used to test and refine models of axonemal dynamics (Riedel-Kruse et al., 2007;

Mondal et al., 2020).

Our study contributes further to this body of work. Firstly, we have used the cycles in the phase

space of POD shape coefficients to unambiguously split the data into individual time cycles. This

enables the collection of data over several cycles and the calculation of mean cycles for all variables

associated with flagellar beating. When used with tethered sperm, we can collect sufficient data to

make statistically significant observations despite the large variability in beating patterns. Secondly,
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while studies have thus far focused on external hydrodynamics and internal forces, we have shown

that energy flows within sperm flagella can be extracted using standard conservation principles. The

Chebyshev-POD technique proposed here provides the smooth shape modes required for the calcu-

lation of the spatial derivatives that appear in the equations. We have shown that we can use these

methods to compare, in a statistically meaningful manner, the energetics of different sperm

populations.

This could potentially be used to systematically explore the effect of genetic mutations on sperm

energetics. Here, we have demonstrated such comparison between sperm of WT and Crisp2 KO

genotypes. The CRISPs are the sub-clade of the CAP superfamily proteins that are expressed in the

male reproductive tract. Crisp2 is further known to be incorporated internally into the sperm flagel-

lum (O’Bryan et al., 1998) and is expected to act by regulating ion channels on the cell or organelle

membranes (Lim et al., 2019). Although CRISPs are not essential for fertility (Hu et al., 2018;

Lim et al., 2019; Da Ros et al., 2008), we see here that a lack of Crisp2 significantly reduces the

mechanical power input from the axoneme in sperm, which in turn appears to be responsible for

slower beating with smaller amplitude.

Our results also reveal some fascinating new features of flagellar energetics that appear to be

shared by all of our samples. We firstly see that along the filament there exist distinct phases during

each cycle where dynein motors in the axoneme are driven back against the torques they exert by

the motion of the rest of the flagellar body. It is known that dynein motors are regulated to create a

traveling wave of forces, and hence turning moments, that propagates down the flagellum (Lin and

Nicastro, 2018). Since the active power density pa ¼ ma !, the periodic occurrence of positive and

negative domains in the active power distribution in Figure 3D shows that at any location along the

tail ma and w are in the same direction (i.e., of the same sign) in some parts of a beat cycle and in

opposite directions (i.e., of opposite sign) in other parts of the cycle. In other words, the rotational

velocity and the moment exerted by the dyneins are out of phase with one another, as shown in

Figure 6.

This is in line with current thinking on axonemal dynamics. Several ideas have been presented in

the past for the generation of the beating patterns by the axoneme. In a landmark study, Riedel-

Kruse et al., 2007 compared the predictions of many of these with experimental observations of

planar beating in bull sperm that were either head-tethered or swimming freely in circles for long

adjacent to a glass-slide wall. It was shown that the best agreement with experiments is obtained

with the sliding-control model of Jülicher and co-workers (Camalet et al., 1999; Camalet and

Jülicher, 2000). In this model (in the notation of the current paper), the active moment is related to

Figure 6. Out-of-phase mean beat cycles of active moment density and angular rotation rate at s ¼ 0:5 in (A) wildtype (WT)-1 and (B) knockout (KO)-1

samples.

The online version of this article includes the following source data for figure 6:

Source data 1. Numerical data for Figure 6.
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the local internal shear and shear rate through an equation of the form ma ¼ K g þ l qg=qt, where g

is the local shear strain. In the parlance of control theory, this model proposes that motors are regu-

lated by the location deformation through a mechanism that follows a proportional-derivative con-

trol logic. More recently, Mondal et al., 2020 suggested a variant with proportional-integral control

logic instead, that is, where ma þ b qma=qt ¼ K g. In either case, when the equation for regulation of

the active moment is coupled with the equations for the rest of the passive material of the flagellum,

an oscillatory instability emerges in certain ranges of the controller constants. This triggers a travel-

ing wave that propagates down the filament, leading to beating patterns that are similar

to those observed experimentally . It is further found with these models that the controller constants

to achieve oscillations are negative, indicating that the active moment exerted by the dynein motors

is down-regulated by the load exerted back on the motors due to the local shear deformation in the

filament and its time rate of change. This also appears to be consistent with the recent experimental

finding that dynein motors are always primed to deliver forces on microtubules but are inhibited

when a curvature wave passes through their location (Lin and Nicastro, 2018).

It is possible that regulation of ma could more generally be described by an equation of the form,

ma þ b qma=qt ¼ K g þ l qg=qt, which corresponds to proportional-integral-derivative (PID) control.

Such regulation of ma immediately means that, when stable traveling waves are generated, the local

rotation rate, w, (which is proportional to qg=qt) will be systematically out of phase with ma, as is

indeed observed in Figure 6. There will necessarily, therefore, be phases in each cycle when the two

variables will be of opposite sign and pa ¼ ma ! will always be negative in those phases.

The mechanical work done back on the motors during such phases by the passive elements of the

filament must be quickly dissipated in some form since the motors cannot store the energy that is

received nor reconvert it back to ATP. What, then, is the internal mechanism behind this additional

dissipation? Riedel-Kruse et al. pointed out that the sliding-control model had to allow for relative

sliding between microtubules at the basal end to obtain experimental agreement and that frictional

resistance to basal shearing is important for the model to predict stable oscillations. Mondal et al.

analyzed axonemes isolated by demembranating Chlamydomonas cilia and found that external

hydrodynamic friction is too small to explain the stable beating pattern observed. They then showed

that their sliding-control model predicts stable oscillations when coupled with equations that include

passive filament elasticity and internal frictional resistance to the shear deformation rate. These sour-

ces of internal friction are not modeled in the present study, where we have treated the flagellum as

an unshearable Kirchhoff rod. As Figure 5A shows, we find that, if internal friction is absent or insuf-

ficient, then the observed motion would mean that, for a significant duration of the mean cycle, the

filament may as a whole be driving the motors backward. While this unphysical picture is eliminated

when a sufficiently high internal friction coefficient is used, we still observe motor dissipation due to

ma and w being out of phase with one another.

The key point is that, while some or all of these different frictional contributions may be necessary

for an internally driven filament to oscillate stably, if the local regulation of the active moment in

general follows PID logic, then the out-of-phase moment and local deformation rate will lead to

phases of negative active power, irrespective of the nature of internal or external friction. This points

to the existence of a separate dissipative mechanism associated with the dynein motors themselves.

There is already evidence that dyneins can dissipate energy locally. It is known that dynein motors

can cycle through conformational changes driven by ATP binding and hydrolysis even when not driv-

ing microtubule sliding (Kon et al., 2005). Optical-tweezer experiments on dyneins bound to static

microtubules have further shown that dyneins can steadily be driven in the reverse along the micro-

tubule by an external load by forces larger than the stall force for these motors (Gennerich et al.,

2007). The force required is more than that required to move unbound motors at the same velocity.

This work done to drive the motors backward must be dissipated locally by a mechanism other than

just the hydrodynamic frictional resistance of the motors to motion. Our results show that such

motor dissipation can be a large part of the energy budget within the flagellum.

As pointed out above, our results in Figure 5 indicate that bending friction in the accessory struc-

tures surrounding the axoneme could also be significant. While most current models of flagella or

cilia assume that the flagellum is a purely elastic filament, it is beginning to be recognized that inter-

nal friction plays an important role in flagella and cilia (Riedel-Kruse et al., 2007; Mondal et al.,

2020; Klindt et al., 2016). An internal friction coefficient of h
n
¼ 10

3 Pa s mm4 is the minimum

required to obtain physically realistic axonemal power input. It is possible that the internal coefficient
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is larger than this value. The ratio h
n
=kn represents a characteristic internal viscoelastic time scale for

the passive flagellar material. If internal friction dominates the dynamics, we should expect to see

the observed mean frequency of a beat cycle, f ~ kn=hn
. The observed beat frequency of 7 Hz and

kn ¼ 7� 10
4 Pa mm4 suggests h

n
~ 104 Pa s mm4. Systematic measurements of the bending and other

internal friction coefficients in flagella and cilia through single-cell microrheological techniques are

therefore essential for a better understanding of their dynamics.

Our experiments were conducted with an aqueous buffer with cells beating close to a wall. It is

natural to ask, therefore, how the results here would change with either medium viscosity or in the

absence of the greater and more anisotropic hydrodynamic resistance due to wall. If the kinematics

of the beating pattern remain unchanged, changes in medium viscosity or the distance from the wall

would trivially result in changes in the magnitude of the hydrodynamic friction coefficients, and pro-

portional changes in the contribution of hydrodynamic dissipation. However, the response to

changes in the viscous resistance may be considerably more complex. It is known that the beating

pattern changes dramatically with an increase in medium viscosity (Smith et al., 2009; Kirkman-

Brown and Smith, 2011). Well away from a wall, the beating is non-planar, with helical traveling

waves, and as sperm approach a wall, the beating becomes planar and cells appear to ‘slither’

quickly across the surface (Nosrati et al., 2015). Although the mechanisms behind these qualitative

changes in beating waveforms are still unknown, it is likely that they are the result of the strong cou-

pling of the motor regulation and the viscoelasto-hydrodynamics of the passive filament. With such

changes in the waveform, the internal frictional and motor dissipation can also be expected to

change appreciably. A related question pertains to the effect of the tethering constraint at the head.

The constraint results in an additional force and torque being imposed at the head. Removing the

constraint will alter the external loading on the cell and may result in a qualitatively different beating

pattern and energetics. We nonetheless expect that, even in freely swimming sperm, motor dissipa-

tion and internal friction will be important.

Moreover, our observations of the effect of the Crisp2 mutation on the waveform and energetics

are also likely to be independent of the effect of the tethering. The smaller beating amplitudes result

in a smaller motor dissipation in the KO samples that is similar in magnitude with the smaller hydro-

dynamic dissipation in those samples, whereas in the WT samples, the motor dissipation is clearly

larger than the hydrodynamic dissipation. The approach presented here can similarly be used to sys-

tematically explore the role played by other proteins and signaling agents on the internal dynamics

and energetics of flagellar beating.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Gene (Mus musculus) Crisp2 Lim et al., 2019 - -

Strain, strain background
(Mus musculus)

C57BL/6N Lim et al., 2019 PMID:30759213 Mice produced through
the Australian Phenomics
Network

Biological sample (Mus
musculus)

Sperm Lim et al., 2019 - Collected from the cauda
epididymis and vas
deferens using the
backflushing method

Chemical compound, drug TYH medium with 0.3 mg/
ml BSA

Lim et al., 2019 - Buffer media for sperm

Software, algorithm MATLAB, MATLAB Image
Processing Toolbox, Fiji

SCR 001622,SCR 002285 Code (Nandagiri, 2021)
and original videos
(Nandagiri et al., 2020)
available for public access

Sperm sample preparation
Generation of KO mouse models and all animal procedures were approved by the Monash University

Animal Experimentation Ethics Committee. The mouse KO line were maintained on a C57/BL6N
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background. Sperm were collected from cauda epididymis and vas deferens using the back-flushing

method (Lim et al., 2019) in modified TYH medium (135 mM NaCl, 4.8 mM KCl, 2 mM CaCl2, 1.2

mM KH2PO4, 1 mM MgSO4, 5.6 mM glucose, 0.5 mM Na-pyruvate, 10 mM L-lactate, 10 mM HEPES,

pH 7.4). The samples were stored in dark at 37 ˚C until imaging. Sperm samples WT-1 and -2 were

from the same individual, WT-3 and -4 were from another individual, and WT-5 was from a third indi-

vidual mouse. All the five KO samples were from separate individuals.

Tethering and imaging
Sperm motility was investigated in a custom-made observation chamber. Briefly, two strips of dou-

ble-sided tape (90 mm nominal thickness) were affixed to a glass slide 16 mm apart. A drop of 40 ml

of sperm suspension was placed between the two strips and sealed against evaporation with 17 mm

square coverslips (Thermo Fisher Scientific, No. 1.5).

Mouse sperm have flat falciform (hook-shaped) heads. A detailed study by Woolley, 2003

showed that freely swimming mouse sperm are hydrodynamically drawn to walls and mostly stabilize

with the left sides of their flat heads held against the surface. It was also found that the plane of the

left side of the flat head makes an angle less than 180˚ with the flagellum at the neck. This enables

sperm following the left-side rule to stabilize to beating in a plane parallel to the wall.

We have taken advantage of this nearly planar beating close to walls to design our experiments.

In our experiments, the TYH medium was supplemented with 0.3 mg/ml of BSA, which causes sperm

swimming at the wall to adhere to the glass slide at the bottom of the imaging chamber. The out-of-

plane excursions in the resolved portion of the tail appear limited to less than 2 mm (Appendix 2).

This beating is clearly resolvable within the depth of field of the microscope. Sperm tethered at their

heads with flagella beating freely within the focal plane were chosen for video imaging and subse-

quent analysis. Imaging is done from above the sperm cell.

An Olympus AX-70 upright microscope equipped with a U-DFA 18 mm internal diameter dark-

field annulus, an 20 � 0.7 NA objective (UPlanAPO, Olympus, Japan), and incandescent illumination

served as the platform for the imaging system. All extraneous optical elements were removed from

the detection light paths to maximize system light efficiency. An ORCA-Flash4.0 v2+ (C11440-22CU)

sCMOS camera (Hamamatsu, Japan) was used for capturing images. This system leverages a high

frame rate for motion capture, an exceptional 82% QE for the low level of light and the small 6.5 mm

pixel size to increase system spatial resolution (Stuurman and Vale, 2016; Beier and Ibey, 2014;

Saurabh et al., 2012).

The optical lateral resolution was 0.479 mm at a reference wavelength of 550 nm. With the 6.5 mm

pixel size of the ORCA sCMOS and the system magnification factor of 20, the best-case lateral reso-

lution of 0.650 mm (0.325 mm/pixel) at the Nyquist–Shannon sampling was sufficient to spatially

resolve the tip of the sperm tail. A 512 � 512 pixel region of interest therefore corresponded to an

experimental sample FOV of 166.4 � 166.4 mm, which was sufficient for most of the experiments

reported here. Occasionally, sperm with stiffer flagella required an FOV increase with a reduction of

approximately 0.8 frames per second (fps) for each pixel increase.

Image data was free-streamed to a Xeon E5-2667 computer (with a 12-core CPU running at 2.9

GHz supplemented by 64 GB of DDR3 RAM and 1 TB SSD hard drive in a RAID0 configuration) via a

dedicated Firebird PCIe3 bus 1xCLD Camera Link frame-grabber card (Active Silicon, UK) at the

8.389 MB/s memory buffer speed of the camera. This resulted in a capture frame rate of approxi-

mately 400 fps. The best-case blur-free motion capture of the system at this frame rate corresponds

to element point velocities of 130 mm/s. The Fiji image-processing package was used for image cap-

ture control along with the Micro-Manger Studio plugin (version 1.4.23) for multidimensional acquisi-

tion (Beier and Ibey, 2014) set to 4000 time points, zero time point interval, a 2.0 ms exposure

time. The data was written as an image stack.

Camera resolution can be increased to exceed optical resolution by replacing the 180 mm tube

lens with a 250 mm tube lens. The region of interest would then increase to 714 � 714 pixels, with

the capture frame rate being reduced to approximately 286 fps. Frame exposure can be likewise

increased to 3.25 ms to allow for a superior signal-to-noise ratio.
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Image analysis and skeletonization
The videos of the sperm samples are available for public access (Nandagiri et al., 2020). The mean

of the grayscale intensity at each pixel location across all the frames was used to construct a back-

ground image. This was then subtracted from each frame to remove the background. The contrast

was then adjusted to enhance the foreground grayscale intensity. Median filters of different sizes

were applied to remove noise. The grayscale image was then smoothened with a Gaussian filter

before binarization at a threshold computed by Otsu’s method (Otsu, 1979). Connected compo-

nents in the binarized image were then located and classified according to size and eccentricity. The

sperm body is expected to have the largest size among the objects in the frame. An oval (i.e., an

ellipse) is fitted around each body. The eccentricity is a measure of the deviation of the oval from a

perfect circle. An oval fitted around the whole sperm body will be highly elongated and will have a

high eccentricity. These two criteria were used to automatically identify the sperm body in each

frame and remove other extraneous objects. Morphological thinning was then applied to the seg-

mented image to extract a skeleton of the sperm tail. Spurious branches on the skeleton were auto-

matically identified and removed to give an unbranched skeleton. The skeleton at this stage is

rough, with noisy burrs that are then smoothed out using low-pass filtering. The resulting smoothed

curve representing the sperm body is henceforth referred to as the centerline (Figure 7). Since the

algorithm treats each frame independently of all others, frames were processed on separate pro-

cessors on a high-performance computational cluster.
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Figure 7. Main steps in the image-processing algorithm shown for a single frame. A. The original frame B. Enhanced and filtered C. Thresholded frame

D. Segmented E. Skeletonized frame F. Smoothed centreline.
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The arc length between each adjacent pair of points was calculated and the overall contour

length of the centerline in each frame was obtained. Motion of the sperm body out of the plane of

focus leads to blurring and loss of contrast and intensity of the image, which in turn increases errors

in the automated processing of the images. This is particularly problematic at the tail end of the fla-

gellum. As a result, the skeleton obtained is truncated at the tail end, resulting in a loss of total con-

tour length of the captured skeleton. Videos with significant loss of length were discarded, and only

videos showing largely in-plane beating, with deviations smaller than 10% from the mean contour

length, were considered for further analysis. In each of the samples selected for further analysis, the

maximum contour length across all the video frames is taken to be the cell body length, L.

For each video, the time-averaged end-to-end straight line was first determined. Sperm center-

lines in every frame were rotated by an angle to align this line with the horizontal x-axis. The center-

lines in a video were reflected about the horizontal axis if necessary to orient the head-hook concave

downwards in all videos. At this stage, the pixel points on the centerline were not uniformly distrib-

uted along the length of the sperm body. That is, the arc length between each adjacent pair of

points is not the same along the centerline. The x and y coordinates for each centerline point were

linearly interpolated to obtain a large number of points (~200) distributed uniformly with the same

difference in the arc length s between adjacent points. Frames were also not always equally spaced

in time since poor-quality frames were discarded. Linear interpolation in time was applied across the

two frames on either side of a missing frame to compute the centerline in the missing frame. Tan-

gent angles to the horizontal were computed at each s in every frame. A Butterworth low-pass filter

was used to spatially smoothen the tangent-angle-versus-s data in each frame. The values of s in

each frame are normalized by the body length, L.

Data processing
The head and imaged-tail regions are defined as s 2 ½0; sN� and s 2 ½sn; st�, where sn ¼ 0:1L, and sT is

the maximum value of s for which pixel data is available for every time sample (typically, sT ¼ 0:85 L).

Since the data for s>sT is not available at all time steps, this data is neglected.

When working with Chebyshev polynomials in the tail region, we define a rescaled variable that

maps the domain ½sN; sT� onto ½�1; 1�:

� ¼ 2
s� sN

sT � sN

� �
� 1 : (25)

The inner product of a pair of functions f and g with respect to the Chebyshev weighting function

wð�Þ ;¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
is defined as ðf ;gÞ ¼

R
1

�1
f ð�Þgð�Þwð�Þd� . The norm of f , kf k ¼

ffiffiffiffiffiffiffiffiffiffi
ðf ; f Þ

p
. We further

denote time averages, t�1

max

R tmax

0
. . . dt as h. . .i.

There are four stages in calculating flagella energetics, starting from the raw tangent-angle data

obtained from the centerlines after image processing. This original tangent-angle function is

denoted as  ̂.

1. In this stage, the intermediate tangent-angle profile, e , is determined from  ̂. Firstly, at each
time instant, the raw centerline data in the head region is analyzed to fit the tangent-angle
profile corresponding to a rigid body motion that rotates about the point of tether. This gives
the motion of the neck junction at the end of the head region. A 20th-order Chebyshev poly-

nomial is then fitted through the pixel data in the tail region and is also C2-continuous with the
rigid-body motion of the head. The tangent-angle profile combining the rigid-body fit at the

head and the Chebyshev polynomial through the tail is e .
2. The next stage is to perform C-POD to obtain the optimally compact representation,  ðs; tÞ, of

the tail region in the form shown in Equation (17).
3. The C-POD representation,  ðs; tÞ, is then used to calculate other geometric, kinematic, and

dynamic quantities.
4. Mean cycles of all physical quantities and the standard errors in the means are then calculated.

Each of these stages is described further below.
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Intermediate tangent-angle profile
The raw centerline data b in the head region does not satisfy the rigid-body motion conditions since

the large and diffuse image of the head leads to errors during skeletonization in identifying its cen-

terline consistently. The sufficient condition that the head region rotates about a single point as a

rigid body is that qC=qt ¼ q!=qs ¼ 0. To impose this, the time-averaged tangent-angle profile

e 0ðsÞ ¼ h  ̂ðs; tÞ i is first calculated from the raw data in this domain. Then, the tangent-angle profile

in this domain is set to the following to ensure the rigid-body conditions:

e ðs; tÞ ¼ e 0ðsÞþ eB0ðtÞ ; (26)

where

eB0ðtÞ ¼ b ðsn; tÞ� e ðsnÞ : (27)

The time average of B0 is thus zero. The rotation rate, ! ¼ qe =qt ¼ eB0=dt, is uniform and non-zero

for the whole head region. With this profile, the tangent values at the neck are given by

 nðtÞ ¼ e 0ðsnÞþ eB0ðtÞ. The time-independent s-derivatives,  0
n
and  00

n
are determined from the values

of e 0 adjacent to the neck in second-order backward-difference formulae.

A Chebyshev polynomial,

e ð�; tÞ ¼
XP

k¼0

akðtÞTkð�Þ; (28)

of order P¼ 20 is fitted to the data in the imaged tail region at each time, t. Here, Tk is the k th Che-

byshev polynomial of the first kind (Hildebrand, 1987). The fitted Chebyshev polynomial must also

satisfy boundary conditions at � ¼ �1 so that it is C2-continuous with the tangent profile of the rigid

head region across the neck. No boundary conditions are imposed at the other boundary at � ¼ 1

since that end of the imaged region is not the physical end of the tail. (The physical boundary condi-

tions at the tail tip are accounted for through the energy balance [Equation 73], as discussed

earlier.)

To ensure C2-continuity across the neck, we must have at � ¼ �1,

e ð�1; tÞ ¼ e nðtÞ ;
qe 
q�

�����
�¼�1

¼ ðst � snÞ
2

e 0
n
ðtÞ ; q

2 e 
q�2

�����
�¼�1

¼ st � sn

2

� �2 e 00
n
ðtÞ ; (29)

where e n, e 0
n
, and e 00

n
are the values of the tangent angle and its first two s-derivatives at the neck,

respectively. These values at the neck are determined from the motion of the rigid head, as dis-

cussed above.

We determine the set of coefficients ak as those that minimize S ¼ kb � e k2, the mean

square error between the raw data, b , and the Chebyshev polynomial, e , while also satisfying the

boundary conditions at � ¼ �1 in Equation (29). Using the properties of Chebyshev polynomials and

Lagrange’s method of undetermined coefficients, and using standard methods and Gaussian quad-

rature to approximate integrals, we obtain

akðtÞ ¼ a*kðtÞ þ
K1

2gk

ð�1Þkþ1 þ K2

2gk

ð�1Þkk2 þ K3

2gk

ð�1Þkþ1 k4 � k3

3

� �
; (30)

where gk ¼ ð1þ d0;kÞ=ð2 ðPþ 1ÞÞ, di; j is the Kronecker d-function, K1, K2, and K3 are the Lagrange mul-

tipliers. The k th unconstrained Chebyshev coefficient,

a*kðtÞ ¼
1

gk

XP

i¼0

 ̂ð�i; tÞTkð�iÞ; (31)

where �i is the i th root of the Pþ 1 th Chebyshev polynomial (Hildebrand, 1987). The values of

Tkð�iÞ can be calculated using standard recursion relations (Hildebrand, 1987). Substituting from

Equation (30) in the boundary conditions into Equation (29) results in a system of linear equations
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that can be solved for the Lagrange multipliers. Inserting these values back into Equation (30) gives

the Chebyshev coefficients in the imaged tail region. The resulting e is consistent with boundary

conditions at the neck.

C-POD of the tail region
The C-POD provides advantages over the ‘empirical’ POD used previously for sperm (Werner et al.,

2014; Ma et al., 2014). The empirical POD is applied directly on the discrete data to produce shape

modes that are numeric vectors. The discrete nature of the modes makes high-order spatial deriva-

tives computed from them susceptible to noise. The C-POD approach here allows derivatives to be

computed without noisy artifacts. Further, specific restrictions on the shape at the boundaries can

be conveniently imposed.

We first recall key aspects of the general POD technique to obtain the optimal mutually orthogo-

nal basis functions. The Chebyshev polynomials Tk themselves constitute a set of mutually orthogo-

nal basis functions. At any t, e is a polynomial of order P that is expanded in terms of Pþ 1

Chebyshev polynomials. Given a small number M<Pþ 1, say M ¼ 2, any linear combination of M of

the Chebyshev polynomials can be expected to be a poor approximation of the full P th-order poly-

nomial, e . The technique of POD allows us to find a set, f mg, of M unique orthogonal functions dif-

ferent from Tk such that a linear combination of these provides the best approximation of e 
possible, given the choice of M. The gain is that we need to track only the set of M coefficients fBmg
as functions of time rather than the larger set of all the Pþ 1 time-dependent Chebyshev coeffi-

cients, fakg.
The time-averaged profile in the imaged-tail region is  0ð�Þ ¼ he ð�; tÞi. The deviation of the origi-

nal function e ð�; tÞ from this time average is

e�ð�; tÞ ¼ e ð�; tÞ� e 0ð�Þ ; (32)

and the spatial two-point cross-correlation of e� is

Cð�;�Þ ¼ he�ð�; tÞ e�ð�; tÞi : (33)

It can be shown that the set of optimal basis functions for the POD are the eigenfunctions of this

two-point cross-correlation (Lumley, 1967; Holmes et al., 2012). That is, an optimal shape mode,

 m, is such that

Cð�;�Þ; mð�Þð Þ ¼ lm mð�Þ ; (34)

where lm>0 is the corresponding eigenvalue. These eigenfunctions are mutually

orthogonal, that is,ð m; nÞ ¼ dm;n. The coefficient of the m th shape mode is then obtained by projec-

tion as

BmðtÞ ¼ ðe�ð�; tÞ; mð�; tÞÞ : (35)

These coefficients are themselves orthogonal in time, that is, hBmðtÞBnðtÞi ¼ dm;n lm. The matrix

algorithm for obtaining the time-independent Chebyshev coefficients of the shape modes is as fol-

lows. The Chebyshev polynomials are first normalized as follows:

t mð�Þ ¼
1
ffiffiffiffiffiffi
gm

p Tmð�Þ (36)

so that the inner product (with the Chebyshev weighting function) ðt m;t nÞ ¼ dm;n. The Chebyshev

coefficients ak of e are correspondingly rescaled as ak ¼
ffiffiffiffiffi
gk

p
ak, so that e ðt; �Þ ¼

PP
k¼0

akðtÞt kð�Þ. The
Chebyshev coefficients of the time-averaged tangent-angle profile,  0ð�Þ, and the deviation from the

mean, ~�, are then hakðtÞi and DakðtÞ ¼ akðtÞ� hakðtÞi, respectively. From Equation (34), the cross-

correlation, Cð�;�Þ ¼
PP

l¼0

PP
k¼0

t kð�ÞAklt lð�Þ, where

Akl ¼ hDakðtÞDalðtÞi: (37)

The symmetric matrix A composed of Akl is equivalent to the cross-correlation matrix.
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Diagonalizing the matrix A ¼ V �L �VT yields the Pþ 1 eigenvalues, flmg, of the correlation operator

as the diagonal elements of the matrix, L. The m th column of V is the m th eigenvector of A. Its ele-

ments are the Chebyshev coefficients of the m th shape mode:

 mð�Þ ¼
XP

k¼0

Vkm t kð�Þ : (38)

The corresponding shape coefficient can be obtained from the equation above and from Equa-

tion (35) as

BmðtÞ ¼
XP

k¼0

DakðtÞVkm: (39)

With  m; and Bm thus determined from the original cross-correlation of e�, we can obtain the

C-POD approximation, y, given by Equation (17) for any choice of M � Pþ 1. The deviation of the

C-POD approximation from the mean,

� ¼  � 0 ¼
XM

m¼1

BmðtÞ mð�Þ ; (40)

is an approximation of the original e�. The approximation improves with increasing M and when

M ¼ Pþ 1, � ¼ e� exactly, since the full set of Pþ 1 eigenfunctions f mg spans the same function

space that is spanned by the set of Pþ 1 Chebyshev polynomials, fTkg. Further, using the orthogo-

nality of the shape modes, it can be shown that

hke�k2i ¼
XPþ1

m¼1

lm ; hk�k2i ¼
XM

m¼1

lm : (41)

Therefore, the mean-squared error in the approximation when M<Pþ 1,

hk � e k2i ¼ hk�� e�k2i ¼
XPþ1

m¼1

lm �
XM

m¼1

lm ¼ hke�k2i � hk�k2i : (42)

We can, therefore, use the ratio of the cumulative sum of the eigenvalues for any M, normalized

by the sum of all the Pþ 1 eigenvalues,

GM ¼
PM

m¼1
lmPPþ1

m¼1
lm

¼ 1�hjj�� e�jj2i
hjje�jj2i

: (43)

as a measure of the accuracy of the M th order C-POD representation: the closer GM is to 1, the bet-

ter y captures e . As discussed earlier, e is constructed to be consistent with the neck boundary con-

ditions (in Equation 29) at all times. The C-POD basis functions,  mð�Þ, that span this function space,

therefore, also satisfy the same neck boundary conditions.

Calculation of flagellar kinematics and dynamics
The equations in the section on The soft, internally driven Kirchhoff rod model are used to calculate

the active power distribution in the following manner:

1. The centerline coordinates are obtained from the tangent angle  ðs; tÞ by

xðs; tÞ ¼ xhðtÞþ
Z s

0

cosð ðs0; tÞÞds0 ; yðs; tÞ ¼ yhðtÞþ
Z s

0

sinð ðs0; tÞÞds0 ; (44)

where xh and yh are the experimentally determined coordinates of the tip of the head at any time
t. Further, ðtx; tyÞ ¼ ðcos ; sin Þ and ðnx; nyÞ ¼ ð� sin ; cos Þ.

2. Since the shape modes are given by Equation (38), their spatial derivatives are calculated by
applying standard recursion relations for the Chebyshev polynomials (Hildebrand, 1987). The

time rates of the shape coefficients, _Bm ¼ dBm=dt, are calculated numerically using central-dif-
ference formulae.
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3. We then calculate the spatial derivatives of the C-POD approximant, y, and obtain the curva-

ture, C ¼ q =qs, and its derivatives. Its time derivative, qC=qt ¼
PM

m¼1
_Bm  

0
m and the center-

line angular velocity, ! ¼ q =qt ¼ PM
m¼1

_Bm m are calculated.
4. Noting that,

qvx

qs
¼ �! ty ¼ �! sin ;

qvy

qs
¼ ! tx ¼ ! cos ; (45)

flagellar velocities are calculated from the rotation rate as follows:

vx ¼ �
Z s

se

! sin ds0 ; vy ¼
Z s

se

! cos ds0 : (46)

where se is the experimentally determined location of the tether point. The tangential and normal
components of the centerline velocity, vt ¼ v � t and vn ¼ v � n, are then calculated.

5. The hydrodynamic force distribution, fh, is calculated using Equation (10) and the expressions
for the tangential and normal friction coefficients.

6. After fh, the densities, _�, phd, pid, and ps, are determined as described in the section on Dynam-
ics and energetics from measured kinematics. The energy balance (Equation 71) is then used
to calculate the active power density, pa, across the tail region. The contribution of the non-
imaged end of the tail ( s>st) to the energetics is neglected. In addition, the instantaneous

power exerted on the head, Pd
h
, is calculated using Equation (66), as are the instantaneous

rate, _E, and the powers, Phd and Pid, and the instantaneous motor dissipation, Pmd (Equa-
tion 21). Kymographs are generated using the colormaps as discussed in Auton, 2020.

7. The cycle-means, P
hd
, P

id
, P

md
, and P

d

h
, are obtained in each beat cycle by integrating the cor-

responding time-dependent power over that beat cycle and normalizing by its time period.

The cycle-mean motor power input, P
mi
, is then calculated using Equation (24).

Mean beat cycles
The time-dependent coefficients of the dominant shape modes, B1 and B2, are plotted against one

another. Individual beat cycles are identified from the times at which the polar angle of a point in

this B1–B2 space is zero. In other words, a beat cycle starts when the flagellar shape is a scaled ver-

sion of the first shape mode,  1. The time phase within the i th beat cycle is then calculated as

t ¼ ðt� t0i Þ
Ti

; (47)

where t0i is the starting time of the i th cycle and Ti ¼ t0iþ1
� t0i is the time period of that cycle.

Functions such as paðs; tÞ and PaðtÞ are split into individual beat cycles and, in each cycle,

expressed as functions of the time phase, t. The mean of that function over the set of its cycles is

computed at each t, as is the SEM. Between 40 and 60 beat cycles were captured for each sperm

sample. These beat cycles are used for statistical analysis either for each sample, or for each geno-

typical population, as required. The mean beat cycles of beating patterns and their shaded error

bands in Figure 4B have been obtained in this manner and by applying the graphing tools provided

in Campbell, 2020. The averaged powers, P
d

h
, P

hd
, P

id
, P

md
, and P

mi
, are computed as the averages

of the corresponding cycle-means over all beat cycles in either the set of samples or the set of

pooled cycles, as required.
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Appendix 1

Conservation laws
The position vector of any material point on a cross-section is x ¼ rþ R, where r is the point on the

cross-section through which the filament axis passes and R is the vector displacement of the material

point from the axial point. Then, the velocity of the material point is _x ¼ _rþ _R. Cross-sectional

planes can rotate relative to each other. Then, q di=qt ¼ !� di, where !ðs; tÞ is the instantaneous

angular velocity of the cross-sectional plane through the axial point at s. The velocity of any material

point, q x=qt ¼ v þ qR=qt, where v ¼ qr=qt. With this, we have qR=qt ¼ !� R. It can further be

shown that

q!

qs
¼ qWi

q t
di ; (48)

where Einstein’s summation convention is used. This implies that, for planar motion, where ! ¼ !ez,

q!

q s
¼ qC

q t
: (49)

Using kinematic relationships and the Frenet–Serret equations, it can be shown that

q!

qs
¼ qC

qt
bþ qT

qt
t: (50)

Mass conservation is trivially satisfied for an inextensible rod whose density is constant and whose

cross-sectional area is independent of time. The net hydrodynamic force on a cross-section,

fhðs; tÞ ¼
Z

GeðsÞ
t h d‘e : (51)

Here, t h is the hydrodynamic traction acting on the external surface and GeðsÞ is the external

perimeter of the cross-section at any s, parameterized by an arc-length variable along the perimeter,

‘e. The external force distribution feðs; tÞ similarly accounts for non-hydrodynamic surface traction

such as that due to wall contact. The axonemal motors exert forces on the internal surfaces of the

passive flagellar material. The surface traction, t a, exerted by these motors results in an active force

distribution,

faðs; tÞ ¼
Z

GiðsÞ
t a d‘i ; (52)

where GiðsÞ is the perimeter at any section s of the internal surfaces and ‘i is an arc-length variable

along that perimeter. The passive material stress tensor s acting throughout the cross-sectional

domain SðsÞ results in a net force, F, on a cross-section by the material on its aft side:

Fðs; tÞ ¼
Z

SðsÞ
s � t dA ; (53)

where dA is a differential area element on a cross-section at s, and for an unshearable rod, the aft-

side outward unit normal d1 at any cross-section is identical to the centerline unit tangent vector,

t¼ qr=qs. The torques due to the hydrodynamic and motor tractions are

mhðs; tÞ ¼
Z

GeðsÞ
Re� t hd‘e ; ma ¼

Z

GiðsÞ
Ri� t a d‘i : (54)

The torque distribution, me, due to the external non-hydrodynamic surface traction is similarly

defined. The torque due exerted by the material on the aft side,

Mðs; tÞ ¼
Z

SðsÞ
R�s � tdA : (55)

The conservation of linear momentum for a section of the rod from s1 to s2 is given by
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d

dt

Zs2

s1

Z

SðsÞ
� _xdAds ¼

Z s2

s1

Z

GeðsÞ
t hd‘eds þ

Z s2

s1

Z

GiðsÞ
t ad‘ids þ

Z s2

s1

Z

GeðsÞ
t ed‘eds

�
Z

Sðs1Þ
s � tdAþ

Z

Sðs2Þ
s � tdA ;

¼
Z s2

s1

fh dsþ
Z s2

s1

fa dsþ
Zs2

s1

fe ds�Fðs1ÞþFðs2Þ:

For an inertialess rod, the differential form of the equation above is

fhþ fa þ fe þ qF

qs
¼ 0: (56)

The gradient with respect to s of F in the momentum balance thus describes the net force per

unit length at a cross-section due to the passive internal stress.

Similarly, the conservation of angular momentum for a section of the rod can be written as

follows:

d

dt

Z s2

s1

Z

SðsÞ
x� �_xdAds ¼

Z s2

s1

Z

GeðsÞ
ðrþReÞ � t h d‘e ds þ

Z s2

s1

Z

GiðsÞ
ðrþRiÞ � t a d‘i ds

þ
Z s2

s1

Z

GiðsÞ
ðrþReÞ� t ed‘i ds

�
Z

Sðs1Þ
ðrþRÞ�s � tdAþ

Z

Sðs2Þ
ðrþRÞ�s � tdA ;

¼
Z s2

s1

r� fh dsþ
Zs2

s1

r� fa ds

þ
Z s2

s1

r� fe ds� rðs1Þ�Fðs1Þþ rðs2Þ�Fðs2Þ�Mðs1ÞþMðs2Þ ;

which leads to the following differential equation for an inertialess rod after eliminating terms using

the differential form of the linear momentum equation earlier:

mhþma þme þ t�Fþ qM

qs
¼ 0 : (57)

The First Law of Thermodynamics provides an equation that balances the rate of energy change

with the work done and heat input to a control volume. In the case of an internally driven rod, the

total energy is the sum of the passive elastic energy, the thermal internal energy, and the kinetic

energy. Work is done on the control volume by the surface tractions exerted by the surrounding

fluid, the internal motors, and the external tethering constraint. Work is also done by the passive

material stress on the cross-sections. Heat can be transferred out of the control volume to the sur-

roundings. The conservation of energy implies

d

dt

Z s2

s1

Z

SðsÞ
ð1
2
� _x2 þ û þ �̂ÞdAds ¼

Z s2

s1

Z

GeðsÞ
ðv þ !�ReÞ � ðt hþ t eÞd‘e ds þ

Z s2

s1

Z

GeðsÞ
ðv þ !�RiÞ � t ad‘i ds

�
Z

Sðs1Þ
ðv þ !�RÞ � s � tdA þ

Z

Sðs2Þ
ðv þ !�RÞ � s � t2 dA �

Z s2

s1

qds:

(58)

Here, û and �̂ are the thermal internal energy and elastic strain energy densities, and q is the heat

transferred per unit length out of the cross-section at s. Defining the energy distributions � ¼
R
SðsÞ �̂dA and u ¼

R
SðsÞ û dA, and neglecting kinetic energy changes in an inertialess rod, the differen-

tial form of the energy equation is obtained as

q�

qt
þ qu

qt
¼ v � ðfh þ feÞ þ v � faþ! � ðmh þmeÞ þ ! �maþ qðv �FÞ

qs
þ qð! �MÞ

qs
� q : (59)
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Defining the power densities due to the hydrodynamic, external, and active forces and moments

as

phd ¼ v � fhþ! �mh ; pe ¼ v � fe þ! �me ; pa ¼ v � fa þ! �ma ; (60)

and the net rate of work done on a cross-section by the action of the local stress gradient as

ps ¼ q ðv �FÞ
qs

þ q ð! �MÞ
qs

; (61)

we obtain,

q�

qt
þ qu

qt
¼ pa þ phd þ pe þ ps� q : (62)

Equations (56), (57), and (62) are the point-wise linear and angular momentum, and energy, bal-

ances for an internally driven Kirchhoff rod.

Passive, rigid, tethered head
Since the head is passive, fa ¼ ma ¼ 0. A rigid body cannot deform and store energy elastically.

There is also no heat transfer between the body and its surroundings. Hence, the equations govern-

ing the dynamics of the head region are

fh þ fe þ qF

qs
¼ 0 ; (63)

mh þmeþ t�Fþ qM

qs
¼ 0 ; (64)

0 ¼ phd þ pe þ ps : (65)

The linear and angular momentum equations above can, in principle, be integrated for F and M if

the hydrodynamic and external forces and moments are known. The boundary conditions at the free

end at s¼ 0 are Fð0; tÞ ¼ Mð0; tÞ ¼ 0. At the neck, s¼ sn, Fðsn; tÞ ¼ Fn , Mðsn; tÞ ¼Mn, where Fn and Mn

are the internal force and bending moment due to the passive stress at the neck. These are calcu-

lated from the tail side since material stress is continuous across the neck junction.

In this work, however, we only use the energy equation. Integrating it across the head region,

using Equation (61) and the boundary conditions, and rearranging, we obtain

Phd
h

þ Pe
h
¼ v0 �F0 þ!0M0ð Þ� vN �FN þ!NMNð Þ ¼ � vN �FN þ!NMNð Þ : (66)

Here, Phd
h

and Pe
h
are the total instantaneous power exerted on the head by the hydrodynamic

and tethering forces, respectively, and vN and !N are the velocities at the neck.

Active, viscoelastic, untethered tail
No external forces act on the freely beating tail. No net active force is exerted by the dynein motors

at any cross-section. The contribution of the hydrodynamic moment is negligible, Hence,

fe ¼ fa ¼ mh ¼ me ¼ 0. As noted in the main text, the passive internal stress in the tail can be split

into contributions from bending elasticity and bending friction. With his split, it is shown in the main

text that, for the system to remain isothermal, the heat generated by internal friction, pid, must be

balanced by the heat transfer rate, q. With all these substitutions, the conservation equations for the

tail region are thus

fh þ qF

qs
¼ 0 ; (67)

ma þ t�Fþ qM

qs
¼ 0 ; (68)
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q�

qt
¼ pa þ phd þ ps þ pid : (69)

In this work, we are interested in the inverse problem of determining pa from the observed kine-

matics. As noted in the main text, the passive internal force in the tail is formally calculated from the

hydrodynamic force distribution as

Fðs; tÞ ¼
Z L

s

fhðs0; tÞds0 : (70)

This satisfies the condition that FðL; tÞ ¼ 0. However, since we do not have motion data for s>st,

we neglect the contribution to the hydrodynamic forces from s>st. This effectively amounts to apply-

ing the force-free condition at s¼ st. The force- and torque-free conditions at the tail end are applied

to calculate the instantaneous power balance across the entire tail region. Integrating the energy

balance over the tail region, we obtain

_E ¼ Pa þ Phd þ Pid þ vL �FLþ!LMLð Þ� vN �FN þ!NMNð Þ : (71)

The free-end boundary condition is used to set FL ¼ 0 and ML ¼ 0. Using Equation (66) earlier,

the neck contribution can be replaced in terms of the total power dissipation by the head,

Pd
h
¼ Phd

h
þ Pe

h
. Further, we split the integral of pa into contributions from its negative and positive

parts by defining the motor dissipation and motor input as follows:

PmdðtÞ ¼
Z L

sn

min ðpa;0Þds ; PmiðtÞ ¼
Z L

sn

max ðpa;0Þds : (72)

Substituting these in Equation (71) and rearranging, we obtain (noting that dissipations are nega-

tive in our sign convention)

Pmi ¼ _E � Phd � Pid � Pmd � Pd
h
: (73)

In other words, the motor input provided is either used for elastic storage or to overcome all the

contributions to dissipation.

The equations above show that the energy balance equations used in the calculations described

in the main text are formally consistent with the free-end conditions. It also shows that we have

effectively neglected contributions from the non-imaged tail end. We do not, however, expect signif-

icant qualitative changes due to this approximation.
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Appendix 2

Planar beating of tethered mouse sperm
A detailed study by Woolley, 2003 showed that freely swimming mouse sperm exhibit preferential

capture by walls. They are hydrodynamically drawn to walls and then stabilize with the left sides of

their flat heads held against the surface. If a sperm arrives at a wall with its right side next to the sur-

face, it quickly moves away from the wall after a few flagellar beats and will be eventually captured

in its stable orientation. Sperm following this ‘left-side rule’ exhibit planar beating in a plane that is

parallel to the wall. This beating is clearly resolvable within the focal width of the microscope. On

the other hand, those that approach the wall with the right sides of their heads parallel to the wall

exhibit considerable motion out of the focal plane. Scanning electron microscopy further revealed

that the plane of the left side of the flat head makes an angle less than 180˚ with the flagellum at the

neck. This appears to enable sperm following the left-side rule to stabilize planar beating parallel to

the wall.

In our samples, the heads are chemically tethered to the wall. While we observe a few cells

adhere on their right sides, these cells exhibit non-planar beating out of the focal plane. Appen-

dix 2—figure 1 sketches the expected geometry of the mouse sperm cell with its intrinsic head-tail

angle at the neck, when the left side of its head is tethered to the wall. In this orientation, the flagel-

lum beats in a plane parallel to the wall and its centerline is at a distance equal to the neck radius,

h ¼ an, from the wall, where an is the radius of the neck. The head-neck angle is the same as the

angle made by the head axis with the wall, �» an=‘h, where ‘h is the length of the head. From litera-

ture measurements of mouse sperm dimensions, an » 0:6 �m and ‘h » 5 �m, which gives �» 0:1 rad or

6˚. The neck radius, an, is 0.57 �m, and the radius, at, of the filament at the tail end is 0.18 �m

(Gu et al., 2019).

Appendix 2—figure 1. Orientation of the sperm cell with respect to the glass slide. (a) Image from

Woolley, 2003 showing the left side (L) of a mouse sperm head facing the viewer with the ventral

(V) and dorsal (D) sides of the head indicated. The concave side of the hook is towards the dorsal

side. Also shown is the neck (N) at the proximal end of the flagellum. (b) Schematic showing the

mouse sperm body as viewed from its dorsal side when the left side of its head is against the wall.

The intrinsic angle made by the head with the flagellum at the neck enables planar beating when the

left side of the head is against the wall. The red and green lines indicate the axes of the head and

the tail. In this orientation, the flagellum beats in a plane parallel to the wall and its centerline is at a

distance equal to the neck radius ,an, from the wall. If there had been no angle at the neck, the tip of

the tail would be at a height of ht ¼ hmax. (c) The angle (in radians) of the head axis to the wall,

�» an=‘h.

We have also taken advantage of the nearly planar beating that many mammalian sperm exhibit

near walls. In our experiments, out-of-plane excursions in the resolved portion of the tail appear lim-

ited to less than 2 mm. Nearly planar beating of the mid-piece and principal piece is evidenced by

the fact that these portions of the flagellum remained in focus at all times in our samples. The total

depth of field

dtot ¼
ln

NA2
þ ne

MNA
; (74)
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is 1.2 mm in our microscope, where l ¼ 0:7 �m is the mean wavelength of the incident light, n ¼ 1 is

the refractive index of the air medium between the coverslip and the objective lens, M ¼ 20 is the

lateral magnification, NA ¼ 0:7 is the numerical aperture of the objective, and e ¼ 0:65 �m is the res-

olution of the detector in the image plane. After taking into account uncertainties due to the spread

in incident wavelengths and other factors, we estimate that the depth of field cannot be larger than

2 �m. We have verified this independently in calibration experiments using 5 �m diameter spherical

particles adhered to the bottom surface.

A maximum vertical deviation of around 2 mm is about 10% of the mean amplitude of the in-plane

beating of around 20 mm. Therefore, neglecting such deviations can be expected to contribute

errors of around 10% in the velocity components, curvature, and rate of curvature. These errors

propagate quadratically when calculating energetic quantities. The resulting error due to non-planar-

ity in beating cannot therefore be larger than 1%, which is considerably smaller than the natural fluc-

tuations in the beating patterns within a single sample and the sample-to-sample variations.
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Appendix 3

Appendix 3—table 1. One-way ANOVA data for establishing that sample means of cycle variables

are significantly different from population means in the wildtype (WT) and knockout (KO) genotypes;

F denotes the F-test statistic and p denotes probability of the null hypothesis.

Genotype Flagellar region Power Treatments DOF Error DOF F p

WT Full Cycle time 4 306 50.31 <10�16

WT Full Input power 4 306 833.19 <10�16

WT Full Hyd. dissn. 4 306 1441.37 <10�16

WT Full Internal dissn. 4 306 730.68 <10�16

WT Full tail Motor dissn. 4 306 246.17 <10�16

WT Mid-piece Input power 4 306 483.02 <10�16

WT Mid-piece Hyd. dissn. 4 306 186.86 <10�16

WT Mid-piece Internal dissn. 4 306 436.92 <10�16

WT Mid-piece Motor dissn. 4 306 421.04 <10�16

WT Principal piece Input power 4 306 786.93 <10�16

WT Principal piece Hyd. disspn. 4 306 1716.31 <10�16

WT Principal piece Internal dissn. 4 306 520.19 <10�16

WT Principal piece Motor dissn. 4 306 140.96 <10�16

KO Full tail Cycle time 4 270 235.45 <10�16

KO Full tail Input power 4 270 110.04 <10�16

KO Full tail Hyd. dissn. 4 270 198.37 <10�16

KO Full tail Internal dissn. 4 270 90.02 <10�16

KO Full tail Motor dissn. 4 270 120.31 <10�16

KO Mid-piece Input power 4 270 528.12 <10�16

KO Mid-piece Hyd. dissn. 4 270 216.51 <10�16

KO Mid-piece Internal dissn. 4 270 247.53 <10�16

KO Mid-piece Motor dissn. 4 270 374.02 <10�16

KO Principal piece Input power 4 270 125.73 <10�16

KO Principal piece Hyd. dissn. 4 270 206.07 <10�16

KO Principal piece Internal dissn. 4 270 109.09 <10�16

KO Principal piece Motor dissn. 4 270 20.3 <10�16

Appendix 3—table 2. Comparison of the external hydrodynamic dissipation with the internal

frictional and motor dissipations: t denotes the Student’s t-test statistic in an unpaired, two-tailed

test; p is the probability of the null hypothesis.

Genotype Flagellar region h
n
(Pa s �m4) Hyd. dissn. (fW) Int. dissn. (fW) t p

WT Full tail 103 89.07 240.05 22.71 <10�16

WT Mid-piece 103 6.69 108.43 36.39 <10�16

WT Principal piece 103 82.21 131.11 9.82 <10�16

KO Full tail 103 66.39 200.91 21.44 <10�16

KO Mid-piece 103 4.80 32.40 29.16 <10�16

KO Principal piece 103 61.48 168.28 16.73 <10�16

Continued on next page
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Genotype Flagellar region h
n
(Pa s �m4) Hyd. dissn. (fW) Motor dissn. (fW) t p

WT Full tail 103 89.07 135.06 11.48 <10�16

WT Mid-piece 103 6.69 109.75 36.21 <10�16

WT Principal piece 103 82.21 25.09 20.71 <10�16

KO Full tail 103 66.39 48.72 9.74 <10�16

KO Mid-piece 103 4.80 29.14 24.87 <10�16

KO Principal piece 103 61.48 19.49 28.4 <10�16

WT Full tail 0 89.07 155.58 11.48 <10�16

WT Mid-piece 0 6.69 112.56 36.21 <10�16

WT Principal piece 0 82.21 42.71 20.71 <10�16

KO Full tail 0 66.39 77.61 9.74 <10�16

KO Full tail 0 4.80 35.23 24.87 <10�16

KO Principal piece 0 61.48 42.28 28.4 <10�16

Appendix 3—table 3. Comparison of wildtype (WT) and knockout (KO) samples.

The values in in columns 2 and 3 are the means of the distributions created by pooling together val-

ues from the individual cycles of all the sperm samples in each genotype.

Quantity WT KO t p

Cycle time (s) 0.16 0.18 2.72 0.01

Reciprocal cycle time (Hz) 7.19 7.2 0.03501 0.97

Full tail hyd. dissn. (fW) 89.07 66.39 6.91 1.26 � 10�11

Mid-piece hyd. dissn. (fW) 6.69 4.80 6.89 1.49 � 10�11

Principal piece hyd. dissn. (fW) 82.21 61.48 6.71 4.63 � 10�11

Full tail motor dissn. (fW), h
n
¼ 10

3 Pa s �m4 135.06 48.72 26.89 <10�16

Full tail int. dissn. (fW), h
n
¼ 10

3 Pa s �m4 240.05 200.91 4.55 6.54 � 10�6

Mid-piece motor disspn. (fW), h
n
¼ 10

3 Pa s �m4 109.75 29.14 25.57 <10�16

Mid-piece int. dissn. (fW), h
n
¼ 10

3 Pa s �m4 108.43 32.40 24.59 <10�16

Principal piece motor dissn. (fW), h
n
¼ 10

3 Pa s �m4 25.08 19.49 5.62 3.01 � 10�8

Principal piece int. dissn. (fW), h
n
¼ 10

3 Pa s �m4 131.11 168.28 5.03 3.01 � 10�8

Full tail motor dissn. (fW), h
n
¼ 0 Pa s �m4 155.58 77.61 24.87 <10�16

Mid-piece motor dissn. (fW), h
n
¼ 0 Pa s �m4 112.56 35.23 29.10 <10�16

Principal piece motor dissn. (fW), h
n
¼ 0 Pa s �m4 42.71 42.28 0.22 0.82
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