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Background. The malaria causing parasite Plasmodium subverts host immune responses by several strategies including the 
modulation of dendritic cells (DCs).

Methods. In this study, we show that Plasmodium falciparum skewed CD16+ DC cytokine responses towards interleukin (IL)-10 
production in vitro, distinct to the cytokine profile induced by Toll-like receptor ligation. To determine CD16+ DC responsiveness in 
vivo, we assessed their function after induced P falciparum infection in malaria-naive volunteers. 

Results. CD16+ DCs underwent distinctive activation, with increased expression of maturation markers human leukocyte anti-
gen (HLA)-DR and CD86, enhanced tumor necrosis factor (TNF) production, and coproduction of TNF/IL-10. In vitro restimu-
lation with P falciparum further increased IL-10 production. In contrast, during naturally acquired malaria episode, CD16+ DCs 
showed diminished maturation, suggesting increased parasite burden and previous exposure influence DC subset function.

Conclusions. These findings identify CD16+ DCs as the only DC subset activated during primary blood-stage human Plasmodium 
infection. As dual cytokine producers, CD16+ DCs contribute to inflammatory as well as regulatory innate immune processes.
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Malaria is a major global health problem, causing almost half a 
million deaths in 2016, the majority of which were attributable 
to Plasmodium falciparum [1]. Plasmodium falciparum is known 
to subvert host immune responses by a range of strategies 
[2] including the modulation of dendritic cells (DCs) [3, 4]. 
As professional antigen-presenting cells and sentinels of the 
immune system, functional DCs are pivotal to the generation 
of robust immune responses [5]. Human peripheral blood 
myeloid DCs are composed of 2 classic subsets, CD141+ DCs 
and CD1c+ DCs, and a third subset CD16+ DCs, characterized 
by surface expression of CD16/FcγRIII [6, 7]. Despite CD16+ 
DCs comprising half the myeloid DC compartment [8], 
reports describing their function are limited, and their role in 
P falciparum infection is unknown. How CD16+ DCs respond 

to parasite antigen in vitro, after experimentally induced  
P falciparum infection or during naturally acquired malaria, 
remains to be defined.

Seminal studies have shown the Plasmodium parasite can 
disrupt monocyte-derived DC function in vitro [9, 10]. More 
recently, in vitro activation of classic blood DC subsets by P fal-
ciparum-infected red blood cells (RBCs) has been reported [11], 
whereas CD16+ DCs were not evaluated. In clinical malaria, 
myeloid DC function in general is compromised [4, 12, 13]. 
Children with uncomplicated malaria show reduced human 
leukocyte antigen (HLA)-DR expression on CD16+ DCs, yet 
expression of costimulatory molecule CD86 is increased com-
pared with age-matched uninfected controls [14]. The impact of 
P falciparum infection on CD16+ DCs in adults remains unclear.

Historically, the classification of CD16+ DCs has been ambig-
uous, and some degree of controversy remains around whether 
these cells classify as DC or nonclassic monocytes (recently 
reviewed in [15]). Initially identified as a blood DC subset by 
phenotype and function [7], subsequent ontology studies classi-
fied these cells as a monocyte subset [16, 17]. However, with the 
rapid rise of cutting-edge technologies, including spade cluster-
ing [18] and single-cell ribonucleic acid sequencing [6], CD16+ 
HLA-DRlow cells have been shown to cluster separately from 
monocytes and verified as a human blood DC subset. As innate 
immune sentinels, CD16+ DCs express a broad range of Toll-like 
receptors (TLR) including TLR1, TLR2, TLR4, and TLR7 [19], 
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equipping them as ideal immune cells for detecting invading 
pathogens. Previous studies have reported CD16+ DC cytokine 
production in response to lipopolysaccharide (LPS)/interferon 
(IFN)-γ stimulation, with CD16+ DCs considered an inflam-
matory DC subset in autoimmune diseases [20] and in human 
immunodeficiency virus-positive individuals [21]. The CD16+ 
DC cytokine profile in response to parasite stimulation in vitro 
or ex vivo after Plasmodium infection is yet to be reported.

Induced malaria studies, in which malaria-naive volunteers 
are experimentally infected with Plasmodium parasites under 
close clinical monitoring [22], allow the investigation of human 
immune responses during early subpatent Plasmodium infec-
tion. During induced malaria after P falciparum sporozoite 
infection, CD16+ DCs increase HLA-DR and CD86 expression 
[23]. In contrast, during induced blood-stage malaria, we have 
previously shown that classic DCs have impaired activation 
[3] and plasmacytoid DCs are nonresponsive [24], suggesting 
that CD16+ DCs may respond differently to very early blood-
stage P falciparum infection. In this study, we describe for the 
first time the effect of Plasmodium parasites on human blood 
CD16+ DC function. We examine CD16+ DC maturation and 
cytokine responses during induced blood-stage P falciparum 
malaria (IBSM) and after in vitro stimulation. We compare 
these responses to CD16+ DC activation in Indonesian children 
and adults with acute P falciparum malaria.

METHODS

Induced Blood-Stage Plasmodium falciparum Infection

Thirty-nine volunteers, aged 19–41  years (median, 24  years; 
interquartile range [IQR], 22–28; 44% female and 56% male), 
consented to participate in a phase Ib clinical trial testing the 
efficacy of antimalarial drugs: ACTRN12611001203943, regis-
tered November 23, 2011; ACTRN12612000323820, registered 
March 21, 2012; ACTRN12612000814875, registered August 
3, 2012; ACTRN12613000565741, registered May 17, 2013; 
ACTRN12613001040752, registered September 18, 2013; and 
NCT02281344, registered October 3, 2014. Blood-stage para-
sitemia was initiated by inoculation of 1800 P. falciparum-in-
fected RBCs (pRBC) as previously described [3]. Blood samples 
were taken (1) at the same time each day before and (2) during 

blood-stage infection. Antimalarial drugs were administered 
when volunteers reached a predetermined parasitemia of 
≥1000 parasites/mL (day 7 or 8)  (Figure  4A). Flow cytomet-
ric assays used fresh whole blood and were processed within 
2 hours of collection. The study was approved by the Human 
Research Ethics Committees of QIMR Berghofer Medical 
Research, NT Department of Health, and Menzies School of 
Health Research. Details of the clinical trial are reported else-
where [3, 25].

Acute Malaria

Phenotype and activation of CD16+ DCs were assessed in 
cryopreserved peripheral blood mononuclear cells (PBMCs) 
collected from adults and children with uncomplicated P fal-
ciparum malaria as part of artemisinin combination therapy 
efficacy studies in Southern Papua, Indonesia [26]. The PBMC 
samples were collected before commencing treatment and 
28  days after antimalarial drug treatment and parasite clear-
ance (Table  1). Written informed consent was obtained from 
participants. The study was approved by the Human Research 
Ethics Committees of the National Institute of Health Research 
and Development, Indonesian Ministry of Health (Jakarta, 
Indonesia), the NT Department of Health, and Menzies School 
of Health Research.

Whole Blood and Peripheral Blood Mononuclear Cells CD16+ Dendritic 

Cells Enumeration

CD16+ DCs were characterized as lineage- (CD3, CD14, CD19, 
CD20, CD56, CD34), HLA-DR+, CD11c+, CD123−, and CD16+. 
In brief, 200  µL whole blood or 3M PBMCs were stained 
with the following surface antibodies: CD3 (HIT3a), CD14 
(HCD14), CD19 (HIB19), CD20 (2H7), CD34 (561), CD56 
(HCD56), HLA-DR (L243), CD11c (B-Ly6), CD123 (6H6), 
CD16 (3G8), and CD86 (2331). All antibodies were purchased 
from BD Biosciences or BioLegend. For whole blood, RBCs 
were lysed with FACS lysing solution (BD Biosciences) and cells 
were fixed with 1% (w/v) paraformaldehyde in phosphate-buff-
ered saline (PBS). Absolute numbers of CD16+ DCs were deter-
mined by adding automated lymphocyte and monocyte counts 
(109 cells/L), dividing the sum by 100, multiplying the percent-
age of CD16+ DCs, and multiplying the product by 1000 to give 

Table 1. Acute Malaria Patient Characteristics

UM Adults Convalescent Adults UM Children Convalescent Children

Number of patients 9 11 6 6

Age 30 [23–37] 30 [20–36] 10 [7–11] 10 [9–11]

Male, number (%) 6 (66) 8 (72) 2 (33) 2 (33)

Parasitemia (parasites/µL) 2275 [1167–6048] NA 7377 [3128–14 516] NA

HRP2 (ng/mL)a 9.8 [0.3–41] NA 53 [1.5–539] NA

WCC (109/L) 5.05 [4.05–6.23] NA 5.9 [5.4–7.8] NA

Values show the median and [interquartile range] unless indicated otherwise.
aAll samples below detection limit were assigned the value 0.3, which represents half the detection limit.
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cell count/µL. All assays were performed within 2 hours after 
blood collection because CD16 expression was partially lost 
from CD16+ DCs when blood was kept overnight at ambient 
temperature.

Intracellular Cytokine Staining

CD16+ DC cytokine production was assessed in 1  mL fresh 
whole blood unstimulated or stimulated with TLR agonists: 
TLR1 - Pam3CSK4 100  ng/mL; TLR2 - HKLM 108 cells/mL; 
TLR4 - Escherichia coli K12 LPS 200 ng/mL; or TLR7 - imiqui-
mod 2.5  µg/mL (Sigma-Aldrich), pRBC, or uninfected RBC 
(uRBC) prepared as previously described [3]; final concen-
tration of 5 M/mL. Protein transport inhibitor (Brefeldin A, 
GolgiPlug [BD Biosciences]) was added after 2 hours at 37°C, 
5% CO2. At 6 hours, cells were stained to identify CD16+ 
DCs: CD14− (M5E2), lineage (CD3 [HIT3a], CD19 [HIB19], 
CD56 [HCD56])−, CD1c− (L161), HLA-DR+ (L243), CD86+ 
(IT2.2). IgG2b isotype control was used to aid identification of 
CD16+ DCs. The RBCs were lysed with FACS lysing solution 
(BD Biosciences), washed with 2% fetal calf serum/PBS, and 
cells permeabilized with ×1 Perm/Wash (BD Biosciences) and 
stained with intracellular anti-tumor necrosis factor (TNF)-α 
(MAB11), interleukin (IL)-12/IL-23p40 (C11.5), IL-10 
(JES3-9D7), or IgG1 isotype controls (BioLegend). To deter-
mine the stimulant-specific response, spontaneous cytokine 
production was subtracted from responses to pRBC, uRBC, or 
TLR agonists.

To verify CD16/FcγRIII loss during culture, we assessed DC 
subset phenotype in 6 unexposed controls. Fresh whole blood 
staining and the intracellular cytokine assay were performed 
using the same methods detailed above. Verification of gat-
ing strategy used the same antibodies detailed above. FACS 
data were acquired using a FACSCanto II (BD Biosciences) 
or Gallios (Beckman Coulter), and data were analyzed using 
Kaluza 1.3 (Beckman Coulter).

Statistics

Statistical analyses used GraphPad Prism 6 (Graphpad Software 
Inc.) and SPICE version 5.3 ([M. Roederer, Vaccine Research 
Center, National Institute of Allergy and Infectious Diseases, 
National Institutes of Health] available at: http://exon.niaid.nih.
gov) [27]. The Wilcoxon matched-pairs signed-rank test was 
used to compare longitudinal data. Tests were 2-tailed and con-
sidered significant if P < .05.

RESULTS

Alternative Gating Strategy to Identify CD16+ Dendritic Cells After  

Short-Term Culture

Measuring cytokine production by CD16+ DCs is hampered by 
the observation that CD16 is lost from the cell surface during 
short-term culture (6 hours) [28] and after TLR stimulation 
[29]. To circumvent this problem and identify CD16+ DCs, 

we determined a gating strategy using CD86, a costimulatory 
molecule highly expressed on CD16+ DCs when compared 
with other blood DC subsets (Figure 1A). By excluding CD1c+ 
DCs from the total DC population and utilizing the differential 
expression of CD86 on the remaining DC subsets (Figure 1B), 
we could identify CD16+ DCs successfully in fresh whole blood, 
after short-term culture, thus bypassing the need for CD16 as a 
critical marker. CD86 expression was negligible on plasmacyt-
oid DCs and immature DCs and did not change after 6 hours 
of in vitro culture or after TLR stimulation (Figure 1C). CD1c+ 
DCs increased CD86 expression after TLR stimulation, as pre-
viously reported [3] (Figure 1C), and were specifically excluded 
from our alternative CD16+ DC gate (Figure  1B). Monocytes 
were also strictly gated out based on CD14 expression, after 
confirming that under our culture conditions CD14 median 
fluorescence intensity on monocytes did not significantly drop 
within 6 hours after TLR4 stimulation (data not shown). The 
devised alternative gating strategy selected CD3−/CD19−/
CD56−/CD14−/HLADR+/CD1c−/CD86 bright cells, which were 
predominantly CD16 positive (median, 93%; IQR, 88%–94%) 
(Figure  1D). Only very few CD16+ DCs fell into the CD86-
negative gate (Figure 1D). It is noteworthy that if whole blood 
was kept at room temperature overnight, CD16/FcγRIII was 
partially lost on CD16+ DCs (data not shown), highlighting the 
importance of performing DC assays on fresh whole blood as 
soon as possible.

Cytokine Production by CD16+ Dendritic Cells in Response to Toll-Like 

Receptor and Plasmodium Stimulation

In fresh whole blood, we assessed CD16+ DC cytokine produc-
tion in response to TLR ligands, using the above gating strategy 
(Figure 2A). In response to TLR1/2 (PamCys2) or TLR4 (LPS) 
stimulation, CD16+ DCs produced a strong TNF response 
(74% [IQR, 59%–78%] and 77% [IQR, 71%–79%], respec-
tively), a modest IL-12 response (10% [IQR, 7%–13%] and 17% 
[IQR, 17%–23%], respectively), and a modest IL-10 response 
(10% [IQR, 7%–21%] and 6% [IQR, 2%–17%], respectively) 
(Figure 2B and C). In contrast, after TLR7 (imiquimod) stim-
ulation, most CD16+ DCs were nonresponsive, with only 8% 
(IQR, 2%–15) producing TNF. There was no detectable TLR7-
triggered IL-12 or IL-10 response (Figure 2D). Boolean gating 
was used to assess coproduction of multiple cytokines. Upon 
TLR1/2 or TLR4 stimulation, a small proportion of CD16+ DCs 
coproduced TNF/IL-12/IL-10, TNF/IL-12, and TNF/IL-10. 
However, the majority of responders were TNF single produc-
ers (Supplementary Figure 1).

Next, we assessed responsiveness to pRBC. Upon pRBC stim-
ulation, CD16+ DCs significantly increased TNF (P  =  .02) and 
IL-10 (P =  .008) production, compared with control cells stim-
ulated with uRBC (Figure 3A and B). Boolean analysis revealed 
that IL-10 production occurred both as TNF/IL-10-coproducing 
and IL-10 single-producing cells (Figure  3C). The qualitative 

http://exon.niaid.nih.gov
http://exon.niaid.nih.gov
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy555#supplementary-data
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composition of cytokine responses (ie, the relative proportion of 
each cytokine combination amongst the total cytokine producing 
CD16+ DC) after pRBC stimulation significantly differed from 
evaluated TLR stimulations (Figure  3D). Interleukin-10, either 
alone or in combination with TNF, comprised a significantly 
larger relative proportion of the cytokine response after pRBC 

stimulation compared with TLR stimulation (median fold-in-
crease pRBC over the following: TLR1, 2.9-fold [IQR, 0.7–13.4], 
P = .006; TLR4, 7.8-fold [IQR, 4.1–20.6], P = .004; TLR7, 8-fold 
[IQR, 4.9–16.6], P = .004). Together, in vitro stimulation data indi-
cate that CD16+ DC cytokine responsiveness is multipotent and 
stimulation specific.
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Increased Cytokine Production by CD16+ Dendritic Cells in Volunteers 

During Subpatent Induced Blood-Stage Malaria Clinical Trials

To examine the specific impact of P falciparum on CD16+ DCs 
in vivo, whole blood was collected and processed from volunteers 
participating in an induced blood-stage P. falciparum  malaria 
(IBSM)  clinical trial. Volunteers were inoculated intravenously 
with ~1800 pRBC, and peripheral parasitemia was monitored 
by real-time polymerase chain reaction, until a predetermined 
threshold of ~1000 pRBC/mL was reached, at which point patients 
were treated with an antimalarial regimen [25] (Figure 4A and B). 
The median peak parasitemia was 4000 parasites per mL of blood 

(IQR, 700–10 000). Before infection, 7% (IQR, 3%–12%) of CD16+ 
DCs spontaneously produced IL-10, IL-12, or TNF ex vivo, with 
TNF (5% [IQR, 4%–10%]) dominating the response. At peak par-
asitemia, spontaneous TNF cytokine production increased sig-
nificantly to 15% (IQR, 10%–18%; P = .03), indicating that CD16+ 
DCs were activated in vivo during a first P falciparum infection 
(Figure 4C). This increased spontaneous cytokine production was 
driven by a significant increase in TNF single (P = .01) and TNF/
IL-10 coproducing CD16+ DCs (P =  .04) (Figure 4D). Next, we 
assessed the impact of P falciparum infection on CD16+ DCs abil-
ity to respond to pRBC in vitro restimulation. At peak parasitemia, 
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there was a significant increase in TNF/IL-10 coproduction in 
response to in vitro pRBC restimulation (P = .04), with no signifi-
cant changes in single TNF or IL-10 production (Figure 4C). There 
was no significant change in total CD16+ DC cytokine production 
in response to uRBC (Supplementary Figure  2). In response to 
TLR ligation, CD16+ DCs significantly increased IL-12 (TLR1/2, 
TLR4; P = .03) and IL-10 (TLR4; P = .03) but not TNF produc-
tion (Supplementary Figure 2). Taken together, these data show 
that during subpatent induced blood-stage malaria, CD16+ DCs 
enhance spontaneous cytokine production as well as responsive-
ness to pRBC and TLR stimulation in vitro.

CD16+ Dendritic Cells Are Activated in Induced Subpatent  

Blood-Stage Malaria

In addition to cytokine production, we examined the number, 
proportion, and activation of circulating CD16+ DCs in fresh 
whole blood (Figure 5A), from healthy malaria naive volunteers 

before, during induced blood stage malaria, and 24 hours after 
antimalarial drug treatment. At peak parasitemia, there was no 
change to the absolute number of CD16+ DCs in the blood (P = .8) 
(Figure 5B). However, the proportion of CD16+ DCs amongst the 
total myeloid DC compartment increased (P = .02) (Figure 5B), 
reflecting the loss of CD1c+ DCs in the blood [3]. CD16+ DC 
maturation and activation were evaluated by measuring changes 
in surface expression of antigen-presenting molecule major histo-
compatibility complex (MHC) class II (HLA-DR), costimulatory 
molecule CD86 (B7-2), and antibody receptor CD16 (FcγRIII). 
The loss of the latter has been associated with CD16+ DC activa-
tion [28]. During induced blood-stage malaria, we observed mat-
uration and activation of CD16+ DCs with increased HLA-DR 
(P < .0001) and CD86 (P = .0002) expression and reduced CD16/
FcγRIII expression (P = .003) (Figure 5C). The observed reduc-
tion in CD16/FcγRIII expression did not impede identification of 
CD16+ DCs in fresh whole blood (Figure 5A).
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Lack of CD16+ Dendritic Cell Activation in Previously Exposed Individuals 

Experiencing an Acute Malaria Episode

We then assessed CD16+ DCs in adults and children living in 
an area of perennial unstable malaria transmission, using cryo-
preserved PBMCs collected during an acute clinical episode of 
P falciparum malaria or during convalescence (28  days after 
malaria treatment and successful parasite clearance) (Table 1). 
The HLA-DR and CD86 expression were significantly dimin-
ished on CD16+ DCs in adults during acute malaria compared 
with those at convalescence (P = .03 and P = .004, respectively) 
(Figure  6B and C). In children, there was no significant dif-
ference between HLA-DR or CD86 expression between acute 
malaria and convalescent controls (Supplementary Figures 3A 
and 3B). CD16/FcγRIII expression on CD16+ DCs did not differ 
significantly between acute infection and convalescence in both 
children and adults (Figure 6C and Supplementary Figure 3C). 
At convalescence, children expressed less CD16/FcγRIII on 
CD16+ DCs than adults (P = .03) (Supplementary Figure 3C). 

Taken together, our findings show that during an acute malaria 
episode caused by natural P falciparum infection, CD16+ DC 
maturation appears impaired with reduced HLA-DR and CD86 
but stable CD16 expression.

DISCUSSION

Our results illustrate that CD16+ DCs undergo unique and 
distinctive activation in response to a primary subpatent P fal-
ciparum infection, with enhanced expression of HLA-DR and 
CD86, reduction in CD16/FcγRIII, and increased coproduction 
of IL-10 and TNF. CD16+ DC activation during induced P falcip-
arum blood-stage malaria is consistent with the activation of this 
subset during induced Plasmodium vivax blood-stage malaria 
[30] and induced P falciparum sporozoite infection [23], suggest-
ing pan Plasmodium activation of CD16+ DCs after Plasmodium 
infection in naive healthy adults. We have recently shown that (1) 
both CD1c+ DCs and plasmacytoid DCs are not activated during 
induced P falciparum or P vivax blood-stage malaria [3, 24] and 
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(2) the rare classic CD141+ DC subset is drastically reduced in 
induced P vivax blood-stage malaria [30]. Together, our data 
define CD16+ DCs as the only blood DC subset activated during 
induced human Plasmodium malaria, suggesting that CD16+ DCs 
may be involved in the initiation of immune responses required 
for parasite control during a primary infection.

Using an indirect gating method, we characterized CD16+ 
DC cytokine production during subpatent P falciparum infec-
tion. We show that CD16+ DCs respond to TLR1/2 and TLR4 
stimulation with robust TNF production both before and 
during induced blood-stage malaria. Tumor necrosis factor 
production in response to TLR stimulation is consistent with 
prior reports identifying CD16+ DCs as an inflammatory DC 

subset [20, 21], including a subpopulation of CD16+ DCs 
expressing the carbohydrate modification 6-sulfo LacNac (slan) 
[31]. Unlike monocytes, slanDCs show DC-like morphology in 
lymphoid tissue [32] and the ability activate T cells [32, 33], as 
reported for CD16+ DC [7]. Tumor necrosis factor is a major 
effector cytokine in malaria, with roles in both protection and 
pathogenesis. Studies in malaria patients identified monocytes 
[34], particularly CD14+CD16+ inflammatory monocytes [35], 
and γδ T cells [34], as the main cellular sources of TNF. Our 
data show that CD16+ DCs also contribute to TNF production 
in early infection and potentially during clinical malaria.

Interleukin-10 production by CD16+ DCs stimulated with 
P falciparum was proportionally greater compared with IL-10 
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responses induced by TLR stimulation, whereas the TNF 
response was comparatively modest. A recent report using iso-
lated blood CD1c+ and CD141+ DCs showed no production of 
TNF, IL-10, or IL-12 by these DCs upon pRBC stimulation when 
compared with TLR4 stimulation [11]; however, CD16+ DCs 
were not included. From the data presented here, it is evident 
that CD16+ DCs do have the ability to respond to TLR and pRBC 
stimulation, yet with distinct cytokine profiles; setting them 
apart from classic blood DCs. In addition to increased sponta-
neous TNF production after P falciparum infection, CD16+ DCs 
became multipotent cytokine-producing cells increasing copro-
duction of TNF and IL-10, particularly upon Plasmodium re-ex-
posure in vitro, which further skewed the CD16+ DC cytokine 

profile towards IL-10 production. Interleukin-10 producing 
DCs can contribute to immunoregulatory processes through the 
induction of highly suppressive regulatory T cells [36, 37] and 
IFN-γlow IL-10high type 1 regulatory (Tr1) cells [38]. We recently 
identified Tr1 cells in induced P falciparum infection, and par-
asite-specific IL-10 production by these cells suppresses proin-
flammatory cytokine production [39]. The parasite-induced 
IL-10 production by CD16+ DCs reported here suggests these 
DCs may have a role in the induction of regulatory cells in pri-
mary P falciparum infection. Such suppressive T-cell responses 
may blunt protective immune responses and result in higher 
parasite burden [40, 41], potentially further increasing CD16+ 
DC IL-10 production [42]. Together, our data suggest that 
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during induced malaria, CD16+ DCs contribute to both inflam-
matory and regulatory immune processes. Further evaluation of 
cytokine production by CD16+ DCs and how they impact down-
stream immune responses is needed.

Data relating to CD16+ DC activation in human malaria are 
sparse. In this study, we show that the absolute number of cir-
culating CD16+ DCs are stable, and, moreover, their proportion 
in the total myeloid DC compartment increased during induced 
blood-stage malaria. This relative increase is likely a reflection 
of the loss of peripheral CD1c+ DCs [3]. The increased CD16+ 
DC maturation during early subpatent Plasmodium infection 
is consistent with our recent report of CD16+ DCs being the 
only blood DC subset with increased HLA-DR expression 
during induced blood-stage P vivax malaria [30], suggesting 
that DC subsets are affected similarly by different Plasmodium 
species. High expression levels of HLA-DR are associated with 
efficient phagocytosis of P falciparum-infected RBCs [11] and 
essential for antigen presentation to T cells. The reduction in 
CD16/FcγRIII, which is internalized upon cross-linking by 
immune complexed antigen [28], together with the increased 
HLA-DR and CD86 expression on CD16+ DCs likely enhances 
their potential to activate CD4+ T cells. Increased CD16+ DC 
maturation has been reported in P falciparum-sporozoite vol-
unteer infection studies [23], which mimics the natural route 
of Plasmodium infection by mosquito bite [43]. Similarities 
between results from the induced P falciparum-sporozoite 
infection [23], and data presented here, indicate that CD16+ DC 
maturation occurs in response to the early blood-stage of infec-
tion, independent of Plasmodium liver stages.

In contrast to primary subpatent infection, HLA-DR and 
CD86 expression were reduced on CD16+ DCs in adults with 
acute malaria when compared with convalescent controls. 
These findings are consistent with reports of reduced HLA-DR 
expression during acute malaria on CD1c+ DCs and CD141+ 
DCs in adults [44] and children [14, 45]. In children with acute 
malaria, we observed no significant difference in HLA-DR or 
CD86 expression when compared with convalescent samples. 
The less dramatic changes in CD16+ DC maturation in chil-
dren compared with adults seen here suggest that CD16+ DC 
dysfunction may result from cumulative exposure. Differences 
in CD16+ DC maturation between primary induced infection 
in naive adults and naturally acquired acute malaria are not 
surprising, and many factors may influence these differences 
including the magnitude of parasite burden or prior malaria. 
Dendritic cell maturation can be suppressed in the presence 
of IL-10 [46, 47]. We have previously reported significantly 
increased plasma IL-10 in patients from the same endemic 
area [4, 48], whereas plasma IL-10 is not detectable in primary 
induced P falciparum infection [49]. These data together with 
the parasite-mediated IL-10 production by CD16+ DC suggest 
that increasing autocrine IL-10 production [42] or increased 
systemic IL-10 may impair DC maturation in acute malaria.

CONCLUSIONS

Taken together, we describe for the first time the effect of 
Plasmodium parasites on human blood CD16+ DC function. 
We demonstrate that CD16+ DCs are uniquely activated by  
P falciparum stimulation and significantly increase spontaneous 
coproduction of TNF and IL-10 during a primary subpatent  
P falciparum infection. Our data, presented here and previously 
[3, 24], together reveal that CD16+ DCs are the only DC subset 
activated during induced blood-stage malaria. As dual cytokine 
producers, CD16+ DCs contribute to inflammatory as well as 
regulatory innate immune processes and are key responders 
during early subpatent P falciparum infection.
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