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Abstract  

Objective: To predict intraoperative events (IOE) and postoperative events (POE) consequential 

to the derailment of the ideal clinical course of patient recovery.  

Material and Methods: Vattikuti Collective Quality Initiative (VCQI), a multi-institutional 

dataset of patients who underwent Robotic Partial Nephrectomy for kidney tumors. Machine 

Learning (ML) models were constructed to predict IOE, and POE using Logistic Regression, 
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Random Forest, and Neural Networks. The models to predict IOE used patient demographics 

and preoperative data. In addition to the above, intraoperative data was used to predict POE. 

Performance on the test dataset was assessed using Area Under Receiver Operating Curve 

(AUC-ROC) and Area Under Precision-Recall Curve (PR-AUC). 

Results: The rate of IOE and POE was 5.62% and 20.98%, respectively. Models for predicting IOE 

were constructed using data from 1690 patients and 38 variables; the best model had AUC-ROC 

of 0.858 (95% CI, 0.762, 0.936), and PR-AUC of 0.590 (95% CI, 0.400, 0.759). Models for 

predicting POE were trained using data from 1406 patients and 59 variables; the best model 

had AUC-ROC of 0.875 (95% CI, 0.834, 0.913), and PR-AUC 0.706 (95% CI, 0.610, 0.790).  

Conclusions: The performance of the ML models in this study is encouraging. Further validation 

in a multi-institutional clinical setting with larger datasets would be necessary to establish their 

clinical value. ML models can be used to predict significant events during and after surgery with 

good accuracy, paving the way for application in clinical practice to predict and intervene at an 

opportune time to avert complications and improve patient outcomes. 

 

1. Introduction 

Current guidelines recommend partial nephrectomy (PN) for T1a masses, as and when 

indicated. The robotic surgery has gained popularity among surgeons [1] but with an overall 

complication rate of up to 30% and major complications  (Clavien-Grade≥3ぶ rate of 3%-6%[2]. 

The morbidity of the PN is attributed to the combination of tumor complexity, patient-related 

comorbidities[3], tumor surroundings[4], and surgeon experience[5,6]. Significant efforts have 

been made to develop tools to individualize patient risk profiles for better surgical planning. 

Instruments such as RENAL[7], PADUA[8], and MAP[9] scores are mainly based on preoperative 

imaging. However, their utility in clinical practice remains questionable[10,11]. Surgical risk 

calculators were made with suboptimal predictability and virtually no clinical utility[12]. 

Artificial Intelligence (AI), a subfield of Machine Learning (ML) has been leveraged to improve 

clinical diagnosis and decision-making in the many areas of healthcare:  Radiology, 
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Dermatology, Ophthalmology, Pathology, Genome interpretation, Biomarker discovery, clinical 

outcome prediction, patient monitoring, inferring health through wearable devices, and 

Autonomous robotic surgery[13]. The application of AI techniques to the management of 

urological cancer has also been reported[14]. Access to large datasets in combination with the 

rapid progress of modern machine learning, data mining, data engineering techniques offers a 

promising opportunity to building models that could translate to valuable clinical practice tools 

for the personalized care of a patient.  

The objective of this retrospective study was to apply ML/AI models to predict the probability 

of a patient having Intraoperative events (IOE) and postoperative events (POE), which are likely 

to adversely impact the clinical course for the patient undergoing robotic partial nephrectomy 

(RPN). We further propose a design for the potential deployment of these models for clinical 

validation in a prospective clinical setting.  

2. Material and Methods 

2.1 Dataset 

VCQI, a multi-institutional dataset of patients who underwent Robotic Partial Nephrectomy for 

kidney tumors, was leveraged for this study. Eighteen centers from around the world 

contributed to the dataset. Ethics committee/IRB clearance for data collection was obtained by 

each center contributing to VCQI database. 

2.1.1 Intraoperative Events (IOE) 

Gross violation of tumor bed, major bleeding from the tumor bed, injury to major vessels, injury 

to abdominal organs, conversion to open, and intraoperative blood transfusion >= 1 unit were 

defined as significant intraoperative events that are likely to delay the recovery of a patient 

(Table 1). After accounting for missing values and outliers, the resultant dataset for IOE 

comprised 1690 patients and 38 predictors. The data processing steps are presented in 

subsection 2.2.1.  The median age of patients was 58.0 [ Q1-Q3, 48.0-66.0] years, and the 

median BMI was 27.3 [Q1-Q3, 24.3-30.1]. The rate of POE was 5.62%. Over 90% of the patients 
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had a clinical staging of T1 tumors. Supplementary tables S1 and S2 illustrate the summary 

statistics for demographic variables and preoperative variables (Table 2). 

2.1.2 Postoperative Events (POE)  

Clavien-Diﾐdo grade ≥ 3, aﾐd leﾐgth of hospital stay greater thaﾐ Αヵth percentile (>4 days in our 

database) within 30 days of surgery were considered as POE (Table 1). After accounting for 

missing values and outliers, the resultant dataset comprised 1406 patients and 59 predictors. 

The data processing steps are presented in subsection 2.2.1. The median age of patients was 

57.0 [Q1-Q3, 48.0-66.0] years, and the median BMI was 27.2 [Q1-Q3, 24.3-30.0]. The male to 

female ratio was 66:34. The POE rate was 20.98%. Over 90% of the patients had a clinical 

staging of T1 tumors. Supplementary tables S3, S4, and S5 illustrate summary stats for 

demographic, preoperative, and intraoperative variables (Table 2). 

2.2 Model Development 

We trained classification models using Logistic Regression (LR), Random Forests (RF), and 

Neural Networks (NN). LR has been traditionally used due to its ease of result interpretation 

and analysis. RF and NN are non-parametric models capable of modeling complex non-linear 

relationships.  

2.2.1 Data Processing 

Missing values for numeric variables were imputed with mean value, and missing values for 

categorical variables were encoded as a separate category for each variable. Categorical 

variables were one-hot encoded, and numeric variables were standardized for LR and NN. 

Multicollinearity of the predictor variables was tested, and it was observed that none of the 

predictors were highly correlated with other predictors. The models were trained using 

balanced weights (inverse ratio of class samples multiplied by the number of classes to total 

samples) to account for imbalance in the dataset. All transformations were performed on the 

training dataset and then applied to validation and test datasets. Stratified random sampling 

was performed to assign 30% of the dataset as the test dataset and remaining data as the 

training dataset. The test dataset was used for final evaluation only, to prevent overfitting.  
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2.2.2 Logistic Regression 

Logistic Regression is an extension of Linear Regression where the output of the model is 

restricted between 0 and 1 using the logistic function. It models the probabilities for 

classification problems with a binary outcome.  L2 regularization was used to prevent 

overfitting. The regularization strength, and the solver for optimizing cost function were tuned 

as part of hyperparameter tuning. 

2.2.3 Random Forest 

Random Forest is an ensemble method for classification and regression tasks. Many 

uncorrelated decision trees are created at training time using a subset of features and 

bootstrapped samples (sampling with replacement) of training data. Once trained, the 

predictions from individual trees are aggregated and provided as the output of the model. The 

process of generating aggregated results from uncorrelated tress makes Random Forest less 

susceptible to overfitting. The number of trees, the maximum number of features used at each 

split, and the minimum sample size per leaf were identified using hyperparameter tuning. 

2.2.4 Neural Network Architecture 

Neural Networks are composed of units of calculation called neuron and are capable of 

modelling complex-patterns present in the data. Neural networks can contain many types of 

layers that perform calculations on input received from the previous layer.  Our NN models 

(Supplementary Figure S1) comprised of the following layers: an input layer, dense layers, 

dropout layers, and an output layer[15,16]. The input layer was provided with data in the form 

of a 2-d array. After the input layer, a 2-layered dense network with a dropout layer after each 

dense layer was implemented. Each dense layer comprised of neurons and used rectified linear 

unit (ReLU) for non-linear activation. Output layer comprised of a single neuron with a sigmoid 

activation function. The dropout layers were used to prevent overfitting of the network to 

training data[17]. The number of neurons in dense layers, the rate of dropout for each hidden 

layer, and the learning rate were tuned as part of the hyperparameter tuning for each model. 

All models were trained to minimize the loss of function, i.e., binary cross -entropy using Adam 

optimizer.  
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2.2.3 Hyperparameter Tuning 

Evaluation of a hyperparameter setting for each model ┘as perforﾏed usiﾐg けGrid-searIhげ ┘ith 

10-fold cross-validation. In 10-fold cross-validation, the training dataset was split into 10 

stratified smaller sets. For each of 10 folds, a model with a specific set of hyperparameters was 

trained on 9 sets and evaluated on the remaining 1 set. Model with the best average 

performance over 10-folds was selected as the final model. We used Python (Python Software 

Foundation) with Scikit-learn[18] package and TensorFlow[19] for analysis. 

2.3 Model Evaluation and Statistical Analysis 

We assessed the comparative performance of our models using Area Under Receiver Operating 

Curve (AUC-ROC) and Area Under Precision-Recall curve (PR-AUC). In highly skewed datasets, 

PR-AUC is shown to be more informative in the evaluation of model performance[20,21]. We 

used bootstrapping to generate confidence intervals for the scores [22,23] and performed a 

permutation test to assess if the observed difference between the models was significant. We 

resampled the test data 10,000 times with replacement to generate a 95% confidence interval 

(CI). We performed the permutation test by simulating a bootstrapped population and checked 

the likelihood of getting the observed difference in AUC-ROC and PR-AUC. 

The permutation feature importance technique was used to assess the importance of the 

features[24]. This is a model agnostic procedure where the values of a feature are randomly 

shuffled to break the relationship between the feature and the target, and the drop in the 

model score is observed. The drop in the model score indicates the importance of the feature. 

Each feature was permuted 100 times, and the drop in the model score was assessed, and a 

95% confidence interval was constructed.  

3. Results 

Three models each were trained for predicting IOE and POE, resulting in a total of six models. 

The models were trained using LR, RFC, and NN algorithms. Each algorithm was trained using 
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balanced weights. The performance of the models constructed for each outcome was assessed 

using the same test data.   

3.1 Intraoperative Events 

The models developed for predicting IOE denoted as LR_IOE, RFC_IOE, and NN_IOE for Logistic 

Regression, Random Forest Classifier, and Neural Network, respectively. The performance of 

the models on the test dataset is shown in figure 1. The sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and F-1 score are reported in table 3.  

The AUC-ROC and PR-AUC for model RFC_IOE was 0.858 (95% CI 0.762, 0.936) and 0.590 (95% 

CI 0.400, 0.759), respectively. The AUC-ROC for model LR_IOE and NN_IOE was 0.826 (95% CI 

0.731, 0.905) and 0.856 (95% CI 0.779, 0.923), respectively. The PR-AUC for model LR_IOE and 

NN_IOE was 0.372 (95% CI 0.189, 0.552) and 0.398 (95% CI 0.212, 0.605), respectively (Table 4). 

The observed PR-AUC difference between RFC_IOE and LR_IOE was 0.221 (p-value=0.035), and 

between RFC_IOE and NN_IOE was 0.208 (p-value=0.067). RFC_IOE outperformed LR_IOE and 

NN_IOE. 

3.2 Postoperative Events  

The models constructed for predicting POE are denoted as LR_POE, RFC_POE, and NN_POE for 

Logistic Regression, Random Forest Classifier, and Neural Network, respectively. The 

performance of the models on the test dataset is shown in figure 1. The sensitivity, specificity, 

positive predictive value (PPV), negative predictive value (NPV), and F-1 score are reported in 

table 3. 

The AUC-ROC and PR-AUC for model RFC_POE was 0.875 (95% CI 0.834, 0.913) and 0.706 (95% 

CI 0.610, 0.790), respectively. The AUC-ROC for model LR_POE and NN_POE was 0.837 (95% CI 

0.786, 0.882) and 0.837 (95% CI 0.786, 0.883), respectively. The PR-AUC for model LR_POE and 

NN_POE was 0.591 (95% CI 0.477, 0.701) and 0.649 (95% CI 0.549, 0.739), respectively (Table 

4). The observed PR-AUC difference between RFC_IOE and LR_IOE was 0.121 (p-value = 0.068), 
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and between RFC_IOE and NN_IOE was 0.057 (p-value=0.21). RFC_POE outperformed LR_POE 

and NN_POE. 

3.3 Feature Importance  

The permutation feature importance procedure was performed for the best model for each 

outcome, i.e., RF_IOE for IOE and RF_POE for POE. The feature importance of features used for 

constructing models RF_IOE and RF_POE are reported in supplementary table S6 and 

supplementary table S7, respectively. Multifocality, Clinical staging – regional lymph nodes, 

Center code, and Solitary kidney were observed to be the most important features for RF_IOE 

(Supplementary table S6). Center code, Haemostatic agents, Center volume, Ischemia 

time(min), and Race were observed to be top five important features for RF_POE 

(Supplementary table S7).  The most important feature for IOE was Multifocality with a value of 

0.192 [95% CI 0.136, 0.217] and for POE was Center Code with a value 0.037 [95% CI 0.018, 

0.054]. The feature importance value is the degradation in the model score when the values of 

a feature are randomly shuffled.  

 

4. Discussion 

Surgeons always endeavor to bring predictability to their actions and decisions taken to manage 

patients under their care. With the successful application of machine learning, it is possible to 

predict many intraoperative and postoperative events, which could be consequential to the 

smooth clinical course of the patient. Predictive models, thus created, can enable surgeons to 

identify high-risk cohorts, preempt consequential events, and plan therapeutic strategies to 

improve patient outcomes. The Robotic partial nephrectomy for small T1 renal tumors is 

establishing itself as a safe and day-case surgery procedure. For a strict case selection, the 

surgeon needs accurate predictive tools to preempt consequential events as a precursor to 

emergency readmission of the patient. Currently, different risk profile tools are in practice to 

identify high-risk cohorts. 
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The existing surgical risk predictors such as PADUA, MAP, and RENAL played a significant role in 

assisting clinicians in the risk assessment of a patient, but it is time their application needs to be 

enhanced to the development of tools prompting an intervention to prevent complications and 

improve overall patient outcomes. ACS NSQIP risk calculator was proposed as an alternative 

tool but did not establish clinical value for predicting post-surgical complications for patients 

who underwent RPN[12]. AI-driven predictive models hold promise to fill in the gap in the field, 

open an opportunity to assess the potential utility of machine learning, and the continued use 

of these models to develop intervention protocols to manage predicted complications. In a 

recent study on the treatment of sepsis, the treatment selected by the AI model was, on 

average, reliably more objective and effective than that chosen by humans [25]. Manaktala et 

al. applied algorithms to detect sepsis and deliver highly sensitive specific decision support tools  

to the point of care using a mobile application. In their practice, the sepsis mortality decreased 

by 53%, and the 30 days readmission rate dropped from 19.08% to 13.21%[26]. Recently, in 

urology, machine learning was used to predict urinary continence recovery[27] and early 

HioIheﾏiIal reIurreﾐIe after roHot‐assisted prostateItoﾏy[28], and to detect low and high-

grade clear cell renal cell carcinomas (cc-RCCs)[29]. 

Conversion from minimally invasive surgery to open surgery is generally considered as a part of 

the procedure and not a complication.  However, the prediction of such an event 

preoperatively would be of high value to the surgeon. Conversion is known to increase the 

hospital stay and adds to significant post-surgical 30-day events. Shumate et al., in their report, 

discuss that conversion to open surgery was a significant reason for a prolonged hospital stay, 

which increases 30 days morbidity[30]. Accurate prediction of prolonged length of stay could 

improve case selection for RPN as an outpatient procedure and to consul the patient and the 

family with certainty. While deciding on the cutoff limit of 4 days as the (>75th percentile) as a 

postoperative event, we agree with Sperling et al., which included hospital stay greater than 

75th percentile in their dataset as a secondary outcome in the study[31]. Shumate et al. 

reported that 80% of patients discharged within the 3rd day of the surgery[30]. Center volume 

was calculated as the number of surgeries performed by each center before operating on a 

given patient, and it was based on the information available in our database. 
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In this study, AI/ML algorithms were used to construct models to predict consequential IOE and 

POE. Three models were built for each outcome, and the best model was selected based on the 

performance on an unseen test dataset. The variables for these models were selected based on 

the availability of data points in VCQI, taking a cue from the published research on the 

subject[12,32–34]. We used AUC-ROC and PR-AUC to assess model performance. In highly 

skewed datasets, PR-AUC is shown to be more informative in the evaluation of model 

performance[20,21].  AUC-ROC Curve takes into account True Positive Rate (TPR) and False 

Positive Rate (FPR). In the case of highly imbalanced datasets, where the bulk of the target 

variable is composed of negative class, true negatives can greatly influence change in FPR. This 

can result in an overly optimistic representation when the classifier is ineffective at predicting 

positive class but predicts negative class accurately. In contrast, PR-AUC depends on RECALL, 

i.e., TPR and Precision (ratio of number true positives divided by the sum of true positives and 

false negatives). Precision indicates how many of the positive predictions were positive labels. 

Hence, PR-AUC is a better measure for evaluating the performance of binary classifiers on 

highly imbalanced datasets. 

The permutation feature importance was calculated to identify the features which contribute 

most to the overall performance of the model. The feature importance score does not reflect 

the intrinsic predictive value of a feature but indicates its contribution to the performance of 

the model on the test dataset. A feature found to be unimportant for a model under inspection 

could be an important feature for a model with higher performance. Multifocality, Clinical 

staging, Center experience, and Solitary kidney were observed to be the most important 

features for a model constructed for predicting intraoperative vents using random forest, i.e., 

RF_IOE. Center experience, Haemostatic agents, Center volume, Ischemia time(min), 

and Race were observed to be the most important features for a model constructed to predict 

postoperative events using random forest, i.e., RF_POE. In recent studies, surgeons with high 

volumes were reported to have lower perioperative outcomes[5] and significant variability was 

observed between surgeon for outcomes post partial Nephrectomy[6].  The center code was 

used as a surrogate for center experience. In another study, ischemia times were found to be 

significantly associated with longer length of stay and postoperative complications [32,35,36]. 
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Hospital volume is known to be significantly associated with postoperative complications and 

prolonged length of stay[37–39]. Racial disparities were reported to exist for in the use of PN 

across hospitals and postoperative complications after partial nephrectomy[40,41].  

This study has some limitations. First, the variables in the dataset do not account for the 

temporal shift in patient characteristics during the admission. Second, intraoperative outcomes 

are known to vary significantly between surgeons. Unfortunately, surgeon information was not 

available for many patients; therefore, it could not be leveraged for constructing the models in 

this study. Third, patient data, such as imaging data and caregiver notes, were not available. 

Fourth, predicting individual intraoperative events or postoperative events (clavien-grade>=3) 

was not possible due to very few occurrences of these individual events. Fifth, the cohort of 

patients was small, i.e., 1690 patients for intraoperative events and 1406 patients for 

postoperative events. Further studies will be required with larger cohorts to validate the 

findings of this study. 

We propose deploying the models at participating centers contributing to the database. The 

deployment process will include the following steps: (1) Re-validate models with new data in 

the VCQI database; (2) Deploy models in co-ordination with respective centers; (3) Monitor 

performance and retrain models when performance falls below a predetermined threshold 

(Figure 2). This would enable the centers to leverage the models for identifying potential 

patients likely to have a complication during or after surgery and innovate intervention 

protocols and provide feedback on model performance. This would also enable us to monitor 

the performance of the models in a clinical setting. 

5. Conclusion 

The clinician's efforts to profile risk before partial nephrectomy with the objective to tailor the 

surgical plan accordingly is a standard of care. In this study, ML/AI models performed well in 

predicting intraoperative events and 30-day postoperative events. We hope to turn these 

models into regularly applied clinical tools. However, the true value of effort could only be 

known in the years to come. 
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Table 1. Composition of Intraoperative Events and Postoperative Events  

Intraoperative Events   Patients no. (%)  

Gross Violation of the Tumor Bed   70 (4.14%)  

Major Bleeding from the Tumor Bed   14 (0.83%)  

Injury to Major Vessels    5 (0.30%)  

Injury to Abdominal Organs    3 (0.18%)  

Intraoperative Blood Transfusion > 1unit  3 (0.18%)  

Conversion to Open   2 (0.12%)  

Postoperative Events  Patients no. (%)  

Length of Stay >4 days  290 (20.63%)  

Clavien-Dindo Grade ≥3  14 (1.00%)  

*Patients may have more than one complication  
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Table 2. List of features included in the model for predicting Intraoperative events and Postoperative 

Events. Demographics and Preoperative data  were used for predicting intraoperative events. In addition to 

above, intraoperative data was used to predict Postoperative Events.  

Feature Group   Features  

Demographics   Age at surgery, BMI, Gender, Marital status, Race, Education   

Preoperative  Clinical size (mm), Charlson score, Hemoglobin (Pre-op), Hematocrit (Pre-op), Leukocytes count 

(Pre-op), Creatinine (Pre-op), No of lesions, Center codes, Center volume, Symptoms, Solitary 

Kidney, Bilaterality of tumor, Side of tumor, Side of surgery, Face, Tumor location, Padua Risk 

score, Polar location, Rim location, Renal sinus, Exophytic rate, Clinical s ize group, Clinical Staging 

- Tumor, Clinical Staging – Regional Lymph Nodes, RENAL Nephro risk stratification, Radius (cm), 

Nearness of tumor (mm), Anterior/Posterior, Location to polar l ine, ASA score, 

Partial  nephro indication, Multifocality  

Intraoperative  Operative time (min), Ischemia time (min), Blood loss (ml), Access, Davinci model, Robotic arms, 

Assistant trocars, Dual console, Ischemia, Arterial clamping, Selective arterial clamping, Vein 

clamping, Early unclamping, Fluorescence, Inner renorrhaphy, Outer renorrhaphy, Urinary 

calyceal system repair, Haemostatic agents, Lymph node dissection, Blood Transfusion (Intra -op), 

Intraoperative events  

Demographics – Patient demographic data.  

Preoperative – Data collected prior to surgery.  

Intraoperative – Data collected during surgery 
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Table 3. Model performance for Intraoperative Events and Postoperative Events. 

Outcomes Model Sensitivity Specificity PPV NPV F-1 Score 

Intraoperative 

Events (IOE) 

LR_IOE 0.679 0.827 0.186 0.978 0.292 

NN_IOE 0.643 0.831 0.182 0.975 0.283 

RFR_IOE 0.357 0.996 0.833 0.964 0.500 

Postoperative 

Events (POE) 

LR_POE 0.730 0.793 0.485 0.917 0.583 

NN_POE 0.281 0.985 0.833 0.837 0.420 

RFR_POE 0.427 0.967 0.776 0.863 0.551 

LR – Logistic Regression 

RFC – Random Forest Classifier 

NN – Neural Network 

IOE – Intraoperative Events 

POE – Postoperative Events 

Sensitivity - Recall  or True Positive Rate   

Specificity – Selectivity or True Negative Rate 

PPV – Positive Predictive Value (Precision) 

NPV – Negative Predictive Value  
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Table 4. Model fit summary for Intraoperative Events and Postoperative Events. 

Outcomes Model AUC-ROC (CLI-95%) PR-AUC (CLI-95%) 

Intraoperative 

Events (IOE) 

LR_IOE 0.826 (0.731, 0.905) 0.372 (0.189, 0.552) 

NN_IOE 0.856 (0.779, 0.923) 0.398 (0.212, 0.605) 

RFR_IOE 0.858 (0.762, 0.936) 0.590 (0.400, 0.759) 

Postoperative 

Events (POE) 

LR_POE 0.837 (0.786, 0.882) 0.591 (0.477, 0.701) 

NN_POE 0.837 (0.786, 0.883) 0.649 (0.549, 0.739) 

RFR_POE 0.875 (0.834, 0.913) 0.706 (0.610, 0.790) 

LR – Logistic Regression 

RFC – Random Forest Classifier 

NN – Neural Network 

IOE – Intraoperative Events 

POE – Postoperative Events 

AUC-ROC – Area Under Receiver Operating Curve 

PR-AUC – Area Under Precision-Recall Curve 
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