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30 Abstract

31 Q fever, caused by the zoonotic bacterium Coxiella burnetii, is a globally distributed 

32 emerging infectious disease. Livestock are the most important zoonotic transmission sources, 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/TBED.13565
https://doi.org/10.1111/TBED.13565
http://crossmark.crossref.org/dialog/?doi=10.1111%2Ftbed.13565&domain=pdf&date_stamp=2020-04-20


This article is protected by copyright. All rights reserved

33 yet infection in people without livestock exposure is common. Identifying potential exposure 

34 pathways is necessary to design effective interventions and aid outbreak prevention. We used 

35 natural language processing and graphical network methods to provide insights into how Q 

36 fever notifications are associated with variation in patient occupations or lifestyles. Using an 

37 18-year time-series of Q fever notifications in Queensland, Australia, we used topic models 

38 to test whether compositions of patient answers to follow-up exposure questionnaires varied 

39 between demographic groups or across geographical areas. To determine heterogeneity in 

40 possible zoonotic exposures, we explored patterns of livestock and game animal co-

41 exposures using Markov Random Fields models. Finally, to identify possible correlates of Q 

42 fever case severity, we modelled patient probabilities of being hospitalised as a function of 

43 particular exposures. Different demographic groups consistently reported distinct sets of 

44 exposure terms and were concentrated in different areas of the state, suggesting the presence 

45 of multiple transmission pathways. Macropod exposure was commonly reported among Q 

46 fever cases, even when exposure to cattle, sheep or goats was absent. Males, older patients 

47 and those that reported macropod exposure were more likely to be hospitalised due to Q fever 

48 infection. Our study indicates that follow-up surveillance combined with text modelling is 

49 useful for unravelling exposure pathways in the battle to reduce Q fever incidence and 

50 associated morbidity.

51
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55 Introduction

56 Q fever is a globally distributed emerging infectious disease caused by the bacterium 

57 Coxiella burnetii (Allan-Blitz, Sakona, Wallace, & Klausner, 2018; Bond, Franklin, Sutton, 

58 Stevenson, & Firestone, 2018; Gyuranecz et al., 2014; Van der Hoek et al., 2010). Acute 

59 infection with C. burnetii is commonly described as a flu-like illness with symptoms 

60 including high fevers, headaches or pneumonia, as well as atypical symptoms such as 

61 hepatitis or myocarditis (Didier Raoult & Marrie, 1995; Sellens et al., 2018). However, up to 

62 60% of human cases are thought to be asymptomatic (Roest et al., 2011). Infection by C. 

63 burnetii rarely causes mortalities but can manifest as a wide spectrum of recurrent, focalized 

64 morbidities that result in debilitating conditions involving the cardiovascular system or lungs 

65 (Fenollar et al., 2001; Million & Raoult, 2017).
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66 Infected livestock, particularly goats and sheep, are the most important sources of 

67 zoonotic Q fever outbreaks in humans (Arricau-Bouvery & Rodolakis, 2005; N. Clark & 

68 Soares Magalhães, 2018). Inhalation of robust and infective small cell variants (SCVs; 

69 sometimes referred to as ‘spores’) is the primary mode of animal-to-human transmission for 

70 C. burnetii (D Raoult, Marrie, & Mege, 2005). Large quantities of SCVs may occur in animal 

71 faeces, vaginal mucus, products of conception and unpasteurized dairy products (Guatteo et 

72 al., 2006). People whose occupations involve close livestock contact (e.g. abattoir workers, 

73 livestock transporters and veterinarians) are considered at highest risk of infection (Graves & 

74 Islam, 2016; Karagiannis et al., 2009; Mori & Roest, 2018; Van der Hoek et al., 2010).

75 In Australia, human Q fever infection has been a notifiable disease in all states and 

76 territories since 1977. Human notification rates of Q fever in Australia are amongst the 

77 highest in the world (Gidding, Wallace, Lawrence, & McIntyre, 2009; Lindsay, Rohailla, & 

78 Miyakis, 2018; Sloan-Gardner, Massey, Hutchinson, Knope, & Fearnley, 2017). Australia 

79 also has the world’s only licensed human vaccine for Q fever (Q-Vax®, Seqirus Limited, 

80 VIC, Australia). Across the years 2001 – 2006 inclusive, the Australian Government funded a 

81 National Q fever Management Program, which involved screening and vaccination for 

82 specific at-risk populations including abattoir workers and livestock farmers (Gidding et al., 

83 2009). This led to notable decreases in human Q fever notifications in subsequent years, 

84 particularly for the states of Queensland and New South Wales where the majority of 

85 Australian notifications occur (Karki, Gidding, Newall, McIntyre, & Liu, 2015; Sloan-

86 Gardner et al., 2017). 

87 Despite commendable vaccination and education efforts, Q fever persists as a public 

88 health concern in Australia (Lindsay et al., 2018; Sivabalan, Saboo, Yew, & Norton, 2017; S. 

89 Tozer, Lambert, Sloots, & Nissen, 2011). Moreover, recent notifications are now commonly 

90 attributed to people with no previous record of occupational exposure to risks associated with 

91 regular livestock contact, suggesting other transmission pathways may play roles in the 

92 epidemiology of the disease (N. Clark & Soares Magalhães, 2018; Reedijk, Van Leuken, & 

93 Van Der Hoek, 2013; Sloan-Gardner et al., 2017; S. Tozer et al., 2011). These underexplored 

94 transmission routes may differ substantially among people that live or work in different 

95 sectors (Clutterbuck, Eastwood, Massey, Hope, & Mor, 2018). Coxiella burnetii can persist 

96 in the environment, is resistant to harsh conditions and may be transported over long 

97 distances on prevalent winds (N. Clark & Soares Magalhães, 2018; Fitzpatrick, Kersh, & 

98 Massung, 2010; Reedijk et al., 2013). Coupled with the bacterium’s long incubation period of 

99 up to 4 – 6 weeks (Didier Raoult & Marrie, 1995), these aspects of Q fever epidemiology 
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100 make it difficult to investigate relevant exposure pathways. Nevertheless, a diversity of 

101 possible wildlife reservoirs has been identified through molecular and serological surveys, 

102 including wild and domestic mammals, birds and even ticks (Alanna Cooper, Barnes, Potter, 

103 Ketheesan, & Govan, 2012; A Cooper, Stephens, Ketheesan, & Govan, 2013; Flint et al., 

104 2016; Webster, Lloyd, & Macdonald, 1995). Among these, macropods (including kangaroos, 

105 wallabies and wallaroos from the family Macropodidae) are of particular interest because (1) 

106 they are abundant and often share habitats with Australian livestock; (2) they are a common 

107 source of game meat for both humans and companion animals (Hoffman & Cawthorn, 2012); 

108 and (3) a range of macropod species have been documented as possible reservoir hosts of the 

109 bacterium using serological or molecular evidence (Banazis, Bestall, Reid, & Fenwick, 2010; 

110 Alanna Cooper et al., 2012).

111 Patients diagnosed with Q fever in the state of Queensland, Australia are interviewed 

112 with a series of questions designed to document and investigate possible transmission 

113 pathways. A questionnaire is completed over the telephone (within five days of positive Q 

114 fever confirmation) and contains fields including onset date, demographics (age, gender, 

115 indigenous status), occupation and several text-based fields aimed at describing the possible 

116 pathways of exposure to livestock / game animals (see Appendix S1 for the full 

117 questionnaire template). In 2012, an extended surveillance form was introduced to allow 

118 patients to more directly list all possible animal exposures, adding an additional layer of rich 

119 enhanced surveillance data. 

120 Identifying potential exposure pathways in people with confirmed Q fever infection is 

121 a key step to reduce disease incidence and severity. In this study, we applied natural language 

122 processing to an 18-year dataset of Q fever notifications in Queensland, Australia to 

123 investigate whether patients belonging to different demographic groups commonly report 

124 different potential exposure pathways. We then used multivariate graphical models to explore 

125 associations among reported animal-based exposures. Finally, we used infection-related 

126 hospitalisation records as a proxy for disease severity to test whether patients with reports of 

127 particular types of animal exposures suffer from more severe acute Q fever infections. 

128

129 Methods

130 Ethics statement

131 This research used data on Q fever notifications collected by the Queensland Department of 

132 Health in accordance with Section 284 of the Public Health Act 2005 and was completed 
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133 under the ethical approval of The Children’s Health Queensland Human Research Ethics 

134 Committee (HREC08/QRCH/66AM03 8/05/2017).

135

136 A state-wide dataset of Q fever notifications from Queensland, Australia

137 The primary data for this study encompassed all available human cases of Q fever infection 

138 notified to the Queensland Department of Health from 1 July 1984 to 31 December 2017 

139 inclusive. According to national guidelines, human cases of Q fever must be confirmed using 

140 either laboratory definitive evidence or a combination of laboratory suggestive evidence and 

141 clinical evidence (Communicable Diseases Network Australia, 2018). Laboratory definitive 

142 evidence includes either (1) detection of C. burnetii by nucleic acid testing, (2) 

143 seroconversion or significant increase in antibody level to Phase II antigen in paired sera 

144 tested coupled with the absence of recent Q fever vaccination, or (3) detection of C. burnetii 

145 by culture. Laboratory suggestive evidence refers to detection of specific IgM in the absence 

146 of recent vaccination. The full dataset contained 7,495 Q fever notifications. We geocoded 

147 patient addresses to describe spatial variation in exposure reports. Based on available 

148 information, geocodes were taken from one of three hierarchical levels representing (from 

149 most to least precise) house number and street name of the patient’s address (n = 4,217), 

150 centroid of the street (n = 784) or centroid of the Statistical Local Area (SLA; n = 2,494). 

151 We filtered the data to only include cases from the years 2001 – 2017, as follow-up 

152 questionnaires became mandatory in 2001. This reduced dataset contained 4,068 individual Q 

153 fever notifications. Patients in this dataset had a median age of 39 years (interquartile range 

154 [IQR]: 27 – 52 years). Males accounted for 74% of notifications. Because reported animal 

155 exposures were more data-rich following the rollout of the improved surveillance form in 

156 2012, we created a separate dataset containing only the 2012 – 2017 data (n = 979) for 

157 comparisons in co-exposure analyses (see “Identifying animal exposures and co-exposures 

158 using Markov Random Fields” below and see Figure S1 in Supporting Information for a 

159 flowchart of observations used in each step of analysis).

160

161 Building an exposure dataset using text mining

162 We applied natural language processing to all open-ended (text-based) question fields to 

163 construct an exposure dataset whereby each patient’s responses were represented as a distinct 

164 text unit. A series of quality control steps were used to correct spelling errors and filter out 

165 uninformative terms. Briefly, we first removed numerics and filtered out stop words (i.e. 
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166 words that are very common and are consequently considered unimportant for search queries, 

167 such as ‘the’, ‘about’ or ‘said’; Fox, 1989). Next, we singularized words (i.e. by changing 

168 ‘kangaroos’ to ‘kangaroo’) and applied a fuzzy pattern matching spell check algorithm that 

169 suggests replacements for misspelled words using a United States English language 

170 dictionary. Finally, we removed words containing fewer than three letters. Words reported by 

171 a total of 2,044 individual patients were included after these filtering steps (Figure S1). Text 

172 processing was carried out in R version 3.3.3 (R Core Team, 2018) and primarily used 

173 functions from the packages tidytext (Silge & Robinson, 2016), hunspell (Ooms, 2017) and 

174 tidyverse (Wickham, 2017).

175

176 Latent Dirichlet Allocation to identify discriminatory response ‘topics’

177 We applied a topic model algorithm, also known as Latent Dirichlet Allocation, to our 

178 exposure dataset to ask whether the composition of words in a patient’s responses could 

179 provide information about their demographic features. Topic models are a class of generative, 

180 unsupervised machine learning methods designed to identify latent ‘topics’ containing similar 

181 term compositions and frequencies within a given collection of texts (Blei, 2012; Hornik & 

182 Grün, 2011). This is accomplished with a mixture model whereby word frequencies in each 

183 latent topic are drawn from an unknown Dirichlet distribution (Blei, Ng, & Jordan, 2003). 

184 We pooled text from individual cases into eight demographic groups representing different 

185 sex and age classes (Table 1). Age categories were chosen to represent school-age children 

186 (ages 0 – 18), working age young adults (ages 19 – 34), working age older adults (ages 35 – 

187 64) and retirees (ages 65 – 100), considering differing potential exposure risks. We did not 

188 have a sufficient sample size to analyse data from children under five years of age separately 

189 (only 16 pre-school age individuals were in the notification data). Words that were 

190 represented fewer than five times were removed to ensure we focused only on terms likely to 

191 be useful for discriminating between demographic groups. 

192 We fit topic models to the resulting term matrix, which contained 14,338 observations 

193 for 397 unique terms. Because the number of word topics (k) must be specified prior to fitting 

194 the model, we used a data-driven approach to identify the optimal number. We tested six 

195 topic models (k = 2 – 7) and compared each model’s geometric mean per-word likelihood 

196 (also known as perplexity; Hornik & Grün, 2011). The model that minimized inverse 

197 perplexity while containing the fewest number of topics was considered the most 

198 parsimonious (see Figure S2 in Supporting Information for perplexity scores from each 

199 tested model). From the best-fitting model, we calculated the relative contribution of each 
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200 topic to each demographic group’s response document to assess whether patients from 

201 different demographics provided different sets of responses. Topic models were fit using 

202 functions in the topicmodels R package (Hornik & Grün, 2011). 

203

204 Identifying potential animal exposures and co-exposures using Markov Random Fields

205 We next determined whether free-text fields included information that might represent 

206 potential exposure to particular livestock species (cattle, sheep, goats or pigs) or macropods. 

207 This involved searching through patient answers for key terms associated with each of these 

208 target host species (e.g. ‘cattle’, ‘heifer’ or ‘beef’ for potential exposure to cattle; see Table 

209 S1 in Supporting Information for a full list of search terms for each target host group). 

210 Mentions of these target species were recorded as binary indicator variables. A total of 1,380 

211 cases mentioned exposure to at least one of the five target host species (Figure S1). Note that 

212 multiple binary fields exist for detecting sheep exposure, such as ‘work with wool’ or ‘work 

213 in a shearing shed’ (Table S1), and so detections of sheep exposure may have higher 

214 accuracy. Excluding these binary survey questions resulted in a total of 313 sheep exposures 

215 detected, compared to 384 with the binary fields included. We chose to use the full dataset 

216 for all analyses, though we recognise this slight potential for bias towards sheep exposure 

217 detection.

218 We fit a Markov Random Fields (MRF) model to our matrix of binary animal 

219 exposures (N. J. Clark, Wells, & Lindberg, 2018a). This framework, commonly used in 

220 multivariate classification problems (Fountain-Jones et al., 2019; Harris, 2016), is well-suited 

221 to our exploration of exposure pathways as it allows us to ask whether pairs of animal 

222 exposures were more or less likely to be jointly reported (co-exposure) after accounting for 

223 all other types of animal exposure (e.g. are pairs of exposures conditionally associated after 

224 accounting for all other exposures in the graph?). In our model, each type of animal exposure 

225 was included as a node in the undirected network, with edges between nodes representing the 

226 marginal relationships between pairs of reported exposures adjusting for all other 

227 relationships present (N. J. Clark, Wells, & Lindberg, 2018b). We also included an additional 

228 binary node representing whether or not the patient was hospitalised due to Q fever infection, 

229 allowing us to ask whether certain animal exposures were more or less likely to be 

230 statistically associated with hospitalisation. Conditional relationships were estimated using a 

231 regularized node-wise regression approach through functions in the MRFcov R package (N. J. 

232 Clark et al., 2018a). We fit a separate MRF using only the 2012 – 2017 data (n = 979) to 
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233 investigate whether the extended surveillance questionnaire led to different estimates of co-

234 exposure relationships.

235

236 Regression models to identify associations with hospitalisation probability

237 The above analyses explore patient exposure reports and how exposures may be related to 

238 one another. We supplemented these models by fitting a series of supervised machine 

239 learning regressions to identify important exposure correlates of a Q fever patient’s 

240 probability of being hospitalised. Tested covariates were: sheep exposure, cattle exposure, 

241 macropod exposure, goat exposure, pig exposure, shooting / hunting participation, 

242 Indigenous status, age, sex, whether the patient was previously vaccinated and whether the 

243 patient reported that they previously assisted in animal births. All exposure / activity 

244 questions related to the month prior to the onset of illness. In addition, we constructed a 

245 binary variable to distinguish between pre-2012 and 2012-present observations to account for 

246 possible differences between the two time periods. We first fit two regularized spatial logistic 

247 regression models that applied a coordinated gradient descent LASSO regularization 

248 algorithm to select important predictor variables (Friedman, Hastie, & Tibshirani, 2010): the 

249 first included latitude and longitude as covariates; the second expanded these coordinates into 

250 Gaussian process spatial regression splines (Kammann & Wand, 2003) to account for non-

251 linear spatial patterns. In addition, we accounted for possible non-linearity in predictor-

252 outcome relationships by fitting a generalised additive logistic model that also included 

253 spatial regression splines (Wood, 2003). For each of these three competing models, we 

254 calculated their predictive performance using a cross-validation process that involved fitting 

255 models to a random subset of the data containing ~80% of observations (~1104 individuals) 

256 and calculating prediction accuracy (e.g. proportion of observations correctly predicted) for 

257 the remaining ~ 20% of observations. This cross-validation process was repeated 100 times to 

258 quantify uncertainty in predictive performances. Regressions were fit using functions in the 

259 glmnet and mgcv R packages (Friedman et al., 2010; Wood, 2003). Due to the sensitivity of 

260 the notification data, raw data is not publicly available. However, word strings for each 

261 demographic group and R scripts to replicate the topic model and posthoc analyses are 

262 available in the Supporting Information.

263

264 Results

265 Topic model analysis
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266 Our text-mining dataset contained 14,337 words reported by 2,044 patients from eight 

267 demographic groups (Table 1). The richest sources of words came from working-age patients 

268 (19 – 34 and 35 – 64 years old), with both sexes well represented in the dataset (Table 1). 

269 The best-fitting topic model identified five word ‘topics’ that could successfully classify Q 

270 fever patients into categories based on their age group and sex (Figure 1). While a total of 

271 397 words were included in the analysis, we identified some key influential terms that 

272 achieved high discriminatory power. In other words, the presence of these terms in a patient’s 

273 answers likely represented important differences in the lifestyles and/or exposure pathways 

274 exhibited by demographic groups. Differences in answers between the two sexes were 

275 apparent, as two of the five identified topics were almost entirely associated with males. We 

276 describe each of the topic groups and some of their key discriminatory terms in detail below.

277 Topic 1: the most easily distinguishable demographic group, which belonged almost 

278 entirely to this topic, consisted of working age males (ages 19 – 34 years). This group 

279 consistently mentioned informative occupational terms associated with the livestock trade, 

280 such as ‘export’, ‘abattoir’, ‘feedlot’, ‘beef’, ‘kill’ and ‘process’, that were not commonly 

281 mentioned by other demographic groups (Figure 1). 

282 Topic 2: children from both sexes (ages 0 – 18 years) belonged almost entirely to this 

283 topic, as did young females (ages 19 – 34 years). Discriminatory terms included words 

284 associated with education, including ‘child’, ‘college’, ‘primary’, ‘school’, and ‘student’, as 

285 well as the name ‘Bollon’ (a town in the inland shire of Balonne, which is a region that 

286 consistently has high rates of Q fever notifications in Queensland).

287 Topic 3: this topic was strongly associated with working age and retired females (35 

288 years and older) as well as some males of retirement age (ages 65 – 100 years). 

289 Discriminatory terms included ‘wife’, ‘housewife’, ‘husband’, ‘vet’, ‘nurse’ and ‘cook’.

290 Topic 4: this topic was entirely composed of working age and retired males (ages 35 

291 years and older) and was distinguished by terms commonly associated with factory workers 

292 and tradesman, including ‘drain’, ‘factory’, ‘weld’, ‘milk’ and ‘handyman’.

293 Topic 5: this group included working age males and females (ages 35 – 64) and some 

294 younger working females (ages 19 – 34). Discriminatory terms reflected possible indirect 

295 exposure routes, including ‘manure’, ‘observe’, ‘post’, and ‘office’, as well as some terms 

296 that may reflect direct exposure including ‘bull’ and ‘meatworker’.

297 To assess spatial patterns in the distributions of topics, we predicted the most 

298 probable topic for each of the 2,044 patients using their individual responses. After adjusting 

299 for resident population sizes of the surrounding Local Government Area (LGA), we found 
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300 that all topics were generally more common in central areas of the state where Q fever 

301 notifications have traditionally been high (Figure 2; S. J. Tozer, 2015). However, some key 

302 spatial differences across topics were evident. Topics associated with working age males 

303 (ages 19 – 34 years) and children (males and females ages 0 – 18 years) primarily occurred in 

304 the central and central-south areas of the state (Topics 1 and 2; Figure 2). In contrast, topics 

305 associated primarily with patients aged 35+ years (Topics 3 and 4) were both generally more 

306 common in central-north areas of the state (Figure 2). Topic 5, which contained a mix of 

307 words suggesting non-occupational exposure, was more evenly distributed across northern 

308 and southern areas in central Queensland (Figure 2).

309

310 Animal exposures reported by Q fever patients

311 From 2001 – 2017, a total of 1,380 individual Q fever cases reported potential exposure to at 

312 least one of the five target animal groups. Of these, 890 (64%) reported exposure to cattle, 

313 638 (36%) to macropods, 384 (28%) to sheep, 347 (25%) to pigs and 237 (17%) to goats 

314 (note some individuals reported exposure to multiple animal groups; Figure 3). Notifications 

315 with reported exposures occurred across much of the state, though the majority were again 

316 concentrated in the central and central-south areas for each of the five target animal groups 

317 (Figure 3). This same pattern also held for those individuals that did not report exposure to 

318 any of the five target animal groups (Figure S3). Across years, cattle exposure was the most 

319 common animal exposure pathway, though reports of non-cattle exposure (particularly for 

320 macropods) were noticeably more common following the rollout of the expanded 

321 surveillance in 2012 (Figure 4a). Across all 1,380 individuals, a total of 187 cases (14%) 

322 were identified that reported exposure to macropods but did not report exposure to any 

323 livestock species. In contrast, 396 cases reported only cattle exposure (27%), 99 (7%) 

324 reported only sheep exposure and 30 (2%) reported only pig exposure.

325 Proportions of reported exposures attributed to each animal showed some noticeable 

326 variation across topic groups (Figure 4b). Most notably, patients belonging to Topic 3 

327 (working age and retired females and some retired males, primarily located in the central-

328 north areas of the state) and Topic 4 (working age and retired males associated with factories 

329 or trades, also commonly found in the central-north) more often reported macropod exposure 

330 than any other group, with 35.6% and 29.3% of exposures attributed to macropods, 

331 respectively (Figure 4b). Patients from these groups also tended to report fewer exposures to 

332 sheep and goats than patients from other groups. In contrast, groups more commonly found in 

333 south-central areas of the state, including patients from Topics 1 and 2 (working age males in 
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334 the livestock trade and children / young females associated with the education industry), 

335 reported more even exposures across the five animal reservoir species (Figure 4b).

336

337 Animal co-exposures identified using Markov Random Fields

338 Our MRF model, built using the dataset of 1,380 patients from the years 2001 – 2017, 

339 identified a number of important conditional pairwise relationships between reported animal 

340 exposures (Figure 5, top graph). Patients that reported goat exposure were > 3 times more 

341 likely to also report sheep exposure after accounting for all other exposures (marginal Odds 

342 Ratio 95% credible interval [OR]: 2.88 – 3.71). A similarly strong positive relationship was 

343 found for macropod and pig exposures (OR: 2.81 – 3.59). In contrast, a strong negative 

344 relationship was identified between cattle and macropod exposures (OR: 0.29 – 0.36). In 

345 addition, we estimated that patients were approximately 50% more likely to be hospitalised if 

346 they reported macropod exposure than if they did not (OR: 1.32 – 1.65), while patients were 

347 20% less likely to be hospitalised if they reported pig exposure (OR: 0.75 – 0.95).

348

349 Associations with probability of hospitalisation

350 A total of 672 of the 1,380 patients included in the analysis dataset were admitted to hospital 

351 as a result of Q fever infection. Of the three logistic regressions we tested, the LASSO 

352 algorithm without spatial regression splines was the best-fitting and most parsimonious 

353 model (prediction accuracy range: 0.53 – 0.66, compared to ranges of 0.51 – 0.64 for the 

354 gaussian process LASSO and 0.51 – 0.63 for the spatial GAM). This model retained five 

355 important predictors: exposure to macropods, exposure to animal births, sex (male = 1), age 

356 and year of notification. Effect sizes revealed that all of these variables increased risk of 

357 hospitalisation apart from exposure to animal births (Figure S4). Being male increased risk 

358 by 48% (effect size 95% CI [ES]: 1.16 – 1.90), exposure to macropods increased risk by 34% 

359 (ES: 1.07 – 1.66) and each additional 5 years of age increased risk by 16% (ES: 0.15 – 0.17). 

360 Hospitalisation risk also increased by 10% each year from 2001 – 2017 (ES: 0.10 – 0.12) 

361 (Figure S3). Exposure to animal births decreased risk by 67% (ES: 0.52 – 0.85). There was 

362 no difference in numbers of patients that reported animal birth exposure between the sexes 

363 (χ2 test: χ2 = 2.12, p = 0.15), though there was a moderate difference in ages. Specifically, 

364 patients that reported animal birth exposure were 0.5 – 4.5 years younger than those that did 

365 not (t test: t = -2.24, p = 0.03).

366

367 Discussion
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368 Our study provides new insights into the complexities of Q fever epidemiology and 

369 showcases the utility of incorporating enhanced surveillance data into disease monitoring and 

370 research programmes. The undifferentiated nature of clinical presentations associated with Q 

371 fever and the lack of awareness of this disease as a potential diagnosis across geographical 

372 regions means that adequate treatment will often be delayed or missed (Dahlgren, Haberling, 

373 & McQuiston, 2015; Lindsay et al., 2018; Million & Raoult, 2017; Didier Raoult & Marrie, 

374 1995). A better understanding of exposure pathways is necessary to help design measures 

375 aimed at preventing exposure to C. burnetii (Angelakis & Raoult, 2011; Clutterbuck et al., 

376 2018). The results of our text modelling approach demonstrate two clear patterns of reported 

377 exposures among Queensland’s Q fever notifications: (1) responses to survey questions 

378 differed among demographic groups and (2) patients belonging to different exposure topics 

379 were often concentrated in different geographical areas. Moreover, we identify predictors of 

380 hospitalisation risk and show that the simplified exposure questionnaire performed similarly 

381 to the expanded questionnaire; these findings can help improve resource allocation to reduce 

382 the burden of Q fever infection. Collectively, our study indicates that follow-up surveillance 

383 combined with text modelling is useful for unravelling exposure pathways in the battle to 

384 reduce the incidence Q fever and other zoonotic diseases. 

385 With one of the world’s highest Q fever notification rates and a long history of 

386 livestock-based agriculture, Queensland is a focus area for research on Q fever epidemiology 

387 (Sivabalan et al., 2017; Sloan-Gardner et al., 2017; S. J. Tozer, 2015). Key among efforts to 

388 reduce Q fever incidence is Queensland Health’s use of follow-up surveillance of notified 

389 cases. These crucial data, particularly following the 2012 rollout of an extended outbreak 

390 investigation form, are providing deeper insights into possible exposure pathways 

391 (Communicable Diseases Network Australia, 2018). However, making sense of text data that 

392 results from open-ended questions can be challenging and often requires model-based 

393 algorithms (Paul & Dredze, 2014; Roberts et al., 2014). By applying a topic model to an 18-

394 year dataset of Queensland Q fever notifications, we show that patients from different 

395 demographic groups consistently reported distinct sets of exposure terms, suggesting 

396 demographic-specific transmission pathways. Moreover, our study expands on the well-

397 known concentration of Q fever notification rates in rural Australia (Gidding et al., 2009) to 

398 demonstrate that patients associated with different exposure pathways showed different 

399 spatial patterns, with some concentrating more in the north and others in the south of the 

400 state. These findings provide an evidence-base for multifaceted and epidemiologically 

401 relevant health promotion campaigns that can act in tandem with ongoing Q fever 
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402 occupational vaccination programmes to increase Q fever awareness and decrease burdens of 

403 disease.

404 Our models provide strong evidence that open-response answers from younger 

405 working males (ages 19 – 34 years; Topic 1) were compositionally different to those from 

406 older working males (35 – 64 years; Topic 3). In general, younger males reported terms 

407 associated with the livestock industry while older males reported indirect exposure terms or 

408 terms associated with trades. With known discrepancies between occupations considered 

409 ‘high-risk’ by Australian health bodies and those thought of as ‘high-risk’ by rural 

410 practitioners (Lindsay et al., 2018), this finding that males likely encounter different 

411 occupational exposures between age groups provides useful information for designing 

412 education and vaccination programmes. In contrast, children and young females commonly 

413 reported terms associated with education (Topic 2), perhaps indicating they were less likely 

414 to directly participate in traditional high-risk activities. However, this maternal-child word 

415 topic strongly overlapped in space with areas that harboured relatively high densities of 

416 working males from the traditional occupational group (Topic 1). Moreover, patients from 

417 these two groups (young working age males and children / young working age females) were 

418 also very similar in terms of their animal exposure profiles, with both groups reporting 

419 moderate cattle exposure but more commonly reporting pig exposure compared to other 

420 groups. These results have public health implications due to the fact that (1) the current 

421 advice for Q fever vaccination is that it should not be administered to patients younger than 

422 15 years (Australian Technical Advisory Group on Immunisation (ATAGI), 2018) and (2) 

423 awareness programmes are not currently targeting family members, particularly children, of 

424 stockman (Armstrong et al., 2019; Gidding et al., 2009). 

425 A prominent finding of our study is that older patients, particularly those residing in 

426 Queensland’s northern regional areas, represent a key and epidemiologically distinct at-risk 

427 group for Q fever infection. Patients aged 65 years and older were (1) more concentrated in 

428 the central-north of the state, (2) more likely to report macropod exposure but less likely to 

429 report goat or sheep exposure and (3) more likely to be hospitalised due to infection. 

430 Interestingly, patients in this group also commonly reported occupational exposure terms 

431 associated with the veterinary industry, including ‘vet’ and ‘nurse’. The recognition that older 

432 patients are exposed to C. burnetti through different pathways, and that risks of 

433 hospitalisation are higher, confirms previous findings from Australia (Karki et al., 2015) and 

434 elsewhere (Dupont et al., 1992). This has implications for the future distribution of public 

435 health resources. Population ageing resulting from accelerated expansion of older people is a 
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436 major phenomenon affecting many of the world’s developed countries, and Australia is no 

437 exception (Ofori-Asenso, Zomer, Curtis, Zoungas, & Gambhir, 2018). From the year 1996 to 

438 2016, the proportion of Australia’s population aged 65 years and over increased from 12.0 to 

439 15.3%, and such increases are expected to continue (Australian Bureau of Statistics (ABS), 

440 2016). By demonstrating a strong correlation between patient age and the probability of 

441 hospitalisation due to Q fever infection, our study contributes to growing evidence that aging 

442 populations are associated with increased demands for healthcare (Beard & Bloom, 2015). 

443 Understanding how much of this increasing demand is driven by changes in reporting, 

444 heightened awareness or the rollout of intervention programs (such as Q fever vaccination in 

445 Australia) should be a topic of future research. This is particularly true given our finding that 

446 probability of hospitalization increased with year of onset across our study’s timeframe. It is 

447 unlikely that Q fever severity has increased over time. Rather, this pattern could reflect 

448 heightened awareness of the disease and its health impacts, or perhaps a shift from primarily 

449 acute cases in livestock workers to non-occupational cases that are more difficult to diagnose 

450 due to a lack of obvious exposure pathways. Indeed, the authors of a recent time-series 

451 analysis of Q fever notifications in Victoria, Australia found evidence for such a pattern and 

452 postulated that many mild cases likely remain undiagnosed, leading to a relatively high 

453 hospitalisation rate for those more severe cases that are confirmed as Q fever (Bond et al., 

454 2018).

455 Many species of wildlife have long shown evidence of exposure to C. burnetti, and 

456 some authors have made the suggestions that these species can pose greater zoonotic risks 

457 than livestock in particular environments (Enright et al., 1971; González‐Barrio & Ruiz‐Fons, 

458 2019; Koehler, Kloppert, Hamann, El-Sayed, & Zschöck, 2019). Multiple lines of evidence 

459 from our study confirm previous findings that macropods may be a primary reservoir host for 

460 C. burnetii (Banazis et al., 2010; Alanna Cooper et al., 2012; A Cooper et al., 2013). First, 

461 following the implementation in 2012 of the enhanced surveillance exposure questionnaire 

462 macropod exposure has become the second most common reported animal exposure among 

463 patients with confirmed Q fever infection. This pattern has been quite stable since 2012. 

464 Second, 14% of patients reported exposure to macropods without reporting exposure to any 

465 of the more frequently implicated livestock species such as cattle, sheep and goats. Finally, 

466 our study provides limited evidence that exposure to macropods may be an indicator of a Q 

467 fever patient’s severity of disease. Reported macropod exposure correlated with an up to 66% 

468 increased risk of hospitalisation after accounting for other factors such as patient age, sex and 

469 the year of onset. We note however that increased rates of reported exposure to a particular 
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470 animal species does not imply it represents a prominent source of C. burnetii. Many people in 

471 Australia observe and encounter macropods on a regular basis without contracting Q fever, 

472 and we are unaware of any empirical evidence that pigs are a source of C. burnetii in 

473 Australia. Our findings should be used to motivate further empirical studies to identify 

474 transmission pathways among cohorts of individuals reporting different exposure profiles. 

475 Useful future studies can also address whether there is any difference between domestic vs 

476 feral animal exposure rates and can investigate other possible animal exposures for their 

477 associations with patient cohorts

478 While risk of hospitalisation due to Q fever may not necessarily be a robust proxy for 

479 severity, associations with hospitalisation risk can still uncover important patterns in the 

480 burden of disease. In addition to the risk factor of macropod exposure and consistent with 

481 previous studies in Australia, we found that working-age and older males were at higher risk 

482 of hospitalisation (Garner, Longbottom, Cannon, & Plant, 1997; Sloan-Gardner et al., 2017). 

483 An interesting association was the negative influence of exposure to animal births on 

484 hospitalisation risk. Traditionally, assisting in livestock births is considered one of the riskiest 

485 occupational activities for acquiring Q fever, particularly if this occurs during a Coxiella-

486 induced abortion wave (Berri, Rousset, Champion, Russo, & Rodolakis, 2007; Boden, 

487 Brasche, Straube, & Bischof, 2014). Without an in-depth understanding of who attends 

488 animal births on each property, it is difficult to ascertain whether this finding is being 

489 confounded by other factors that were not captured by our exposure dataset.

490 Several limitations of our study should be considered when interpreting our results. 

491 First, frequent patterns of reported co-exposures make it challenging to pinpoint the exact 

492 source of infection. For example, sheep and goat exposures were very commonly co-reported, 

493 as were macropod and pig exposures. This is not surprising. Mixed-species farms are 

494 common in Queensland and both macropods and feral pigs are widespread across the state 

495 (Bastin, Smith, Watson, & Fisher, 2009; Gentle, Speed, & Marshall, 2015; Woodall, 1983). 

496 Reports of ‘exposure’ may in many cases simply relate to observations of a nearby animal, 

497 rather than any meaningful interaction that could represent a transmission pathway. 

498 Household investigations to improve estimates of source attribution are needed to tease these 

499 patterns apart. Second, a lack of data to distinguish between pre-school and school-aged 

500 children meant that we could not assess whether these groups may have different exposure 

501 profiles. Variation in the stringency of follow-up investigation across different treatment 

502 centres may lead to inconsistencies in the detail of exposure reports. And finally, our reliance 
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503 on notification data means that only a proportion of the total cases occurring in Queensland 

504 during the study period were included.

505 In conclusion, our study has demonstrated that Q fever epidemiology in Queensland is 

506 non-stationary in that exposure factors for Q fever notifications and risk of hospitalisation 

507 play different roles depending on location. Our findings suggest local investigations are 

508 necessary to uncover factors associated with exposure to infection in the high-risk areas and 

509 populations identified in this study. 
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Demographic group # individuals # total words (mean per 

individual)

# unique words (mean 

per individual)

Females

  0 - 18 years 56 361

(6.45)

94

(1.68)

  19 – 34 years 69 489

(7.09)

144

(2.09)

  35 - 64 years 346 2,222

(6.42)

285

(0.82)

  65 - 100 years 63 437

(6.94)

115

(1.83)

Males

  0 - 18 years 125 1,223

(9.78)

195

(1.56)

  19 – 34 years 283 2,268

(8.01)

305

(1.08)

  35 - 64 years 905 6,163

(6.81)

381

(0.42)

  65 - 100 years 197 1,319

(6.70)

216

(1.10)

712 Individual patients were grouped by age and sex categories and their responses to open-ended exposure questions were pooled to form a 

713 document term matrix. Stop words, numerics and words recorded fewer than five times overall were removed prior to analysis.

714

715
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717 Figure 1: Results from topic model analysis of Q fever patient responses to open-ended 

718 exposure questions. (Left) relative contributions of each of the five latent response word 

719 groups (i.e. topics) to each demographic group’s total word composition; (Right) wordclouds 

720 depicting words that had the highest discriminatory power for each of the five latent response 

721 word topics. Colours of wordclouds correspond to colours of word topics. Sizes of words are 

722 proportional to their discriminatory power (larger size indicates a word is more strongly 

723 associated with that particular word topic). Bold text indicates key discriminatory words 

724 indicative of possible exposure pathways. Note that italic text refers to names of towns in 

725 rural Queensland: Chinchilla, Boonah, Winton, Isisford, Mitchell, Dirranbandi, Bollon, 

726 Charleville, Minnel, Morven, Emerald and Sarina.

727

728 Figure 2: Distributions of human Q fever notifications assigned to each word topic across 

729 Local Government Areas (LGAs) in Queensland, Australia from the years 2001 – 2017. 

730 Topics were identified by applying a topic model analysis of Q fever patient responses to 

731 open-ended exposure questions. Numbers of notifications are adjusted for the resident human 

732 population size in each LGA to present a notification rate. This figure was generated in R 

733 version 3.3.3 using a shapefile of Queensland LGAs, available from data.qld.gov.au.

734

735 Figure 3: Locations of human Q fever notifications across Local Government Areas (LGAs) 

736 in Queensland, Australia with reported exposure to target animal groups from the years 2001 

737 – 2017. Numbers of notifications are adjusted for the resident human population size in each 

738 LGA to present a notification rate. Note, the final dataset included 1,380 patients but some of 

739 these reported exposure to two or more animal groups. This figure was generated in R 

740 version 3.3.3 using a shapefile of Queensland LGAs, available from data.qld.gov.au.

741

742 Figure 4: Proportions of Q fever notifications in Queensland, Australia reporting potential 

743 exposure to target animal groups, by year (a) and word topic identified by Latent Dirichlet 

744 Allocation modelling (b). Colours of stacked bar charts represent the proportions of 

745 notifications with reported exposure for each of the five animal groups. Note that an 

746 expanded surveillance form was rolled out in Queensland from 2012 to specifically prompt 

747 patients to report animal exposures.

748

749 Figure 5: Conditional associations among exposure (recorded as ‘reported exposure’ or ‘no 

750 reported exposure’) and hospitalisation (recorded as ‘hospitalised’ or ‘not hospitalised’) 
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751 variables estimated from Markov Random Fields network models for the full dataset (from 

752 the years 2001 – 2017; n = 1,380; top graph) and a reduced dataset that followed the rollout 

753 of an extended surveillance form (years 2012 – 2017; n = 979; bottom graph). Numbers on 

754 the diagonals indicate the total number of Q fever notifications in Queensland, Australia in 

755 which a single exposure was recorded (i.e. the variable in the specified row was recorded as a 

756 ‘1’ while all other variables were recorded as ‘0’). Numbers in the off-diagonals represent 

757 numbers of co-exposures. Darker reds indicate that a variable pair’s exposure probabilities 

758 are positively associated after accounting for all other variables in the graph, while darker 

759 blues indicate negative associations among pairs of variables.

760

761

762 APPENDIX 1
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