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Transcriptional signature in microglia associated
with Aβ plaque phagocytosis
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The role of microglia cells in Alzheimer’s disease (AD) is well recognized, however their

molecular and functional diversity remain unclear. Here, we isolated amyloid plaque-

containing (using labelling with methoxy-XO4, XO4+) and non-containing (XO4−) microglia

from an AD mouse model. Transcriptomics analysis identified different transcriptional tra-

jectories in ageing and AD mice. XO4+ microglial transcriptomes demonstrated dysregulated

expression of genes associated with late onset AD. We further showed that the transcrip-

tional program associated with XO4+ microglia from mice is present in a subset of human

microglia isolated from brains of individuals with AD. XO4− microglia displayed transcrip-

tional signatures associated with accelerated ageing and contained more intracellular post-

synaptic material than XO4+ microglia, despite reduced active synaptosome phagocytosis.

We identified HIF1α as potentially regulating synaptosome phagocytosis in vitro using pri-

mary human microglia, and BV2 mouse microglial cells. Together, these findings provide

insight into molecular mechanisms underpinning the functional diversity of microglia in AD.
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M icroglia are specialist immune sentinel cells in the brain
that respond to stranger or danger signals, remove
cellular and extracellular debris, and regulate synaptic

plasticity, maturation and removal1–3. Thus, microglial function
is vital to physiological processes in the brain. AD is a progressive
neurodegenerative condition, with no effective treatment options.
Synapse loss, which occurs in cortical and hippocampal regions,
most strongly correlates with cognitive dysfunction in AD4, and is
accompanied by extracellular amyloid beta (Aβ) plaques and
intraneuronal neurofibrillary tau tangles5. The role of microglia in
AD has been highlighted by several unbiased data-driven func-
tional genomics studies6–11. Indeed, almost all of the risk loci
implicated in genome-wide association studies (GWAS) of the
more common late-onset AD (LOAD; > 95% cases) are associated
with genes that have been reported to be microglia specific, or
highly expressed in microglia12. Additionally, recent reports in
mouse models have found that microglia obtained from areas rich
in plaques have a different transcriptional signature from
microglia from plaque-free areas13,14. However, the origin of
these microglia, their gene expression signatures and functions
remain unknown. Furthermore, knockouts of microglial receptor
genes on an AD genetic background have yielded both protective
and exacerbated phenotypes, often at different disease stages15–21.
Coupled with the increasingly recognized spatio-temporal diver-
sity of microglia22–24, these reports highlight the dynamic nature
and complexity of microglial responses, which might be explained
by the presence of multiple microglial subpopulations that may
differentially affect disease course.

Here we show using an aggressive plaque-depositing AD
mouse model that differences in amyloid plaque phagocytosis are
directly associated, molecularly and functionally, with specific
microglia phenotypes in AD.

Results
Methoxy-XO4 labels molecularly distinct plaque-associated
microglia populations. To understand the spatio-temporal and
functional differences between plaque-phagocytic and non-
phagocytic microglia in AD, we took advantage of in vivo Aβ
plaque labelling using a fluorescent Congo-red derivative,
methoxy-XO425, which co-localized with CD68+ phagosomes in
plaque-associated Iba1+ microglia (Fig. 1a, b and Supplementary
Fig. 1a–c). We found that 13.5% and 15.8% of cerebral microglia
were actively amyloid-phagocytosing (XO4+) specifically in 4 m
and 6 m old 5xFAD mice, respectively (Fig. 1c, d). Only 4.35% of
cerebellar microglia in 5xFAD mice were XO4+, in accordance
with the relative resistance of this region to pathology in mouse
AD models and AD patients26.

Next, we transcriptionally profiled XO4+ and XO4− microglia
during disease progression in 5xFAD mice27. XO4+ microglia
were transcriptionally most different from remaining microglia
by principal component analysis (PCA, Fig. 1e). The first PC
evidenced the progression from wild-type (WT) to XO4+

microglia, whereas the second PC separated cerebellar from
cerebral microglia (Fig. 1e and Supplementary Fig. 1d). The factor
explaining the greatest variance in gene expression was plaque
phagocytosis (i.e., XO4+/XO4−, Supplementary Fig. 2a). To
investigate whether plaque phagocytosis is affected by age, we
created gene cytometry plots, which show the distribution of
differentially expressed genes (DEGs) by their significance score
(i.e., false discovery rate (FDR)-weighted log fold change (LFC))
for both age and XO4+/XO4− factors (Supplementary Fig. 2b).
We identified gene sets that are associated with either age, plaque
internalization or both (Fig. 1f, g and volcano plots in
Supplementary Fig. 2c–e). Most DEGs (black points and contour
plot) were associated with XO4+ microglia (Fig. 1f, Q1 and Q2)

which was amplified by ageing, as 39% (902/2302 genes) of
XO4+-associated genes were also associated with age at 4 m (m,
month; Fig. 1f, Q2), rising to 56% (1320/2364 genes) by 6 m
(Fig. 1g, Q2; and Supplementary Fig. 2f).

Overall, out of 2810 XO4+ genes we identified 2475 genes
associated only with the plaque-phagocytic XO4+ state, which
were enriched for the Gene Ontology (GO) terms’ ribosome,
oxidative phosphorylation and phagolysosome pathways (Fig. 1hi
and Supplementary Data 1). Among the most upregulated genes
in XO4+, microglia were the two most highly penetrant LOAD
risk factor genes, the receptor Trem2 and its ligand Apoe28, as well
as genes encoding their interacting partners, Tyrobp10 and Lpl,
Ldlr, Lrpap1 (reviewed in29), respectively, suggesting a link
between phagocytosis and cholesterol transport pathways and the
XO4+ phenotype in AD. A significant proportion (63%, p=
6.1 × 10−11, hypergeometric test) of microglial sensome genes30

were DEGs in XO4+ microglia (Supplementary Fig. 3a), includ-
ing c-lectins (Clec4a2, Clec4a3) and CD markers (Cd33, Cd68).
The XO4+-associated gene expression signature identified here
partially overlaps with other microglia signatures obtained from
aged, APP/PS1, 5xFAD or tau model mice13,14,31–33 (Supple-
mentary Fig. 3b–e and Supplementary Data 2). Twenty one core
genes associated with XO4+/XO4− phenotype were identified as
altered in several studies of neurodegenerative disease-associated
microglia (DAM)13,14,32 (Fig. 1hii). However, despite overlap of
KEGG pathways with previously reported microglial gene
expression signatures, our analysis showed differences between
each signature (Supplementary Fig. 3c, e). First, XO4+-associated
microglia genes were more significantly enriched for additional
functions including HIF1 signalling pathway, steroid biosynthesis,
mitophagy and protein processing in endoplasmic reticulum, and
highly enriched for neurodegenerative signatures including
Alzheimer’s, Parkinson’s and Huntington’s disease genes. Second,
our analysis identified 2031 (out of 2810, 72.3%) genes associated
with XO4+ microglia that were not reported in previous RNA-
sequencing studies of microglia in neurodegeneration13,14,33

(Supplementary Fig. 3b and Supplementary Data 2). These newly
identified genes were highly enriched for Alzheimer’s disease,
oxidative phosphorylation, cell cycle and HIF1 signalling pathway
(Supplementary Fig. 3d). Our detection of this previously
unappreciated gene expression signature associated with XO4+

microglia might be due to several factors. First, we specifically
profiled the microglia (CD11b+CD45loCX3CR1+) population in
AD that have phagocytosed plaques (XO4+), rather than using
more heterogeneous approaches (CD11c+ or Clec7a+) which did
not include a marker for plaque per se. Second, we obtained a
more homogenous dataset than either bulk APP/PS1 or CD11c+

microglia (which contains both plaque-associated and -distal
microglia13), and we sequenced to a greater depth than the study
defining DAM13. Importantly, our study describes the transcrip-
tional signature of a functionally distinct microglial subtype
defined by active fibrillar Aβ (fAβ) phagocytosis.

To determine whether the observed transcriptional signatures
correspond to changes in the proteome of XO4+ microglia, we
performed targeted liquid-chromatography sequential window
acquisition of all theoretical spectra mass spectrometry (LC-
SWATH-MS)34 analysis (Fig. 1i). Out of 304 proteins correspond-
ing to the detected DEGs, downregulation of 19 genes in XO4+

microglia was mirrored at the protein level, including for DOCK10,
CRYBB1, PLXNA1 and FGD2 (Supplementary Fig. 4 and
Supplementary Data 3). We also detected significantly elevated
concentrations of peptides corresponding to 99 DEGs upregulated
in XO4+ microglia, including numerous ribosomal RPS and RPL
family proteins, lysosomal proteins (e.g., CD68, CTSA, CTSB,
CTSD, CTSZ, RAB7), HIF1A target proteins (e.g., ALDOA,
GAPDH, LDHA, PKM), lipid-associated proteins (LGALS3BP,
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LRPAP1, APOE) and proteins specific to XO4+ microglia (e.g.,
ANXA5, RPL6L, PKM). Nonetheless, some transcripts induced in
XO4+ microglia were repressed post-transcriptionally (e.g.,
SERPINE2, UQCRH and MYO5A). Importantly, in 5xFAD, but
not in WT microglia, we detected a single peptide within the
amyloid precursor protein (APP) sequence (LVFFAEDVGSNK),
compared to multiple tryptic peptides arising from APP fragments
detected within purified synaptosome fractions (Supplementary
Data 4). LVFFAEDVGSNK is the only one of the tryptic peptides
we detected within the APP sequence that is present within the Aβ
sequence (Aβ17–28)35, suggesting this peptide arose from microglial
phagocytosis of Aβ and not from microglial expression of APP or
phagocytosis of APP. XO4+ microglia contained high levels of
internalized Aβ (Fig. 1j). Surprisingly, XO4− microglia also
contained Aβ, albeit at ~10-fold lower levels than XO4+ microglia.
This is consistent with low levels of non-fibrillar (i.e., oligomeric)

Aβ phagocytosis by XO4− microglia, although this could also be
explained by few contaminating XO4+ cells containing partially
digested Aβ fragments and thus not detected by methoxy-XO4
staining. Our data therefore suggest that XO4+ are distinct from
homeostatic and XO4− microglia and are directly associated with
high levels of internalized fibrillar Aβ.

Two distinct molecular processes identified in microglial
alterations in AD. Recent reports highlight subtle transcriptional
differences between individual microglial cells, even those resid-
ing within the same anatomical regions36,37. Exploratory viSNE
analysis of FACS datasets showed heterogeneity inside the
microglia cell populations (Supplementary Fig. 5a–c), which we
further investigated by single-cell RNA-sequencing (scRNA-seq)
using the 10X Genomics Chromium system. Importantly, in

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23111-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3015 | https://doi.org/10.1038/s41467-021-23111-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


order to control for potential confounding effects due to cell
sorting31,38, we checked and confirmed these do not affect our
detection of gene expression signatures associated with XO4+/
XO4− microglia (Supplementary Fig. 5d, e). Aging is the most
important risk factor for LOAD, and microglia are known to
express an altered ageing gene signature22,39. We examined
whether microglial subpopulations in 5xFAD mice adopted an
aging phenotype by including 893 FACS-sorted microglia from
WT adult (6 m) and WT old mice (24 m) as well as both XO4−

and XO4+ populations from a 6 m old 5xFAD mouse (Fig. 2a).
Similar to our bulk analyses of XO4+/− microglia, PC1 was
dominated by the shift to a plaque-phagocytosing phenotype. We
detected a substantial overlap of 344 DEGs (64.2% of single-cell
gene expression signature associated with XO4+ microglia, p=
3.35 × 10−34, hypergeometric test) between the single-cell (536
DEGs) and bulk gene expression signatures associated with XO4+

microglia (2810 DEGs), most strongly enriched for ribosomal and
protein synthesis-related processes. The overlapping gene set
included key AD-related genes such as Cst7, Apoe and Tyrobp,
and Trem2 and was substantially enriched for Hif1a-related genes
such as Gapdh, Igf1, Aldoa, Pkm and Ldha (Supplementary
Fig. 5f, g).

PC3 separated 6 m from aged WT cells, while 5xFAD XO4−

cells were also shifted in the direction of aged WT microglia
(Fig. 2a). Single-cell consensus clustering (SC3)40 separated
microglia into four clusters, whereby 99.8% of 5xFAD XO4+

cells and 99.2% of WT 6m microglia were entirely contained
within Clusters 2 and 3, respectively (Fig. 2b). 5xFAD 6m XO4−

microglia and aged WT microglia clustered together (i.e., have
similar transcriptional profiles), suggesting that the XO4−

population may represent an accelerated aging phenotype in
AD mice. The ageing signature was enriched in α-defensin genes
(Fig. 2ci-ii), antimicrobial peptides which mobilize immune cells
and enhance phagocytosis in the periphery41, although their role
in the brain has not been described previously. Consistent with
our bulk RNA-seq data (Fig. 1e, h), we observed loss of
homeostatic genes (e.g., Crybb1, Fig. 2ciii) and upregulated genes
associated with XO4+ microglia (e.g., Cst7, Ccl3, Fig. 2civ-v) in
XO4+ microglia. Comparing the single-cell signature associated
with XO4+ microglia to previously described mouse microglia
gene signatures in AD (Supplementary Fig. 6a–e) revealed a
substantial number of XO4+-specific DEGs, which are enriched
uniquely for inflammatory-related processes including response

to interferon-gamma, T cell homeostasis and regulation of
mononuclear cell migration. Some XO4+-specific DEGs include
phagocytosis and immune process-related genes like Il17ra, Lst1,
Crip1, and also including c-lectins and galectins, Clec4a3, Clec4a2,
Lgals2, Lgals3 and Lgals4. Therefore, despite the overlap between
the functional phagocytic gene expression signature associated
with XO4+ microglia and other transcriptionally defined mouse
microglia signatures (i.e., DAM or Trem2-associated), we report
XO4+-associated DEGs specifically reflecting immune, metabolic,
and/or phagocytosis-related processes.

To further elucidate the molecular microglial trajectories in
5xFAD mice, we used the diffusion maps algorithm Destiny42 to
order cells in aging pseudotime, defined by the expression of the 42
ageing-specific DEGs (FDR < 0.05, top 20 DEGs for ageing are
shown in Supplementary Fig. 7a, full list in Supplementary Data 5)
between 6m and 24m WT microglia (Fig. 2d). Despite
heterogeneity in the pseudoage of individual cells within 5xFAD
microglial populations, both the XO4− and XO4+ groups shifted
along the aging trajectory, suggesting gradual acquisition of the
ageing signature. Conversely, cells ordered by their phagocytic
pseudotime, using 474 phagocytosis-specific DEGs (FDR < 0.05,
top 20 DEGs for phagocytosis are shown in Supplementary Fig. 7b,
full list in Supplementary Data 5) between XO4+ and XO4− AD
microglia, switched from a non-phagocytic to a phagocytic gene
expression signature with few cells exhibiting intermediate
signatures (Fig. 2e). Although the molecular signatures associated
with XO4+ and XO4− microglia are distinct, the pseudoage of
individual microglia lies on a continuum within each 5xFAD
population that is controlled by an independent component of
aging, unrelated to phagocytosis (Fig. 2f), and may reflect
differences in cellular age. The top 50 most variable genes included
microglial identity genes (Crybb1, Alox5ap, Maf), Hif1a and its
target genes (Hif1a, Igf1, Spp1, Pkm, Gapdh), α-defensin genes
(Defa20, Defa21, Defa24, Gm15284), chemokines (Ccl3, Ccl4, Ccl6)
and lysosomal genes (Lyz2, Cst7, Ctsa), and clustered samples
according to both age and phagocytic phenotype (Fig. 2g). The two
separate components corresponding to an ageing and phagocytic
trajectory were independently reconstructed using Slingshot43 (see
“Methods”), a minimum spanning tree algorithm for lineage
construction (Supplementary Fig. 8a, b). Moreover, microglia from
9 and 12m old CX3CR1GFP (WT for the AD mutations) animals
showed intermediate ageing pseudotime (Supplementary Fig. 8c).
Furthermore, neither Stage I nor Stage II DAM genes13 are

Fig. 1 Methoxy-XO4 labels a molecularly distinct plaque-phagocytic population in 5xFAD mice. a Schematic of the methodology employed in this study,
created with BioRender.com. M, male, F, female, WT, wild-type, Cx, cortex and subcortical regions, Cb, cerebellum. b Representative immunofluorescence
image of the hippocampus (HC) of WT and 5xFAD mice injected with methoxy-XO4 and stained with Iba1 (AlexaFluor 488, n= 6 animals per genotype),
scale bar= 250 μm, inset 50 μm. c Representative FACS plot showing that XO4+ microglia are present in 6 m 5xFAD plaque-affected regions (top panels).
d Left, the percentage of XO4+ microglia isolated from plaque-affected regions in 1, 4 and 6m old WT (m, month) and 5xFAD mice (from n= 6 animals
per genotype at 1 m; 4mWT, n= 19 animals; 4 m 5xFAD, n= 22; 6mWT, n= 14; 6 m 5xFAD n= 14) and right, the percentage of XO4+ microglia isolated
from plaque-affected and non-affected regions in 6m old male and female WT and 5xFAD mice (F, Cx, n= 8 per genotype; M, Cx, n= 6 per genotype; F,
Cb, n= 4 per genotype; M, Cb, n= 3 per genotype), expressed as mean ± SEM, ***p= 0.003 and ****p= 4.6 × 10−5 for 4m, p= 9 × 10−6 for 6 m, and p=
5.2 × 10−5 for F Cx vs Cb by Kruskal-Wallis and Dunn’s multiple comparison tests. e PCA of bulk RNA-seq. Cx, Cortex; Cb, Cerebellum. f, g Gene cytometry
plots showing DEGs between XO4+ and XO4− microglia and/or DEGs expressed between old (4, 6 m) and young (1 m) microglia. Gene scores are
calculated as the product of the LFC and –log10(FDR). Example genes in each quadrant are labelled in red (upregulated over time or phagocytosis) or blue
(downregulated). Gene density low= 0, high= 0.2. hi Venn diagram showing the overlap between genes whose expression levels could be explained by
the age, region and XO4 covariate as well as GO and KEGG terms associated with XO4 covariate genes. hii Table showing the 21 core microglial
neurodegeneration signature genes and their direction of differential expression in DAM28, CD11c+ 29, MGnD30 and XO4+ microglia. i Heatmap of
targeted LC-SWATH-MS analysis of detected peptides within DEGs in biological replicates of WT (green, n= 4 animals), XO4− 5xFAD (orange, n= 5)
and XO4+ 5xFAD (blue, n= 4) microglia. Colour scale represents log2-transformed normalized fold changes compared to WT microglia. clustering
method=ward.D2, distance=maximum. j Comparison of RNA and protein expression for selected genes, and quantitation of a tryptic peptide in Aβ in
microglia. Data are expressed as mean ± SEM LFC compared to WT microglia, normalized relative to peptides in Supplementary Data 4. p-Values were
calculated by one-way ANOVA using Holm-Sidak’s multiple comparison test. Data are fromWT (n= 4 animals), XO4− 5xFAD (n= 5), XO4+ 5xFAD (n=
4) for protein analyses; WT (n= 5), XO4− 5xFAD (n= 7), XO4+ 5xFAD (n= 7) for RNA analyses.
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dysregulated in XO4− as compared with WT cells (Supplementary
Fig. 8d, e). This suggests that XO4− microglia are on an
independent trajectory and are not necessary cellular intermediates
poised to become XO4+ cells.

The molecular signature associated with XO4+ microglia can
be induced by phagocytosis of amyloid plaques. We next asked
whether the XO4+-associated transcriptional program is a con-
sequence of the microenvironment in AD brains per se, or if
plaque phagocytosis predates and is required for this molecular
switch. Thus, to determine whether and how any microglia could

Fig. 2 Single-cell sequencing identifies an ageing profile in 5xFAD XO4− microglia. a PCA of 893 single cells (6 mWT= 243 cells, 24mWT= 121 cells,
6 m 5xFAD XO4−= 95 cells, 6 m 5xFAD XO4+= 434 cells; m, month) and 1671 feature genes showing the distribution of cells from each FACS-sorted
sample. PC, principal component. b PCA plot of single microglia coloured by single cell consensus (SC3) clusters and composition of automated clusters as
a percentage of sequenced FACS-sorted cell populations. c PCA plots for single microglia coloured by expression of selected ageing microglia genes (i-ii),
homeostatic (iii) and signature genes associated with XO4+ microglia (iv-v). min= 0 for all genes, Defa17 max= 4.77, Defa24 max= 7.41, Crybb1 max=
4.13, Cst7 max= 5.47, Ccl3 max= 4.89. d, e Diffusion maps pseudotime analysis of microglial populations ordered by their expression of (d) ageing DEGs
(24m WT vs 6m WT, 42 DEGs) or (e) phagocytic DEGs (6m 5xFAD XO4+ vs 6m 5xFAD XO4−, 474 DEGs). f Scatter plot showing the relationship
between ageing and phagocytosing pseudotime in individual cells, and the density of cells at each point during the ageing (bottom) and phagocytosing
(left) trajectories. g Hierarchical clustering and heatmap showing expression of the top 50 DEGs across the 4 SC3 clusters.
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activate an XO4+-associated gene expression signature, we added
exogenous CFSE-labelled WT microglia onto ex vivo organotypic
hippocampal slice cultures (OHSCs) from 6m 5xFAD mice
(Fig. 3a). To ensure that the gene expression signature associated
with XO4+ microglia occurred independently of the methoxy-
XO4 dye, we instead labelled OHSCs with NIAD444, an alter-
native fluorescent Aβ-binding dye. To establish that (1) healthy

and (2) plaque-associated microglial signatures can be detected
using our system, we also cultured (1) WT microglia with WT
OHSCs and (2) 5xFAD microglia with 5xFAD OHSCs, respec-
tively. Using FACS, we sorted groups of 10 endogenous (CSFE−)
and exogenous (CFSE+) microglial cells that were plaque-positive
(NIAD4+) or -negative (NIAD4−) for molecular profiling (Sup-
plementary Fig. 9a). QPCR analysis followed by SC3 clustering of
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a panel of 42 homeostatic and XO4+-associated signature genes
identified two main clusters of microglia cells (Fig. 3b and Sup-
plementary Data 6). Cluster 1 represents the XO4+-associated
molecular signature, with numerous homeostatic microglia sig-
nature genes downregulated (e.g., Cx3cr1, Maf, P2ry12; Fig. 3ci-ii
and Supplementary Fig. 9b), and activated expression of genes
associated with XO4+ microglia (e.g., Cst7, Igf1, Apoe, Spp1,
Trem2, Lgals3; Fig. 3ciii-iv and Supplementary Fig. 9c). Con-
versely, Cluster 2 is characterized by high expression of homeo-
static microglial genes and low expression of genes associated
with XO4+ microglia. WT microglia generally retained a Cluster
2 signature when transplanted onto a WT ex vivo brain slice
(Fig. 3d). Similarly, most WT microglia that had not phagocy-
tosed plaques (CFSE+NIAD4−) retained their homeostatic
Cluster 2 signature even in a 5xFAD ex vivo brain slice (Fig. 3e).
However, most cells sorted from WT mice that were actively
phagocytosing the plaques in 5xFAD OHSCs (CFSE+NIAD4+)
acquired the Cluster 1 XO4+-associated gene expression sig-
nature (Fig. 3e). These data suggest that microglial plaque
phagocytosis, and not exposure to an ex vivo AD-like brain
microenvironment, is the main trigger for conversion to the
XO4+ state and demonstrate that WT microglia are capable of
acquiring the gene expression signature typical of XO4+

microglia.
Our data suggest that the gene expression signature associated

with XO4+ microglia is reversed in a WT brain slice (Fig. 3f), as
over half of exogenous CFSE+ 5xFAD cells isolated from 5xFAD
OHSCs molecularly resembled Cluster 1/XO4+ microglia
(Fig. 3g). This suggests that cell survival is not impacted, whereas
all 5xFAD CFSE+ cells recovered from WT OHSCs were in the
homeostatic Cluster 2 (Fig. 3f). An alternative possibility is that
the signature is transient and reverts upon digestion of
internalized fibrillar Aβ. However, our results do not uncover
whether the microglia that were originally XO4+ in vivo died
within the slices, or degraded phagocytosed fAβ. Collectively, our
data show that the XO4+ transcriptional program is activated by
plaque phagocytosis and does not persist after exposure to a
healthy brain microenvironment ex vivo.

Hif1a is associated with XO4+ microglia-induced phagocytosis
of synaptosomes in vitro. Aβ oligomers have been reported to
induce microglia to aberrantly engulf synapses via dysregulated
complement deposition45. Thus, we hypothesized that due to
their transcriptional differences arising as a consequence of
phagocytosis of plaques, additional microglial functions might be
different between XO4− and XO4+ states, for example, a differ-
ential capacity for engulfment of synaptic proteins. Quantification
of the internalized post-synaptic marker, PSD9546, in individual
microglia in the dentate gyrus of WT and 5xFAD mice (Fig. 4a
and Supplementary Fig. 10a) showed an increase in steady-state

internal PSD95 in XO4− microglia compared to XO4+ microglia
(Fig. 4b; p= 0.0057, one-way ANOVA and Tukey’s multiple
comparison test).

However, functional phagocytosis assays tracing pHrodo-red-
labelled synaptosomes on freshly isolated ex vivo microglia from
5xFAD mice by FACS revealed a higher rate of internalization
by XO4+ microglia (Fig. 4c, d; p= 9.2 × 10−7, 2-tailed Student’s t-
test). pHrodo-green-labelled Escherichia coli particles and
pHrodo-green-labelled fibrillar Aβ (fAβ) were also more efficiently
phagocytosed by XO4+ microglia compared to XO4− (Fig. 4c, d;
p= 0.0027 and p= 0.0233, respectively, 2-tailed Student’s t-test),
suggesting that, at least at 6 m, XO4+ microglia are primed for
increased phagocytic and degradative capacity, which is consistent
with their increased gene and protein expression of lysosomal
enzymes (i.e., Cathepsins CTSA, CTSB, CTSD, CTSZ, RAB7,
Supplementary Data 3). We cannot rule out a possibility that over
time and in the presence of chronic inflammation, digestion of
fAβ (and/or synapses) may be impaired as described in response
to fAβ in LPS-primed microglia47. Alternatively, fAβ clearance
may also be impaired in vivo compared to PSD95 due to
differences in substrate structure and/or high concentrations of
fAβ in plaques. The reduced steady-state PSD95 detected within
XO4+ microglia by immunofluorescence may be reflective of loss
of synapses around plaques (Supplementary Fig. 10b) and in line
with48.

To identify transcription factors (TFs) driving the gene
expression signature associated with XO4+ microglia we used
Single-Cell Regulatory Network Inference and Clustering
(SCENIC)49. For each cell population, SCENIC defines its regulon
(i.e., the TF and its putative targets) and infers the regulon’s
activity. The higher the regulon’s activity, the greater the predicted
TF-influence in the cell. The highest regulon’s activity in XO4+

cells was identified for Hif1a and Elf3 TFs (Fig. 4e and
Supplementary Data 7).

Hif1a was also identified as a driving TF in XO4+ microglia
using pySCENIC50. Additionally, Hif1a was predicted for both
87.8% of XO4+ microglia and a subpopulation of 30% of
5xFAD microglia51 (Supplementary Fig. 10c). We confirmed
Hif1a regulon activity in 54.3% of the cluster (from study51)
transcriptionally most similar to DAM microglia13, suggesting
that XO4+ cells may be a subset of DAM microglia, defined not
only by their transcriptomic signature but also by active plaque
phagocytosis associated with a transient or reversible signature.
To investigate the role of the Hif1a regulon in driving XO4+

cells in vitro, cells of the BV2 mouse microglial line expressing
mCherry-tagged Hif1a shRNA or mCherry were treated with
AlexaFluor488 (AF488)-labelled fAβ for 24 h. Transcription-
ally, a number of XO4+ genes predicted to be part of the Hif1a
regulon showed Hif1a-dependent induction in response to fAβ,
namely Spp1 and Igf1 (Fig. 4f, p= 0.0025, Fisher’s combined

Fig. 3 The gene expression signature associated with XO4+ microglia is reversible and is acquired through phagocytosis of amyloid plaques.
a Schematic representing the experimental design involving addition of 2 × 104 microglia to NIAD4-stained organotypic hippocampal slice cultures
(OHSCs), followed by FACS isolation of carboxyfluorescein succinimidyl ester (CFSE)-labelled replenished and CFSE- endogenous microglia that
differentially phagocytose endogenous NIAD4-labelled plaques after 5 days co-culture with wild-type (WT) or 5xFAD OHSCs, created with BioRender.
com. b, c k-nearest-neighbour (kNN) graph rendered using a force-directed layout (SPRING)142, coloured by single cell consensus (SC3) cluster (b), and
log2-transformed ΔCt values of selected DEGs (c). Each dot represents 10 sorted cells, and data are from (d) n= 120 cells, (e) n= 240 cells, (f) n= 110
cells, (g) n= 280 cells sorted during 3 independent experiments. Replicates from independent experiments are closed circles, technical replicates are open
circles. The XO4+ score is defined as the x-axis position of each sorted population on the kNN graph. The colour scales are log2(ΔCt), Mafb min ΔCt=
0.0003, max ΔCt= 3.37; Cx3cr1 min ΔCt= 0.0001, max ΔCt= 9.69; Cst7 min ΔCt= 0.0002, max ΔCt= 4.56; Igf1 min ΔCt= 0.0001, max ΔCt= 1.07.
d–g Experimental schematic, XO4+ score and proportion Cluster 1 and Cluster 2 membership of groups of exogenous and endogenous (d) WT microglia
added into a WT OHSC, (e) WT microglia added into 5xFAD slices, recapitulating the gene expression signature associated with XO4+ microglia upon
plaque phagocytosis. f XO4+ phenotype is stable in exogenous CFSE+NIAD4+ 5xFAD microglia recovered from 5xFAD slices, but (g) is lost in CFSE+

5xFAD microglia recovered from WT slices. N.D., not detected. Data are presented as mean ± SEM.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23111-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3015 | https://doi.org/10.1038/s41467-021-23111-1 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


probability test, and Supplementary Fig. 10d). To investigate
the role of fAβ and Hif1a in functional synaptosome
phagocytosis in vitro, cells were treated with fluorescent-blue-
labelled synaptosomes for the last 1.5 h of the AF488-fAβ
incubation (Fig. 4g). fAβ phagocytosis induced a synaptosome-
phagocytic phenotype (Fig. 4g and Supplementary Fig. 10e, p=
0.0026, two-way ANOVA, Tukey’s multiple comparison test)
akin to XO4+ cells, which was modulated via Hif1a (Fig. 4g,
p= 6.0 × 10−6, 2-way ANOVA, Tukey’s multiple comparison
test). fAβ internalization was associated with increased
HIF1A protein expression in vitro (Fig. 4h). Moreover,
Hif1a overexpression synergized with fAβ phagocytosis to
enhance synaptosome phagocytosis (Fig. 4i, p= 0.0253, one-
way ANOVA with Holm-Sidak’s multiple comparison test), and
slightly but significantly increased fAβ phagocytosis (Supple-
mentary Fig. 10f, 10% increase, p= 0.0382, paired t-test).

Together these data support a role of HIF1A and fAβ
phagocytosis in synaptosome phagocytosis in microglia in vitro.

Microglia isolated from the brains of AD patients display
similarities to the gene expression signature associated with
XO4+ microglia. Studies have shown that plaque-adjacent
microglia in human post mortem AD brains upregulate LPL13

and downregulate P2RY1214, consistent with the gene expression
signature associated with XO4+ microglia surrounding plaques.
To assess whether the gene expression signature associated with
XO4+ microglia is present in microglia isolated from human
brains, we performed a comprehensive integration and analysis of
microglia from the publicly available single-nucleus datasets from
the brains of AD patients and non-AD individuals (Fig. 5a),
comprising single cells from 102 human entorhinal and pre-
frontal cortex samples from 4 independent datasets51–54 (total
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11,931 microglial nuclei, 2988 controls, 1591 mild AD, 5891 AD,
1458 with TREM2 R62H variant, and 3 nuclei of Other
Dementia). Microglia from human brains formed 21 clusters
(Fig. 5b), some specific to individual datasets (e.g., Clusters 1, 2, 3,
5, 6, 12; with >90% cells originating from one dataset; Supple-
mentary Fig. 11a, b), whereas others contained microglia from all
studies (e.g., Clusters 0, 7, 9, 10 and 11). To examine the con-
servation of the gene expression signature associated with XO4+

microglia, we calculated the signature scores of the phagocytosis
DEG set (XO4+ vs XO4−) in microglia isolated from human
brains (Fig. 5c). Importantly, the score for the gene expression
signature associated with XO4+ microglia was significantly
enriched in Clusters 10 and 11 (Fig. 5c, p= 6.8 × 10−58, 2.1 ×
10−24, respectively, Wilcoxon test), containing cells from all
4 studies (Supplementary Fig. 11a). We observed that, compared
to additional gene signatures reported for mouse microglia, the
phagocytic signature associated with XO4+ microglia identified in
this study shows greatest variation across clusters, and can be
recapitulated in microglial nuclei from human brains to a greater
extent than the gene expression signatures associated with DAM
or Trem2KO microglia (Fig. 5d and Supplementary Fig. 11c). The
gene expression signature associated with XO4+ microglia was
not enriched in microglia isolated from AD patients (Supple-
mentary Fig. 11b and Supplementary Data 8), however, for
patients containing any cells with a high XO4+ score (i.e., in
Cluster 10 or Cluster 11), the proportion of total microglia in
Cluster 10, but not in Cluster 11, was significantly higher in AD
patients (Fig. 5e and Supplementary Fig. 11d, e; p= 0.047, Wil-
coxon test). In addition, XO4+ scores were significantly lower in
TREM2 R62H cells (Supplementary Fig. 11e; p < 2.22 × 10−16,
Wilcoxon test). This analysis suggests that, as for DAM microglia,
aspects of the gene expression signature associated with XO4+

microglia described here are likely to be TREM2 dependent. The
DEGs for Clusters 10 and 11 significantly overlapped with the
gene expression signature associated with XO4+ microglia, par-
ticularly ribosomal subunit genes (Fig. 5f and Supplementary
Fig. 11f). Cluster 10 DEGs overlap with 20% of the genes asso-
ciated with XO4+ microglia compared to 10% of the DAM sig-
nature genes, p= 3.50 × 10−7, one-sided two-proportions z-test).
As observed in the mouse gene expression signature associated
with XO4+ microglia, we found transcriptional changes to AD

GWAS risk genes and their interacting partners: TREM2, APOE,
TYROBP and a number of Hif1a regulon target genes including
ALDOA, LDHA and PKM encoding for the enzymes: aldolase,
lactate dehydrogenase, pyruvate kinase (Supplementary Data 8).
Similarly to mice, human microglia clusters with the XO4
+-associated gene expression signature (Clusters 10 and 11) were
enriched for functional processes relating to ribosome, phago-
some and antigen presentation (Fig. 5g).

We next semi-quantified the amount of post-synaptic material
in plaque-adjacent and distal microglia in human frontal cortex
sections (Supplementary Fig. 12a–c). Analogous to 5xFAD mice,
we observed that plaque-associated microglia in human AD
patients contained modestly, but significantly less PSD95 staining
than in non-plaque-associated microglia from the same brain
region (p= 0.02, 1-tailed one-sample t-test; Supplementary
Fig. 12c). As in mouse BV2 cells, primary human microglia
in vitro that had internalized AF488-labelled fAβ had an
increased capacity for phagocytosis of fluorescent synaptosomes
(Fig. 5h; p < 0.0001, 2-tailed t-test), and increased HIF1A
expression (Fig. 5i). We transfected primary human microglia
in vitro with dox-inducible GFP-tagged constructs to genetically
turn on HIF1A or ELF3. We found that HIF1A, but not ELF3,
overexpression increased synaptosome phagocytosis, consistent
with a role for HIF1A in regulating XO4+ functions in vitro
(Fig. 5j and Supplementary Fig. 12d, e; p= 0.0002, two-way
ANOVA and Sidak’s multiple comparison test). Together, our
data show that the gene expression signature associated with XO4
+ microglia is recapitulated in a subset of microglia isolated from
human brains and can be functionally modulated via HIF1A or
fAβ to increase synaptosome phagocytosis in vitro.

In vitro modulation of the gene expression signature associated
with XO4+ microglia through small molecules upstream
of HIF1A. To infer upstream small molecules to target the
Hif1a regulon and in turn the XO4+ network, we employed
Ingenuity Pathway Analysis (IPA)55. Among others (Fig. 6a
and Supplementary Data 9), IPA identified BMP9 (or GDF2), a
ligand of the TGF-β superfamily, the Toll-like receptor (TLR)
adaptor MyD88, and mTOR, which were previously involved in
restricting amyloidosis56, microglial response to pathogens57, and

Fig. 4 5xFAD XO4+ microglia contain less post-synaptic material than 5xFAD XO4− microglia in the dentate gyrus. a Representative 3D
reconstructions of confocal z-stacks showing PSD95 internalized within WT, 5xFAD XO4− or 5xFAD XO4+ microglia cells (scale bars= 15 μm). b PSD95
within microglia quantified as the average volume of phagocytosed PSD95 volume per microglia volume in each dentate gyrus section (n= 6 z-stacks per
condition; *p= 0.0057, using one-way ANOVA and Tukey’s multiple comparison test). All data are from n= 3 WT and n= 6 5xFAD animals and is
presented as mean ± SEM per individual section. c Functional analysis of ex vivo mouse microglia phagocytosis following 1 h incubation with (ci) pHrodo-
green-labelled E. coli, (cii) pHrodo-red-labelled synaptosomes or (ciii) pHrodo-green-labelled fAβ by FACS. Each population is gated based on XO4+ signal
and compared to controls not incubated with pHrodo particles. di Quantitation of the percentage of XO4+ and XO4− microglia that phagocytose pHrodo-
red-labelled synaptosomes or pHrodo-green-labelled E. coli (comparing XO4− and XO4+ microglia from n= 4 animals), or dii pHrodo-green-labelled fAβ
(comparing XO4− and XO4+ microglia from n= 3 animals). Data in (d) are presented as mean ± SEM. *p= 0.0233, **p= 0.0027 and ****p= 9.2 × 10−7 by
paired 2-tailed t-test. e SCENIC regulon analysis showing that Hif1a and Elf3 are predicted to control the XO4+ gene regulatory network. The number of
genes in each regulon is shown in parentheses. f, g BV2 cells were stably transduced with mCherry or mCherry.shHif1a lentivirus and treated with DMSO or
AF488-labelled fAβ for 24 h, then blue-labelled synaptosomes for 1.5 h. mCherry+ cells were FACS sorted for AF488-fAβ. f Normalized heatmap of gene
expression, measured by qPCR, of signature genes associated with XO4+ microglia in fAβ+ and non-treated (un) BV2 cells with or without shHif1a,
including Hif1a regulon genes (Igf1, Spp1, Ctsa, Hif1a) and genes not part of the Hif1a regulon (Apoe, Trem2, P2ry12). Data are expressed as fold change
relative to non-treated mCherry transduced cells, based on ΔCt values relative to Actb. The data are from 3 independent experiments. g The proportion of
cells that are highly phagocytic for blue-bead-labelled synaptosomes. Data are expressed as fold change in % phagocytosis relative to non-treated mCherry
transduced cells (mean ± SEM). The data are from 3 independent experiments performed in triplicate. n.s., p= 0.22, **p= 0.0026, ****p= 6.0 × 10−6 by
two-way ANOVA using Tukey’s multiple comparison test. h Histograms showing fluorescence intensity of HIF1A intracellular staining in AF488-fAβ+ and
non-treated BV2 cells. Secondary antibody control cells are stained with Pacific-blue-labelled secondary antibodies alone. i The proportion of dox-treated
(or not) and fAβ+ or non-treated (un) BV2 cells transduced with dox-inducible Hif1a expression constructs that are highly phagocytic for blue-bead-
labelled synaptosomes. Data are expressed as fold change in % phagocytosis relative to non-treated mCherry transduced cells (mean ± SEM). The data are
from 3 independent experiments performed in triplicate. *p= 0.0253 by one-way ANOVA using Holm-Sidak’s multiple comparison test.
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pro-inflammatory microglia58 (Fig. 6b). We validated these
predictions using human ESC-derived microglia-like cells
(iMGLs)59,60 in vitro. Stimulation of iMGLs with the MyD88-
dependent TLR1/2 agonist, Pam3csk, alone or with BMP9,
resulted in upregulation of HIF1AmRNA (Fig. 6c; p= 0.0014 and
p= 0.0012, respectively, by one-way ANOVA and Tukey’s mul-
tiple comparison test), downstream targets SPP1 and GAPDH,
and secretion of chemokines MIP1α and MIPβ, encoded by the
genes associated with XO4+ microglia, CCL3 and CCL4, respec-
tively (Fig. 6c, d and Supplementary Fig. 13a). As predicted by

IPA, treatment of cells in vitro with the mTOR inhibitor, rapa-
mycin, blocked MyD88/BMP9-dependent induction of microglial
genes within the Hif1a regulon associated with the XO4+ sig-
nature (Fig. 6e). Moreover, rapamycin treatment reduced TREM2
expression at both the RNA and protein levels and induced the
homeostatic marker CX3CR1 (Supplementary Fig. 13a, b). The
network of genes induced by Pam3csk and repressed by rapa-
mycin in vitro significantly overlapped with the upregulated genes
associated with XO4+ microglia (65 genes overlap, p= 3.17 ×
10−20, hypergeometric test; Supplementary Fig. 13c) that
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included CTSB, LDLR, HIF1A, PKM, LDHA, and was enriched
for GOs including lysosome (Fig. 6f, g and Supplementary
Data 10). Notwithstanding the widespread effects of Pam3csk on
inflammatory processes and rapamycin on cell growth, pro-
liferation and survival, we were able to modulate the function of
iMGLs in vitro, as rapamycin was able to reduce synaptosome
phagocytosis in fAβ-treated iMGLs (Fig. 6h; p= 0.0002, 2-tailed
Student’s t-test). Together these data show not only the predicted
regulatory role of the Hif1a regulon on the gene expression sig-
nature associated with XO4+ microglia (Fig. 4e), but also that
components of this regulon can be modulated by upstream small
molecules in vitro to control microglia cell fate along the
homeostatic-to-XO4+ axis.

Discussion
Recent studies13,14 identified a novel microglial phenotype near
Aβ plaques that was dependent on Trem2 and Apoe in two mouse
models of AD. Here, we expanded on previous work by firstly
defining the specific gene expression signature of AD microglia
that have actively phagocytosed plaques in vivo, and then pro-
posed the mechanisms responsible for induction and main-
tenance of this phenotype. Furthermore, we uncovered a similar
gene expression signature in a subset of microglia isolated from
the brains of AD patients and started to untangle the controversy
regarding the beneficial61 or detrimental14 functional role of these
cells. A key challenge is the direct isolation of these phenotypi-
cally different cells. Keren-Shaul et al.13 approached this problem
through single-cell transcriptomics, which did not permit addi-
tional functional characterizations due to the destructive nature of
the technique. Krasemann et al.14 chose instead to purify these
cells through either sorting for CLEC7A, also present on a subset
of WT microglia, or purifying microglia that phagocytosed
apoptotic neurons injected stereotaxically into mice. Here, we
used a direct approach with methoxy-XO4 labelling25 to tran-
scriptionally profile a functionally defined microglial subset
actively phagocytosing the plaques at the time of experiment. We
note that our data do not rule out a possibility that the XO4−

population may include a mix of microglia that never contained
internalized fibrillar amyloid as well as microglia that were XO4+

and have subsequently degraded amyloid, however, these cells are

both functionally and transcriptionally indistinguishable by our
analyses.

We show that two distinct but interrelated processes are
associated with microglial changes in AD: (i) accelerated aging
and (ii) direct response to plaque phagocytosis (resulting in
XO4+ cells). Keren-Shaul et al.13 reported that 3% of aged WT
microglia exhibited a DAM signature that was undetected in
younger animals. Interestingly, in the present study, no 24 m WT
microglia clustered together with the XO4+ microglia (Fig. 2b),
highlighting the specificity of the gene expression signature
associated with XO4+ microglia to phagocytosis. As the DAM
population13 is not defined functionally by plaque uptake and
hence may collectively be comprised of both XO4+ and XO4−

microglia, it was not possible to assess an independent effect of
ageing and amyloid phagocytosis on DAM. Our data show that
the ageing-associated signature acquired by XO4− microglia is
independent of uptake of amyloid plaque, thus allowing us to
disentangle the ageing from amyloid phagocytic processes. The
transcriptional signature of aged human microglia has been
previously described39,62. Post mortem microglia from cognitively
normal subjects displayed similar gene expression profiles to
mouse microglia, but human and mouse signatures diverged
significantly with ageing62. Furthermore, The HuMi_Aged data-
set is enriched for susceptibility genes for LOAD39, which is
consistent with our mouse data. Several recent studies suggested
AD-specific gene upregulation of TREM2, TYROBP, CLEC7A,
CD68, CD34, SPP1 and various MHC Class II genes10,63 and
positive LPL staining in ThioS+ (plaque-associated) microglia in
4 out of 5 human AD patients tested13. Moreover, it was recently
reported that a subset of microglia in the brains of AD patients
display a SPP1+CTSD+ profile consistent with the gene expres-
sion signature associated with XO4+ microglia52. It is worthwhile
noting that the XO4+-associated gene expression signature in
5xFAD mice exists under conditions of plaque deposition with
little tau pathology64, whereas human AD pathology invariably
includes tau, which likely produces altered signatures and
responses in microglia.

Our results indicate that XO4− microglia cells are functionally
deregulated, set on a trajectory of accelerated ageing and not a
transcriptional intermediate en route to become XO4+. XO4−

microglia are different from previously reported Stage I and II

Fig. 5 The gene expression signature associated with XO4+ microglia is molecularly and functionally replicated in microglia isolated from the brains
of AD patients and non-AD patients. a–c UMAP projection of single microglia nuclei from control and AD patient entorhinal and frontal cortex samples,
combined by integrating data from51–54, comprising 102 patients; AD (n= 5891 microglia nuclei), mild AD (n= 1591 microglia nuclei), controls (n= 2988
microglia nuclei), Other Dementia (n= 3 microglia nuclei) and TREM2 R62H variant (n= 1458 microglia nuclei). Clustering and analysis of signature scores
is performed using Seurat v3. UMAP projection is coloured by (a) study of origin, (b) Seurat cluster and (c) XO4+ score. d Box plots for gene signature
scores in each human microglial cluster for the AD vs Trem2KO AD signature, AD vs WT signature51, DAM vs homeostatic, and DAM2 vs
DAM1 signatures13. The lower, middle and upper hinges represent the lower quartile, median and upper quartile, respectively, while the upper and lower
whiskers extend ±1.5 times of the interquartile range from the hinges. For each signature score category, pairwise Wilcoxon test between each cluster and
base mean was computed. Multiple testing was corrected for using Bonferroni correction. *p < 0.05, **p < 0.01; ***p < 0.001, ****p < 0.0001, exact p values
are provided in the Source data. e The proportion of cells in Clusters 10 and 11 in patients with any cells in Cluster 10 or Cluster 11, respectively (please see
Supplementary Fig. 11 for sample size details), grouped according to disease status and/or TREM2 genotype (*p= 0.047, Wilcoxon Test with No AD as
reference). The lower, middle, and upper hinges represent the lower quartile, median and upper quartile, respectively, while the upper and lower whiskers
extend ±1.5 times of the interquartile range from the hinges. f Cluster 10 and Cluster 11 DEGs relative to all other human microglia clusters (adjusted p-value
< 0.05). Genes of interest associated with XO4+ microglia are highlighted in red. g Heatmap of enriched KEGG pathways in the human microglial Seurat
clusters, coloured by log2(-log10(adjusted p-value)). h Fluorescently labelled synaptosome internalization by human primary microglia treated with AF647-
labelled fAβ. The data are mean ± SEM of 3 independent biological replicates and are expressed as fold change in synaptosome internalization relative to
non-treated microglia. Differences are reported between AF488-fAβ+ and AF488-fAβ− cells tested from within the same well. i Histograms showing
fluorescence intensity of HIF1A intracellular staining in AF488-fAβ+ and AF488-fAβ− human primary microglia assayed from within the same well.
Secondary antibody control cells are stained with AF647 secondary antibodies alone. j Fluorescently labelled synaptosome internalization by primary
microglia transfected with GFP-tagged inducible HIF1A and/or ELF3 overexpression constructs. The data are the mean ± SEM of 5 independent biological
replicates and are expressed as fold change in synaptosome internalization between GFP+ and GFP− (non-transfected) cells tested from within the same
well. *p= 0.0188, ***p= 0.0002 by two-way ANOVA and Sidak’s multiple comparison test on the raw synaptosome internalization percentages.
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DAM13. XO4− microglia contain more steady-state internal
synaptic material than XO4+ microglia (Fig. 4a, b), despite the
reduced capacity of XO4− microglia for active phagocytosis of
synaptosomes and fAβ ex vivo (Fig. 4c, d). Also, XO4− microglia
do not upregulate TREM2 (Supplementary Fig. 8e) and do not
migrate towards plaques despite some capacity to internalize
amyloid (Fig. 1j). On the other hand, plaque phagocytosis

resulting in a gene expression signature associated with XO4+

microglia primes microglia for enhanced phagocytosis of synap-
tosomes, although it is important to note that the efficiency of
individual phagocytic processes can be dependent on experi-
mental conditions65–67. Rapid pruning of damaged synapses
near dystrophic neurites localized around plaques appears to
be, at least initially, protective and may go awry later in disease
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progression as described before68. Our results support previous
studies showing improved behaviour in AD mouse models
associated with enhanced microglial amyloid plaque phagocytosis
in response to scanning ultrasound69, and treatment with IL-33
that signals exclusively via MyD8870. Similarly, genetic human
data suggest that both DAM and XO4+ microglia are beneficial in
AD and may be a protective phagocytic phenotype that may
enhance plaque clearance61. However, Gal3, a TREM2 ligand
encoded by the Lgals3 gene specific to the XO4+-associated gene
expression signature, is toxic in 5xFAD mice71. Gal3 is released in
response to fAβ treatment in vitro, found in close association with
plaques in human AD microglia, and Gal3 knockout in 5xFAD
mice reduced plaques and improved memory function71. Simi-
larly, targeting MyD88 has also yielded contradictory effects in
AD models72,73 possibly due to differential effects on XO4+ and
XO4− populations. In the present study, targeting Myd88 induce
lysosomal genes and LDLR, a lipoprotein receptor shown to bind
APOE and Aβ, and regulate Aβ phagocytosis in astrocytes74.

We showed that microglia possess an innate capacity to activate
the gene expression signature associated with XO4+ microglia, and
phagocytosis of amyloid plaques per se is sufficient for the genera-
tion of this AD-associated transcriptomic signature in vitro. We
identified the Hif1a regulon as one of the players underlying the
molecular mechanism associated with the transition to the XO4+

phenotype and synaptosome phagocytosis. Our demonstration that
this pathway can be modulated in ESC-derived iMGLs in vitro
opens new avenues to examine how and to what extent the patients’
genetic background and/or additional neurodegeneration-associated
molecules may influence the manipulation of the XO4+/− axis. A
recent study showed that α-synuclein application in vitro induced
HIF1A accumulation through TLR7/8 in microglia, stimulating their
migration75. Hif1a activation and increased protein production have
also been recently described for mucolipidosis Type IV microglia76,
yet the signature was distinct from other neurodegeneration-
associated microglia signatures. From our examination of the lit-
erature, there is no published evidence of HIF1A involvement in
microglial responses to tau or huntingtin. There is evidence of a
microglial signature in ALS SOD1G93A mice that included upre-
gulation of some Hif1a signature genes including Tyrobp and Igf177,
although the origin of this signature is not clear. It is interesting to
note that Hif1a is not a signature gene described by Krasemann
et al.14, who examined a common disease-associated signature in
APP/PS1 mice, EAE model mice and SOD1G93A mice. A Hif1a
epigenetic and transcriptomic signature was recently identified in

microglia following immune training by peripheral LPS adminis-
tration in APP/PS1 mice65. We found little overlap between the
Hif1a module reported in65 and the Hif1a regulon identified here
(Supplementary Fig. 13d), reinforcing the importance of microglial
fine tuning of context-dependent responses to specific stimuli. These
data suggest that while certain aspects of the microglial signature
overlap in neurodegeneration (and aging), such as Apoe, Trem2,
Cd11c, etc., the Hif1a signature we describe appears to be specific to
the XO4+-labelled subset of microglia in 5xFAD mice that could
represent a subset of previously identified DAM microglia. Recent
analyses showed a reproducible protein signature in 3 independent
patient cohorts (total 197 patients) specifically in AD CSF relative to
depression and mild cognitive impairment (MCI)78. Importantly,
20% of the upregulated proteins were part of the Hif1a downstream
network predicted here and included the HIF1A target proteins
ALDOA, SPP1, PLD3, PGK1, FABP3, LDHA and STMN1, and the
XO4+-specific HIF1A target protein PKM was recently identified as
a novel AD CSF biomarker79.

In summary, we hypothesize a model whereby as microglia age,
they are set on a transcriptional trajectory which is accelerated in
an AD microenvironment. However, upon plaque phagocytosis,
microglia re-route on a different trajectory which is associated
with the Hif1a regulon, resulting in enhanced phagocytosis of
synaptic components around plaques, and a feed-forward loop
that enhances Aβ phagocytosis (Fig. 6i). We show how the
microglial gene signatures we uncovered can be harnessed by
computational prediction of microglial subset-targeting drugs,
network pharmacology and repositioning approaches. As further
functional analyses shed light on beneficial or detrimental roles of
phagocytic XO4+ microglia in AD, potential therapeutic strate-
gies could involve targeted conversion between XO4− and XO4+

microglia by using small molecules to tune the key transcriptional
networks.

Methods
Animals. Heterozygous 5xFAD transgenic mice (B6SJL hybrid background) over-
expressing FAD mutant forms of human APP (Swedish mutation K670/ 671NL,
London mutation V717I, and Florida mutation I716V) and PSEN1 (M146L and
L286V), regulated by the neuron-specific mouse Thy1 promoter64 and CX3CR1GFP

were housed at Monash Animal Research Platform (MARP) under specific
pathogen-free conditions in a day–night controlled light cycle, provided with food
and water ad libitum. Animals were used for experiments at different ages through
adulthood, as indicated, without undergoing any procedures prior to their stated
use. All use and handling of animals for experimentation was approved by Monash
Animal Ethics Committee (MARP/2016/112) and conformed to national and
institutional guidelines.

Fig. 6 The gene expression signature associated with XO4+ microglia can be manipulated through the Hif1a regulon. a Top ten activators of the Hif1a
regulon predicted by IPA. The activation z-score is a statistical measure of the match between the expected relationship direction of regulation and the
observed gene expression; positive z-scores are indicative of predicted activation. p-Value of overlap refers to the significance of the overlap between the
Hif1a regulon gene set and the regulated target genes predicted by IPA. The 3 predicted regulators tested in this figure are in bold. b Cartoon diagram of
hypothesis generated by IPA. c Stimulation of iMGLs with MyD88-dependent TLR-agonist Pam3csk (alone or with BMP9) induces genes associated with
XO4+ microglia within the Hif1a regulon as identified by qPCR (HIF1A **p= 0.0014 and p= 0.0012, respectively, SPP1 ***p= 0.00024 and **p= 0.0015 by
one-way ANOVA and Holm-Sidak post-test), n= 3 independent experiments. d Cytometric bead array (****p < 0.0001 by one-way ANOVA and Holm-
Sidak post-test, CCL3: F(5,18)=137.1; CCL4: F(5,18)=42.04), n= 4 independent experiments. MyD88-independent TLR stimulation (Poly:IC) does not shift
iMGLs towards a gene expression signature associated with XO4+ microglia. Data are fold changes normalized to non-treated cells. e MyD88-dependent
expression of genes associated with XO4+ microglia is modulated by rapamycin. Data are fold changes induced by rapamycin normalized to each
respective treatment in the absence of rapamycin. HIF1A ****p= 3.5 × 10−7 and 1.7 × 10−7 and SPP1 ****p= 6.5 × 10−5 and ***p= 0.0006, respectively, by
two-way ANOVA compared to non-rapamycin-treated cells and Holm-Sidak post-test. n= 3 independent experiments. f Venn diagram showing the
overlap between a XO4+-like state induced in iMGLs using Pam3csk and reversed by rapamycin (RNA-seq, n= 4 independent experiments) as predicted
by ingenuity pathway analysis (IPA) with the mouse gene expression signature associated with XO4+ microglia, as measured by RNA-seq (p= 3.17 ×
10−20, hypergeometric test). g Representative gene expression heatmap of selected genes that are part of the overlap, showing expression levels in mice
(WT, 5xFAD XO4−, 5xFAD XO4+) and human iMGLs (non-treated, Pam3csk and Pam3csk+rapamycin). h Fluorescently labelled synaptosome
internalization by iMGLs treated with amyloid fibrils, alone, or in combination with rapamycin for 48 h, as measured by FACS. The data are presented as
mean ± SEM, and p= 0.0002 by unpaired t-test, n= 3 independent experiments. i Proposed model of generation and regulation of microglia diversity in
AD, created with BioRender.com.
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Human patient demographics. Paraffin-embedded human frontal cortex sections
of post mortem Alzheimer’s disease and non-disease age-matched individuals
(10 μm) were obtained from the Victorian Brain Bank (Ethics Approval: for patient
tissue banking and consent: University of Melbourne HREC Approval No.:
1545740; patient demographics below). The study participants were allocated into
disease or control groups based on the overall amyloid and tau pathology (Table 1).

Acute isolation of microglia and fluorescence-activated cell sorting. At 2 h
prior to killing, mice were injected intraperitoneally with methoxy-XO4 (2 mg/ml
in 1:1 ratio of DMSO to 0.9% (w/v) NaCl, pH 12) at 5 mg/kg. Mice were euthanized
by CO2 and transcardially perfused with ice-cold PBS prior to brain extraction.
Whole brains, excluding brain stem and olfactory bulbs, were dissected into cer-
ebellum and non-cerebellum regions for microglia isolation. Single-cell suspensions
were prepared from brain tissues by mechanical dissociation using mesh of
decreasing sizes from 250 to 70 μm and enriched for microglia by density gradient
separation80. Briefly, the cell pellet was resuspended in 70% (v/v) isotonic Percoll
(1x PBS+ 90% (v/v) Percoll), overlaid with 37% (v/v) isotonic Percoll and cen-
trifuged with slow acceleration and no brake at 2000g for 20 min at 4 °C. The
microglia-enriched cell population isolated from the 37–70% interphase was
diluted 1:5 in ice-cold PBS and recovered by cold centrifugation at maximum speed
for 1 min in microcentrifuge tubes. The cell pellet was then stained with antibodies
to microglial cell surface markers (CD11b-BV650, 1:200 Biolegend, #141723;
CD45-BV786, 1:200, BD Biosciences #564225; CX3CR1-FITC, 1:100, Biolegend,
#149019; CD11a, 1:20, BD Biosciences, #558191, TREM2-APC, 1:10, R&D Systems,
#FAB17291N; CD33-PE, 1:20, eBioscience, #12-0331-82; CD115-BV711, 1:40,
Biolegend, #135515) for isolation using the FACSAria™ III cell sorter. Microglia
were defined as live/propidium iodide (PI)− (Sigma-Aldrich, St. Louis, MO,
#P4864), CD11b+, CD45lo, CX3CR1+ single cells and were negative for CD11a
(Gating strategy in Supplementary Fig. 1a). The XO4+ population gate was set
using methoxy-XO4-injected WT animals. XO4+ and XO4− microglial popula-
tions were sorted separately for further analysis by bulk RNA-seq, nano LC-
SWATH-MS (20,000 cells per sample) and scRNA-seq.

viSNE analysis. The Cytobank platform (Fluidigm, South San Francisco, Cali-
fornia) was utilized to generate viSNE plots81 from Flow Cytometry Standard files.
Analyses were performed on live/propidium iodide (PI)− single-cell population. A
total of 40,000 events were sampled to generate viSNE maps. Seven fluorescent
channels (CD11b, CX3CR1, CD45, CD115, CD33, TREM2 and methoxy-XO4)
were engaged for dimensionality reduction. The run was performed 5 times to
ensure the stability of the presented outcome.

RNA-seq library construction and sequencing. RNA extraction from 1 to 10 ×
104 FACS-sorted microglia or iPS-derived iMGLs was performed on the QIAcube
(Qiagen) using the RNeasy Micro Kit (Qiagen, #74004) and RNA quality was
assessed using the Bioanalyser (Agilent RNA 6000 Pico kit; #5067-1513). The
libraries were prepared using 0.5–2 ng of non-cerebellum microglia RNA samples
with RIN value ≥ 7 and cerebellar microglia with RIN value ≥ 6. An 8 bp sample

index (Supplementary Data 11) and a 10 bp unique molecular identifier (UMI)
were added during initial poly(A) priming and pooled samples were amplified
using a template switching oligonucleotide. The Illumina P5 (5ʹ AAT GAT ACG
GCG ACC ACC GA 3ʹ) and P7 (5ʹ CAA GCA GAA GAC GGC ATA CGA GAT 3ʹ)
sequences were added by PCR and Nextera transposase, respectively. The library
was designed so that the forward read (R1) utilizes a custom primer (5ʹ GCC TGT
CCG CGG AAG CAG TGG TAT CAA CGC AGA GTA C 3ʹ) to sequence directly
into the index and then the 10 bp UMI. The reverse read (R2) uses the standard R2
primer to sequence the cDNA in the sense direction for transcript identification.
Sequencing was performed on the NextSeq550 (Illumina), using the V2 High
output kit (Illumina, #TG-160-2005) in accordance with the Illumina Protocol
15046563 v02, generating 2 reads per cluster composed of a 19 bp R1 and a 72
bp R2.

Demultiplexing and mapping. Sequencing reads for the murine microglia dataset
were sample demultiplexed with Je demultiplex from the JE suite82 using sequence
barcodes in Supplementary Data 11. Short-sequence UMIs from read pair 1 of the
demultiplexed sample sequencing reads were discarded from both sequencing read
pairs with Prinseq (minimum length 9)83. Remaining UMIs were clipped with Je
clip and added to the sequencing read header to allow UMI deduplication post read
mapping. Demultiplexed UMI-tagged sequencing reads were filter-trimmed with
Trimmomatic84 and aligned to the mouse genome (GENCODE’s GRCm38 pri-
mary assembly annotation version vM15) using STAR85 (only sequencing reads
from pair 2 were used for transcript quantification). Read deduplication based on
UMIs was performed with Je MarkDupes and transcript read counts calculated
with featureCounts86. For the in vitro bulk RNA sequencing dataset, demulti-
plexing was performed as we recently described60. In short, we used in-house
pipelines including a fork of sabre tools (https://github.com/serine/sabre), and
demultiplexed UMI-tagged sequencing reads were aligned to the human genome
(Ensembl GRCh38 primary assembly) using RNAsik87.

Analysis of microglia bulk RNA-seq. The log2-transformed normalized gene
expression from bulk RNA-seq was obtained using the Variance Stabilizing
Transformation (VST) from the DESeq2 package (version 1.18) in R88. PCA
(Fig. 1e) and hierarchical clustering (Supplementary Fig. 1d) were then performed
on the VST counts. To investigate if the sequencing batch had an effect on the gene
expression, we performed a covariate analysis. For each covariate of interest (XO4,
batch, region, age, genotype and gender), a likelihood ratio test (LRT) was per-
formed using the DESeq2 package, comparing the full model comprising all cov-
ariates and the reduced model which omits the covariate of interest. Thus, genes
that are statistically significant under the LRT are genes whose variation in
expression levels could be explained by the covariate of interest. The covariate
analysis (Supplementary Fig. 2a) revealed that only 8 genes contribute to gender-
related variation (FDR < 0.01). Thus, all subsequent analyses were performed
excluding the gender covariate and both male and female microglial transcriptomes
were analysed together. The covariate analysis was then performed again without
the gender covariate to identify genes that are specific to the XO4 covariate
(Fig. 1hi). GO and KEGG terms overrepresentation analyses were performed using
the gProfileR package in R89. This covariate analysis also revealed a large number
of genes associated with batch (997 genes, FDR < 0.01) and these genes significantly
overlap with the region-related (p= 1.5 × 10−53 by hypergeometric test), age-
related (p= 2.2 × 10−28 by hypergeometric test) and XO4-related genes (p= 1.5 ×
10−201 by hypergeometric test; Supplementary Fig. 14a–c). Thus, the batch cov-
ariate was included in all subsequent analyses to account for batch effects. To
generate the gene cytometry plots (Fig. 1f, g), a generalized linear model was
constructed with the covariates XO4, batch, region, age and genotype. Separate
pairwise differential expression analyses were then performed between XO4+ vs
XO4−, 4 m vs 1 m, and 6 m vs 1 m microglia samples, respectively. For each
differential expression analysis and each gene, a gene score was then calculated as
the product of the absolute value of the log2 fold change and negative of the log-
transformed FDR, abs(LFC)*-log10(FDR), combining the effect size and statistical
significance of the differential expression90. The gene scores for XO4 and age
differential expression were then plotted to give the gene cytometry plots.

For comparison with Kang et al.31, raw RNA-sequencing data were downloaded
from Gene Expression Omnibus (GSE117646). Filtered gene list was taken from
https://www.fryerlab.com/ribotag. limma (3.34.9)91 was used to find DEGs between
the following groups: (i) APP and control, (ii) tau and control, (iii) old (24 m) male
mice and young (3 m) male mice. Briefly, lmfit() was used and eBayes() was set to
trend= TRUE and robust= TRUE. This yielded 359 amyloid, 282 tau and 2762
ageing DEGs which were defined with adjusted p-value < 0.05. VennDiagram92

(1.6.20) was used to plot all Venn diagrams.
For comparison with Haimon et al.38, we obtained gene signature of Cluster 2a

consisting of 190 transcripts. These genes are enriched in both the transcriptomes
and translatomes of sorted cells, thereby potentially representing artifactual
perturbations caused by the cell-sorting procedure.

For comparison with Krasemann et al.14 and Friedman et al.33, we obtained the
MGnD (n= 96 genes) and Neurodegenerative (n= 134 genes) signatures,
respectively. For comparison with Keren-Shaul et al.13, DAM signature was defined
by obtaining DEGs between DAM and homeostatic microglia with FDR < 0.05
resulting in 1176 genes. For GO enrichment analysis, we used clusterProfiler93

Table 1 The age, gender, post mortem interval (PMI) and
diagnosis for the controls and cases used for
immunofluorescence analyses.

Case no. Age (years) Gender PMI (h) Diagnosis

Ct7 59 Female 30 Control
Ct8 63.4 Female 30.5 Control
Ct9 65.8 Female 43 Control
Ct1 67.3 Female 24 Control
Ct10 68.3 Female 71.5 Control
Ct11 78.8 Female 19 Control
Ct12 79 Female 32 Control
Ct13 80.7 Female 59 Control
Ct14 81.2 Female 25 Control
Ct2 82.7 Female 28.5 Control
AD7 62.5 Female 5.5 AD
AD8 64.7 Female 21 AD
AD9 65.9 Female 40 AD
AD3 67.8 Female 21 AD
AD10 68.4 Female 31 AD
AD11 78.9 Female 19.5 AD
AD12 79.9 Female 35 AD
AD13 80.3 Female 62 AD
AD14 82.5 Female 15.5 AD
AD15 82.7 Female 8 AD
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while bitr() was employed to map gene symbols to entrezIDs using org.Mm.eg.db
(3.10.0)94 as reference database. simplify() was used to remove redundant GO
terms using the following parameters: cut-off= 0.3, by= p.adjust, select_fun=
min. Note that for all comparisons, our single-cell XO4+ and bulk RNA-seq XO4+

contain 536 genes (FDR < 0.05) and 2810 genes (FDR < 0.01), respectively.

Single-cell sequencing. In all, 5000 microglia from each population (including
XO4+ and XO4− microglia, and 6, 9, 12 and 24 m CX3CR1GFP microglia) were
sorted into DMEM/F12 media (supplemented with 5% (v/v) FBS, 50 U/ml Peni-
cillin and 50 µg/ml Streptomycin), centrifuged at 12,000g for 2 min at 4 °C and
resuspended in 35 μl of PBS containing 0.04% (w/v) BSA (0.22 µm filtered). The
samples were then diluted with nuclease-free water in accordance to 10X Geno-
mics single-cell protocol guidelines to achieve a target cell recovery of approxi-
mately 800 cells/sample (for 6 m WT, 24 m WT, 6 m XO4− and 6 m XO4+

dataset), and target recovery of 10,000 cells per sample (age dataset 6, 9, 12 m
CX3CR1GFP microglia). Single-cell capture, RNA-seq library construction and
sequencing were carried out at Micromon, Monash University using the 10X
Genomics Chromium system (10X Genomics, Chromium Single Cell V(D)J
Reagent Kits with Feature Barcoding technology for Cell Surface Protein, Docu-
ment Number CG000186 Rev A, 10X Genomics, 2019, July 25). Library con-
struction was performed by poly-A selection from total RNA using 10X Chromium
controller with Chromium Single Cell 3ʹ Reagent Kit V2 (10X Genomics, #PN-
120237). Sequencing was performed on one high-output lane of an Illumina
NextSeq 550 (Illumina, California, USA) in paired-read 150 bp format. Chromium
barcodes were used for demultiplexing and FASTQ files were generated using the
Cellranger95 mkfastq pipeline. Alignment, filtering and UMI counting were per-
formed using Cellranger count. To improve detection of microglia, due to their low
RNA content, Cellranger reanalyse was used with the –force-cells option set at the
inflection point when number of barcodes is plotted against the number of UMIs.
Cells were manually filtered such that barcodes containing at least 10 counts
corresponding to Cx3cr1, P2ry12 or Fcrls genes and less than 6 counts corre-
sponding to Epcam or Ephb2 were classified as microglia, resulting in a total of
991 cells from the 4 FACS-sorted microglial populations.

Single-cell analysis in the mouse AD model. The original mapped matrix
dimensions were 10,484 genes by 991 cells. For quality control, various filtering
steps were implemented. Genes without any counts in any of the cells were dis-
carded. Cells were filtered by total counts and total features (genes) such that cells
or genes below and equal to the 5th percentile were discarded. Next, cells with
more than 10% of their gene expression assigned to mitochondrial genes were
discarded as these cells are likely to be undergoing apoptosis. Five sex-associated
DEGs (Xist, Ddx3y, Eif2s3y, Hsp90ab1, P4ha1) identified in the bulk RNA analysis
that overlap with DEGs detected between 24 mWT (female) and 6 m WT (male) in
our single-cell data were also filtered out. Cells not in the G1 phase were also
removed using scores calculated from cyclone96. Lastly, genes must contain more
than 1 count in at least 2 cells, resulting in a dataset consisting of 6685 genes by 893
cells. SCATER (version 1.6.1)97, SCRAN (version 1.6.6)98, and SINGLE CELL
EXPERIMENT (version 1.0.0)99 were used for plotting PCAs and quality control
plots97. Normalization was done by calculating Log2 counts per million (CPM).
Violin plots of DAM1 and DAM2 genes were obtained using Seurat’s (version
2.3.4) VlnPlot function in R100.

Feature selection. For optimization, each feature selection method (M3DROP
(version 3.5.0)101, highly variable genes, correlation-based, PCA-based, depth-
adjusted negative binomial (DANB)) was implemented before running SC3 (ver-
sion 1.7.6)40. Rand index was calculated using MCLUST102 to quantify accuracy of
the feature selection method. DANB was found to have the highest rand index of
approximately 90%. The number of feature genes was ascertained by calculating
rand indexes after running SC3. We found that the rand index does not increase
significantly beyond the 25th percentile of genes used. Therefore, we used the top
1671 (25th percentile) of the genes as our set of feature genes, which were optimal
for discriminating subpopulations of cells in our dataset.

Clustering. Clustering was performed using the SC3 method40, which is based on
unsupervised clustering of scRNA-seq data. The optimal number of clusters (k) was
found using the Sc3_estimate_k function of SC3, and subsequently we set k= 4,
achieving a rand index of approximately 91.7%. The Kruskal-Wallis test within SC3
(get_de_genes) was also used to detect DEGs across all 4 a priori labels and
clusters.

General R packages. General R packages used include ggplot2103, pheatmap104,
reshape105, reshape2105, ggbeeswarm106, igraph107, readxl108, magrittr109, dplyr110,
RColorBrewer111, R.utils112, ggrepel113, gridExtra114, ggthemes115, Matrix116,
biobase117, matrixStats118, scales119, annotables120 and gplots121.
preprocessCore122 was used for core preprocessing. Gene sets used for cluster-
Profiler enrichment analysis were derived from Bader Lab123. Annotation of
human genes was done using org.Hs.eg.db package124.

Differential expression and gene regulatory network analyses. For differential
expression analysis, we utilized edgeR125(version 3.20.8) via the edgeRQLF func-
tion for pairwise differential expression analysis across two cell populations (i.e.,
between 2 a priori labels or 2 SC3-derived clusters), and size factors were calculated
using computeSumFactors() from SCRAN. Multiple testing correction was
implemented using the Benjamini & Hochberg (BH) correction and significant
DEGs were called at the BH-adjusted p-value < 5% threshold. The top 50 DEGs
across the 4 groups in Fig. 2g were plotted using SC3’s get_de_genes(), which uses a
non-parametric Kruskal-Wallis test.

For regulon identification, gene regulatory network analysis was performed
using SCENIC method (version 0.1.7)49. SCENIC integrates a random forest
classifier (GENIE3)49 (version 1.0.0) to identify potential TF targets based on their
co-expression with RcisTarget49 (version 0.99.0) for cis-regulatory motif
enrichment analysis in the promoter of target genes (±500 bp of the transcription
start site (TSS)) and identify the regulon, which consists of a TF and its co-
expressed target genes. The Mus musculus 9 (mm9) motif database provided by the
SCENIC authors was used. Finally, for each regulon, SCENIC uses the AUCell49

(version 0.99.5) algorithm to score the regulon activity in each cell. The input for
SCENIC was the 6685 (genes) by 893 (cells) matrix obtained after filtering, as
detailed above, and gene expression is reported in Log2 CPM units. Unlike in the
original SCENIC pipeline, we did not implement the 2-step filtering as suggested
because the input matrix was already filtered using our own criteria. Otherwise, all
parameters used for running were specified in the original SCENIC pipeline. The
regulon activity matrix was binarized (giving 1/0 activity score for each cell) and
the heatmap of the hierarchical clustering of the binarized matrix was plotted upon
removing TFs with less than 100 genes (as these identified regulons are sporadically
expressed in the binary heatmap, and not clearly separated compared to larger
regulons). In addition, we focused only on regulons that are active in more than
10% of the cells (Fig. 4e). For Supplementary Data 7, each TF’s regulon activity
refers to the AUC (area under curve) scores from AUCell step in the SCENIC
pipeline. Briefly, for each cell, each regulon’s AUC represents both the fraction of
regulon genes expressed in the cell and the expression levels of these genes with
respect to non-regulon genes. For each regulon, we normalize the regulon activity
based on the maximum regulon activity across all cells. Lastly, we calculate the
mean of the normalized regulon activity for each a priori cell-type group (i.e., 6 M
WT, 24M WT, 6M 5xFAD XO4− and 6M 5xFAD XO4+). For the regulon
analysis in Supplementary Fig. 10c, we opted to employ the python version of
SCENIC (pySCENIC version 0.10.3)50 for the larger dataset because pySCENIC is
computationally more efficient and scalable. Importantly, we note that pySCENIC
is able to recapitulate results obtained from R version of SCENIC. Ranking
databases used were mm9-500bp-upstream-7species.mc9nr.feather and mm9-tss-
centred-10kb-7species.mc9nr.feather which were downloaded from https://
resources.aertslab.org/cistarget/. The motif database was downloaded from https://
resources.aertslab.org/cistarget/motif2tf/. Resulting output was binarized using
pySCENIC’s binarize() function. The row means of the binarized score were
calculated, thus representing the proportion of cells in each group that is activated
for the regulon. The top 20 regulons in terms of variance across all cell-type groups
are visualized.

Pseudotime analysis. We used diffusion map in the destiny R package (version
2.6.1) for the pseudotime analysis126. Specifically, for the phagocytosing pseudo-
time, we used the list of 536 DEGs between 6 m 5xFAD XO4− and 6 m 5xFAD
XO4+ cells (FDR < 0.05). For ageing, we used 104 DEGs between 6 m WT and 24
m WT cells (FDR < 0.05). In order to plot the pseudotime, phagocytosis-specific
and ageing-specific genes were defined as the non-overlapping genes between
phagocytosis and ageing. This resulted in 474 phagocytosis genes and 42 ageing
genes for diffusion map calculation. For defining pseudotime order, cells were
ranked based on the first component of the diffusion map. For Supplementary
Fig. 7a, b, we plotted the top 20 ageing-specific and top 20 phagocytosis-specific
genes (based on absolute LFC) ordered by their respective pseudotime. Another
pseudotime algorithm Slingshot (v1.4.0) was performed to recapitulate the results.
Lineages were constructed based on PCA dimension reduction and the 4 a priori
groups: 6 M WT, 24M WT, 6 M 5xFAD XO4− and 6M 5xFAD XO4+. Similarly,
cells were ranked based on the generated pseudotime order.

Combined analysis of aged mouse microglia. Single-cell RNA-sequencing was
performed on 3 CX3CR1GFP (WT for AD mutations) mice of different ages (6, 9,
and 12 m) using 10X Genomics (v3.1.0) and mm10 (v3.0.0) as the transcriptome.
The minimum number of cells needed for a gene to be detected was set at 20. For
each murine single-cell dataset, preprocessing was done with the following criteria:
<200 number of detected features <4000, percentage mitochondrial genes <10%,
and cells not in G1 phase were removed. Seurat’s NormalizeData() was used for log
normalization; FindVariableFeatures() was used to find highly variable genes with
the vst method and number of features set at 5000, while data were scaled using
ScaleData(). RunPCA() and RunUMAP() were performed using 50 dimensions.
Clustering was set at a resolution of 0.6. Subsequently, the 3 processed mouse
datasets were merged using MergeData() before undergoing the same preproces-
sing steps above. scds (v1.2.0)127 was used to calculate the cxds score for identifying
doublets. Cells with cxds score of more than 1.0 were removed and further filtering
of number of counts <5000 and number of features <2000 was implemented to
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remove outlier clusters, giving us a final expression matrix of 12,604 genes by
3259 cells.

In order to combine the microglia datasets of different ages, Seurat3 integration
was performed between our initial single-cell mouse dataset (6685 genes by 893
cells) and the downsampled, aged microglial dataset, where each time point was
downsampled by taking 200 random cells yielding an expression matrix of (12,604
genes and 600 cells). This was followed by Slingshot (v1.4.0) pseudotime analysis
where start.clus was defined as 6 m WT (from initial dataset of 6685 genes by 893
cells) and end.clus was defined as 24 m WT. Similarly, the Slingshot trajectory with
6 m WT as starting cluster and 24 m WT as ending cluster was taken to be the
ageing trajectory. We next ranked the cells according to the generated pseudotime.
This whole process—from integration to ranking—was performed iteratively 1000
times and the median rank for each group was noted for each iteration. The final
pseudotime generated was based on the distribution of median ranks generated
from this iterative process.

Comparison with mouse microglia datasets. In all, 4 mice signatures were
defined from downloaded datasets: AD vs WT (282 genes, adjusted p-value < 0.05,
Zhou et al.)51, AD vs Trem2KO AD (166 genes, adjusted p-value < 0.05, Zhou
et al.), DAM vs homeostatic (1176 genes, FDR < 0.05, Keren-Shaul et al.)13 and
DAM2 vs DAM1 (244 genes, FDR < 0.05 and absolute (LFC) > 0.25, Keren-Shaul
et al.). GO analysis was performed using clusterProfiler (v3.14.3) and DOSE
(v3.12.0)128. For Zhou et al. mice data (GSE140511) used for pySCENIC regulon
analysis, preprocessing was performed using the following criteria: percentage
mitochondrial genes <5%, 300< number of detected features <5600, and 300<
number of UMIs <9000. Seurat (v3.1.5) was used for normalization using the
LogNormalize method and scale factor of 10,000. FindVariableFeatures was per-
formed using the vst method and number of features set at 5000, while ScaleData
was used for scaling. Dimension reduction was performed using RunPCA() and
RunUMAP() with the number of dimensions set at 50. Cell types for Zhou et al.
were defined using markers from the R package, BRETIGEA (Brain Cell Type
Specific Gene Expression Analysis)129. For cluster identification of microglia,
FindNeighbors and FindClusters were used with 50 PCA dimensions and resolu-
tion set at 0.4. Functional enrichment analysis was done using clusterProfiler.

Comparison with human microglia datasets. In all, 4 human microglia datasets
were downloaded: Leng et al.54 (Synapse: https://doi.org/10.7303/syn21788402;
only data from entorhinal cortex was used for analysis), Zhou et al.51 (Synapse:
https://doi.org/10.7303/syn21125841), Mathys et al.52 (https://www.synapse.org/#!
Synapse:syn18485175), and Grubman et al.53 (GSE138852). Seurat was used to
normalize and scale each dataset. Normalization was performed using the Log-
Normalize method and scale factor of 10,000. FindVariableFeatures was performed
using the vst method and number of features set at 5000. Dimension reduction was
performed using RunPCA() and RunUMAP() with the number of dimensions set
at 50. For Leng et al., classification of Alzheimer’s Disease (AD) state was as: No
AD (Braak Stage 0), Mild AD (Braak Stage 2) and AD (Braak Stage 6). For Mathys
et al. and Zhou et al., classification of AD status was as: AD (clinical cognitive
diagnosis/dcfdx= 4 or 5), Mild AD (dcfdx= 2 or 3) and No AD (dcfdx= 0 or 1).
Note that a dcfdx of 2 or 3 corresponds to MCI. For Zhou et al., preprocessing of
data was performed with cut-offs of percentage mitochondrial genes <5%, 400<
number of detected features <7000, and 400< number of UMIs <20,000. Cell types
for Zhou et al. were defined using markers from BRETIGEA129. Integration of all 4
datasets was performed using Seurat3 integration approach. FindIntegrationAn-
chors() was performed using 50 dimensions and 5000 anchor features. Subsequent
PCA and UMAP dimension reduction were performed using 30 dimensions.
Clustering was done using FindNeighbors() on 30 PCA dimensions while resolu-
tion for FindClusters() was set at 1.0. For the mouse signature score calculation,
5 DEG sets: XO4+ vs XO4− (our study), AD vs WT51, AD vs Trem2KO AD51,
DAM vs homeostatic13 and DAM2 vs DAM113 were defined as mentioned in
previous sections. Mouse genes were converted to human genes using biomaRt130

(8th July 2020) and only genes with positive fold change were retained, before
Seurat’s AddModuleScore() was performed on the integrated assay to derive the
signature scores. For differential expression, FindAllMarkers() was used on the
RNA assay with both min.pct and LFC threshold set at 0.25. For the proportion dot
plots, each proportion was calculated with respect to the separate datasets and
clusters. The proportion is defined as the number of patients with cells present in
the respective cluster divided by the total number of patients with similar AD
status. A high proportion indicates that the cluster has a substantial number of
patients represented in that particular AD status. The percentage is calculated as:
(1) For each patient, we calculate the percentage of the patient’s cells expressed in
each cluster. (2) The final percentage is the median of all the previously derived
percentages of patients with cells expressed in that cluster. A high percentage
indicates that, for patients with cells represented in that cluster, there is a high
percentage of their cells present in the cluster. Boxplot statistics were calculated
using the package ggsignif (version 0.6.0)131, rstatix (version 0.6.0)132 and ggpubr
(version 0.4.0)133. Note that 1 patient (10102206) from Mathys et al. was removed
from the proportion analysis because of its dcdfx of 6 which was classified as Other
Dementia. Functional enrichment analysis was done using clusterProfiler.

Pruning of regulons. For the Hif1a regulon (n= 1122 genes), we further pruned
the regulon size as follows: first, we overlapped the genes in the regulon with the
1671 feature genes resulting in common set of 371 genes; second, we derived the
DEGs from the set using the Kruskal-Wallis test via SC3’s get_de_genes() across all
4 a priori clusters (adjusted p-value= 0.05), which resulted in 203 genes. Note that
we also applied the same methodology to prune Elf3 regulon (n= 670 genes),
yielding 106 genes.

Comparison with Wendeln et al. The red module containing Hif1a (n= 949
genes) was taken from Wendeln et al.65 for comparison with our pruned Hif1a
regulon (n= 203 genes). The hypergeometric test was used to calculate the sig-
nificance of the overlap (p-value).

Projection analysis. In order to determine the relation between our bulk RNA-seq
and scRNA-seq data, we projected our single-cell data onto the bulk using flash-
Clust (version 1.1.2)134 and reference component analysis (RCA)135. Input units
were in Log2CPM value, and no additional normalization or transformation was
performed. Briefly, the expression profile of each single cell was projected onto each
sample in the bulk RNA-seq data by calculating the Pearson correlation coefficient
between the log2 (CPM) vector from scRNA–seq and bulk RNA-seq. For each cell,
the Pearson correlation coefficients were z-score-transformed and grouped by
hierarchical clustering of the bulk RNA-seq data. The results of the projection
analysis are reported in Supplementary Fig. 14d.

Ingenuity pathway analysis. To find upstream regulators of the regulons iden-
tified by SCENIC, we implemented IPA55 (27th June 2018). For Hif1a, we used the
pruned set of 203 genes as input for IPA (five genes: Gltscr2, Wbp5, Amica1,
Myeov2 and 0610011F06Rik were not present in the IPA database) and their
respective fold changes; here, we used the log2 fold changes derived from the
5xFAD XO4+ vs 5xFAD XO4− comparison. Next, we used IPA to predict the
upstream regulators of the Hif1a regulon. As a first step, we extracted the regulators
from the top five Regulator Effects’ networks robustly inferred by IPA (consistency
score > 10) from the Hif1a regulon gene set. In doing this, we required the Hif1a
gene to be included in the set as a direct downstream target of the regulated
network. All upstream regulators must also have an absolute activation z-score
higher than 2. We also required the regulated network to have a significant overlap
with the Hif1a regulon gene set (p < 0.05). The top ten upstream activators are
reported in (Fig. 6a) and are ranked by their potential activation (z-score); the
complete list of predicted activators is presented in Supplementary Data 9. The
cartoon diagram of the hypothesis generated by IPA was drawn using BioRender
(https://app.biorender.com) under an individual license with unlimited academic
publishing rights.

In-solution tryptic digestion of proteins. Synaptosomes were prepared using the
Procedure for Synaptic Protein Extraction from Neuronal Tissue and Syn-PER
Synaptic Protein Extraction Reagent (Thermo Fisher, #87793, containing a half
tablet of cOmplete™ Protease Inhibitor Cocktail (Roche, #CO-RO) per 12.5 ml Syn-
PER reagent) from 250mg of frozen mouse-brain tissue. Cell pellets were lysed (60
µl per 2 × 104 microglial cells per sample; 150 µl per ~4 × 105 microglial cells for
library preparation; 500 µl for bulk synaptosomes) in 1% (w/v) sodium deox-
ycholate (SDC, Merck) in 100 mM Tris pH 8.1, then boiled at 95 °C for 5 min.
After centrifugation, sample supernatant was subjected to alkylation by addition of
40 mM chloracetamide (CAA, Merck) and incubation for 20 min at room tem-
perature (RT) in the dark. Samples were digested by addition of porcine trypsin
(enzyme-to-protein ratio of 1:100; for 2 × 104 microglial samples, 300 ng was used;
Merck) and incubated overnight at 37 °C with shaking. The following day, the
reaction was stopped and SDC precipitated through addition of formic acid to a
final concentration of 1% (v/v). Peptides were extracted through adding an equal
volume of 100% (v/v) water-saturated ethyl acetate, vortexing and centrifugation at
maximum speed in a benchtop microfuge and transferring the aqueous phase to a
new tube, with this entire step repeated once. Samples were then vacuum con-
centrated (Labconco Centrivap) and peptides purified by C18 ZipTips® (Merck)
prior to analysis by LC-MS/MS or LC-SWATH-MS. Note that all samples were
supplemented with 200 fmole of each iRT peptide136 (Biognosys, #Ki-3002-1). For
bulk synaptosome samples, peptides were further fractionated prior to LC-MS by
reversed-phase HPLC using an Ettan ÄKTA micro HPLC system (GE Healthcare),
as described elsewhere137.

LC-MS/MS and spectral library generation. Spectral libraries were generated
from mass spectrometry of tryptic peptides derived from a combination of
microglia cells and synaptosomes. Purified peptides were analysed on a TripleTOF®

6600 mass spectrometer (SCIEX) equipped with an on-line Eksigent Ekspert
nanoLC 415 (SCIEX). Following autosampler injection, samples were subjected to
trap-elution through loading onto a trap column (Eksigent nanoLC trap, #5016752;
ChromXP C18, 3 µm 120 Å, 350 µm × 0.5 mm [SCIEX]) at 2 µl/min for 10 min in
loading buffer (2% (v/v) acetonitrile in water supplemented with 0.1% formic acid)
followed by separation at 300 nl/min across an analytical column (Eksigent nano
LC column, #805-0012; ChromXP C18, 3 µm 120 Å, 75 µm × 15 cm [SCIEX])
equilibrated in 98% buffer A (0.1% (v/v) formic acid in water) and 2% (v/v) buffer
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B (80% (v/v) acetonitrile in water supplemented with 0.1% (v/v) formic acid)
followed by increasing concentrations of buffer B. Specific gradient conditions
were: increase from 2% to 10% (v/v) buffer B from 0 to 2 min, then from 10% to
40% (v/v) buffer B from 2 to 152 min, then from 40% to 50% (v/v) buffer B from
152 to 154 min, then from 50% to 99% (v/v) buffer B from 154 to 157 min, then
hold at 99% (v/v) buffer B from 157 to 167 min, and then from 99% to 2% (v/v)
buffer B from 167 to 168 min, followed by re-equilibration at 2% (v/v) buffer B
until the end of the run. The mass spectrometer was operated in information-
dependent acquisition mode using the following settings: for MS1 accumulation
time of 200 ms, scan range of 300–1800m/z; for MS2, a switch criteria was used of
the top 20 precursors exceeding 40 counts with charge state from 2 to 5, rolling
collision energy and with ions excluded for 30 s after two occurrences; MS2
accumulation time was set to 150 ms and with a scan range of 80–2000m/z.
Acquired spectra were searched using ProteinPilot™ v5 (SCIEX) against the com-
plete reference mouse proteome (Uniprot, 201707 build) and the resultant search
was imported into Skyline v3.7.11317138.

LC-SWATH-MS. For data-independent acquisition, purified peptides were ana-
lysed on a TripleTOF® 6600 mass spectrometer (SCIEX) using the same LC setup
and conditions as above, with the exception that the mass spectrometer was
operated in SWATH-MS34 mode, using the following conditions: initial MS1 scan
across 400–1250m/z with accumulation time of 150 ms, followed by 100 variable
SWATH windows (calculated using the Variable Window Calculator Excel tool,
downloaded from http://sciex.com/support/software-downloads) spanning a range
of 400–1241m/z with a 1 Da overlap and each with an accumulation time of 25 ms.
Rolling collision energy was used, with a collision energy spread of 5.

SWATH-MS data analysis. SWATH-MS data were analysed using Skyline
v3.7.11317 against the generated microglial and synaptosome spectral library,
applying predicted retention times from the included iRT peptides detected within
each sample in order to aid peak picking. Peak scoring was then re-trained within
Skyline following the addition of shuffled decoy peptides. Data were initially
refined through accepting peptides with an absolute ppm < 10 and, for each pep-
tide, there needed to be at least one sample of the set with a peptide dotp of >0.8;
peptides not meeting these criteria were excluded. Subsequently, all remaining
peptides were subjected to manual interrogation followed by exporting integrated
peak areas into Microsoft Excel 2016 for further processing. The list of peptides
used for signal normalization is listed in Supplementary Data 4. Peptides corre-
sponding to 304 of the XO4+ covariate genes were above the limit of detection.
Samples and proteins were clustered using one minus Spearman correlation, and
data expressed as a heatmap of log2-transformed normalized fold changes com-
pared to WT microglia using GENE-E software v3.0.215 (Broad Institute).

Organotypic hippocampal slice cultures. Organotypic hippocampal (brain) slice
cultures (OSHCs) were adapted from published protocols139. On day 0, brains
from 6-month-old 5xFAD and WT animals were coronally sectioned through the
hippocampus on a vibratome (Leica; settings: speed= 0.4 mm/s and amplitude=
1.00 mm) in ice-cold cutting medium (MEM 1x, Life Technologies) containing 10
mM Tris, 50 U/ml Penicillin and 50 µg/ml Streptomycin) to obtain 400 μm thick
brain slices. Brain slices were cultured in vitro with culture medium (25% (v/v)
MEM 2x, 25% (v/v) HBSS 1x (Life Technologies), 25% (v/v) Horse serum (Life
Technologies) with 10 mM Tris, 25 U/ml Penicillin and 25 µg/ml Streptomycin and
0.455% (v/v) 7.5% NaHCO3 aqueous solution) on Millicell Cell Culture Insert
(Merck) at air–medium interface. The media was completely replaced every second
day. After 3 days of resting, Aβ plaques on brain slices were stained using an
alternative fluorescent amyloid plaque-labelling dye, NIAD-4 (10 μM, BioVision,
#2710) for 3 h, prior to the addition of ex vivo microglia-enriched fraction isolated
from 6-month-old 5xFAD and WT animals. Microglia-rich fractions enriched by
Percoll gradient (described in Acute isolation of microglia and fluorescence-
activated cell sorting) were stained with CFSE (final concentration 5 μM; Life
Technologies) for 20 min at 37 °C, and 2 × 104 cells were added per hippocampus
onto NIAD-4-stained hippocampal slice cultures for 5 days. As a control,
synaptosome-labelled pHrodo-red particles were added to OHSCs for 5 days.
Endogenous and replenished microglia were purified from OSHCs by mechanical
dissociation using 70 μm mesh and enriched for microglia by density gradient
centrifugation in 30% (v/v) isotonic Percoll at 1000g for 15 min. Cell pellets were
incubated with Fc block (1:200; BD Biosciences, #553141) for 15 min on ice prior to
staining with CD11b-PE (1:50) and CD45-BV786 (1:200) for 15 min. Cells were
washed once in PBS and resuspended in 400 μl Zombie IR dye (1:1000; Thermo
Fisher Scientific) for live cell discrimination. Endogenous (CFSE−) and exogenous
(CFSE+) microglia (single, live, CD11b+, CD45lo) that were either positive or
negative for NIAD4 were sorted into 96-well plates (10 cells/well) containing 10 μl
of Lysis Buffer from the Single Cell to Ct kit (Thermo Fisher Scientific), using the
FACSAria™ III cell sorter. As a control, pHrodo-red-containing microglia were also
sorted from the slices. The sorting/gating strategy is shown in Supplementary
Fig. 9a. cDNA synthesis and pre-amplification (18 cycles) were performed in
accordance with manufacturer’s instructions and pre-amplified cDNA was diluted
5-fold prior to qPCR. The primers and probes used are listed in Supplementary
Data 12. Three independent biological experiments were performed. If enough cells

were present from any populations, additional technical replicates were sorted. We
report all the data, including experimental (solid circles) and technical (open cir-
cles) replicates, when available, for these experiments in Fig. 3d–g. The percentage
of sorted cells belonging to Cluster 1 or Cluster 2 is calculated based on all
replicates.

Differentiation to iMGLs. iHPC Differentiation Base Medium: IMDM (50%;
Thermo Fisher Scientific), F12 (50%), ITSG-X, 2% v/v, Thermo Fisher Scientific),
L-ascorbic acid 2-Phosphate magnesium (64 μg/ml; Sigma), monothioglycerol (400
μM; Sigma), PVA (10 μg/ml; Sigma), Glutamax (1x; Thermo Fisher Scientific),
chemically defined lipid concentrate (1x; Thermo Fisher Scientific), non-essential
amino acids (NEAA; 1x; Thermo Fisher Scientific), Penicillin/Streptomycin (P/S;
1% V/V; Thermo Fisher Scientific). Use 0.22 μm filter.

iMGL Differentiation Medium: phenol-free DMEM/F12 (1:1), ITS-G, 2%v/v,
B27 (2% v/v), N2 (0.5%, v/v), monothioglycerol (200 μM), Glutamax (1x), NEAA
(1x), and additional insulin (5 μg/ml; Sigma), filtered through a 0.22 μm filter;
supplemented with M-CSF (25 ng/ml; Miltenyi Biotec), IL-34 (100 ng/ml; Miltenyi
Biotec), and TGFβ-1 (50 ng/ml; Miltenyi Biotec) and cholesterol (1.5 μg/ml; Avanti
Polar Lipids140).

The protocol for iMGL derivation was adapted from59 with modifications from
the StemDiff Hematopoietic Kit (Stem Cell Technologies, #05310), as we recently
described60 and similar to141. H9 CX3CR1-TdTomato cells were cultured on
vitronectin (Thermo Fisher Scientific, #A14700)-coated T25 flask (Sarstedt,
#83.3910.002) in E8 medium (Thermo Fisher Scientific, #A1517001). Two days
prior to differentiation, cells were detached in 0.5 mM EDTA and 40–80 colonies/
well were seeded into a 12-well plate in E8 medium. On day 0, E8 medium was
exchanged for 1 ml of supplemented iHPC Differentiation Base Medium per well.
iHPC Differentiation Base Medium supplemented with FGF2 (50 ng/ml), BMP4
(50 ng/ml), Activin-A (12.5 ng/ml), ROCKi (1 μM) and LiCl (2 mM), and
incubated in a hypoxic incubator. On day 2, medium was changed to 1 ml of iHPC
Differentiation Base Medium supplemented with FGF2 (50 ng/ml) and VEGF (50
ng/ml), and incubated in a hypoxic incubator. On day 4, medium was changed to 1
ml iHPC Differentiation Base Medium containing FGF2 (50 ng/ml), VEGF (50 ng/
ml), TPO (50 ng/ml), SCF (10 ng/ml), IL-6 (50 ng/ml) and IL-3 (10 ng/ml), and
incubated under normoxia. Half the medium was replaced on days 5 and 7. On day
10, the supernatant containing the HPCs was collected, centrifuged (300g for 5 min
at RT), then 0.5 ml cell-containing media was replaced and supplemented with 0.5
ml fresh media. On day 12, the supernatant containing HPCs was collected and
plated onto Matrigel (1:100; hESC-qualified Matrix, LDEV-Free, Falcon, #354277)-
coated 12-well plates at 4 × 104 cells per well in iMGL complete differentiation
medium. Every 2 days, each well was supplemented with 0.5 ml per well of
complete differentiation medium, and at day 22 a 50% media change was
performed. iMGL experiments were performed at days 22–23 of differentiation.
iMGLs were stimulated with human BMP9 (20 ng/ml; Biolegend), Pam3csk (100
ng/ml; Invivogen), Poly:IC (1000 ng/ml; Invivogen) and/or rapamycin (5 nM;
Sigma) for 24 h prior to RNA isolation or collection of culture supernatant.

Comparison with gene expression perturbed by small molecules. We consider
the DEGs upregulated by TLR1-agonist administration but downregulated by
rapamycin as determined using Voom/Limma functions in degust (http://degust.
erc.monash.edu, and FDR < 0.05, LFC > 1). We compared the LFC of LY86, CTSB,
HIF1A, LDLR, CD63, CTSL and CTSA in this dataset with those in XO4− vs 6M
WT and XO4+ vs 6M WT DE analysis. In addition, for Supplementary Fig. 13c,
we compared 866 DEGs upregulated by TLR1-agonist Pam3csk and downregulated
by rapamycin with 1092 DEGs from the bulk RNA DE analysis between XO4+ and
XO4− genes (FDR < 0.05, LFC > 1). We subsequently plotted the overlap (65 genes)
between these 2 sets of analysis to represent genes which are differentially
expressed in both XO4+ microglia (vs XO4− microglia) and upregulated by
Pam3csk administration but downregulated by rapamycin. To calculate the p-
value, we use a hypergeometric test where the population is taken to be the 4319
DEGs from the bulk RNA DE analysis between XO4+ and XO4− genes (LFC > 1).
This set of genes has 92 genes overlapping with the 866 DEGs upregulated by
Pam3csk and downregulated by rapamycin. The sample taken for the hypergeo-
metric test is the 1092 DEGs which has 65 genes overlapping with the 866 DEGs
upregulated by Pam3csk and downregulated by rapamycin. Overall, phyper for-
mula used is phyper(65-1,92,4319-92,1092,lower.tail= F). bioMart was used to
convert all mice genes to their human orthologues. Functional enrichment analysis
was done using clusterProfiler.

Immunofluorescence staining. Right brain hemispheres from methoxy-XO4-
injected PBS-perfused mice were fixed in 4% PFA overnight, followed by immer-
sion in 30% (w/v) sucrose solution for 48 h and frozen with liquid N2. Samples
were stored at −80 °C prior to sectioning. Frozen hemispheres were cryostat-
sectioned into 60 or 20 μm thick sections onto slides for histological staining.
Sections were blocked for 1.5 h in PBST (containing 2% (w/v) BSA and 0.5% (v/v)
Triton-X) followed by 1 h incubation with 0.5% (v/v) Mouse on Mouse (M.O.M.™)
Blocking Reagent (Vector Laboratories, #MKB-2213-1). Sections were then stained
with primary antibodies, including the rabbit anti-Iba-1 (1:500, #019-19741, Wako,
Virginia, USA), mouse anti-PSD95 (1:160, #MAB1596, Merck Millipore), mouse
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anti-6E10 (1:500, #803001, Biolegend), rat anti-CD68 (1:100, MCA1957, Biorad),
overnight at RT followed by Alexa Fluor 488 goat anti-rabbit IgG (H+ L) (1:250,
#A11008, Life Technologies), Alexa Fluor 635 goat anti-mouse IgG (H+ L) (1:250,
#A31575, Life Technologies) or Alexa Fluor 568 donkey anti-mouse IgG (H+ L)
(1:500, #A10037, Life Technologies) or Alexa Fluor 488 goat anti-rat IgG (1:800,
#A11006, Life Technologies), respectively, for 2 h at RT. Sections were then
mounted with Mowiol mounting medium. For 6E10 staining, paraffin-embedded
human brain sections were de-waxed for antigen retrieval with 90% formic acid (5
min), followed by citrate boiling (45 min, 98 °C DAKO Citrate Buffer, DAKO PT
Link). All sections were then blocked using 0.1% (w/v) Sudan Black B in 70%
ethanol (5 min) followed by PBST (containing 2% (w/v) BSA and 0.5% (v/v)
Triton-X; 1 h). Sections were stained with primary antibodies, including the rabbit
anti-Iba-1 (1:500, #019-19741, Wako), goat anti-PSD95 (1:50, # ab12093, Abcam),
mouse anti-6E10 (1:500, #803001, Biolegend), rabbit anti-SPP1 (1:100, #ab8448,
Abcam), rabbit anti-HIF1A (1:NB100-479, Novus Biologicals), rabbit anti-DAP12
(1:250, #ab124834, Abcam) overnight at RT followed by Alexa Fluor 488 goat anti-
rabbit IgG (H+ L) (1:500, #A11008, Life Technologies), Alexa Fluor 647 donkey
anti-goat IgG (H+ L) (1:500, #A21447, Life Technologies) or Alexa Fluor 568
donkey anti-mouse IgG (H+ L) (1:500, #A10037, Life Technologies), respectively,
for 2 h at RT. Alternatively to 6E10, sections were taken from PBS into a 100 μM
solution of methoxy-X04 in (40% ethanol) (adjusted to pH 10 with 0.1 N NaOH)
for 10 min, then the sections were dipped briefly 5 times into tap water before
differentiation in 0.2% NaOH in 80% ethanol for 2 min. Sections were dipped
briefly a few times into tap water, prior to washing with PBS. Sections were then
mounted with Mowiol mounting medium.

Confocal imaging and image analysis. Mouse sections were imaged on a Leica
SP8 confocal microscope using a 63x oil 1.4 NA objective and 2x zoom with
1024 × 1024 resolution, resulting in a pixel size of 90 nm. Then, 30–40 μm z-stacks
were acquired with a 0.3 μm z-step size, using sequential scans with 3x averaging at
488 and 647 nm wavelengths and 1x averaging at 405 nm wavelength. For human
brain sections, microglia were analysed from four 4.5–5 μm z-stacks per patient,
obtained at 63x, 1x zoom, 2048 × 2048 resolution. For quantitation of PSD95 or
GAD65 engulfed by microglia or C3 co-localization with microglia, 3D rendering
of confocal images was performed using surfaces, spots and cell functions and
batch analysis in Imaris (v8.3.1). XO4+ microglia were defined as IMARIS-
rendered surfaces in the Iba1 channel with mean fluorescence intensity above the
threshold in the methoxy-XO4 channel. Experimenters were blinded to the gen-
otype during image acquisition and processing.

qRT-PCR. qPCR was performed using the Biomark Fluidigm 96.96 protocol.
Briefly, assays (Supplementary Data 12) and samples were combined in a 96.96
Dynamic array IFC according to Fluidigm® 96.96 Real-Time PCR Workflow Quick
Reference PN 6800088. Here, 5 μl of each assay at a final concentration of 10x was
added to each assay inlet port and 5 μl of diluted sample was added to each sample
inlet port according to the ChipPipetting Map. The data were analysed with
Fluidigm Real-Time PCR analysis software (V4.1.2). The limit of detection was set
to 30. Samples with a Ct value for Actb (Mm00607939_s1) outside the 15–25 range
were excluded from further analyses. log2-transformed ΔCt values for the 42
detected genes were used for clustering by SC3 and relationships between samples
were visualized by SPRING (https://kleintools.hms.harvard.edu/tools/
springViewer), which uses a k-nearest-neighbour graph rendered using a force-
directed layout142. Plots were generated using the ggplot2 function in R. For
validation of HIF1A regulon in human ES-derived iMGLs or the mouse BV2
microglial cell line, 400 ng RNA was reverse transcribed using SuperScript™ II
Reverse Transcriptase (Thermo Fisher Scientific, #18064014). qPCR was performed
using TaqMan assays (SPP1, Hs00959010_m1; HIF1A, Hs00153153_m1; GAPDH,
Hs02758991_g1; APOE, Hs00171168_m1; TREM2, Hs00219132_m1; CX3CR1,
Hs01922583_s1; housekeeping gene SNRPD3, Hs00188207_m1, mouse TaqMan
assays Apoe, Mm00437573_m1; Spp1, Mm00436767_m1; Trem2,
Mm04209424_g1; Ctsa, Mm00447197_m1; Igf1, Mm00439560_m1; P2ry12,
mM00446026_M1; Hif1a, Mm00468869_m1; Actb, Mm00607939_s1; Tyrobp,
Mm00449152_m1) in a Roche LightCycler® 480 (Roche). We represented the
changes in gene expression of several genes following the knockdown of mHIF1a in
the form of a heatmap. Since different genes have different ranges of ΔCT values,
we scaled the gene expression in a gene-wise manner, specifically by subtracting the
value against the mean, followed by dividing against the standard deviation. To test
the difference between different conditions and mCherry DMSO (baseline) is
significant, two-sample t-tests were performed for each gene and the p-values were
subsequently combined using sum of logs method, also known as Fisher’s method,
via the sumlog function in the metap package (v1.4)143.

Cytometric bead array. Cytometric bead array (CBA) was carried out using the
BD (New Jersey, USA) CBA human flexi kit using a protocol modified from the
manufacturer’s protocol. Here, 5 μl of each standard (highest concentration at
5000 pg/ml in assay diluent) and sample were incubated with 5 μl of capture bead
mix (containing 0.1 μl of each cytokine Capture Bead diluted in Capture Bead
Diluent) for 1 h in a 96-well V-bottom assay plate. This was followed by the

addition and incubation with detection reagent mix (containing 0.1 μl of each
cytokine PE Reagent diluted in Detection Reagent Diluent for 1 h in the dark). Each
well was then washed once with 200 μl of Wash Buffer, and beads were resus-
pended in 80 μl of Wash Buffer for analysis by FACS using the LSRFortessa X-20
(BD Biosciences). At least 200 single-bead events from each cytokine population
were collected. Results obtained were analysed using the FCAP Array Software
Version 3.0 (BD).

Human primary microglia culture and transfection. Primary human microglia
isolated from cortex (Celprogen, #37089-01) were cultured on Matrigel-coated 12-
well plates at 5 × 105 cells per well in iMGL differentiation media at 37 °C in 5%
CO2. Cells (up to passage 5) were transfected for 48 h with dox-inducible GFP-
tagged Gateway-generated Piggybac expression constructs with inserted cDNA
encoding human HIF1A and/or ELF3 open reading frames using Glial Mag
transfection kit (Oz Biosciences, #GL00500) according to manufacturer’s instruc-
tions. Primary microglia were co-transfected with plasmids encoding Hybase
transposase and rtta at a ratio of 1:2:2 (Hybase: rtta: ORF).

Preparation and treatment with fibrils. Aβ1–42 (Bachem, #4014447.5000)
monomers were prepared by HFIP solubilization and aliquots were stored at −20 °
C over desiccant prior to use. For preparation of aggregated fibrils, Aβ1–42 was
freshly resuspended in 5 mM in DMSO at RT and diluted to 100 μM final Aβ with
10 mM HCl and 150 mM NaCl at RT made in 18MΩ sterile water. Following 15 s
vortex, Aβ was incubated at 37 °C for 24 h; 200 nM Aβ fibrils were added to iMGLs
for 48 h.

Fluorescent labelling of Aβ fibrils. Fibrillar Aβ (fAβ) was labelled with pHrodo™
Green STP ester using protocol adapted from Fujifilm/Cellular Dynamics Label-
ling Amyloid Beta with pHrodo Red protocol. First, 100 μl of fAβ was centrifuged
at 16,000g for 2 min then diluted to 200 μl with 0.2 M Na2CO3(aq) and centrifuged
at 16,000g for 1 min to collect the aggregates. Supernatant was removed and fAβ
pellet was rinsed with 200 μl HBSS by pipetting to mix. fAβ was then pelleted by
centrifugation at 16,000g for 1 min. Following the removal of supernatant, fAβ
pellet was resuspended in 200 μl 0.1 M Na2CO3(aq) by pipetting. The solution was
then added to 1.6 μl of 8.9 mM pHrodoTM Green stock (prepared according to
Thermo Fisher Scientific, #P35369 protocol) or 0.45 μl of 12 mg/ml Atto 647 N
NHS ester (1 vial of 0.24 mg Atto 647 N NHS ester was dissolved in 20 μl of
DMSO, #76508, Sigma) and incubated at 37 °C for 75 min. The reaction tube was
centrifuged at 16,000g for 1 min and supernatant was removed. The pellet of
stained fAβ was washed once by vortexing in 500 μl methanol. fAβ was pelleted by
centrifugation at 16,000g for 1 min and resuspended by pipetting and vortex in
100 μl HBSS. pHrodoTM-Green-labelled fAβ was added to BV2 cells at 1:100
dilution.

Phagocytosis of pHrodo E. coli, synaptosomes and pHrodo™-Green-labelled
fAβ. Synaptosomes were isolated from WT mouse brain tissue or human brain
(obtained from Victorian Brain Bank), according to the Syn-PER Synaptic Protein
Extraction Reagent (Thermo Fisher Scientific, #87793) protocol. The protein
concentration was measured by nanodrop, and synaptosomes were labelled with
pHrodo™ Red succinimidyl ester (Thermo Fisher Scientific, #P36600) as described
in144 or with blue fluorescent 2.0 µm FluoSpheres™ Carboxylate-Modified Micro-
spheres (Life Technologies, F8824) according to manufacturer instructions. Mouse
pHrodo-conjugated synaptosomes were resuspended at 3.5 μg/μl in 5% DMSO in
PBS and stored at −80 °C until use and human pHrodo-conjugated synaptosomes
were resuspended at 5.5 μg/μl in 1% (w/v) BSA and stored at 4 °C until use. To
examine the phagocytic properties of the XO4+ and XO4− microglia populations,
the microglia-enriched cell suspensions were isolated from methoxy-XO4-injected
mice as described above, stained for CD45 and/or CD11b and seeded in 96-well
plates. Following 30 min of resting at 37 °C and 5% CO2, microglia were incubated
with pHrodo-conjugated synaptosomes (4.25 μg per well), pHrodo™ Green E. coli
BioParticles™ Conjugate (Thermo Fisher Scientific, #P35361, 66.7 ng per well) or
pHrodoTM-Green-labelled fAβ. Cells were collected after 45 min incubation at 37 °
C and 5% CO2 and stained with antibodies to microglia cell surface markers
(CD11b-PE-Cy7, 1:200, Biolegend, #101216; CD45-APC-Cy7, 1:200, Tonbo Bios-
ciences, #25-0459-T100). XO4+ and XO4− microglia uptake of pHrodo-
conjugated synaptosomes, pHrodo™ Green E. coli BioParticles™ Conjugate, or
pHrodoTM-Green-labelled fAβ was analysed using the BD™ LSR II analyser.
iMGLs, BV2 cells or primary human microglia were incubated with conjugated
synaptosomes (3.44 μg/μl) for 1.5 h, and uptake of synaptosomes was analysed
using the BD™ LSR II analyser or during sorting on the BD FACSAriaTM Fusion or
BD InfluxTM Cell Sorter.

Murine microglial cell line BV2 culture, transduction and phagocytosis. The
murine microglial cell line BV2 was kindly provided as a gift from Prof. Peter
Crack (The University of Melbourne, Australia). BV2 cells were cultured in DMEM
media supplemented with 1x GlutaMAXTM-I, 5% (v/v) FBS, 50 U/ml Penicillin and
50 µg/ml Streptomycin. BV2 cells were seeded in 24-well plates at 10,000 cells per
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well and transduced for 48 h with mCherry expressing lentivirus with constitutively
expressed shRNA directed against mouse Hif1a (pLV[shRNA]-mCherry-U6 >
mHif1a[shRNA#1], VectorBuilder) or mCherry control lentivirus. Stably trans-
duced BV2 cells were sorted for equivalent levels of mCherry expression, seeded in
12-well plates at 5000 cells per well and rested for 24 h prior to treatment with
AF488-labelled Aβ fibrils for 24 h. qPCR was used to confirm knockdown of Hif1a
and activation of Hif1a regulon genes in FACS-sorted cells that had phagocytosed
pHrodo-labelled fAβ. The FACS gating/sorting strategy is in Supplementary
Fig. 10d.

BV2 cells were transduced with dox-inducible mCherry-tagged lentiviral Hif1a
overexpression constructs (pLV[Exp] -mCherry-TRE >mHif1a
[NM_001313919.1]) and constitutive rtta-GFP. Briefly, BV2 were seeded in 12-well
plates at 20,000 cells per well and transduced for 48 h with MOI100 of both
mCherry-Hif1a and rtta-GFP vectors in the presence of doxycycline (dox, 2 µg/ml).
Stable lines were generated by first FACS-sorting mCherry+GFP+ cells, further
incubation with and without dox for 2 passages followed by sorting mCherry+GFP
+ and GFP+ cells. Cells were seeded in 12-well plates at 100,000 cells per well and
rested for 24 h prior to treatment with AF647-labelled Aβ fibrils (1:100) for 24 h.
Phagocytosis experiments with blue-labelled synaptosomes were performed in
shRNA.Hif1a and Hif1a transduced BV2 cells, as above.

Intracellular staining for HIF1A. Following cell treatment with AF488- or AF647-
labelled Aβ fibrils, cells were washed with PBS, pulse vortexed and fixed for 30 min
at RT in 100 µl of 1x fix/perm buffer (# 00-5523-00, Life Technologies). Cells were
washed twice with addition of 200 µl of 1x permeabilization buffer (# 00-5523-00,
Life Technologies) and centrifugation at 400g for 5 min at RT. Cells were stained
for 30 min at RT in 30 µl of rabbit anti-HIF1A antibody (1:100, NB100-479, Novus
Biologicals, diluted in permeabilization buffer), washed twice and incubated with
AlexaFluor 647 donkey anti-rabbit IgG (#A31573, Life Technologies) or Pacific
Blue goat anti-rabbit IgG (#P10994, Life Technologies) for 30 min at RT. Following
2 washes, stained cells were resuspended in 200 µl FACS buffer and analysed using
the BD™ LSR II analyser.

Statistics. Differences between 2 groups were compared by 2-tailed t-test, and for
more than 2 groups, by one-way ANOVA and Tukey’s, Holm-Sidak’s or Dunnet’s
post hoc tests, as appropriate. Where results from t-tests and ANOVA are reported,
assumption of normality of the distributions was determined using the Shapiro-
Wilk normality test. Alternatively, non-parametric Wilcoxon (or Mann-Whitney)
and Kruskal-Wallis and Dunn’s post hoc tests were used, as indicated on a case-by-
case basis. To analyse the significance of gene enrichment of sensome genes in the
gene signature associated with XO4+ microglia, we used the hypergeometric test.
The hypothesis that plaque-distal human microglia internalize more PSD95 than
plaque-associated microglia was tested by paired 1-tailed one-sample t-test.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Bulk RNA-seq and Single-cell-seq raw and processed data from this study are available
from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165306. Proteomics raw
data are included in Supplementary Data 4. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD024731 Source data are provided with this paper.

Code availability
Code is available from the authors by reasonable request. Source data are provided with
this paper.
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