
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsfs20

Southern Forests: a Journal of Forest Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsfs20

The effect of accessibility and value addition on
the costs of controlling invasive alien plants in
South Africa: A three-species system dynamics
model in the fynbos and grassland biomes

Douglas J Crookes , James N Blignaut & David C Le Maitre

To cite this article: Douglas J Crookes , James N Blignaut & David C Le Maitre (2020) The effect
of accessibility and value addition on the costs of controlling invasive alien plants in South Africa:
A three-species system dynamics model in the fynbos and grassland biomes, Southern Forests: a
Journal of Forest Science, 82:2, 125-134, DOI: 10.2989/20702620.2019.1686685

To link to this article:  https://doi.org/10.2989/20702620.2019.1686685

Published online: 03 Nov 2020.

Submit your article to this journal 

Article views: 9

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tsfs20
https://www.tandfonline.com/loi/tsfs20
https://www.tandfonline.com/action/showCitFormats?doi=10.2989/20702620.2019.1686685
https://doi.org/10.2989/20702620.2019.1686685
https://www.tandfonline.com/action/authorSubmission?journalCode=tsfs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tsfs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.2989/20702620.2019.1686685
https://www.tandfonline.com/doi/mlt/10.2989/20702620.2019.1686685
http://crossmark.crossref.org/dialog/?doi=10.2989/20702620.2019.1686685&domain=pdf&date_stamp=2020-11-03
http://crossmark.crossref.org/dialog/?doi=10.2989/20702620.2019.1686685&domain=pdf&date_stamp=2020-11-03


Southern Forests 2020, 82(2): 125–134
Printed in South Africa — All rights reserved

Copyright © NISC (Pty) Ltd
S O U T H E R N  F O R E S T S

ISSN 2070-2620   EISSN 2070-2639
https://doi.org/10.2989/20702620.2019.1686685

The effect of accessibility and value addition on the costs of controlling 
invasive alien plants in South Africa: A three-species system dynamics 
model in the fynbos and grassland biomes

Douglas J Crookes1* , James N Blignaut2, 3  and David C Le Maitre4, 5 

1 School of Public Leadership, Stellenbosch University, South Africa
2 School of Public Leadership, Stellenbosch University, South Africa
3 South African Environmental Observation Network, Pretoria, South Africa
4 Smart Places, Council of Industrial and Scientific Research (CSIR), Stellenbosch, South Africa
5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
*Corresponding author: douglascrookes@gmail.com

We developed a two-biome (grasslands and fynbos) system dynamics model simulating invasions of three invasive 
alien plant species – black wattle (Acacia mearnsii) and two pine species (Pinus patula and Pinus pinaster) – and 
some of the consequences. The model considers three components: invasion dynamics; revenue from the sale of 
woody products derived from clearing invasive alien plants; and a coefficient that models the effect of increased 
accessibility to invaded areas. The model shows that increasing the returns on value added products (VAPs) from 
invasive alien plants (IAPs) by between 70% and 130% results in positive nett present values (NPVs) of R2.7 million 
for P. patula, R151.7 million for P. pinaster and R115.9 million for A. mearnsii (1996 base year). At the same time, the 
invasion of these species is reduced dramatically by 2025. The results show that there is much scope, and indeed 
a clear requirement, for improved returns on investment from harvesting these species through increasing the 
returns from VAPs. However, accessibility to invaded areas would need to be increased for positive nett gains in 
water yields and other returns to be maximised.

Keywords: A. mearnsii, clearing, P. patula, P. pinaster, value-added products

Introduction

Southern Forests is co-published by NISC (Pty) Ltd and Informa UK Limited (trading as Taylor & Francis Group)

Clearing of invasive alien plants (IAPs) is expensive 
(Marais and Wannenburgh 2008), often reducing the 
motivation to do so, despite the strong link between IAPs 
and the loss of ecosystem services (Gaertner et al. 2012). 
The clearing of IAPs has several benefits, including job 
creation, increased water yields and the possibility of a 
payments for ecosystem services mechanism whereby 
benefits from clearing IAPs can be monetised (Turpie 
et al. 2008). The primary mechanism for clearing IAPs 
is currently the Working for Water (WfW) programme 
which is a government funded programme launched 
in 1995 (Van Wilgen et al. 2012). Clearing of IAPs 
opens up the possibility of selling several value added 
products (VAPs), so called since they enable financial 
compensation for clearing to be obtained (Mudavanhu 
et al. 2016; Vundla et al. 2016; Nkambule et al. 2017), 
potentially allowing IAP clearing to ‘pay for itself’ or, at 
the very least, to significantly reduce the costs. Crookes 
and Blignaut (2019) reviewed 19 case studies where IAP 
clearing was being done. They found that this process 
does pay, with returns from clearing ranging between 
$1.32 and $1 552.80 ha-1. Only one of the case studies 
reviewed produced negative returns from clearing. 
Although VAPs are relatively well studied in the savannah 

biomes (Ballance et al. 2001), it is less well studied in the 
grassland and fynbos biomes of South Africa, hence the 
focus of this paper on these two biomes.

An aspect of IAP control that has not been well studied 
is the issue of accessibility, in particular the ability to 
reach and harvest them, especially since many IAPs 
are on mountain slopes or in riparian areas. Le Maitre et 
al. (2016) estimated that at least 20% of Acacia mearnsii 
De Wild invasions are in riparian areas, especially in the 
grassland biome, while most invasions of Pinus spp. 
are non-riparian and in mountainous areas according to 
Richardson et al. (1997). Accessibility is likely to become an 
increasing problem for clearing operations, because easy 
to reach areas are cleared first, leaving less accessible 
areas invaded by IAPs. This is the case in the fynbos 
biomes of Outeniqua, Wilderness and Knysna, as noted 
by Roura-Pascual et al. (2009). Accessibility is difficult to 
model as it is a function of topography, soil characteristics 
and rockiness which can only be estimated using detailed 
spatial data (McConnachie et al. 2015). Nevertheless, we 
believe that it is important to attempt to develop a better 
understanding of the importance of accessibility in IAP 
management.

This study models three IAP species in South Africa: one 
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acacia species (black wattle (Acacia mearnsii)) and two 
Pinus species (patula pine (Pinus patula Schiede ex Schltdl. 
& Cham)) and maritime or cluster pine (Pinus pinaster 
Aiton)). Acacia mearnsii was chosen since it is one of the 
most prevalent invaders in terms of area in the grassland and 
fynbos biomes of South Africa (Henderson 2007; Le Maitre 
et al. 2013), while P. pinaster is the most prevalent of the 
Pinus species invading the fynbos biome in terms of area 
invaded (Henderson 2007). Furthermore, P. patula is the 
most prevalent of the Pinus species invading the grassland 
biome (Henderson 2007).

The earliest system dynamics model of IAP management 
in South Africa was developed by Higgins et al. (1997) 
and simulates the costs and benefits of clearing IAPs in 
the fynbos biome. Our study extends this analysis to the 
grassland biome which contains most of the strategic 
water source areas, from the Amatole through to the 
Soutpansberg (Blignaut et al. 2010; WWF 2013). Van 
Wilgen et al. (2008) modelled the economic implications 
of the spread of IAPs for water resources, rangeland 
productivity and biodiversity at the biome level for South 
Africa, but did not assess scenarios. Crookes et al. 
(2013) modelled the costs and benefits of different control 
measures (both active and passive restoration) in case 
studies in several different regions in South Africa. They did 
not attempt to aggregate the case studies to a biome level, 
whereas our study undertakes a biome level assessment. 
Our study also includes VAPs from IAPs. Other case study 
models include Morokong et al. (2016) on the impacts of 
clearing IAPs on water infrastructure protection, Mudavanhu 
et al. (2016) on clearing for feedstock for electricity 

generation, and Vundla et al. (2016) on VAPs as a means 
of co-financing IAP clearing. All these studies showed the 
positive benefits that could be derived from IAP clearing but 
were done at an individual case study level and not at a 
national or biome level.

Invasive alien plants in the study
Although South Africa has many IAPs, the black wattle 
(A. mearnsii) from Australia is significant since it is very 
widespread and abundant in most of the biomes in the 
country (Henderson 2001; Nel et al. 2004). It also has 
important economic benefits through sales of bark for 
tannins and woodchips (pulp wood) and as a source of 
fuelwood and charcoal (De Wit et al. 2001; Shackleton et 
al. 2007). The cluster pine (P. pinaster) originates from 
Europe and is not currently utilised commercially in South 
Africa (Hoffmann et al. 2011). In contrast, the patula pine 
(P. patula) originates from North America and is grown 
commercially by the forestry industry in South Africa 
(Hoffman et al. 2011). Approximately half of all commercial 
forestry pine plantations are P. patula (Nyoka 2003). All 
three species are classified as Category 2 invaders in 
South Africa so they can only be grown in pre-demarcated 
areas (Henderson 2001) and, where they are invading, 
all three species have negative environmental impacts 
including greater water use than natural vegetation (Dye 
and Versfeld 2007). Pinus pinaster and P. patula occur 
in geographically distinct areas (Figure 1), with 97% of 
P. pinaster invasions occurring in the fynbos biome (Moran 
et al. 2000), and P. patula in the moist grassland regions 
(Richardson et al. 1997).

AFRICA

South
Africa

Figure 1: Distribution of invasive Pinus pinaster and Pinus patula in South Africa. Sources: Based on Henderson (2001); Mucina and 
Rutherford (2006) 
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Research method

System dynamics model
System dynamics models of IAP growth and clearing are 
well established in the literature (e.g., Higgins et al. 1997; 
Gaertner et al. 2014; Mudavanhu et al. 2017a; Vundla et 
al. 2017). Most of these models, however, do not model 
species interactions using a Lotka-Volterra formulation. The 
standard Lotka-Volterra system is a system of differential 
equations (e.g., Bjørndal and Conrad 1987):

  (1 )dx xrx qEx
dt k

= − −  (1)

  ( )pd qE
t

x cEE
d

δ= −  (2)

Where dx/dt is the logistic equation which is a function 
of the population x, the growth rate r and the carrying 
capacity k. The harvest function h = qEx, where q is the 
catchability coefficient and E is the harvesting effort. 
The second differential equation shows the dynamics of 
harvesting effort E, which is a function of an adjustment 
parameter δ, the price p and the cost per unit effort 
c. In our model, x is the spread of IAPs and q is the 
accessibility coefficient. We see that accessibility relates 
to the efficiency of harvesting, since an improvement in 
efficiency improves the yield of the product per unit effort. 
So, an improvement in accessibility improves the rate of 
harvesting and in our model, effort becomes the clearing 
effort. Prices are the values from the sale of VAPs, and 
the costs are the costs of clearing. The precise model 
equations are elaborated in a subsequent section.

The use of the Lotka-Volterra formulation in system 
dynamics modelling was pioneered by Swart and Hearne 
(1989) and further developed by Swart (1990). The 
Lotka-Volterra formulation in system dynamics has been 
extensively used in fisheries (Crookes 2016), wildlife 
(Crookes 2017), industry (Crookes and Blignaut 2016) 
and in dam construction (Crookes 2018). This would 
be the first time such a model is used in connection with 
IAP control, at least for South African IAPs. Grimsrud et 
al. (2008) developed a very similar model to ours in New 
Mexico, however, they modelled interactions between a 
grass and an invasive weed rather than invasive trees, and 
the profitability of control is in relation to the sale of cattle 
products rather than timber VAPs. 

Although the model is also known as the predator-prey 
model, a predator-prey relationship is not required in the 
biological sense nor does it matter which component is the 
predator and which is the prey. For example, Dendrinos 
and Mullally (1981) developed an urban dynamics model, 
defining the urban population as the predator and per 
capita income as the prey. For a similar urban dynamics 
application, Orishimo (1987) defined population as the prey 
and land price as the predator. However, we do believe 
that a plausible predator-prey relationship does exist in the 
case of our IAP model. There is strong precedent in using 
predator-prey models in IAP species interactions (e.g., 
Osunkoya et al. 2005), however, none have focussed on 
the control effort being the predator. At the same time, 
though, Fowler and Pease (2010) found that modifications 

to the logistic growth function for plant species performed 
better than the pure logistic function. Here, we also modify 
the logistic growth function to take into consideration 
different density dependent terms. The precise functional 
relationship is elaborated on in a subsequent section.

The Lotka-Volterra formulation is used to understand 
the effect of accessibility on harvesting. In the system the 
resources are the IAPs which are influenced by the control 
effort. The model assesses the effects of changes in the 
clearing budget on control effort, which in turn affects how 
much of the IAP species are harvested. We model our three 
IAP species using the Lotka-Volterra formulation, stocks 
and flows, systems modelling approach (see Figure 2, only 
wattle shown). The model also comprises two biomes: the 
fynbos and grassland biomes (the model appears to be the 
same for both, however, the underlying parameter values 
for each biome differ). Control effort is the predator and the 
IAP resource is the prey.

IAP growth
A logistic model is used to estimate the change in the 
spread of IAPs over time based on the fact that the 
expansion of invasions typically follows a sigmoidal form 
(Drake et al. 1988; Hengeveld 1989; Le Maitre et al. 
2002; Cullis et al. 2007) (Figures 2 and 3). The logistic 
model assumes density dependence in the spread rates 
of the IAPs with slow expansion at low densities (based 
on spread) during establishment and slowing again as 
invaders occupy the invadable area. However, a second 
aspect that is important is the increase in the density of 
IAPs related to condensed area invaded (up to a maximum 
of 100%) (Moody and Mack 1988). This does not follow for 
a density dependent trajectory, but rather an exponential 
population growth until the maximum of density is achieved 
(i.e., 100% canopy cover). Therefore, IAP growth in the 
model incorporates both a density dependent term related 
to spread and an exponential density increase which is 
expressed as the condensed area.

Model parameters
The values of the parameters in the model are derived 
primarily from the literature (Table 1). The carrying capacity 
for each species is the maximum condensed hectares it 
could occupy (i.e., the hectares it could cover at 100% 
density). This was estimated for each of the species in 
each biome from the remaining natural vegetation, derived 
from the land cover in 2013–2014 (GTI 2015), which is 
potentially invadable based on the potential distributions for 
the respective species, as modelled by Rouget et al. (2004).

We planned to parameterise the rate of spread by 
comparing the data from the 1996 survey (Versfeld et al. 
1998) with the 2007 National Invasive Alien Plant Survey 
(Kotzé et al. 2010). The data from the two surveys 
are difficult to compare though because they were 
obtained in very different ways. The 1996 data set was 
compiled from a range of sources and involved a range 
of methods, from detailed field mapping to desktop and 
workshop-based mapping (Versfeld et al. 1998). The 
2007 data set was obtained from aerial surveys involving 
1 ha random samples within extensive homogeneous 
mapping units at quite a low sampling intensity (Kotzé 
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et al. 2010). Van Wilgen et al. (2012) attempted a direct 
comparison but found, for example, an apparently 
substantial decrease in the extent of A. mearnsii from 
1996 to 2007 in the fynbos biome, a decrease which 
could not be explained by control operations. Nor is this 
decrease consistent with its historical success as an 
invader and the very substantial increases in the extent 
of A. mearnsii and allies (A. dealbata, A. decurrens) in 
the grassland and savannah biomes during the same 

period. The substantial increase in Acacia invasions the 
grassland and savannah biomes is partly due to poor 
coverage of these biomes in the Eastern Cape in the 
1996 data set (Le Maitre et al. 2016). However, what we 
did find was that if we excluded the very extensive areas 
of low (<5%) and very low (<0.1%) density invasions in 
the 1996 data set then the 1996 invasions were more 
comparable with the 2007 ones, allowing for spread 
rates of about 5%. The rationale for the exclusion of low 
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Figure 2: Stock-flow diagram of the A. mearnsii sub-model. The stock flow diagram shows how the components of the model interact. The 
arrows indicate directions of causality. Behind each component is an equation or parameter value. Parameters used in the model are given 
in Table 1.
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in Table 1.
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Symbol Parameter Value Units Description
nF Adjustment coefficient fynbos† 1.0 × 10−5 hectare/rand Relates to the rate at which control effort in the fynbos 

biome responds to changes in the price of IAPs and 
clearing costs

nG Adjustment coefficient grassland† 1.0 × 10−5 hectare/rand Relates to the rate at which control effort in the grassland 
biome responds to changes in the price of IAPs and 
clearing costs

kF
1 Carrying capacity A. mearnsii fynbos† 2 639 423

 
hectare Maximum condensed area of A. mearnsii in the fynbos 

biome
kF

2 Carrying capacity P. pinaster fynbos† 2 800 875 hectare Maximum condensed area of P. pinaster in the fynbos 
biome

kG
1 Carrying capacity A. mearnsii grassland† 9 813 395 hectare Maximum condensed area of A. mearnsii in the grassland 

biome
kG

2 Carrying capacity P. patula grassland† 5 309 521 hectare Maximum condensed area of P. patula in the grassland 
biome

qF
2 Accessibility coefficient P. pinaster fynbos† 1.2 × 10−5 1/(hectare × year) Indicates how easy it is to find, reach and harvest pine in 

the fynbos biome
qG

2 Accessibility coefficient P. patula grassland† 1.1 × 10−5 1/(hectare × year) Indicates how easy it is to find, reach and harvest pine in 
the grassland biome

qF
1 Accessibility coefficient A. mearnsii fynbos† 1.1 × 10−4 1/(hectare × year) Indicates how easy it is to find, reach and harvest  

A. mearnsii in the fynbos biome
qG

1 Accessibility coefficient A. mearnsii grassland† 1.0 × 10−6 1/(hectare × year) Indicates how easy it is to find, reach and harvest  
A. mearnsii in the grassland biome

p1 Price of pine† 7 300 rand/hectare Value of timber sales

cF Clearing cost fynbos‡ 4 576.7 rand/(hectare × year) Total cost of eradicating wattle and pines in the fynbos biome 

cG Clearing cost grassland‡ 3 417.8 rand/(hectare × year) Total cost of eradicating wattle and pines in the grassland biome

p2 Price of wattle† 1 800 rand/hectare Value of firewood sales

rF
2 Growth rate P. pinaster in fynbos§ 0.156 1/year Maximum intrinsic growth rate of P. pinaster in fynbos biome

rG
2 Growth rate P. patula grassland§ 0.156 1/year Maximum intrinsic growth rate of P. patula in grassland biome

rF
1 Growth rate A. mearnsii fynbos§ 0.1 1/year Maximum intrinsic growth rate of A. mearnsii in fynbos biome

rG
1 Growth rate A. mearnsii grassland§ 0.1 1/year Maximum intrinsic growth rate of A. mearnsii in grassland biome

dF
1 Densification rate A. mearnsii fynbos† 0.2 1/year Rate at which A. mearnsii in fynbos biome densifies

dG
1 Densification rate A. mearnsii grassland† 0.082 1/year Rate at which A. mearnsii in the grassland biome densifies

dF
2 Densification rate P. pinaster fynbos† 0.069 1/year Rate at which P. pinaster in the fynbos biome densifies

dG
2 Densification rate P. patula grassland† 0.009 1/year Rate at which P. patula in the grassland biome densifies

xF
1 Initial area A. mearnsii fynbos¶ 103 626 hectares Area in 1996 (uncondensed hectares), omitting densities <5%

xG
1 Initial area A. mearnsii grassland¶ 91 476 hectares Area in 1996 (uncondensed hectares), omitting densities <5%

xF
2 Initial area P. pinaster fynbos¶ 92 696 hectares Area in 1996 (uncondensed hectares), omitting densities <5%

xG
2 Initial area P. patula grassland¶ 1 048 hectares Density in 1996, omitting densities <5%

DF
1 Initial density A. mearnsii fynbos¶ 22.9 Dimensionless (%) Density in 1996, omitting densities <5%

DG
1 Initial density A. mearnsii grassland¶ 26.58 Dimensionless (%) Density in 1996, omitting densities <5%

DF
2 Initial density P. pinaster fynbos¶ 21.4 Dimensionless (%) Density in 1996, omitting densities <5%

DG
2 Initial density P. patula grassland¶ 30.71 Dimensionless (%) Density in 1996, omitting densities <5%

Note: For more information on the variables see the text. 
Source: † Model. Parameter derived from calibrating the model with the historical data; ‡ Calculated from Van Wilgen et al. (2012);  
§ Van Wilgen and Le Maitre (2013); ¶ Calculation from data in Versfeld et al. (1998).

Table 1: Parameters used in the model 
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density classes is the very low probability of accurately 
detecting and quantifying such sparse invasions given 
the low sampling intensity of the 2007 survey. For this 
analysis we have used the adjusted 1996 extent of the 
invasions for the initial invaded areas and densities for 
the model (Table 1). 

The rest of the parameters are obtained through calibration 
with the historical data (clearing effort and IAP area). As far 
as the historical data are concerned, these were obtained 
or calculated from several different sources. Areas cleared 
permanently per biome for 1996 and 2008 were obtained 
from Van Wilgen et al. (2012) or calculated from data in 
Kotzé et al. (2010). The study also utilised Working for 
Water data on area cleared per province from 1996 to 2008 
(IDC 2011), which needed to be apportioned by species 
cleared and biome. The apportioning by biome was done 
by assuming that the fynbos biome was essentially confined 
to the Western Cape, while the grassland biome fell within 
the Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo, 
Mpumalanga and Free State provinces. The proportion 
of clearing that was wattles and pines was then extracted 
using the share of these species in each biome within these 
provinces from the Kotzé et al. (2010) data. 

Model equations
Condensed hectares invaded (x) is an increasing function of 
two variables: 

 ( ),x F α δ=                                                          (3)

where α is the total area invaded, and δ is the density of 
the invasions in the area. Each of these functions evolve 
differently over time: are a invaded increases following 

a sigmoid function, initially increasing rapidly but then 
decreasing as the invaded area approaches 100% of the 
available area, whereas density follows an exponential 
growth curve to its maximum (Figure 4).

We therefore postulated, for a species j, that growth of 
condensed hectares (spread at 100% density of IAPs) 
invaded (x) will occur according to the following growth 
function:

 1
i i
j ji i i i i i i

j j j j j ji
j

dx x
r d D x q E x

dt k
 

= − −  
 

 (4)

where i is the biome: F = Fynbos, G = Grassland, and j is 
the species: 1 = wattle and 2 = pine. D i

j is the density of 
species j in biome i and di

j is the densification rate, r i
j is the 

spread rate of species j in biome i, and qi
j is the accessibility 

coefficient of species j in biome i.
Control effort grows according to the following differential 

equation:

 ( )i i

i
j i i i

j j j j

dE
n E p q x c

dt
= −

 (5)

where i = Fynbos (F), Grassland (G) and j = wattle (1), 
pine (2). Pj is the price of VAPs of species j and ci is the 
cost of clearing biome i. The descriptions and values of the 
parameters are further elaborated in Table 1.

Model validation
An advantage of using system dynamics tools for these 
types of models is that confidence in the model may be 
improved by conducting a range of validation tests. For 
example, the software enables several unit checks to 

Figure 4: The dynamic behaviour of (a) change in area invaded, and increase in density over time

Symbol Parameter Old 
value1

New 
value2

Percentage 
change Units

p1 Price of Pinus species 7 300 12 555 72 rand/hectare
p2 Price of A. mearnsii 1 800 4 089 127 rand/hectare
qF

2 Accessibility coefficient P. pinaster fynbos 1.2 × 10−5  1.0 × 10−4 1/(hectare × year)
qG

2 Accessibility coefficient P. patula grassland 1.1 × 10−5 4.0 × 10−3 1/(hectare × year)
qF

1 Accessibility coefficient A. mearnsii fynbos 1.1 × 10−4 2.0 × 10−4 1/(hectare × year)
qG

1 Accessibility coefficient A. mearnsii grassland 1.0 × 10−6 2.0 × 10−4 1/(hectare × year)
1 see Table 1; 2 see text under VAP scenario

Table 2: New values for model that reduce invasions to zero by 2025
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be performed to ensure consistency. Also, behaviour 
verification was conducted by comparing a plot of the model 
output with historical time series data. Good historical data 
on species spread were not available, so a conservative 
5% growth in species area over time (Van Wilgen and Le 
Maitre 2013) was assumed (Figure 5). Although the model 
does not capture the intermediate values well in all cases, 
the long-term trend in the data is captured reasonably well. 
The model therefore provides an acceptable, although not 
perfect, replication of known behaviour of the system.

Structure verification tests were also conducted, and since 
the model is derived from the well-established literature on 
predator-prey interactions it is deemed adequate. Data from 
the study were also derived from the literature, and missing 
parameter values were obtained through optimisation. 
On the basis of these tests we conclude that the model is 
sufficiently robust to be used for simulation.

Results

In this section we consider the results of the simulation 
model, with the model calibrated with the historical data, on 
area invaded and control effort. 
Three scenarios are considered:
1. Business as usual: clearing continues at existing levels 

(unit of measure = ha cleared].
2. Do nothing scenario: control effort proceeds from 1996 to 

2014 (following Nkambule et al. 2017; Mudavanhu et al. 
2017b), where after no clearing is undertaken.

3. VAP scenario: the price of VAPs increases by between 
70% and 130%, and accessibility to IAPs is improved (for 
example, through improved harvesting technologies). In 
our model, profitability drives the dynamics of clearing 

and therefore IAP spread, so it is crucial to consider the 
impact of accessibility and profitability on IAP spread.

Business as usual
Under business as usual, all species increase until at 
least 2025, which is the terminating period of the model 
(Figure 6).

Do nothing scenario
The do nothing scenario indicates the effect of ceasing 
clearing operations. The simulations indicate that clearing 
has had a small effect on IAP area, but not much (Figure 6) 
(note under this scenario that clearing is from 1996 and 
terminates in 2014). The implications of the scenario on 
values is discussed in a subsequent section.

VAP scenario
Using unpublished data from W. Stafford (personal 
communication) on the value of sales of timber and timber 
products and sales of roundwood per species and plantation 
areas per species, and deducting 60% intermediate costs for 
wood products (Turpie et al. 2003), it is possible to estimate 
an approximate market value for pine timber (R12 555 ha–1 
at 1996 prices) and wattle firewood (R4 089 ha–1 at 1996 
prices). These are coarse estimates based on national 
data and therefore do not consider local dynamics such as 
distance to market, wood quality, etc. The new values for the 
model are given in Table 2.

Under the business as usual scenario, clearing levels 
are not sufficient to eliminate A. mearnsii or P. patula in the 
grassland biome. This is primarily due to the low accessibility 
coefficient of the wattle invasions. The low accessibility 
coefficient is a function of topography, primarily due to 
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Figure 5: Invasive alien plant area (ha). The approach adopted by the study is to use optimisation to estimate the values of unknown 
parameters that provided the best fit with the historical data.
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the invasions being located mainly in or near riparian 
areas which are often in ravines or gullies or in rugged 
areas. Under the VAP scenario, however, the accessibility 
coefficient of all IAPs as well as the price of VAPs are 
increased to market related levels. The accessibility 
coefficient is increased through, for example, improved 
harvesting technologies. Figure 6 gives the results of model 
runs using these parameter values and shows declines 
in species spreads over time at least until the end of the 
model simulation.

Nett present values
Nett present values are estimated for the three scenarios 
and three species (Table 3). The do nothing scenario 
indicates societal losses for all three species modelled. 
The business as usual scenario indicates some societal 
benefit from clearing for A. mearnsii. This is consistent 
with the literature. De Wit et al. (2001) found that clearing 
wattle produced a nett benefit from clearing of US$874 
million at a national level, although this study includes many 
other benefits not included in our study. Also, the scope of 
our study was different, being for the moist grassland and 
fynbos regions only, and excluding low density stands. The 
VAP scenario produced the best societal values, which had 
the double dividend of also reducing IAP spread.

Conclusions

Our study finds that improving accessibility to invasive alien 
Pinus species and A. mearnsii in the grassland and fynbos 
biomes, as well as improving profitability from VAPs such 
as pine timber and wattle firewood is crucial to ensure that 
harvesting is profitable, and at the same time that these 

invasive species are eradicated. This is the first study we 
know of that modelled IAP control as a predator-prey 
system, and which also includes accessibility in the model. 
The results show that accessibility, particularly in relation 
to harvesting technologies, is crucial in informing clearing 
efforts. Without this improvement, and without increases in 
the value of sales of timber products, there is insufficient 
incentive to clear these three species in the grassland and 
fynbos biomes. 
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Figure 6: Three scenarios, and impact on IAP area (ha). Note: unless otherwise indicated, Business as usual and Do nothing overlap on  
the graph

Scenario 1: 
BAU

Scenario 2: 
Do nothing

Scenario 3: 
VAP

P. patula −0.107 −0.095 2.708
P. pinaster −2.123 −4.687 151.68
A. mearnsii 17.37 −0.69 115.92
Notes: Simulation from 1996 to 2025 (30 years). Discount rate 6% 
following Conningarth Economists (2007).

Table 3: Nett present values (1996 R million) for the three species
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