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Abstract. Geographic variation of species richness is strongly correlated with environ-
mental gradients. However, random arrangement of species distributions within a bounded
domain can also theoretically produce richness gradients without underlying environmental
gradients. This mid-domain effect (MDE) could serve as the null hypothesis against which to
test effects of environmental variables, or as a component of a multivariate explanation of
species-richness patterns. Recent reviews have concluded that there is a substantial MDE
signature in observed geographical patterns of richness, based on correlations between
observed patterns of richness and the predictions of mid-domain models. However, the mid-
domain hypothesis makes additional powerful predictions about how richness should vary
through space, and about the slope of the relationship between predicted and observed
richness. Very few studies have tested these more powerful MDE predictions. Here, we
reexamine the published mid-domain literature for agreement between observed patterns of
richness and MDE predictions. We find that 50 of 53 published studies of MDEs showed
significant deviations from the predictions of mid-domain models. When observed richness is
correlated with MDE predictions, there are nearly always strongly collinear environmental
gradients (e.g., in the Americas, climatic favorability and MDE-predicted richness are both
maximal in the middle). Interpolation in sparsely sampled data can also give rise to spurious,
apparently strong, mid-domain effects (e.g., the classic study of the Madagascan rain forest).
We conclude that observed broad-scale patterns of species richness are not consistent with the
mid-domain hypothesis.
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INTRODUCTION

Species richness varies dramatically over broad spatial

scales (e.g., H-Acevedo and Currie 2003). A large

literature has sought to relate geographic gradients of

species richness to environmental gradients (Rosenzweig

1995, Hawkins et al. 2003). However, Colwell and Hurtt

(1994) proposed that spatial patterns of species richness

should exist even in the absence of environmental

gradients. They noted that, if species’ ranges are

distributed randomly within a bounded domain, more

ranges will overlap in the middle of the domain than at

the edges (Colwell and Hurtt 1994). This central

maximum of richness was dubbed the ‘‘mid-domain

effect’’ (MDE). Colwell and Hurtt proposed that

hypothesis tests about environmental influences on

species richness should be compared to a spatially

defined MDE null model, rather than the conventional

statistical null model used in earlier literature.
This proposition could fundamentally change the

interpretation of decades of research on determinants of

species richness. However, it proved to be controversial

on theoretical grounds, and uncertain empirically. The
purpose of the present study is to address the question:

Are observed patterns of richness consistent with the

predictions of the mid-domain hypothesis? To put this

question in context, we first briefly review the debate.

A brief recap of the debate

In an early review, Colwell and Lees (2000) summa-

rized the logic of the mid-domain hypothesis. They
discussed several methods to derive expected spatial

patterns of richness in the absence of environmental

gradients, and they noted that mid-domain peaks of
richness had been observed in nature (Willig and Lyons

1998, Lees et al. 1999). Colwell and Lees (2000:70)

concluded that ‘‘the question is not whether geometry

affects such patterns, but by how much.’’
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Mid-domain theorists propose that MDE model

predictions should be used in one of two ways. MDE-

predicted richness could serve as the null pattern to be
removed from observed patterns of richness before

testing for environmental effects. That is,

Rðx; yÞ �MDEðx; yÞ ¼ gðZÞ þ e ð1Þ

where R(x, y) is species richness at geographic coordi-

nates x and y, MDE(x, y) is mid-domain predicted
richness at x and y, g(Z) is a function of a vector Z of

environmental variables, and e is random error (e.g.,

Connolly et al. 2003). Alternatively, MDE predictions

could be used as a candidate explanatory variable, along
with environmental variables, in statistical models of

spatial variation in richness:

Rðx; yÞ ¼ gðZÞþMDEðx; yÞ þ e ð2Þ

(e.g., Jetz and Rahbek 2001, 2002, Bellwood et al. 2005).

Critics raised several objections (Hawkins and Diniz-
Filho 2002, Zapata et al. 2003, 2005, Hawkins et al.

2005). First, MDE models can be formulated in many

ways, and different formulations predict different spatial

patterns of richness. Which pattern is, in fact, null?
Second, MDE predictions are derived by randomizing

observed species range sizes. If the area and the

cohesiveness of species’ ranges reflect responses to

environmental variables, then MDE predictions are
not null with respect to environmental gradients.

Finally, empirical support for MDEs is questionable.

Zapata et al. (2003:677) reviewed 11 published MDE
studies and concluded that, ‘‘most studies do not show a

high degree of concordance between observed and

predicted species richness patterns, particularly in 2-D

[two dimensions].’’
Colwell et al. (2004, 2005) re-reviewed the subject and

defended the logic of MDE models. Moreover, they

concluded that ‘‘an overview of the 21 MDE studies

published to date reveals a substantial signature of
MDE [on richness] in natural patterns and justifies

continued work’’ (Colwell 2004:E1). Similarly, Willig et

al. (2003:296), in their review of latitudinal patterns of

diversity, list geometric effects among the main candi-
date explanations of diversity, saying that, ‘‘empirical

support for the geometric constraints model is increas-

ing.’’

Support for MDEs takes two forms. First, observed
patterns of richness are often significantly correlated

with MDE-model-redicted richness (Colwell et al. 2004:

Table 1). Second, the mid-domain hypothesis predicts
that MDEs will be more pronounced among large-

ranged species than among small, because large ranges

are more likely to overlap by chance than small ranges.

This has repeatedly been observed (Colwell et al. 2004).

Relatively few studies have focused on testing the
mid-domain hypothesis (i.e., Is there evidence that is

inconsistent with the hypothesis?), as opposed to

supporting it (i.e., Is evidence consistent with the
hypothesis?). Mid-domain theory makes powerful test-

able predictions (P1–P5, below) beyond the simple

correlation between predicted and observed richness.

Since MDE theory proposes that mid-domain peaks of
richness must occur in all bounded domains, there are

many opportunities for strong tests of the theory.

Strong MDE predictions

P1.—‘‘MDE outputs are more than correlates of

species richness. . . . In the appropriate context, they are

predictions of actual richness, for which the accuracy of
prediction can be evaluated by computing deviations

from the ‘unity line’ of slope 1 and intercept 0’’ (Romdal

et al. 2005:238; also Colwell et al. 2004:E13).

P2.—Observed patterns of richness can be tested
statistically for goodness of fit to predicted patterns.

This can be done, for example, by Komolgorov-Smirnov

tests (e.g., Lees et al. 1999), or by runs tests on the

residuals from predicted relationships.

P3.—The mid-domain hypothesis is completely gen-
eral: it should apply to all endemic taxa in any bounded

domain (e.g., Lees et al. 1999, Cardelús et al. 2006).

P4.—The expected slope between observed and MDE-

predicted richness also constrains the expected correla-
tion. In least-squares regression of A ¼ f (B), where A

and B are any two variables, the slope bA.B and the

correlation coefficient rAB are related to one another by

definition:

rAB ¼ bB:A
sA

sB

where sA and sB are the standard deviations of A and B.
Mid-domain theory requires that the slope of observed

richness as a function of MDE-predicted richness must

be 1.0 (see P1). Mid-domain theory therefore also

predicts that the proportion of variance explained by
an MDE model (r2

AB) must be

r2
AB ¼

s2
A

s2
B

¼ Varianceðpredicted richnessÞ
Varianceðobserved richnessÞ : ð3Þ

This prediction has a surprising corollary. Because

MDE-predicted richness is derived by randomizing

observed species’ ranges, the variances of predicted

and observed richness in a given domain tend to be
similar (Zapata et al. 2003:683, Colwell et al. 2004:E8).

Consequently r2
AB should be near 1 in most cases. In

other words, MDEs should explain almost all the
variance in observed richness in nature.

P5.—Predicted mid-domain peaks are two-dimension-

al, and approximately radially symmetrical, although

the exact shape depends upon the shape of the domain

(e.g., Colwell and Lees 2000: Fig. 1, Jetz and Rahbek
2001: Figs. 1 and 2b, Kerr et al. 2006: Fig. 1).

METHODS

We searched the Web of Science on 26 April 2007 for

the phrase ‘‘mid-domain.’’ Web of Science returned 70

studies. Among these, 53 studies compared MDE-

predicted and observed richness, or they presented data
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that allowed us to do so (Table 1). The remaining papers

included review articles, theoretical or modeling studies,

and studies in unrelated fields.

When anarticle includedfigures showingobserved- and

MDE-predicted richness, we digitized the data using

TECHDIG version 2 software (R. Jones, unpublished

software). For the digitized data set we calculated the

slope of observed vs. predicted richness. We considered

the slope to be consistent with MDE prediction if it was

significantly different from 0.0, and not significantly

different from the predicted value of 1.0 (a¼ 0.05). For

one-dimensional gradients (e.g., latitude, elevation,

depth), we used a runs test to detect pattern in the

residuals (i.e., a test of goodness of fit).We also calculated

the predicted correlation (P4) and the observed correla-

tion. Finally, in each study, we noted the authors’ own

observations about agreement between predicted and

observed patterns.

Many studies compared observed and MDE-predict-

ed richness for several taxa, or using several different

null models. When tests involved different taxa, we

recorded the taxa separately, unless the taxa were nested

(e.g., a family and its subfamilies). In that case, we

recorded only the results from the highest taxonomic

level. When studies used multiple MDE models (based

on different assumptions) to calculate predicted rich-

ness, we used predicted richness obtained by random-

izing observed species’ ranges.

FIG. 1. In 65 studies of a taxon in a given domain (e.g.,
African birds, Himalayan plants), the frequency distribution of
observed slopes of the relationship between observed and
predicted richness. Count is the number of cases with a slope in
each of the bins on the abscissa. Theory predicts that the slope
should equal 1.0. Cases with slopes that do not differ
significantly from 1.0 are unshaded. Slopes that do not differ
significantly from 0.0 (i.e., no significant relationship) are black.
Slopes that do differ significantly from 1.0 are gray. Sixty-four
percent of these slopes are inconsistent with the mid-domain
predictions.

FIG. 2. (a) Using data digitized from Romdal et al. (2005:
Fig. 1a), the richness of breeding birds in 18 latitudinal bands in
the New World (3), and the predicted richness from a one-
dimensional mid-domain model (*). (b) The latitudinal
variation of mean annual temperature, averaged across
latitudinal bands (data from Francis and Currie [2003]). (c)
The residuals from mid-domain predicted richness.
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TABLE 1. A summary of studies presenting data that permit tests of predictions of the mid-domain hypothesis; the taxa and the
domain examined in the original study are listed. Boldface indicates observations inconsistent with the predictions of the mid-
domain effect (MDE); italics indicate conditions that weaken tests of the MDE.

Reference Taxa Gradient Domain

Environ. variables�

MDE
model�

Inter-
polation§

Climate
and/or

productivity Area

Horizontal (geographic) patterns of richness

Willig and Lyons (1998) bats lat. New World no no yes RM
marsupials

Lees et al. (1999) mycalesines and
other taxa

lat.
2-D

Madagascan
rainforest biome

no
yes

yes
yes

yes
yes

yes
yes

Bokma et al. (2001) mammals lat. New World no no yes ??

Jetz and Rahbek (2001) birds lat. Sub-Saharan Africa no no yes no (?)
long. no
2-D lat. n/a
2-D long.

Koleff and Gaston
(2001)

parrots lat. New World no yes yes RM
woodpeckers

Diniz-Filho et al. (2002) Falconiformes 2-D South America no n/a yes RM
Strigiformes

Ellison (2002) mangroves lat. global Precip.,
not temp.

yes yes no

Hawkins and Diniz-
Filho (2002)

birds 2-D North America no n/a yes RM

Jetz and Rahbek (2002) birds 2-D sub-Saharan Africa yes n/a yes no (?)

Laurie and Silander
(2002)

Proteaceae lat. Cape floristic
province

no n/a yes no

Connolly et al. (2003) corals lat. Indo-Pacific no no yes yes
fish lat.
corals long.
fish long.

McCain (2003) rodents lat. Western American
deserts

no yes; see
Note

yes RM

Rangel and Diniz-Filho
(2003)

Falconiformes 2-D global yes n/a yes RM

Aliabadian et al. (2005) contact zones of
parapatric
passerine birds

2-D Palaearctic no n/a yes RM

Arita et al. (2005) bats lat. North America no no yes RM
Bellwood et al. (2005) corals, fish 2-D Indo-Pacific yes yes yes No

Ferrer-Castán and
Vetaas (2005)

pteridophytes 2-D Iberian peninsula yes n/a no RM

Hernández et al. (2005) benthic
polychaetes

lat. Chilean coast no n/a yes yes

Mora and Robertson
(2005)

shore fishes lat. Tropical Eastern
Pacific

yes n/a yes yes

Romdal et al. (2005) birds lat. New World no yes yes ??

Smith et al. (2005) Acaris 2-D N. America no n/a yes RM
hylids Asia
hylids Europe
Hyla N. America

Kerr et al. (2006) mammals lat. Madagascar yes n/a yes RM
birds lat.
birds 2-D

Moreno et al. (2006) polychaetes lat. Chile (188–568 S) no no yes yes

Storch et al. (2006) birds 2-D global yes n/a yes yes

Rahbek et al. (2007) birds 2-D South America yes n/a yes yes
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TABLE 1. Extended.

r2||
Obs.

slope, b}
Runs
test P# NotesExp. Obs.

0.45 0.68 1.24
a ,10

�4 Mid-latitude peak in richness is collinear with temperature.
0.82 0.35 0.08a ,10�4

0.88 0.89 1.00 0.004 MDE-predicted and observed richness fit P , 10
�3

(1-D models, all species; their Table 5).
Acceptable fit for some other groups. 2-D predicted values are nearly all greater than
observed (their Fig. 11; binomial test P , 10�5). Most observations in mid-domain peak
are interpolated (p. 539).

0.88 0.78 0.93 ,10�3

0.62 0.14 0.48a ,10�4 ‘‘Our model could not explain latitudinal variation in species richness of New World
mammals’’ (p. 43).

0.87 0.66 0.87 ,10
�4 The authors conclude that, ‘‘Latitudinal, longitudinal, and two-dimensional patterns of

species richness are well-predicted from the modeled null effects alone’’ (p. 5661).
However, their tests of fit (their Table 1) agree only with latitudinal data. For 2-D models,
there is negligible probability (,10�4) of agreement with observed patterns. Collinearity
problems as well. (See Appendix C.)

0.83 0.61 0.85 ,10
�4

0.43 0.63 1.21 ,10
�4

0.78 0.56 0.85 ,10�4

1.71 0.97 0.75
a

0.02 58 bands of latitude. ‘‘. . .the fit of these [MDE] models is uniformly poor’’ (p. 341).
2.45 0.94 0.62a 0.001
n/a 0.05

c n/a n/a ‘‘The correlation between observed richness and expected richness . . . was very low’’ (p. 50).
Richness variation related to habitat heterogeneity.0.02

0.78 0.78 1.00 .0.1 Latitudinal variation in SR agrees with MDE predictions. However, ‘‘the latitudinal pattern
. . . is due almost entirely to mangrove area at a given latitude. . .’’ (p. 186). Low statistical
power: n ¼ 14.

n/a 0.21c n/a,c but
P , 10

�2
n/a ‘‘The observed pattern of bird richness clearly varied from that predicted by both geometric

models.’’ Collinear gradients. (See Appendix C.)
n/a 0.18 n/a n/a MDE significant, ‘‘but its strength compared to productivity and habitat heterogeneity is

relatively low’’ (p. 1549). Collinear precipition gradient. (See Appendix C.)
1.49 0.33 0.47

a ,10
�4 ‘‘Geometric constraint does not explain the spatial pattern in this case’’ (p. 351).

0.69 0.87 1.12
a ,10

�4 ‘‘Longitudinally, coral and fish species-richness . . . differ markedly from mid-domain
predictions. Latitudinally, agreement . . . appears much closer’’ (p. 2181). However,
currents and temperature are collinear with the mid-domain in the Pacific and Indian
oceans. (See Discussion: Collinearity on geographic gradients.)

0.56 1.30
a ,10

�4

0.59 0.83 ,10�4

0.45 1.08 ,10
�4

0.61 0.86 1.19a ,10�4 ‘‘Observed species richness is highly correlated with predictions of the binomial model (r2

¼ 93%) but does not generally occur within 95% confidence intervals. . .’’ (p. 967).

n/a 0.00
c n/a n/a ‘‘Only 0.2% of the variation in species richness can be explained by GCM [geometric

constraints model] predictions’’ (p. 206).
n/a 0.04c n/a n/a ‘‘A mid-domain effect null model . . . had low explanatory power of 3.8%’’ (p. 21). No test of

goodness of fit.

0.09 0.01b �0.31b ,10�3 Observed variation of richness and range size ‘‘deviated sharply from null models’’ (p. 961).
n/a n/a n/a n/a Best model includes MDE and area. MDE prediction is strongly collinear with area and

temperature (and currents?). (See Discussion: Collinearity on geographic gradients.)
n/a n/a n/a n/a ‘‘Richness is significantly higher along the coast than in the centre of the peninsula’’ (p. 155).

1.03 0.40 0.62 .0.1 ‘‘. . . richness increased toward southern latitudes. . . . [There is] a weak level of mid-domain
effect on species richness’’ (p. 363). Low statistical power: n ¼ 13.

0.89 0.91 1.01 ,10
�4 Observed peak in richness close to MDE predictions. However, MDE is strongly collinear

with mean temperature: r ¼ 0.96. (See Appendix C.)

0.25 0.43 1.33a ,10�4 Temperature is a better predictor of richness than MDE. (See Discussion: Collinearity on
geographic gradients; also see Appendix A.) After controlling for area, MDE passes the
slope test, but fails the runs test.

0.16 0.49 2.68
a low n Mid-latitude peaks of richness. Very low statistical power: n , 10.

0.06 0.02 0.59
b low n

0.22 0.74 1.83 low n
0.14 0.20 1.59

b low n
0.76 0.76 1.00 ,10

�3
Richness shows a mid-domain minimum.

1.88 0.16 0.29
a ,10

�3

0.27 ,0 �1.0a ,10
�4

0.38 0.73 1.40 low n Richness peaks in the mid-domain; however, 5 of 13 observations differ significantly (P ,
0.05) from the MDE predictions. Collinearity with temperature southward; artificial
(political) northern domain boundary boundary. Low statistical power: n ¼ 13.

n/a n/a n/a n/a ‘‘[An MDE model] constrained only by the distribution of continental masses did not predict
observed patterns of species richness’’ (p. 1313). Within-biome MDE and actual
evapotranspiration statistically explain indistinguishable amounts of variance. No tests
of goodness of fit.

n/a 0.16
b,c 1.19c n/a Richness is not significantly correlated with MDE prediction.
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TABLE 1. Continued.

Reference Taxa Gradient Domain

Environ. variables�

MDE
model�

Inter-
polation§

Climate
and/or

productivity Area

Vertical patterns of richness

Rahbek (1997) birds elevation South America,
divided into 7
elevation bands

no yes no no

Fleishman et al. (1998) butterflies elevation Nevada yes yes yes no

Pineda and Caswell
(1998)

gastropods,
polychaetes

depth NW Atlantic no no yes yes (?)

Lees et al. (1999) mycalesines elevation Madagascar no yes yes yes

Kessler (2001) pteridophytes and
angiosperm
families

elevation Bolivia yes: PET n/a yes no

Grytnes and Vetaas
(2002)

vascular plants elevation Nepalese Himalayas no no yes yes

Sanders (2002) ants elevation Colorado, Nevada,
Utah

no yes partially yes (?)

Smith and Brown (2002) pelagic fish depth North Pacific no no no yes

Grytnes (2003a) vascular plants elevation seven transects in
Norway

no n/a no no

Bachman et al. (2004) plants elevation New Guinea no yes yes yes (?)

McCain (2004) non-volant small
mammals

elevation one transect in
Costa Rica

no n/a yes no

Carpenter (2005) plants elevation Western Nepalese
Himalayas

yes yes yes no

Herzog et al. (2005) birds elevation Bolivean Andes no yes yes no

Krömer et al. (2005) Vascular epiphytes elevation Bolivean Andes yes n/a yes no

McCain (2005) non-volant small
mammals

elevation meta-analysis of 56
data sets

n/a n/a yes n/a

McClain and Etter
(2005)

bivalves depth western North
Atlantic

no no yes no
gastropods
polychaetes

Mena and Vázquez-
Dominguez (2005)

rodents elevation 13 gradients
worldwide

no no yes no

Oommen and Shanker
(2005)

tropical plants elevation geopolitical units in
the Himalayas

yes yes yes yes
temperate plants

Almeida-Neto et al.
(2006)

harvestmen
(Arachnida)

elevation SE Brazil yes no yes no

Cardelús et al. (2006) epiphytes elevation Barva transect,
Costa Rica

yes and
no

n/a yes no
aroids
bromeliads
ferns
orchids

Dunn et al. (2006) shoreline plants along the river
axis

Kalix River no yes yes no
Torne River
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TABLE 1. Continued, Extended.

r2||
Obs.

slope, b}
Runs
test P# NotesExp. Obs.

n/a n/a n/a n/a Richness decreases monotonically with elevation. Controlling for area, richness peaks in
second-lowest elevational band (of 7).

n/a n/a n/a n/a Weak correlation. ‘‘The observed distribution of species richness was significantly different
from the distribution expected under our null model assumptions’’ (p. 2487).

n/a n/a n/a n/a No mid-domain peak in richness. ‘‘Overall we find that random rearrangements cannot
explain most characteristics of the parabolic diversity patterns of gastropods and
polychaetes [in samples rarified to contain equal numbers of individuals]’’ (p. 83).

1.49 0.57 0.62
a .0.1 ‘‘All the curves [of richness as a function of elevation] in Fig. 7 differ significantly in central

tendency from the null model’’ (p. 550).
n/a n/a n/a n/a Significant correlation between observed and MDE-predicted richness for only 3 of 8 plant

groups. Richness of 5 of 8 groups decreases monotonically with elevation. Diversity varies
with productivity.

n/a n/a n/a n/a Generated MDE model, but no statistical tests of fit. Concluded that richness is influenced
by a combination of MDE, climate and interpolation. Collinear with climate and area.
(See Appendix C.)

0.31 0.33 1.04 ,10
�4 Mid-elevation peaks in richness, at lower elevation and more peaked than predicted. Area

explained most of the pattern; significant residual MDE correlation0.45 0.90 1.41
a

0.02
0.25 0.32 1.13 ,10

�4

n/a n/a n/a n/a Maximum richness near surface. ‘‘Results reject [the hypotheses] that would attribute the
pattern of species richness to the mid-domain effect’’ (p. 213).

n/a n/a n/a n/a ‘‘In five [southern] transects species richness peaked at mid-altitudes, whereas in the two
northern transects species richness decreased with altitude’’ (p. 291). Collinear climate and
area. (See Appendices A and C.)

0.56 0.27 �0.69a ,10
�4 Richness decreases with elevation. ‘‘. . . [W]hen assessed in equal-area bands, species

richness shows a pronounced mid-elevation peak’’ (p. 299). However the peak occurs at
an elevation of 21–48 m on a gradient of 0–5030 m. (See Appendices A and C.)

1.30 0.46 0.52
a

0.02 ‘‘The moderate fit to the null model predictions were demonstrated by the low r2 values
(alpha r2 ¼ 0.482; gamma r2 ¼ 0.454), although climatic conditions including an
intermediate rainfall and temperature regime, and distance from the persistent cloud cap
are also correlated with the pattern of species richness’’ (p. 19).

n/a n/a n/a n/a ‘‘Neither mid-domain effects nor biologically valid boundary effects like dispersal limitation
explain the plant species density trends observed. Trends do fit a model in which species
density is controlled by the same ‘active’ climatic variables that predict species richness on
continental scales’’ (p. 999). (See also Appendix C.)

1.51 0.43 �0.53a 0.004 Local species richness peaked at ;1000 m elevation, but ‘‘the correlation to MDE in the
multiple regression was likely spurious’’ (p. 222) due to other collinear factors. Low
statistical power: n ¼ 12. (See also Appendix C.)

n/a n/a n/a n/a ‘‘The hump-shaped richness pattern differed from a null-model of random species distribution
. . .’’ (p. 1799). Precipitation also shows mid-domain peak, and ‘‘We hypothesize that the
decline of richness at high elevations is a result of low temperatures’’ (p. 1799).

n/a n/a n/a n/a ‘‘Very few data sets fit entirely within the predictions of the null model, and the average
predictive power of the null model was low’’ (p. 555).

0.16 0.41 1.58 .0.1 ‘‘Bathymetric patterns of species diversity for gastropods, bivalves and polychaetes differ
substantially from null expectations. . .’’ (p. 555).0.23 0.09

b 0.63 .0.1
4.71 0.00b �0.01b 0.006
n/a n/a n/a n/a ‘‘Observed and predicted species turnover [beta diversity] were statistically different’’ (p.

539).
0.46 0.53 1.07 0.002 ‘‘There was a significant correlation with the predictions of the mid-domain model in Chamoli

District, but not in Uttaranchal State or Western Himalaya. . .’’ and ‘‘. . . temperate
species richness followed mid-domain predictions, and showed a non-linear relationship
with temperature, whereas tropical species richness tracked temperature and area’’ (p.
3043).

0.94 0.89 0.97 0.009

0.66 0.00 �0.08a 0.02 Richness decreases with elevation.

1.08 0.81 0.87 low n Relationship peaked for ferns, orchids, and bromeliads, but not for aroids. For all
epiphytes, relationship is peaked, but 4 of 6 sites fall outside of predicted 95% confidence
envelope. Climate predicts richness as well, or better than, MDE. Low statistical power:
n ¼ 6.

0.60 0.00 0.06
b low n

0.83 0.48 0.76
b low n

1.55 0.84 0.74 low n
0.91 0.99 0.70

a low n
1.34 0.29 0.46a 0.08 Richness of non-ruderal species shows a mid-river peak, but ruderal and total richness do

not. The slopes and intercepts of the observed-predicted relationships differ significantly
from expected values. (See Discussion: Collinearity in a river domain.)

1.13 0.05 0.21
a .0.1
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In some studies, it was impossible to extract the
original data. Sometimes the data were not shown. In a

few other cases, data were so numerous that individual

points could not be distinguished in the printed figures
(e.g., Storch et al. 2006: Fig. 2). Also, some studies did

not use an explicit MDE model to derive predicted

richness; instead, they tested for a peak of richness
within a specified domain. In all these cases, we simply

noted the authors’ conclusions about agreement between

observed richness and MDE predictions. Details on the
sources of data are given in Appendix A.

We present the results of individual statistical tests in

Table 1. To summarize, we report the number of studies

(i.e., papers; n � 53) or the number of cases (a particular
taxon in a given domain; n � 95) that yielded a

particular result. Sample sizes for different tests differ

because not all studies reported the data for all tests.

RESULTS

Among the 53 studies that compared observed- and

MDE-predicted patterns of richness, 49% stated explic-

itly: (a) that MDE predictions did not statistically

explain significant amounts of variance in richness, (b)

that observed patterns of richness differed significantly

from MDE model predictions (P1), and/or (c) that

statistical fit was consistent with model predictions for

some groups of organisms but inconsistent for others

(P3) (Table 1, last column). These are the authors’ own

assessments, often based upon tests of fit between

predicted and observed values, or simply lack of the

predicted mid-domain peak in richness.

A further 45% of the studies either carried out these

same tests and show evidence inconsistent with the mid-

domain hypothesis without arriving at that conclusion,

TABLE 1. Continued.

Reference Taxa Gradient Domain

Environ. variables�

MDE
model�

Inter-
polation§

Climate
and/or

productivity Area

Fu et al. (2006) all frogs elevation Hengduan
Mountains

yes yes yes yes
frogs, regionally

endemic
Jankowski and

Weyhenmeyer (2006)
phytoplankton lakes along

elevation
gradients

50 Swedish lakes no yes yes no

Kendall and Haedrich
(2006)

fishes depth Atlantic no no yes yes (?)
Denmark Strait
Faroe–Iceland ridge
Gulf of Mexico
s. New England

Kluge et al. (2006) pteridophytes elevation Barva transect,
Costa Rica

yes n/a yes no

Watkins et al. (2006) canopy epiphytes elevation Barva transect,
Costa Rica

yes n/a yes yes
trunk epiphytes
ground spp.

Brehm et al. (2007) geometrid moths elevation Barva transect yes n/a yes yes

McCain (2007) bats elevation meta-analysis of 27
gradients
worldwide

no no no ??

Notes: Horizontal lines are included as visual aids only. Details for sources of data and analyses are presented in Appendix A.
Abbreviations: lat.¼ latitude, long. ¼ longitude, 2-D¼ two dimensional, n/a¼ not applicable.

� The columns headed ‘‘Environ. variables’’ note whether the study explicitly tested for effects of climate or productivity or area
(because these are the environmental variables most commonly observed to be correlated with spatial patterns of richness; Hawkins
et al. 2003). PET¼ potential evapotranspiration.

� MDE model notes whether quantitative predictions of a mid-domain model were derived (vs. simply looking for peaked
functions of domain coordinates).

§ Interpolation notes whether range continuity was assumed across cells of missing information. ‘‘RM’’ in this column indicates
that diversity is based upon range maps, which involve unknown amounts of interpolation.

|| Exp. r2 is the expected coefficient of determination between observed richness and richness predicted from the mid-domain
model. Obs. r2 is the observed coefficient of determination.

} The expected slope of the relationship between predicted and observed is 1.0; the observed slope is given under b.
# The runs test determined whether successive residuals around a model tend to have the same sign. Runs tests were not carried

out when n ,15, due to low statistical power (cells designated ‘‘low n’’).
a Test of the hypothesis that b ¼ 1.0: P , 0.05.
b Test of the hypothesis that b ¼ 0.0: P . 0.05.
c The data are not shown in the original paper, but the statistic is reported.
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or analysis of their data leads us to do so (Table 1).
Among the 65 cases in which we could calculate a slope

(or one was reported by the authors: P1), 65% either

differed significantly from the expected value of 1.0, or

they did not differ significantly from 0.0 (Fig. 1). In
general, most slopes (66%) were lower than predicted by

the mid-domain hypothesis. In other words, observed

gradients of richness are generally less strong than

predicted gradients.

Even more commonly, the relationship between
observed and MDE-predicted richness shows striking

pattern in the residuals (P2). For example, in the data of

Romdal et al. (2004), the residuals over the southern
part of the domain are nearly all positive, while the

residuals over the northern part of the domain are

negative (Fig. 2). We could test goodness of fit using

runs tests in 48 cases in Table 1. Observed richness
differed significantly (P , 0.05) from predicted richness

in 40 cases (i.e., 83%). In six of the remaining cases,

statistical power may simply have been too low (n , 15)

to detect lack of fit. For n , 10, we did not carry out
runs tests.

In 16 of the 97 individual comparisons reported in

Table 1, we found no evidence that the observed

patterns differed significantly from predicted. However,
no study—0%—that examined multiple taxa in a single

domain found consistent agreement with MDE predic-

tions for all taxa, in contrast with P3.

The r2 values predicted by mid-domain theory (P4) are

also problematic on two levels. First, knowing the

variance of observed richness, the variance of MDE-
predicted richness, one can calculate the r2 predicted by

mid-domain theory (Eq. 3). In nearly one third of

published cases, the mid-domain effect should explain

.100% of the observed variation in richness. This is
clearly impossible. The median expected r2 from the

studies listed in Table 1 is 0.79. This point is not widely

recognized: mid-domain theory predicts that MDEs

should account for nearly all the observed broad-scale
variation in species richness. There is little remaining

room for environmental effects. Observed correlations

are much weaker (median r2 ¼ 0.46). Examining all

available cases together, observed r2 values are not
significantly related to what MDE theory predicts: r ¼
0.23 (n ¼ 65, P ¼ 0.07) (Fig. 3).

Two-dimensional patterns: P5

Zapata et al. (2003) and Colwell et al. (2004:E12–E13)

agree that two-dimensional MDE model predictions

agree poorly with observed patterns of richness (low

explained r2). Studies that have examined both latitudi-
nal and longitudinal gradients have invariably found

much poorer agreement in the longitudinal dimension.

In contrast, the MDE predicts similar gradients in all

directions (e.g., Jetz and Rahbek 2001, Ellison 2002,
Hawkins and Diniz-Filho 2002: Fig. 2, Connolly et al.

2003, Kerr et al. 2006).

Among the 53 studies we reviewed, only two showed

both longitudinal and latitudinal maxima of richness.

Connolly et al. (2003) studied Indo-Pacific corals and

TABLE 1. Continued, Extended.

r2||
Obs.

slope, b}
Runs
test P# NotesExp. Obs.

0.48 0.20 1.19 ,10�4 Out of 23 observations, 20 fell outside 95% MDE-predicted confidence limits for all species,
as did 9 of 23 for regionally endemic species.0.79 0.30 1.62

a
0.003

2.01 0.62 0.55
a low n Richness per lake decreases monotonically with elevation. Richness per latitudinal band,

divided by the number of lakes per band is a peaked function of elevation, but much
lower than the MDE model prediction. The number of lakes per band decreases strongly
with elevation. Low statistical power: n ¼ 7.

0.07 0.02 0.59
b

0.001 The observed patterns show a decline in richness with depth, and do not match the richness
patterns produced by the null model. Low statistical power (n ¼ 10–14).0.69 0.03 �0.22a 0.08

1.21 0.27 0.47
ab 0.08

0.70 0.00 0.33ab 0.01
0.21 0.17 0.89

b
0.01

5.14 0.66 0.35a ,10
�4 ‘‘While geometric models explained much of the pattern in species richness, we cannot rule

out the role of climatic factors (or vice versa) because the predicted peak in richness from
geometric models, the empirical peak in richness, and the overlap in favorable
environmental conditions all coincide at middle elevations’’ (p. 358). Significant lack of fit
for both large- and small-ranged species. n ¼ 27.

2.80 0.90 0.57
a low n Observed richness falls outside of 95% predicted confidence interval for 50% of sites for all

epiphytes and for canopy epiphytes, and at 33% of sites for trunk epiphytes and ground
species. Climate predicts richness as well, or better than, MDE. Low statistical power: n
¼ 6.

2.73 0.83 0.55a low n
3.18 0.67 0.46

a low n

3.23 0.95 0.54
a low n Out of 6 observations, 3 fall outside 95% MDEpredicted confidence limits. Climate predicts

richness as well, or better than, MDE. Low statistical power: n ¼ 6.
n/a n/a n/a n/a ‘‘Null model analyses reveal bat elevational richness is not responding simply to spatial

constraints . . .. Meta-analyses pinpoint the combination of temperature and water
availability as the key driving factors’’ (p. 9).
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fishes and found strong mid-domain peaks of richness in

the western Pacific. Jetz and Rahbek’s (2002) examined
bird richness in sub-Saharan Africa and found a

statistically significant, but weak, correlation between

predicted and observed richness.

Continental-scale variations in species richness have

been cited as evidence in support of mid-domain effects.

In the New World, there is a striking equatorial peak in

richness, which Romdal et al. (2005:242) argue ‘‘sup-
port[s] the hypothesis that distribution of species ranges

may be influenced by geometric constraints’’ (see also

Willig and Lyons 1998).

However, no other continent shows strong latitudinal

peaks of richness, and none shows a longitudinal mid-

domain peak. Continental and global-scale maps of

richness Appendix B) show that the richness of most
Asian taxa is maximal in the southeast, with a minimum

in the central steppes and deserts. Australian richness is

generally maximal on the northeast coast, with minima

in the central Outback. European richness is maximal in

the south. North American richness is low in the central

plains, and higher near the coasts. South American
richness is highest in peripheral mountainous areas. For

taxon-specific details, see Appendix B.

To summarize the evidence, observed patterns of

richness often correlate to some degree with MDE

model predictions, but they are rarely consistent with

any of the stronger predictions of the theory. The slope

of the observed–predicted relationship is usually differ-

ent from the expected value of 1.0. The residuals are

almost always spatially structured. Two-dimensional

MDEs are not generally observed. A latitudinal MDE is

observed in the New World, but not the predicted

longitudinal peak, and no other continent shows a mid-

domain peak of richness with respect to either latitude

or longitude. No study that examined multiple taxa in a

given domain observed an MDE for all taxa.

DISCUSSION

A review of the mid-domain literature shows that

broad-scale patterns of richness are sometimes consis-

tent with the weakest prediction of the mid-domain

hypothesis: greater richness in the middle of domain

than at the periphery. Tests of the stronger mid-domain

predictions nearly always fail. This raises the following

questions.

Why does observed richness sometimes correlate strongly

with MDE (mid-domain effect) predictions?

Collinearity on geographic gradients.—Environmental

explanations for broad-scale richness gradients most

often postulate effects of area, habitat diversity, and/or

climate (temperature, precipitation, and/or primary

productivity) (Kerr et al. 2001, Hawkins et al. 2003,

Willig et al. 2003). Reviewing the published examples of

strong MDEs, nearly all of them occurred when MDE

predictions were strongly collinear with environmental

gradients.

Consider again, for example, Romdal et al.’s (2005)

study of bird richness across the Americas. An MDE

model predicts maximal richness near the equator.

However, temperature also peaks near the equator

(Fig. 2b, estimated using data from Legates andWillmott

[1992]). Consequently, temperature and the MDE

predictions are very strongly collinear along purely

north–south gradients (r¼ 0.84). As might be expected,

richness peaks near the equator (Fig. 2a). The MDE

model statistically accounts for 47% of the variance in

area-adjusted species richness, while a quadratic function

of temperature accounts for 81.5% (n ¼ 124 latitudinal

bands, P , 10�5). More importantly, a multiple

regression of richness as a function of both temperature

and MDE accounts for no more variance (R2 ¼ 0.818)

than temperature alone (Fig. 4b). Consequently, there is

no statistical reason to attribute variation in bird richness

to a mid-domain effect, rather than to temperature.

Similarly, Connolly et al. (2003) and Bellwood et al.

(2005) proposed MDE models that predicted both

latitudinal and longitudinal gradients in the diversity

of corals and reef fishes in the Indo-Pacific. However,

there is again a collinearity problem. Diversity of corals

and reef fishes is greatest where reef area is greatest

(Bellwood et al. 2005). The collinearity of area and

MDE is nearly perfect (Fig. 4d). The predictions of the

MDE model are also collinear with temperature and

currents, two other factors to which coral richness is

strongly correlated (Fraser and Currie 1996, Connolly et

FIG. 3. In 60 cases of a taxon in a given domain, the
observed coefficient of determination (r2) plotted as a function
of the predicted coefficient of determination (derived from the
observed variances of observed and mid-domain predicted
richness). Predicted r2 . 1 (to the right of the dashed line) is
clearly impossible; these cases are inconsistent with the mid-
domain hypothesis. Overall, the amount of variance that is
attributable to mid-domain effects (MDE) is not significantly
correlated with the amount that is predicted to occur (r¼ 0.23,
P¼ 0.07).
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al. 2003). Appendix C discusses similar collinearity

problems in the studies of Willig and Lyons (1998), Jetz

and Rahbek (2001), Ellison (2002), Hawkins and Diniz-

Filho (2002), and Mora and Robertson (2005).

Collinearity on elevational gradients.—Studies of

MDEs on elevation gradients are similarly confounded

by collinear environmental gradients. MDE models

predict a mid-elevation peak in richness. Environmental

hypotheses often predict a richness peak where actual

evapotranspiration (AET; Currie and Paquin 1987), a

water 3 temperature interaction (Francis and Currie

2003), and/or area are maximal. Temperature decreases

with elevation (McCain 2004). Precipitation often

increases with elevation, or shows a mid-elevation peak

(Hay 1998, McCain 2004). Consequently, in many cases,

AET will peak mid-slope. In mountainous regions, area

within elevational bands can also be a peaked function

of elevation (e.g., Grytnes and Vetaas 2002). Conse-

quently the elevational mid-domain is often where

climate is often most favorable, and area the largest.

For example, a series of recent studies examined

richness on the slopes of the Barva volcano in Costa

Rica (Cardelús et al. 2006, Watkins et al. 2006, Brehm et

al. 2007). In all of these cases, MDE-predicted richness is

very strongly collinear with temperature, precipitation,

and a temperature 3 precipitation interaction (Fig. 4c).

This strong collinearity, and low statistical power (n¼ 6

sites) make it impossible to distinguish between MDE

vs. environmental effects in these studies (see Appendix

A for statistical details).

FIG. 4. (a) Partitioning explained variance. In multiple regressions with collinear independent variables A and B, one can
partition explained variance into components. Component ‘‘A and B’’ is the R2 of richness as a function of both independent
variables. Components ‘‘A’’ and ‘‘B’’ are the R2 of richness as functions of A or B, separately. Other components are calculated by
difference. (b–d) In many mid-domain studies (Table 1), mid-domain effect (MDE) predictions are strongly collinear with
environmental variables. Consequently, mid-domain effects cannot be distinguished from effects of environmental variables; in (c)
‘‘Environment’’ included temperature, humidity, rainfall, and tree species richness; in (d) ‘‘Environment’’ was net primary
productivity and habitat heterogeneity. (e) In the cases where MDE and environment are not strongly collinear, MDE explains
relatively little variance. We found no published case in which MDE was shown to explain a large amount of variance
independently of environmental variables.
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McCain’s (2007) meta-analysis of 27 elevational

gradients of bat richness does partially disentangle

MDE predictions and environmental gradients. She

found that mid-elevation peaks of richness occur on

mountains that have arid bases and higher precipitation

at higher elevation. Mountains whose bases are wet and

warm have no mid-elevation peak. Rather, richness

declines monotonically with elevation, following the

temperature gradient. Similarly, studying montane

butterflies, Fleishman et al. (1998:2482) concluded that

‘‘environmental severity at either end and favorable

conditions in the middle of the elevational gradient

contributed to high species richness at intermediate

elevations.’’ Appendix C provides additional examples

of MDE–environment collinearity on elevational gradi-

ents (Grytness and Vetaas 2002, McCain 2004, Carpen-

ter 2005).

Collinearity in a river domain.—Dunn et al. (2006)

recently noted higher riparian, non-ruderal, plant

species richness in the mid-reaches of two Swedish

rivers. They suggest that the mid-domain effect may help

explain similar mid-course peaks of richness in other

rivers, which have been little explored to date.

However, the Swedish results are mostly inconsistent

with the hypothesized MDE. Non-ruderal species

richness shows a mid-river peak (Dunn et al. 2006),

but ruderal species richness increased monotonically

downstream in the same rivers (Nilsson et al. 1989).

Total species richness showed no significant relationship

with position along the river (Nilsson et al. 1989).

Although non-ruderal richness is correlated with the

MDE prediction, the slope of the observed–predicted

line differs significantly from the expected value b¼ 1.0

(Table 1).

As with other one-dimensional gradients, collinearity

is very difficult to avoid in riverine studies. Many

characteristics of rivers vary along the length of the

river: temperature, light availability, current, distur-

bance, and so forth, sometimes in complex ways

(Vannote et al. 1980).

Disentangling MDE–environment collinearity.—MDE

predictions in two-dimensional domains are generally

not collinear with environmental gradients because two-

dimensional MDE models predict that richness should

decline approximately radially from the mid-domain,

whereas environmental factors rarely vary radially.

Two-dimensional MDE models account for little vari-

ation in richness, and they typically find much poorer

agreement along longitudinal transects than on latitudi-

nal transects, in contrast to the MDE prediction (e.g.,

Jetz and Rahbek 2001, Ellison 2002, Hawkins and

Diniz-Filho 2002: Fig. 2, Connolly et al. 2003, Kerr et al.

2006), except where collinearity was not avoided

(Connolly et al. 2003, Bellwood et al. 2005).

Further, collinearity between environment and MDE

predictions differs among geographic domains: Austral-

ia and Asia are warm and wet on one edge; Africa is

warm and wet in the middle. Climate models derived in

one domain make accurate predictions of richness in

others (Currie and Paquin 1987, Francis and Currie

2003, Field et al. 2005, Kalmar and Currie 2007). If

richness correlated with climate because of collinearity

between environment and geometry, then climatic

models should make poor predictions of richness in

domains with different collinearity. The evidence is

consistent with climatic controls on richness and not

consistent with MDEs.

Finally, environment–MDE collinearity can be dis-

tinguished when environmental variables change. Rich-

ness tracks climate when environmental variables

change (H-Acevedo and Currie 2003, White and Kerr

2006), even though geometry remains constant.

Spurious MDEs resulting from interpolation.—Mada-

gascar has been presented as an ‘‘impressive victory’’ for

the mid-domain hypothesis (Pimm and Brown 2004)

precisely because the predictions of climatic and mid-

domain hypotheses are not collinear in Madagascar.

Climatic hypotheses predict highest richness in the

North, nearest the equator, while the mid-domain

hypothesis predicts maximum richness in the mid-

latitudes of Madagascar. Lees et al. (1999) reported

that several taxa do indeed have maximal richness in the

mid-latitudes of the Madagascan rainforest biome.

However, the mid-domain peak in the Madagascan

rainforest biome is equally consistent with a simple

procedural artifact. Sampling intensity over Madagascar

was very irregular (Lees et al. 1999), with a mid-domain

peak. To compensate for irregular sampling, Lees et al.

assumed range continuity: that each species was present

at all latitudes between the northern- and southernmost

observed presences. In their data set, 89.4% of species

presences were inferred from interpolation. By defini-

tion, interpolation increases richness more frequently in

the middle of a domain than at its edges. Grytnes and

Vetaas (2002) argued that interpolation appeared to

have contributed to a mid-domain richness peak that

they observed in the Himalayas. In the Madagascan

case, Lees et al. (1999:547) noted that ‘‘. . . the smoothed

surfaces and parabolic trend shown by the interpolated

data are reflected empirically [i.e., in the uninterpolated

data] by only relatively few, better sampled grid-cells.’’

Nonetheless, they concluded (p. 549) that, ‘‘Qualitatively

at least, interpolation does not appear to alter the

underlying trend shown by empirical results.’’

To test whether interpolation really does contribute

little to observed mid-domain patterns in the Madagas-

can data, we carried out a simple simulation of the

Madagascan data using a procedure similar to that of

Grytnes and Vetaas (2002). We assumed that every

Madagascan rainforest species is potentially present

anywhere in the biome. A given species i has probability

pi of being observed in latitudinal band j within the

Madagascan rain forest, and pi is independent of position

j on the latitudinal gradient. Species i may not be

observed in band j because of neutral or meta-population

processes, or simply due to insufficient sampling. We
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assumed that the distribution of p among species was log-
normal, and we reduced the height of the distribution
until we had a percentage of interpolated observations
(85.2%) similar to that in the data of Lees et al. (1999)
(89.45%). The simulated gradient of richness along the
latitudinal transect without interpolation is flat, as
expected (Fig. 5). With interpolation, a strong mid-
domain peak emerges. This predicted pattern is virtually
identical to the MDE prediction of Lees et al. (r2¼0.99).
Observed richness is equally strongly related to both
interpolation-predicted and MDE-predicted richness (r2

¼0.94). Our interpolation-predicted pattern of richness is
relatively insensitive to the frequency distribution of pi
when a high proportion of the observations are
interpolated: a log-normal distribution of pi and a flat
distribution predicted very similar latitudinal gradients.
Thus, the mid-domain peak of richness studied by Lees et
al. (1999) in Madagascar plausibly reflects nothing more
than the effect of interpolating sparsely sampled data
across the mid-domain of the country.

Studies that use interpolated ranges also have the
potential to inflate agreement with climatic hypotheses.
Interpolation of ranges creates broad-scale spatial
autocorrelation. MDE predictions and climate are both
strongly spatially autocorrelated. This autocorrelation is
likely to artificially increase correlations with other
spatially autocorrelated variables. Recent simulation
models by Storch et al. (2006) and Rahbek et al. (2007)
show this nicely. These models postulate that species
initiate colonization of continents as a function of
environmental variables. Colonists’ ranges then expand
cohesively (i.e., in an autocorrelated manner) until they
reach the range size of a real species. Predicted patterns
of richness were compared to patterns obtained by
superimposing range maps. Both studies found that the
assumption of coherent ranges produced better agree-
ment with observed richness patterns than did simple
correlations between richness and climate. The reason is
likely to be spatial autocorrelation: observed richness
based upon interpolated range maps and the ‘‘spreading
dye’’ simulated ranges are produced by similar process-
es. It may not be surprising that agreement between the
two is good. The most obvious solution to the problem
of interpolation is to choose a sufficiently coarse grain
size in such a way that species’ presences and absences
can reliably be observed without interpolation.

Are MDEs in large- vs. small-ranged species evidence

in support of the mid-domain hypothesis?

Mid-domain models predict strong mid-domain peaks

of richness when species with broad ranges are

considered, but much weaker peaks when an equal

number of small-ranged species are considered. Several

studies have observed this difference (Lees et al. 1999,

Cardelús et al. 2006, Brehm et al. 2007) and infer

support for the mid-domain hypothesis from it.

Spatial patterns of richness will always be stronger

among large-ranged species than among small-ranged

species, irrespective of the drivingmechanism. Richness is

the number of ranges that overlap in a given area. A given

number of large ranges necessarily overlap more than the

same number of small ranges, whether those ranges are

distributed in a bounded domain or an unbounded one

(e.g., the surface of a sphere). Consequently, mean

richness per quadrat, and the variance in richness among

quadrats, are necessarily smaller when small-ranged

species are considered. This has often been observed

empirically (e.g., Lennon et al. 2004: Fig. 2, Vázquez and

Gaston 2004: Figs. 1 and 2, Rahbek et al. 2007: Fig. 1). As

the variance of richness decreases, its expected correlation

with any other variable decreases. This has also been

observed empirically: richness of narrow-ranged species

correlates less strongly with both environmental variables

(e.g., Rahbek et al. 2007: Table 1) and with MDE

predictions (Hawkins and Diniz-Filho 2002, Jetz and

Rahbek 2002, Vetaas andGrytnes 2002) than the richness

of large-ranged species does. Since weaker correlations

for smaller-ranged species are expected irrespective of the

hypothesis under study, this observation lends no support

to any particular hypothesis.

The potential problems of using mid-domain models

The lack of agreement between observed and MDE-

predicted patterns of richness has two possible interpreta-

tions. First, the mid-domain hypothesis may simply be

incorrect: observed patterns of richness do not, in fact,

necessarily include MDE-predicted patterns of richness.

This could happen if one ormore of the assumptions of the

FIG. 5. A simulation of the latitudinal gradient in
mycalesine (butterfly) species diversity in Madagascar. The
observed pattern (u) and the mid-domain predicted pattern (þ)
are taken from Lees et al. (1999: Fig. 7). The remaining two
patterns are predictions based on the following assumptions.
First, assume that every species i can occur with a given
probability pi in each latitudinal band. The probabilities pi are
randomly drawn from a log-normal distribution. The expected
richness gradient is flat (*). If ranges are assumed to be
continuous, and absence between two presences is assumed to
be an unobserved presence, then a mid-range peak of richness
obtains (�), which is nearly identical to the predicted mid-
domain peak. Thus, interpolation artifact is an equally
powerful explanation of the latitudinal mid-domain peak in
Lees’ data.
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mid-domain model were false. Alternatively, lack of fit to

MDE predictions could, in principle, reflect effects of

environmental variables. However, the residuals from

MDE predictions are nearly always strongly spatially

structured. If environmental variables are responsible for

these deviations fromMDEpredictions, then environment

and geometrymust virtually always be strongly collinear in

very idiosyncratic ways. Consider, for example, Fig. 2c. A

model that would eliminate the pattern in the residuals

must hypothesize that richness varies as (at minimum) a

fourth-degree polynomial function of environment along

latitudinal gradients. Because there are longitudinal

minima of richness gradients in the Americas, the model

would also have to postulate even stronger effects of

variables that vary longitudinally, but not latitudinally.

We know of no literature that postulates, much less shows,

the existence of such effects.

MDEs as null hypotheses.—Neither of these interpre-

tations precludes using MDE(x, y) as a statistical null

hypothesis, since the verity of statistical null hypotheses

is not an empirical issue. Whether MDE(x, y) is a

biologically meaningful null hypothesis is a different

matter. The mid-domain hypothesis was proposed as the

pattern that is necessarily present in observed richness

patterns, irrespective of environmental gradients. If

MDE(x, y) is not necessarily present in any given

pattern of richness, then the reason to use it as a

statistical null vanishes. Worse, using it (as in Eq. 1) will

artificially create patterns of richness in the residuals

(Fig. 2c). Subsequent analyses of environmental vari-

ables will statistically account for the MDE-induced

artifacts in addition to environmental effects.

Use of MDE(x, y) as a contributing variable in

multiple regressions.—Mid-domain theory precludes

using the predictions of a MDE model in a multiple

regression with a fitted parameter because the slope

must be 1.0. We have shown above that requiring the

slope to be 1.0 is inconsistent with observation and leads

to nonsensical expected correlations. If mid-domain

patterns actually existed, then there would be very little

variance in richness attributable to anything else.

If one ignores all this and includes MDE predictions

in multiple regressions anyway, then the omnipresent

collinearity between environment and MDE predictions

will inflate the variances of the estimates of regression

coefficients associated with both the environmental

variables and the MDE. In essence, inclusion of

collinear MDE predictions and environmental variables

each mask each other’s effects. Worse, if MDE(x, y) is

an incorrect model of the variation in richness, then its

inclusion in a multiple regression will create both spatial

pattern and autocorrelation in the residuals, since

MDE(x, y) is spatially structured. Biological interpreta-

tion of such patterns would be perilous.

Conclusion

Broadscale patterns of species richness are not

consistent with the predictions of the mid-domain

hypothesis. Use of the mid-domain hypothesis as either

a null hypothesis or as a contributing factor in

explaining richness is inconsistent with mid-domain

theory, and it risks creating important artifacts that

would mislead further analyses. New models of geo-

metric/spatial effects on richness are required.

It seems likely to us that spatial influences do exist.

Range cohesiveness may generate spatial autocorrela-

tion that resembles MDEs (Storch et al. 2006, Rahbek et

al. 2007). Source–sink dynamics (Grytnes 2003b) or

neutral processes (Rangel and Diniz-Filho 2005) may

also produce geometric patterns. Evaluation of these

hypotheses against observed patterns of richness may

prove to be fruitful. It is also possible that MDEs may

be more evident within biomes than in broader areas

(Colwell et al. 2004), although this remains to be

demonstrated. However, in our opinion, there is little

point for future studies to continue to use a model whose

predictions are so patently inconsistent with observed

patterns of richness. There is no point whatever in

showing that particular gradients show the weakest

prediction of mid-domain theory—a mid-domain peak

of richness—if those studies do not also test the stronger

mid-domain predictions, as well as possibly collinear

relationships with environmental variables.
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Cardelús, C. E., R. W. Colwell, and J. E. Watkins. 2006.
Vascular epiphyte distribution patterns: explaining the mid-
elevation peak in richness. Journal of Ecology 94:144–156.

Carpenter, C. 2005. The environmental control of plant species
density on a Himalayan elevation gradient. Journal of
Biogeography 32:999–1018.

Colwell, R. K., and G. C. Hurtt. 1994. Nonbiological gradients
in species richness and a spurious Rapoport effect. American
Naturalist 144:570–595.

Colwell, R. K., and D. C. Lees. 2000. The mid-domain effect:
geometric constraints on the geography of species richness.
Trends in Ecology and Evolution 15:70–76.

Colwell, R. K., C. Rahbek, and N. J. Gotelli. 2004. The mid-
domain effect and species richness patterns; What have we
learned so far? American Naturalist 163:E1–E23.

Colwell, R. K., C. Rahbek, and N. J. Gotelli. 2005. The mid-
domain effect: there’s a baby in the bathwater. American
Naturalist 166:E149–E154.

Connolly, S. R., D. R. Bellwood, and T. P. Hughes. 2003. Indo-
Pacific biodiversity of coral reefs: deviations from a mid-
domain model. Ecology 84:2178–2190.

Currie, D. J., and V. Paquin. 1987. Large-scale geographical
patterns of species richness in trees. Nature 329:326–327.

Diniz-Filho, J. A. F., E. R. De Sant’Ana, M. C. De Souza, and
T. F . L. V. B. Rangel. 2002. Null models and spatial patterns
of species richness in South American birds of prey. Ecology
Letters 5:47–55.

Dunn, R. R., R. K. Colwell, and C. Nilsson. 2006. The river
domain: Why are there more species halfway up the river?
Ecography 29:251–259.

Ellison, A. M. 2002. Macroecology of mangroves: large-scale
patterns and processes in tropical coastal forests. Trees:
Structure and Function 16:181–194.

Ferrer-Castán, D., and O. R. Vetaas. 2005. Pteridophyte
richness, climate and topography in the Iberian Peninsula:
comparing spatial and nonspatial models of richness
patterns. Global Ecology and Biogeography 14:155–165.

Field, R., E. M. O’Brien, and R. J. Whittaker. 2005. Global
models for predicting woody plant richness from climate:
development and evaluation. Ecology 86:2263–2277.

Fleishman, E., G. T. Austin, and A. D. Weiss. 1998. An
empirical test of Rapoport’s rule: elevational gradients in
montane butterfly communities. Ecology 79:2482–2493.

Francis, A. P., and D. J. Currie. 2003. A globally-consistent
richness–climate relationship for angiosperms. American
Naturalist 161:523–536.

Fraser, R. H., and D. J. Currie. 1996. The species richness–
energy hypothesis in a system where historical factors are
thought to prevail: coral reefs. American Naturalist 148:138–
159.

Fu, C., X. Hua, J. Li, Z. Chang, Z. Pu, and J. Chen. 2006.
Elevational patterns of frog species richness and endemic
richness in the Hengduan Mountains, China: geometric
constraints, area, and climatic effects. Ecography 29:919–927.

Grytnes, J. A. 2003a. Species-richness patterns of vascular
plants along several altitudinal transects in Norway. Ecog-
raphy 26:291–300.

Grytnes, J. A. 2003b. Ecological interpretations of the mid-
domain effect. Ecology Letters 6:883–888.

Grytnes, J. A., and O. R. Vetaas. 2002. Species richness and
altitude: a comparison between null models and interpolated
plant species richness along the Himalayan altitudinal
gradient, Nepal. American Naturalist 159:294–304.

H-Acevedo, D., and D. J. Currie. 2003. Does climate determine
broad-scale patterns of species richness? A test by natural
experiment. Global Ecology and Biogeography 12:461–473.

Hawkins, B. A., and J. A. F. Diniz-Filho. 2002. The mid-
domain effect cannot explain the diversity gradient of
Nearctic birds. Global Ecology and Biogeography 11:419–
426.

Hawkins, B. A., J. A. F. Diniz-Filho, and A. E. Weis. 2005. The
mid-domain effect and diversity gradients: Is there anything
to learn? American Naturalist 166:E140–E143.

Hawkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J.-F.
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APPENDIX A

Sources of data and notes used in the compilation of Table 1 (Ecological Archives M078-001-A1).

APPENDIX B

Continental variation in richness and MDEs (Ecological Archives M078-001-A2).

APPENDIX C

Discussion of further examples of MDE predictions that are strongly collinear with environmental gradients (Ecological Archives
M078-001-A3).
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