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Running title: Uncertainty in streamflow reduction  

Abstract: Long-term catchment experiments from South Africa have demonstrated that 

afforestation of grasslands and shrublands significantly reduces surface-water runoff. These 

results have guided the country’s forestry policy and the implementation of a national Invasive 

Alien Plant (IAP) control programme for the past few decades. Unfortunately, woody IAP 

densities continue to increase, compounding existing threats to water security from population 

growth and climatic change. Decision makers need defensible estimates of the impacts of 

afforestation or invasions on runoff to weigh up alternative land use options, or guide 

investment of limited resources into ecosystem restoration through IAP clearing versus 

engineering-based water-augmentation schemes. Existing attempts to extrapolate the impacts 

observed in catchment afforestation experiments to broad-scale IAP impacts give no indication 

of uncertainty. Globally, the uncertainty inherent in the results from paired-catchment 

experiments is seldom propagated into subsequent analyses making use of these data. We 

present a fully reproducible Bayesian model that propagates uncertainty from input data to final 

estimates of changes in streamflow when extrapolating from catchment experiments to broader 

landscapes. We apply our model to South Africa’s catchment experiment data, estimating 

streamflow losses to plantations and analogous plant invasions in the catchments of 

southwestern South Africa, including uncertainty. We estimate that regional streamflow is 

reduced by 304 million m3 or 4.14% annually as a result of IAPs, with an upper estimate of 408 
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million m3 (5.54%) and a lower estimate of 267 million m3 (3.63%). Our model quantifies 

uncertainty associated with all parameters and their contribution to overall uncertainty, helping 

guide future research needs. Acknowledging and quantifying inherent uncertainty enables more 

defensible decisions regarding water resource management.  
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1. Introduction  

South Africa is a water stressed country with a mean annual precipitation of around 500 mm. 

Large parts of the country are subject to high or extremely high overall water risk (Hofste et al., 

2019). Temporal variability in water stress is also large, with severe droughts regularly 

impacting the environment, society and economy (Schreiner et al., 2018). Most recently, the 

period 2015-2017 saw a multiyear drought in southwestern South Africa, with the lowest 

recorded rainfall of the last century (Bischoff-Mattson et al., 2020; Sousa et al., 2018). The 

drought affected the entire winter rainfall region of South Africa, with the City of Cape Town and 

it’s 3.7 million residents threatened with ’Day Zero’ - the day domestic water supplies would be 

cut off. It is estimated that the 2015-2017 drought cost the region’s economy around ZAR 5.9 

billion (approx. USD 400 million) and resulted in the loss of 30 000 jobs (Pienaar & Boonzaaier, 

2018). The magnitude and impact of droughts in the region are expected to increase with 

population growth and climate change. A drought of the magnitude experienced between 2015-

2017 is already 3 times more likely due to existing climate change (Otto et al., 2018). Climatic 

change is expected to decrease runoff for the western Cape province between 2% and 17% by 

2050 (Kalognomou et al., 2013; Sousa et al., 2018; Steynor et al., 2009).  

Similar droughts in the 1920s reinforced growing concerns about the impact of replacing native 

grasslands and shrublands with plantation forestry on water resources. These events led to the 

establishment of a series of catchment-scale afforestation experiments across the country, 

beginning in the late 1930s (Bennett & Kruger, 2013). Results from these experiments showed 

that forestry species drastically reduce streamflow relative to indigenous shrublands and 

grasslands (Scott & Smith, 1997). Concern was subsequently raised about impacts on water 

resources due to afforestation, predominantly through plantation forestry and the associated 

spread of woody invasive alien plant (IAP) species from these plantations. While large 

differences exist among species, abundant species such as Wattles (Acacia spp.), Pines (Pinus 

spp.) and Eucalypts (Eucalyptus spp.) use up to 20% more water than native species through 

higher evapotranspiration and interception rates (Le Maitre et al., 2015). These differences 

have been used to guide water use licensing for plantation forestry, and form the primary 

motivation behind the creation of a national IAP clearing programme (Van Wilgen et al., 1998).  

While plantation forestry may be justified on the basis of economic benefits, the outcomes of 

spreading IAPs are almost entirely negative, reducing streamflow (Le Maitre et al., 2015), 

impacting on biodiversity (Slingsby et al., 2017), and increasing fire risk (Kraaij et al., 2018). 

Despite attempts to control the spread of IAPs they continue to increase in range, diversity and 



 

 

abundance (van Wilgen et al., 2020). The most recent national assessment estimated that 

invasions in 2008 occupied the equivalent of 15000 km2 of the land area of South Africa (Kotze 

et al., 2010). The Western Cape province was the worst affected region with the equivalent of 

2300 km2 of dense invasions. Attempts to quantify the impacts of IAPs on surface water 

availability at the national and regional scale have built upon data from the catchment 

experiments (Cullis et al., 2007; Le Maitre et al., 2019, 2016; Versfeld et al., 1998). The most 

recent national analysis (Le Maitre et al., 2016) combined data on the distribution and 

abundance of 26 IAP species (Kotze et al., 2010) and updated information on the water-use of 

IAPs (Le Maitre et al., 2015) with the streamflow reductions measured in the catchment 

experiments (Scott & Smith, 1997). The Le Maitre et al. (2016) analysis estimated that as of 

2008 on average 1 443.56 million m3 or 2.88% of South Africa’s annual surface water runoff 

was lost to IAPs. The Western Cape alone was losing 355.42 million m3 per year or 5.1% of 

runoff. A more focused assessment of subcatchments that feed the major dams supplying 

water to the City of Cape Town and surrounds - the Western Cape Water Supply System 

(WCWSS) - estimated that the system was losing 38 million m3 of the 98% assured yield per 

year as of the year 2000, increasing to 130 million m3 per year by 2045 if the invasions were not 

managed (Le Maitre et al., 2019). Given the city’s target water use of 0.45 million m3 per day at 

the height of the 2015-2017 drought, this volume of water translates into about 3 and 9 months 

of water supply respectively.  

All attempts at calculating runoff loss to IAPs in South Africa have failed to quantify the degree 

of uncertainty around estimates or parameter values. This failure is due to a number of factors 

including the computational requirements for calculating probabilistic forecasts on spatial 

models, a lack of data on uncertainty in input parameters, and the paucity of gauged 

catchments with which to evaluate models (Kapangaziwiri et al., 2012; Yanai et al., 2018). 

Without any quantification of how much confidence they can have in an estimate of current 

water losses, decision makers will not have adequate information with which to weigh risks and 

evaluate the benefits of clearing IAPs against other options for alleviating water stress (Reichert 

& Borsuk, 2005). Furthermore, quantifying the sources of uncertainty can help researchers 

focus their data collection and/or model development efforts to improve model performance 

(Harmon et al., 2015). Of particular concern are the curves used to describe the data on 

afforestation effects on streamflow obtained from the catchment experiments. Scott & Smith 

(1997) fitted a range of models to these data, and reported the best fitting curves. These curves 

have been used in numerous subsequent assessments of forestry water use and the broader 



 

 

scale impact of IAPS on streamflow (Le Maitre et al., 2019; Scott et al., 1998; Versfeld et al., 

1998). While they provide a good overall fit to the experimental catchment data, they only 

provide point estimates of the expected streamflow reductions.  

Models that report uncertainty in their parameter estimates would allow the full range of 

possible outcomes to be evaluated, and the uncertainty from these models may then be 

propagated to estimates of streamflow reduction. Incorporating the uncertainty in the data and 

parameters used to drive simulations is common in hydrological models (Beven & Binley, 1992; 

Kavetski et al., 2006; Vrugt & Sadegh, 2013). Typically models are run many times with the full 

range of prior possible parameter values and forcing data, and outputs compared to in-situ data 

from gauged catchments. These simulations can in turn be used to evaluate model fit, and 

create improved posterior estimates of parameters. However, when in-situ data is not available, 

models must extrapolate from other catchments. Streamflow reduction curves have been used 

in multiple studies as the basis for this extrapolation (Versfeld et al., 1998, Le Maitre et al., 

2019). But few paired catchment studies report directly on the uncertainty in experimental 

results (Brown et al., 2005; but see Scott & Smith, 2000). As a result this observational error is 

not carried through to models attempting to model hydrological changes in other catchments 

through the extrapolation of data from paired catchment experiments.  

In order to provide decision-makers with the best available information to manage water 

resources, and guide future research into the impacts of afforestation and IAPs on water 

resources, we revisit the streamflow reduction curves fitted to the South African experimental 

catchment data (Scott & Smith, 1997). We fit models to these data and fully characterize the 

uncertainty in model predictions. Using these models, we then propagate this uncertainty to 

projections of water resources impact of land cover change in ungauged basins using the 

model of Le Maitre et al. (2016) for estimating impacts of IAPs on streamflow in southwestern 

South Africa. Specifically, we set out to:  

1. Select and fit an appropriate model for estimating streamflow changes from experimental 

catchment data within a Bayesian framework.  

2. Based on these curves, update and include uncertainty in the estimates of the volume and 

percent of streamflow lost to IAPs from the catchments of southwestern South Africa.  

3. Calculate the relative contribution of various sources of uncertainty to overall uncertainty in 

streamflow losses to guide efforts to improve future estimates, such as through model 

development, new experiments and data collection.  



 

 

4. Ensure that estimates can quickly and easily be recalculated as and when updated data 

become available or model improvements are made by adopting an open science approach, 

using only open-source software and sharing all data and code to provide a fully repeatable 

workflow.  

2. Methods  

2.1 Model overview  

We limit our model to the Cape Floristic Region (CFR), a phytogeographic region of 108677 

km2 encompassing most of the Western Cape province and South Africa’s winter and all-year 

rainfall regions (Figure S1, Bergh et al., 2014), to take advantage of existing climate 

interpolations that provide uncertainty estimates (Wilson & Silander Jr.,2014).The approach 

taken by Le Maitre et al. (2016) distills decades of experience and expert knowledge, 

condensing the existing literature on water use by IAPs into a tractable model for the countries 

of South Africa, Lesotho and Swaziland (Le Maitre et al., 2020).  The impact of IAPs on water 

resources can be assessed by applying catchment-level hydrological models to simulate 

discharge within a region of interest. Streamflow reductions can be investigated by changing 

vegetation parameterisation (e.g Gush et al. 2002; Qiao et al. 2015). This approach is 

preferable when the study area is limited to a few quaternary catchments due to data and 

computational requirements. These models require detailed parameterisations and 

observations that are not available for the numerous species and ungauged catchments 

included in this study. The Le Maitre et al. (2016) approach is built around a conceptual model 

which proposes that water-use is limited by certain plant traits - assuming a climatically stable 

environment and rainfall as the only water source (Calder, 1985, 2005). Shifts in the traits of the 

dominant species lead to changes in the relationship between rainfall and runoff (Bosch & 

Hewlett, 1982; Zhang et al., 2001). The streamflow reduction curves fitted to the data from the 

South African catchment experiments show how species with different trait archetypes change 

the rainfall-runoff relationship in a particular environment. If we assign IAP species to one of 

these archetypes we can assume similar impacts on runoff (Le Maitre et al., 2015). The high-

level logical flow of our model is outlined in Figure 1 and described briefly below: 

The study area is subdivided into 306 catchments and modeled on a 250m x 250m pixel scale, 

corresponding to the resolution of the most recent data on the distribution of IAP species in the 

region (Kotze et al. 2010). A nested hierarchy of catchments is used as planning units in South 



 

 

Africa, ranging from primary drainage basin, through to secondary and tertiary, with the smallest 

operational unit being the quaternary catchment. The 306 catchments used here are defined at 

the quaternary level, and average 650 km2 in size.  

First, the proportional reduction in mean annual runoff due to all IAPs within each pixel is 

calculated using the fitted streamflow reduction curves based on the age and density of each 

species. Next, the potential mean annual runoff in each pixel is calculated by converting mean 

annual rainfall to naturalized runoff (expected runoff in the absence of anthropogenic influence) 

using established rainfall-runoff relationships. After removing the proportion of runoff lost to 

IAPs, and adjusting for additional water use in riparian zones and areas with access to 

groundwater, the remaining pixel-level runoff is summed for each quaternary catchment. Full 

details and rationale are given in Le Maitre et al. (2016).  

Below under each subheading we briefly describe how each of the above mentioned 

components are parameterised, elaborating on additions and modifications to the original model 

and the representation and propagation of uncertainty. The contribution of each of these 

components to overall uncertainty is also quantified separately. 

2.2 Streamflow reduction curves 

Scott and Smith fitted asymptotic curves to data collected in South African’s multidecadal 

catchment experiments. Scott et al. (2000) describe these data in detail and the overall results 

of the catchment experiments. Selected catchments were afforested with commonly planted 

forestry species (Pinus spp. and Eucalyptus spp.) in a variety of habitats and paired with 

nearby, comparable catchments with natural vegetation. Afforestation began after a calibration 

period in which a sufficiently reliable relationship between runoff in the paired catchments had 

been established. This relationship was used to predict naturalized runoff in the afforested 

catchments based on the observed runoff in the catchment with natural vegetation. Observed 

and predicted runoff were then compared over time and the absolute and percentage runoff 

reduction occurring as a result of afforestation calculated for each year that streamflow was 

monitored. Nonlinear curves were then fit to predict the percentage runoff reduction observed 

as a function of plantation age. Scott & Smith (1997) distinguished between catchments 

afforested with either Pinus spp. and Eucalyptus spp. and between catchments with either 

optimal or sub-optimal growing conditions for the planted tree species, resulting in 4 separate 

curves for total flow reduction. Numerous previous studies (e.g. Le Maitre et al. 2019; Scott et 



 

 

al. 1998; Versfeld et al. 1998) have used these streamflow reduction curves to estimate runoff 

loss following afforestation or alien plant invasion in South Africa. We refit curves similar to 

those presented in Scott & Smith (1997) using Beta regression. We use data from 10 

catchments distributed across South Africa described in detail by Scott et al. (2000). As 

plantations reach maturity and canopy closure, streamflow reductions asymptote, and 

sometimes even decline. Similar to Scott & Smith (1997), we do not include a term to account 

for this decline, and exclude data for mature plantations where this effect is pronounced from 

our analysis. This exclusion is defensible, because the natural vegetation in our region of 

interest typically burns every 10-30 years, the IAPs are flammable, and stands are unlikely to 

reach an age where streamflow reductions begin to decline. Beta regression is the appropriate 

class of model when the response variable is a proportion (Ferrari & Cribari-Neto, 2004). Beta 

regression uses the beta distribution as the likelihood for the data,  

 

where B(·) is the beta function and yi is the percentage reduction in streamflow observed in 

each year. The shape parameters for the distribution, a and b, enter into the model according to 

the following transformations  

 

 

The expected value of y is µ. For a given value of µ, larger ϕ implies smaller variance, and 

hence it is known as the precision parameter. µ is modelled as a function of predictor variables  

 



 

 

where X is a N × (K +1)  dimensional matrix of K predictors and an intercept term for N 

observations , and β is a K + 1 dimensional vector of parameters associated with each 

predictor. As done by Scott & Smith (1997), three predictor variables are used in the beta 

regression: stand age, growing condition (optimal or sub-optimal), and species (Pine or 

Eucalypt). We fit multiple models testing interactions of age, condition and species, and select 

the best fitting model based on the LOOIC (leave-one-out cross-validation information criterion) 

(Vehtari et al., 2017). Location parameters (β) are given uninformative normal priors and 

precision parameters (ϕ) uninformative Cauchy priors. Model fitting is conducted using Markov 

chain Monte Carlo (MCMC) with the No-U-Turn-Sampler (NUTS) implemented in Stan 

(Carpenter et al., 2017). Three separate MCMC chains are fitted each with 2000 iterations. 

Parameter sampling begins after a warmup of 1000 iterations. Chains were monitored to ensure 

satisfactory convergence and mixing. Parameter samples from the best fitting model were then 

used to estimate streamflow losses to IAPs, propagating the uncertainty in streamflow reduction 

curves from the data of Scott & Scott (2000) to our estimates. This probabilistic approach differs 

from Le Maitre et al. (2016), where the deterministic curves from Scott et al. (2000) were used. 

In order to calculate streamflow lost as a result of each species for which data is available, 

species must be assigned to a particular curve. Thus for each species we must assess whether 

the slope fitted to Pines or Eucalypts is more appropriate. Similarly we must determine whether 

a species occurs in optimal or sub-optimal conditions. While for some species this assignment 

is trivial (eg. Wattles (Acacia spp.) affect streamflow in a similar manner to Eucalypts) for others 

it is not clear. Le Maitre et al. (2016) assigned species in a binary manner to curves based on 

expert knowledge and previous research on water use of prominent IAPs (Le Maitre et al., 

2015). We use the same approach, though we assign species to curves probabilistically (e.g 

species can be assigned with an 50% chance to the Eucalypt curve or 50% chance to the Pine 

curve if the appropriate choice is unclear). The full table of species and curves to which they are 

assigned is available in Table S1.  

2.3 Potential runoff 

Spatially interpolated precipitation data is generally accessed in the form of a single map 

providing the mean annual or monthly value at a given pixel (e.g Fick & Hijmans 2017; Schulze 

1997). The use of a single pixel mean often obscures the high uncertainty associated with 

rainfall interpolated in mountainous areas, in which the spatial and temporal density of 

precipitation observations is low (Fick & Hijmans, 2017). This issue is particularly important in 



 

 

the CFR, where most runoff is generated by precipitation occurring in poorly sampled, remote 

mountain catchment areas (Nel et al., 2017). Wilson & Silander Jr (2014) used a Bayesian 

framework to interpolate 20 years of daily meteorological observations into climate surfaces for 

the CFR. These climate surfaces provide a full characterization of uncertainty associated with 

each pixel. From these climate surfaces we calculate the mean and standard deviation of mean 

annual precipitation at 1-km resolution over the CFR. Naturalized runoff (runoff that would have 

occurred under natural land cover without dams, diversions or abstraction) generated at each 

pixel is calculated using these precipitation surfaces and converted to runoff using rainfall-runoff 

curves specifically calibrated for groups of catchments with similar hydrological behaviour using 

the Pitman hydrological model (Midgley et al., 1994). Total catchment-level runoff is calculated 

by summing over all pixels and compared to the expected naturalized runoff (Bailey & Pitman, 

2015). This ratio is used to rescale pixel-level runoff estimates, ensuring that biases in the 

simple rainfall-runoff curves do not result in biased estimates of naturalized runoff at the 

catchment level. This exact process to calculate runoff at the pixel-scale was used in Le Maitre 

et al. (2016), but rather than use probabilistic precipitation data, deterministic values were 

obtained from Schultze et al. (1997). Unfortunately, neither the rainfall-runoff curves from Scott 

& Smith (1997) nor the naturalized runoff estimates from Bailey & Pitman (2015) are associated 

with measures of uncertainty. Therefore our estimate of uncertainty in naturalized runoff is 

based entirely on the spatial uncertainty in mean annual precipitation.  

2.4 Additional water availability 

At many locations in the landscape additional water is available to plants (Le Maitre et al., 

2015), including riparian areas and where groundwater is within the rooting depth. In these 

locations, and where evaporation from vegetation is driven mainly by the available energy, the 

total evaporation can exceed the annual rainfall. Spatially explicit estimates of where this 

additional water may be accessed by plants are not available, and hence Le Maitre et al. (2016) 

used a number of proxies to map these regions. The presence of azonal vegetation types and 

soil types conducive to the formation of deep root systems with access to aquifers were 

mapped by Le Maitre et al. (2016) and used to this end, based on data from Mucina & 

Rutherford (2006) and LTSS (2002). We used this same map, and added data from the recently 

compiled National Wetlands Map of South Africa version 5 (van Deventer et al., 2020). In 

mountainous regions of the CFR, groundwater interacts with vegetation and can produce 

surface flow. Groundwater dependent ecosystems are hotspots for rare and threatened 



 

 

species, and are often heavily invaded by IAPs. Many of these groundwater seeps were not 

mapped in previous versions of the National Wetland Map as they can be very localized or only 

seasonally apparent. van Deventer et al. (2020) significantly improves the representation of 

these seeps, covering 453 748 ha nationally. We add these to the extent mapped by Le Maitre 

et al. (2016) as having access to groundwater. Additional water is also available to riparian 

vegetation. Le Maitre et al. (2016) used 1:500 000 maps of rivers and assumed the riparian 

zone to be 250m in width. This width estimate is a large overestimate and is intended to 

compensate for the underestimate of the total length of the rivers at 1:500 000 scale. We rather 

use 1:50 000 mapping and assume a riparian zone of 10m width. For ephemeral rivers, 

additional water in riparian zones is assumed to only be available to vegetation when they are 

flowing. The proportion of months with zero flow for each quaternary catchment were taken 

from Bailey & Pitman (2015) and applied to all ephemeral rivers within a catchment. Maps of 

ground and riparian water availability were created from the above-mentioned sources at 10m 

resolution. These were then aggregated to 250m resolution by calculating the proportion of 

each category in each 250m pixel. Flow reduction by IAPs in areas with groundwater access 

and in riparian zones are multiplied by a factor to represent the additional water use and higher 

impact of such invasions on streamflow loss. For all species this factor is sampled from a 

normal distribution with a mean of 1.2 and standard deviation of 0.2 when additional 

groundwater is accessible and a mean of 1.5 and standard deviation of 0.2 in riparian zones. 

The chosen mean value is taken from Le Maitre et al. (2016), where deterministic values were 

again used. These values are based on syntheses of research on IAP water use (Clulow et al., 

2011; Le Maitre et al., 2016, 2015), and are gross approximations that ignore numerous factors 

influencing water use and availability, hence the need for probabilistic estimates.  

2.5 Invasive Alien Plant density 

The most recent assessment of the distribution and density of key IAP species across South 

Africa, Lesotho and Swaziland was completed by Kotze et al. (2010). The National Invasive 

Alien Plant Survey (NIAPS) reports on the number of hectares covered by 26 IAP species 

within landscape units - termed homogeneous mapping units (HMUs) - with similar physical and 

environmental conditions. Their models are trained using high resolution aerial photographs 

sampled at 74 000 locations across South Africa. The estimated density is reported for each 

IAP species in each HMU, with HMUs mapped at 250m resolution. For each species in each 

HMU, upper and lower estimates of density are provided. These estimates are based on the 



 

 

variability observed across samples obtained within each HMU. We use these data to 

parameterise a mean and standard deviation of canopy cover percentage for each IAP in each 

HMU. Le Maitre et al. (2016) used only the mean canopy cover for each species within each 

HMU. 

2.6 Vegetation age 

Estimating streamflow reduction using the curves fitted to the data from South African 

catchment experiments requires an estimate of vegetation age analogous to the plantation age. 

The age effect represents the increasing water use of a fixed area of IAPs as they grow larger, 

accumulating greater leaf area and deeper roots. Le Maitre et al. (2016) assumed a uniform 

distribution around a mean vegetation age of between 10 and 20 years depending on the 

species under consideration. Much of the CFR is prone to stand-replacing natural wildfires, with 

a return time of 10-30 years. Most (though not all) IAPS are removed by these fires, and begin 

regrowth from seedbanks or resprouting. The expected fire return time is therefore a 

reasonable estimate to use for the age of an IAP stand. Wilson et al. (2010) used twenty years 

of fire occurrence data from across the CFR to fit a hierarchical Bayesian model of wildfire 

occurrence. With this model is it possible to estimate the expected fire return time as the age at 

which cumulative fire probabilities exceeds 50%. The analysis and results from Wilson et al. 

(2010) are limited to nature reserves in which fire data are routinely collected. To extend 

estimates of fire return time to the entire GCRF we used Bayesian spatial regression. Posterior 

samples of expected fire return time were used to fit a Bayesian spatial linear regression with 

mean annual precipitation and coefficient of variation of monthly precipitation estimated using 

the Wilson & Silander Jr (2014) climatic data as covariates. The model was fitted using MCMC 

implemented in the spBayes package (Finley et al., 2007) with priors for covariance parameters 

estimated by fitting a parametric model to the empirical variogram. One thousand maps of fire 

return time were sampled from the posterior predictive distribution and used in subsequent 

analyses. The fire return times estimated in regions where actual fire occurrence data is lacking 

are likely to be poorly constrained and hence highly variable. This simplification is however 

preferable to assuming a single vegetation age per species over the entire region as done by 

Le Maitre et al. (2016). 

2.7 Simulations 

All simulations are conducted in R (R Core Team, 2017). All data and code required to run our 



 

 

model and reproduce our results are available at https://github.com/GMoncrieff/streamflow-

reduction. We created probabilistic estimates of streamflow reduction by performing a Monte 

Carlo simulation, running our model 1000 times for each 250 x 250 meter pixel in the CFR 

(Figure 1).  

1. For each model run we:  

a. Assign each species to a specific streamflow reduction curve (optimal or sub-

optimal, Eucalypt or Pine) 

b. Sample a map of age over the CFR from the distribution of fire return time  

c. Estimate proportional streamflow reduction for every IAP species using the 

assigned curve and age with a streamflow reduction curve sampled from posterior 

distribution of curves fitted to the South African catchment data.  

d. Determine how much additional water is used by IAP in riparian zones and areas 

where groundwater is accessible 

2. Within each run, for each catchment we 

a. Sample the density of each IAP species 

3. Within each catchment, for each pixel we 

a. Estimate pixel-level naturalized runoff by sampling precipitation and converting to 

runoff  

b. Correct for bias in naturalized runoff by summing naturalized runoff across all 

pixels within each quaternary catchment and rescaling to match estimates from 

Bailey & Pitman (2015) 

c. Determine whether additional water in riparian zones or groundwater is accessible 

to IAPs 

d. Calculate the runoff lost to IAPs by multiplying potential runoff from each pixel by 

the proportional streamflow reduction for every IAP species, and summing across 

all species. 

 

These pixels-level estimates are then summed for each catchment in each model run yielding 

1000 estimates of mean annual runoff loss for each catchment. 

2.8 Uncertainty partitioning 

Uncertainty partitioning is used to estimate the contribution of each input source of uncertainty 

https://github.com/GMoncrieff/streamflow-reduction
https://github.com/GMoncrieff/streamflow-reduction


 

 

to the output uncertainty in streamflow reduction. The uncertainty attributed to each component 

is a combination of model sensitivity to an input and the uncertainty in the input itself (LeBauer 

et al., 2013). We do not perform a separate sensitivity analysis, as this analysis would require 

evaluating model prediction by varying input parameters by a specified value. The range over 

which to vary parameters should be determined by the reasonable range over which they might 

vary. Here we estimate this range by using the parameter values sampled from their 

distributions as defined in our model. Hence our uncertainty analysis is equivalent to a 

sensitivity analysis, with parameters variation determined using prior information. We can 

determine the relative contribution of a particular source of uncertainty to overall uncertainty in 

streamflow reduction by setting the uncertainty in all other inputs to zero. This simulation is 

performed for all uncertainty sources, namely: invasion density, curve assignment, age, 

streamflow reduction curves, additional water availability and precipitation. For each of these 

scenarios, we summarise the total uncertainty in estimated streamflow reduction at the 

catchment and pixel level using a robust estimate of dispersion - the median absolute deviation 

(MAD) - and the robust coefficient of variation (RCVM) calculated as 

  

where MAD is the median absolute deviation and M median of streamflow reduction estimates 

across samples (Arachchige et al., 2019).  

3. Results  

The best fitting model to the streamflow reduction data from the South African catchments 

experiments included an age effect, a growing condition effect, a species effect, and an 

interaction term between age and growing condition (Table 1). The posterior predictive 

distributions for fitted curves are shown in Figure 2. Catchments afforested with Eucalypts 

showed greater reduction in streamflow than those afforested with Pines for a given age. 

Streamflow reductions for Pines growing in sub-optimal conditions were lower than those 

growing in optimal conditions, but for a given age the estimated reduction was highly variable 

with wide predictive intervals. No data was available for Eucalypts growing in sub-optimal 

conditions, and hence the effect of growing conditions fitted for Pines was applied. Our curves 

are similar to those fitted by Scott & Smith (1997), though they show a more gradual increase in 



 

 

streamflow reduction with age. This difference results in higher estimates of streamflow 

reduction at young sites, and lower estimates at mature sites.  

Using these curves to calculate streamflow losses across the CFR, we estimate that streamflow 

is reduced by a mean of 304 million m3 or 4.14% annually as a result of IAPs, with an upper 

estimate of 408 million m3(5.54%) and a lower estimate of 267 million m3(3.63%) using a 95% 

quantile interval. This estimate is slightly lower than the Le Maitre et al. (2016) estimates of 379 

million m3 or 5.15% for the same 306 catchments. Overall there is good agreement between 

our estimates, (Figure 3, R2 = 0.89, intercept = 0.10, slope = 0.73), though lower flow reductions 

are estimated for some high-flow catchments. Mean differences between our results and those 

from Le Maitre et al. (2016) are not due to nonlinear effects encountered when using 

parameters sampled probabilistically rather than mean values (Jensen, 1906). Mean 

catchment-level streamflow reduction estimates are near identical when sampling input data 

and parameters probabilistically vs. simply inputting mean values (Figure S2). 

IAP impacts are concentrated spatially in a few regions of the CFR (Figure 4). From West to 

East these are: the sandy plains North of the City of Cape Town near Atlantis, the Cape Flats, 

the Hottentots-Holland and Franschoek-Villiersdorp mountain ranges, the Agulhas plain 

extending to Mossel Bay, the Tsitsikamma and Outeniqua coastal mountain ranges and Cape 

Recife near Port Elizabeth. The worst affected catchment, the Holsloot river in the Limietberg, is 

estimated to lose 32.9 million m3 per annum [24.7, 40.4] or 29.7% [22.3, 36.4] of total annual 

streamflow. The full distribution of posterior estimates of streamflow reduction for quaternary 

catchments surrounding the major dams that supply bulk water to the City of Cape Town is 

shown in Figure S3. The total reduction estimated for these catchments is 25.5 million m3 per 

annum [20.3,43.4] or 3.37% [2.68, 5.72] of total annual streamflow. Bimodal distributions 

evident in this figure are the results of uncertainty in assigning IAPs species to a particular 

streamflow reduction curve. Total uncertainty measures using MAD were highest in mountain 

catchments with high mean runoff and high streamflow losses, though many catchments with 

low runoff and low streamflow losses showed higher proportional uncertainty, measured using 

RCVM (Figure 5). Overall, the largest contributing factor to uncertainty in streamflow losses at 

the catchment level was IAP density, followed by vegetation age, the shape of the streamflow 

reduction curves and the availability of additional water (Figure 6). Uncertainty in precipitation 

and the assignment of species to streamflow reduction curves did not contribute significantly to 

total uncertainty at the quaternary catchment level. .  



 

 

4. Discussion  

Invasive alien plants significantly reduce runoff in heavily invaded catchments in South Africa. 

The South African catchments experiments, initiated out of concern about the water-use impact 

of forestry species, are useful for understanding and predicting the impact of IAPs on water 

resources (Cullis et al., 2007; Le Maitre et al., 2019; Versfeld et al., 1998). Here we have 

reanalysed all the available data on streamflow reductions from the South African catchments 

experiments. Our analysis confirms previous work, showing that fast growing species, such as 

Eucalypts, reduce streamflow to a greater extent than slow growing species, and that the 

environmental conditions within each catchment have a large effect. But there remains 

considerable uncertainty in the streamflow reduction, particularly in young plantations. This 

uncertainty has been unaccounted for in previous studies building on the results of these 

experiments. Propagating this uncertainty to regional estimates of the impact of IAPs on 

streamflow produces results in broad agreement with previous studies, but with high uncertainty 

in many catchments. Differences of up to 23.2 million m3 per annum between upper and lower 

estimates of runoff loss are obtained within individual catchments. The relevance of the range in 

probable reduction estimates for decision makers can be emphasized by restating these 

numbers in terms of water security for the largest population center in the region, the City of 

Cape Town. Cape Town’s 5 major dams are fed by sub-catchments of the Breede, Berg, and 

Olifants river systems. The upper and lower estimates of streamflow loss to IAPs in the 

quaternary catchments surrounding these dams are 20.3 and 43.4 million m3 per annum. Given 

the city’s water use target of 0.45 million m3 per day at the height of the ’day-zero’ drought, this 

volume of water translates into 45 and 97 days of water supply - a range of 52 days water 

supply.  

Despite close agreement with the results of Le Maitre et al. (2016) for most catchments, in this 

study we estimate lower streamflow losses to IAPs for high-runoff catchments and overall. 

Given that we use the same data for IAP density, the same constraint on total annual 

catchment runoff and similar assignment of species to reduction curves, the remaining 

explanatory factors are pixel vegetation age, curve shape and additional water availability. Our 

estimates of vegetation age are higher than theirs (23 years vs 15 years), and hence are likely 

to produce higher estimates of streamflow reduction, not lower. Despite different methodologies 

for calculating the area in which additional water is available, our estimated total riparian area 

and groundwater availability is similar to theirs. However, for the range of vegetation ages 

common in mountain catchments of the CFR (10-30 years) the streamflow reduction curves 



 

 

fitted here estimate lower mean runoff reductions than those of Scott & Smith (1997). In 

particular, lower reductions estimated for Pines under sub-optimal growing conditions  - the IAP 

species most common in mountain catchments where the greatest runoff reductions occur 

(Kotze et al., 2010; Le Maitre et al., 2019) – are the most likely cause for our lower streamflow 

losses.  

Partitioning and quantifying the sources of uncertainty in streamflow losses, as we have in this 

study, suggests paths for future research and refinement of existing estimates. While 

uncertainty in the assignment of species to curves did not influence total uncertainty greatly, the 

shape of the curves themselves did. High variability in the magnitude of streamflow reduction 

occurs for species assigned to the sub-optimal species curves. The influence of increasing 

water use within species with increasing evapotranspiration and interception is accounted for in 

both the age and growing condition covariates. A model that integrates these proxies into a 

single covariate could perhaps better account for the variation seen in the catchments 

experiments. The choice of covariate would, however, be limited to those that could be 

calculated from existing historical data e.g. basal area (Le Maitre & Versfeld, 1997). 

Unsurprisingly uncertainty in IAP density was the most important contributor to overall 

uncertainty. This uncertainty is exacerbated by additional uncertainty unaccounted for here due 

to change in IAP density that has occurred since the mapping done by Kotze et al. (2010) was 

completed in 2007-2008 (van Wilgen et al., 2020). Without management intervention, IAPs can 

spread and increase cover up to 10% per year (van Wilgen & le Maitre, 2013; van Wilgen et al., 

2020). Of particular concern is the assumption that IAP densities in riparian areas are the same 

as adjacent drylands. IAP densities in riparian zones often exceed those of adjacent drylands, 

and thus our assumption further biases our estimates of streamflow losses downwards. Kotze 

et al. (2010) do include a map of riparian invasion densities, but these have been reported as 

unreliable. Uncertainty in additional water availability is another major source of uncertainty in 

our model. This uncertainty, combined with unreliable IAP riparian density estimates, suggests 

that water loss to IAP in riparian zones is likely to be the largest source of uncertainty and error 

unaccounted for in our streamflow reduction estimates. When evaluated separately, as done 

here, the individual components of uncertainty do not sum to the total overall uncertainty due to 

interactions among components. This behavior suggests interaction among the components 

evaluated. While it is not possible to analytically evaluate these interactions using the model as 

posed here, collinearity among input parameters is the most likely explanation. For example, 

high uncertainty in multiple input variables can be expected in high rainfall, remote mountain 



 

 

catchments. 

The IAP density maps used here are intended for use at the tertiary catchment scale, but 

decisions regarding management interventions are made at much finer scales. Allocating 

limited resources to manage IAPs requires balancing costs and benefits that are influenced by 

fine scale variation in variables such as topography, accessibility, IAP density and runoff losses 

(Marais & Wannenburgh, 2008; McConnachie et al., 2012). Ideally, densities for each pixel in 

this analysis would be available. New developments in satellite remote sensing and the 

availability of open data are facilitating the production of these maps at resolutions as fine as 10 

m (Masemola et al., 2020). This analysis also underestimates the contribution of uncertainty in 

rainfall to total uncertainty because the uncertainty we report is summarized at the quaternary 

catchment scale. Rainfall is sampled independently for each pixel, with no reference to the 

rainfall values sampled in neighbouring pixels. There will, however, be strong spatial auto-

correlation among neighbouring pixels. Hence when summing multiple pixels to estimate 

uncertainty at large scales, their importance will be underestimated. Indeed when we inspect 

the median absolute deviation of pixel-level streamflow reduction estimates rather than those 

calculated at the quaternary catchment level, the importance of rainfall becomes far greater 

(Figure S4).  

Uncertainty in runoff predictions can be reduced by comparing predictions to observations from 

gauged catchments using a likelihood measure (Beven & Binley, 1992; Kavetski et al., 2006; 

Vrugt & Sadegh, 2013). Input parameter priors can be updated based on their likelihood given 

the observational data and predictions will be based on these updated parameter sets. While 

observations from gauged catchments were used to parameterize the effect of IAPs on water 

resources in this study, no observations are available against which the streamflow modelled 

here could be directly compared. However, the regionalization approach outlines a framework 

to constrain output uncertainty when data from gauged catchments is not available (Hughes et 

al., 2010; Kapangaziwiri et al., 2012; Wagener & Wheater, 2006). By comparing hydrological 

behaviour to those obtained in similar basins, calculated uncertainties can be reduced through 

the elimination of parameter sets that produce unrealistic scenarios. An adaptation of this 

approach may be possible for the estimation of IAP impacts. The model outlined here would be 

more amenable to this approach if streamflow reductions were estimated over multiple 

consecutive years, allowing the temporal co-evolution of modelled outputs such as runoff 

reduction, naturalized runoff, age and invasive density to be constrained. However, any 

approach that attempts to constrain the behaviour of hydrological models using only summary 



 

 

statistics or aggregate behaviour without properly describing the full range of response 

observed in the data will lead to underestimating the variability of modelled behaviour. This 

issue further emphasizes the need to fully characterize and report on the uncertainty in fitted 

responses in paired catchment experiments, and propagate uncertainty to subsequent 

analyses. 

The data from South African catchment experiments has been crucial for developing an 

understanding of the impacts of both afforestation and IAPs on water resources nationally. The 

full value of these data have yet to be realized and, as we show in this study, further analysis 

can improve the information available to decision makers. Analysing and propagating the 

uncertainty in these data provides more reliable estimates of IAP impacts on water resources, 

but requires the input data upon which models are built to be openly available. Simple models 

and summary statistics often do not suffice when attempting to fully describe the variability in 

drivers of hydrological processes. We hope this approach will be facilitated by ongoing efforts to 

preserve and extend the data from South African catchments experiments (e.g Slingsby et al, 

this issue), and future programmes to map the distribution of water resources and IAPs.  
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Table and Figures  
 

Name LOOIC  

Age + Condition + Species + Age|Condition -508.90 

Age + Condition + Species + Age|Condition + Age|Species -506.45  

Age + Condition + Species + Age|Species -445.10  

Age + Condition + Species -418.16 

 
 

Table 1. Comparison of beta regression models fitted to the South African catchment data from 

(Scott et al., 2000). Models appear in order of performance measured using the leave-one-out 

cross-validation (LOO) information criterion. Lower LOOIC values indicate better performance.  



 

 

Fig 1. Overview of the process used to model runoff reductions by invasive alien plants. 

Parameters were sampled at three scales during each model iteration. At the highest level 

parameters were sampled once for each iteration and shared across all catchments. At the next 

level, parameters were sampled separately in each catchment. At the lowest level, parameters 

were sampled independently for each pixel. Mean annual runoff was calculated at the pixel 

level and then summed to provide a catchment-level estimate for each iteration. Colour coding 

indicates where each component and its related parameters were incorporated into the final 

calculation of pixel-level runoff reduction. Each colour corresponds to a subsection within the 

methods description.  



 

 

 

 

Fig. 2. Streamflow reduction curves to the South African catchment data using the best fitting 

beta regression model. Dots indicate data points for each year. Solid lines indicate mean 

predictions, while light shaded areas indicate 95% predictive intervals and dark shading 

indicates 50% intervals. Dotted and Dashed lines indicate the curves fitted by Scott & Smith 

(1997) for optimal and suboptimal growing conditions respectively.  



 

 

 

Fig. 3. Comparison of estimated streamflow reductions for quaternary catchments with results 

from Le Maitre et al. (2016). Vertical bars show 95% quantile intervals for predicted streamflow 

reductions. The solid line shows the 1:1 relationship and the dashed line the linear fit  



 

 

 

Fig. 4. Streamflow losses to invasive alien plants estimated within 306 quaternary catchments 

of the Greater Cape Floristic Region. Upper and lower bounds show 95% quantile interval 

estimates. Reductions are shown as percentages of predicted naturalized runoff.  



 

 

 

 

Fig. 5. Uncertainty in estimates of streamflow losses to invasive alien plants within quaternary 

catchments of the Greater Cape Floristic Region represented as the robust coefficient of 

variation (RCVM), and the median absolute deviation (MAD).  



 

 

 

 

Fig. 6. Total uncertainty in streamflow reduction, calculated as the sum of median absolute 

deviation for all quaternary catchments, attributed to uncertainty in: the density of invasive alien 

plants, vegetation age, the shape of the streamflow reduction curve, the availability of additional 

water from groundwater or riparian sources, mean annual rainfall, and the assignment of 

species to streamflow reduction curves. Each source of uncertainty is represented as a percent 

of the total uncertainty when all sources are included. 



HYP_14161_figure1.png



HYP_14161_figure2.png



HYP_14161_figure3.png



HYP_14161_figure4.png



HYP_14161_figure5.png



HYP_14161_figure6.png




