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A global database of C4

photosynthesis in grasses

Introduction

C3, C4 or Crassulacean acid metabolism (CAM) photosynthetic
pathways represent a fundamental axis of trait variation in plants,
with importance at scales from genome to biome. Knowing the
distribution of these pathways among wild species is a crucial first
step in understanding the patterns and processes of photosynthetic
evolution and its role in ecological processes at large scales (e.g.
changes in the composition of biomes under global change). C4

photosynthesis is most prevalent in the Poaceae (grasses), which
account for about half of allC4 species (Sage et al., 1999a).Research
on the evolution and ecology of these plants has undergone a
renaissance during the last 7 yr, catalyzed by phylogenetic analyses
showing multiple parallel C4 origins (e.g. Christin et al., 2007;
Vicentini et al., 2008; GPWG II, 2012), insights into the
distribution of C4 species and assembly of the C4 grassland biome
(Edwards & Still, 2008; Edwards & Smith, 2010; Edwards et al.,
2010), and efforts to introduce the C4 pathway into rice (Hibberd
et al., 2008; von Caemmerer et al., 2012). C4 photosynthesis is an
excellent model for investigating complex trait evolution, because
of the broad knowledge base describing its biochemical basis,
evolutionary history, and ecological interactions (Christin et al.,
2010).

Why do we need a C4 database?

Investigations of the evolution and ecological significance
of C4 photosynthesis are increasingly turning to large-scale
comparisons of C3 and C4 species. These are straightforward for
well-characterized common or model species. However, when
comparisons are extended to include large numbers of nonmodel
species, two important challenges arise. First, there are > 62 000
published scientific names for grasses corresponding to over
11 000 accepted species (Clayton et al., 2002b onwards), making
an average of five synonyms for each accepted name. This leads to
problems when linking data based on alternative names for the
same species concept, and to redundancy in published data
surveys, when values for synonyms are presented as independent
data. Second, although there have been extensive previous surveys
of the photosynthetic pathway spanning the diversity of wild
species (Hattersley & Watson, 1992; Sage et al., 1999a), the
rarity of most species means that this work is incomplete, and the
synonymy problem makes it difficult to identify the gaps in these
data.

Accounting for synonymy and spelling variants/mistakes has
become one of the central challenges for the emerging fields of
ecological and evolutionary informatics, in which data are
synthesized across different sources on increasingly larger scales
(Jones et al., 2006; Sidlauskas et al., 2009). In one infamous
example, a 22.5 million record database of plant species occur-
rences and traits for the Americas contained more scientific names
than there are thought to be plant species on Earth (Whitfield,
2011). However, this taxonomic impediment to data synthesis has
been progressively broken down by a combination of new
methodological developments for name matching (Patterson
et al., 2010; Boyle et al., 2013; Chamberlain & Szocs, 2013;
Kluyver &Osborne, 2013), and the compilation of nomenclatural
databases by botanic gardens and natural history museums (e.g.
The Plant List, 2010). Here, we showcase how such resources may
be used to assemble and index databases of discrete traits for large
numbers of species.

Compilation and overview of the data

Our database of C3 and C4 photosynthetic types in grasses is based
principally on published anatomical and stable carbon isotope
evidence.We followed previous authors in assuming that all species
within each genus shared the same photosynthetic pathway, unless
the evidence suggested otherwise.However, we alsomeasured d13C
for 99 species that had not previously been surveyed, including 96
species of Panicum s.l., Acostia gracilis, Lophopogon tridentatus and
Thedachloa annua (Supporting Information Table S1). We also
obtained information on leaf anatomy andmeasured d13C to check
previous unverified reports of a C3 species (Stipagrostis paradisea) in
an otherwise C4 genus (Sage et al., 1999a), and a C4 subspecies
(Chaetobromus dregeanus ssp. involucratus) in an otherwise C3

subfamily (Danthonioideae; Watson & Dallwitz, 1992 onwards).
In both cases, our data contradicted previous reports, showing that
the photosynthetic pathway of these taxamatches that of their close
relatives; S. paradisea is C4 and C. dregeanus ssp. involucratus is C3

(Table 1).
The photosynthetic pathways of Taeniorhachis repens,

Veldkampia sagaingensis and 39 rare species of Panicum s.l. remain
unclassified, because we were unable to take samples of type
specimens from herbarium collections. Most of these species are
endemics ofMadagascar (26 species), and the remaining 13 species
are endemics of a small number of countries inAfrica and Southeast
Asia, and oceanic islands (Table S2). Thismeans that the database is
complete for most countries of the world.

Our approach has been to map the photosynthetic pathway data
onto accepted species names in the Poaceae taxonomy ofClayton&
Renvoize (1986) and Clayton et al. (2002b onwards), which is the
most comprehensive treatment of accepted names and synonymy
for grasses (see Methods S1 for full methodology). Coupling our
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Table 1 Photosynthetic type for genera previously reported to include a mixture of C3, C4 and C3–C4 intermediate species

Taxon Type References

1. Alloteropsis
A. angusta C4 Metcalfe (1960), Ellis (1974), Hattersley et al. (1977), Watson & Dallwitz (1992 onwards)
A. cimicina C4

A. paniculata C4

A. papillosa C4

A. semialata ssp. semialata C4

A. semialata ssp. eckloniana C3

2. Aristida
A. longifolia C3 Cerros-Tlatilpa & Columbus (2009)
Other Aristida species C4 Watson & Dallwitz (1992 onwards)

3. Chaetobromus involucratus
ssp. involucratus1 C3 This study; H. P. Linder (pers. comm.)
ssp. sericeus C3 This study; H. P. Linder (pers. comm.)
ssp. dregeanus C3 This study; H. P. Linder (pers. comm.)

4. Dregeochloa
D. calviniensis2 C3–C4(?) Watson & Dallwitz (1992 onwards)
D. pumila C3

5. Eragrostis3

Eragrostis walteri4 C3 Schulze et al. (1996); Ingram et al. (2011); Watson & Dallwitz (1992 onwards)
Other Eragrostis species C4

6. Homolepis
Homolepis aturensis5 C3–C4(?) Christin et al. (2013); Watson & Dallwitz (1992 onwards)
Other Homolepis species C3

7. Neurachne
N. alopecuroides C3 Hattersley et al. (1982); Hattersley & Roksandic (1983); Christin et al. (2012)
N. annularis C3

N. lanigera C3

N.minor C3–C4

N.munroi C4

N. queenslandica C3

N. tenuifolia C3

Paraneurachne muelleri6 C4

8. Panicum s.l.3

252 species C3 Various sources, including this study (see Table S4 for full details)
169 species C4

P. ruspolii C3–C4(?)
9. Steinchisma
S. cupreum C3–C4 Brown (1977), Morgan & Brown (1979, 1980); Renvoize (1987); Watson & Dallwitz (1992 onwards)
S. decipiens C3–C4

S. exiguiflorum C3–C4

S. hians C3–C4

S. laxum C3

S. spathellosum C3–C4

S. stenophyllum C3–C4

10. Stipagrostis
S. paradisea7 C4 Renvoize (1986); this study
Other Stipagrostis species C4 Watson & Dallwitz (1992 onwards)

11. Streptostachys s.l.3

S. acuminata C4 Morrone & Zuloaga (1991); Watson & Dallwitz (1992 onwards); Filgueiras et al. (1993);
De Olivera & Longhi-Wagner (2007); P-A. Christin (pers. comm.)S. asperifolia5 C3–C4(?)

S. lanciflora C3

S. macrantha C4

S. ramosa C4

S. rigidifolia C4

S. robusta C3

Taxonomy follows Clayton et al. (2002b onwards).
1Anatomical (H. P. Linder, pers. comm.) and d13C evidence (Supporting Information Tables S1, S3) conflicts with a previous report that this subspecies is C4

(Watson & Dallwitz, 1992 onwards).
2Anatomical evidenceshows that inD. calviniensismostmesophyll cells arenomore thanonecell distant frombundle sheathcells,making it potentially aC3–C4

intermediate.
3Genus known to be polyphyletic.
4Note that a recent phylogenetic treatment (Ingram et al., 2011) places E. walterii outside the genus Eragrostis. However, its taxonomy has not yet been
revised.
5Anatomical evidence showing a concentration of chloroplasts within large bundle sheath cells suggests that this species is potentially a C3–C4 intermediate
(Christin et al., 2013; P-A. Christin, pers. comm.).
6Phylogenetic analysis places the genus Paraneurachne nested within the genus Neurachne (Christin et al., 2012).
7Anatomical (Renvoize, 1986) and d13C evidence (Tables S1, S3) conflicts with a previous report that this species is C3 (Sage et al., 1999a).
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dataset with this synonymy allows users to return the photosyn-
thetic type for all except 46 (corresponding to 41 accepted species)
of the 62 678 published scientific names (accepted names and
synonyms) for grasses (Clayton et al., 2002b onwards). We have
developed software tools to facilitate this task for users, which are
detailed in the following.

The database covers 99.6% of the 11 087 grass species. It shows
that 42% of these species use the C4 photosynthetic pathway and
57% the C3 pathway (Table S3; Notes S1). Six genera (Alloteropsis,
Aristida, Eragrostis,Neurachne, Panicum s.l., and Streptostachys s.l.)
contain both C3 and C4 species (Tables 1, S4). Seven C3–C4

intermediate species (Table 1) are distributed between the genera
Neurachne (one species) and Steinchisma (six species). Within the
genus Panicum s.l., 169 species are C4, 250 are C3, and 41 remain
unknown, with the photosynthetic type of Panicum ruspolii
ambiguous on the basis of new d13C measurements (Tables S1,
S2, S4; Notes S1). The latter species may be a previously
unrecognized C3–C4 intermediate, but further work is required
to test this hypothesis. A number of further potential C3–C4

intermediates have been identified on the basis of anatomical
observations (Tables 1, S3), and also need to be investigated
physiologically. These areDregeochloa calviniensis (mostmesophyll
cells are no more than one cell distant from bundle sheath cells;
Watson & Dallwitz, 1992 onwards), Homolepis aturensis and
Streptostachys asperifolia (concentration of chloroplasts in large
bundle sheath cells; Christin et al., 2013; P-A. Christin, pers.
comm.). In total there are therefore 11 putative C3–C4 interme-
diates in the grasses.

Caveats

A number of caveats are important when collating and using large
trait databases of this kind. The assumption that all species within
each genus share the same photosynthetic pathway is reasonable in
most cases.However, significant and interesting exceptions, such as
the C3Aristida species in an otherwise C4 genus (Cerros-Tlatilpa&
Columbus, 2009), raise the possibility of errors at the species level.
Misclassification is most likely in lineages where multiple evolu-
tionary transitions between photosynthetic pathways have
occurred, especially in Paniceae and Paspaleae (Morrone et al.,
2012). The polyphyly of many grass genera accentuates this
problem, most acutely illustrated by Eragrostis walteri, which was
previously considered to be a C3 species within a wholly C4 genus
(Table 1). Recent phylogenetic work has demonstrated that this
species is actually a member of the C3 Arundinoideae lineage and
misplaced within Eragrostis (Ingram et al., 2011).

The polyphyly of grass genera means that Tables 1, S3 and S4
should be interpreted with caution. While they do catalogue the
known distribution of C4 photosynthesis among taxa, they do not
necessarily provide information about its evolutionary history.
However, ongoing phylogenetic work is steadily resolving the
polyphyly issue, which ismost acute in the genusPanicum.We have
used the conservative circumscription of Panicum s.l. adopted in
GrassBase (Clayton et al., 2002b onwards) and recently carried
over to the World Checklist of Poaceae (Clayton et al., 2012
onwards) and The Plant List (The Plant List, 2010), because these

online resources provide the most comprehensive, global list of
accepted names and synonyms, and are regularly updated in the
light of new publications. Using the software tools detailed in the
following, it is straightforward to link the C3/C4 data listed for
Panicum s.l. (see Table S4) to the new genus circumscriptions. The
same applies to Streptostachys s.l. (Table 1).

How to access the database

Easy routes for users to access information are crucial determinants
of the usefulness and usage of data. Our database may be accessed
via three routes. The first is static, but the second and third will
report updates to the database as we make them.

First, simple tables list photosynthetic pathway by accepted
scientific name, andmaybe accessed in the Supporting Information
(Tables S3, S4). These require the user to first prepare a list of
accepted species names according to the taxonomy of Clayton et al.
(2002b onwards) for the taxa of interest.

Second, the name-matching and data-linkage steps may be
combined within the software package Taxonome (Kluyver &
Osborne, 2013; http://taxonome.bitbucket.org; persistent URL
http://purl.org/NET/taxonome). Taxonome links datasets using
species names, handling both synonyms and spelling variants
(including spelling mistakes). It deals rapidly with millions of
names, and runs via either a simple Graphical User Interface
(GUI) for basic functionality or python scripts for advanced
users. A user first loads the Kew taxonomy and photosynthetic
pathway database via a data file obtained from the Taxonome
website. Custom lists comprising any published grass names
may then be rapidly matched to this database, and outputted in
CSV format.

Third, the photosynthetic pathway data are linked to the Kew
taxonomy, together with morphological, phylogenetic, biogeo-
graphic and environmental data within the GrassPortal system
(Osborne et al., 2011; www.grassportal.org). GrassPortal enables
users to easily assemble large-scale, synthetic data products based on
multiple original sources, and is accessed via an intuitive and simple
GUI. Using this system, users are able to assemble a list of all grass
species present in a particular geographic area, linked to photo-
synthetic pathway, growth form, and environmental niche data.

Large-scale data synthesis

By carrying out technically challenging bioinformatic steps of data
processing and linkage, services like GrassPortal open up new
possibilities for a broad biological community to explore large-scale
synthetic data products. For example, linkage of the photosynthetic
pathway dataset with species occurrence data (Clayton et al.,
2002a) allows the distribution of C4 grass species to be mapped at
the global scale (Fig. 1). This map improves the global coverage
compared with previous data compilations, especially for Africa,
South America and Southeast Asia (Sage et al., 1999b). It
particularly highlights the prevalence of C4 photosynthesis among
African grasses (Fig. 1a), and the importance of central-east Africa,
India and northern Australia as hotspots of C4 grass species richness
(Fig. 1b). The new dataset also facilitates large-scale
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macroevolutionary analyses. For example, the Grass Phylogeny
WorkingGroup II (2012) used our data in phylogenetic analyses to
discover multiple new C4 lineages, and to infer that evolutionary
gains prevail over losses of this trait. Another recent study used our
data in a macroevolutionary analysis to show an association
between C4 photosynthesis and salt tolerance in grasses (Bromham
& Bennett, 2014).

The integration of our C4 pathway data with information on
geographical distributions, environmental niche, and phylogenetic
relationships promises important novel insights into the ecological
significance and evolution of this complex physiological and
anatomical trait. More generally, it offers biologists an example of
how functional trait data may be used in large-scale synthesis and
analysis to advance our understanding of the ecological and
evolutionary processes acting on organisms.
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Supporting Information

Additional supporting information may be found in the online
version of this article.

Methods S1 Full methodology used to compile and index the
dataset.

Notes S1 Full list of literature sources used to compile the dataset
presented in Tables S3 and S4.

Table S1Herbarium specimens of grass species analyzed for stable
carbon isotope ratio

Table S2Uncharacterized species with countries of occurrence and
synonyms (Clayton et al., 2002a,b onwards)

Table S3 Full genus-level dataset with numbers of species for each,
and references for evidence

Table S4 Full species-level dataset for the genus Panicum s.l., as
circumscribed byClayton et al. (2002b onwards), with the evidence
and references used to ascribe photosynthetic type for each
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