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ABSTRACT Coniochaeta pulveracea is a soft-rot-causing ascomycete able to degrade
lignocellulosic biomass. The first draft genome sequence of strain CAB 683 reported
here has an estimated size of 30 Mb assembled into 852 scaffolds and 10,035 pre-
dicted protein-coding genes.

Coniochaeta pulveracea (Ehrh.) Munk (1948) is a dimorphic ascomycete belonging to
the family Coniochaetaceae (order Coniochaetales), inhabiting both living and

decaying trees (1). Fungi causing soft-rot decay such as C. pulveracea, are efficient at
degrading the polysaccharide constituents of woody material, mainly through the
release of extracellular glycosidases from their cell wall-penetrating hyphae (2). Fur-
thermore, soft-rot ascomycetes show various degrees of lignin degradation (3); how-
ever, unlike the white-rot-causing basidiomycetes, they do not possess the ligninolytic
class II peroxidases, lignin (LiP) and manganese (MnP) peroxidase (4). As LiP and MnP
play an essential role in white-rot-mediated lignin degradation (5), soft-rot fungi
seemingly possess an alternative enzymatic system to degrade lignin. Reports that
representatives from the genus Coniochaeta are capable of rapidly degrading lignocel-
lulose into fermentable monosaccharides (6, 7) have highlighted the biotechnological
potential of these fungi for lignocellulosic biomass-based industries, including the
bioethanol industry. This led to bioprospecting for Coniochaeta strains and the isolation
of C. pulveracea CAB 683 from a decaying Acacia tree in the Northern Cape of South
Africa, whereafter it was confirmed that this strain is able to release glucose and
cellobiose from a complex cellulosic substrate (8). The first genome sequence of C.
pulveracea is reported here, providing a valuable resource to improve our understand-
ing of the molecular mechanisms involved during soft-rot-mediated lignocellulose
degradation.

The strain C. pulveracea CAB 683 was cultivated in yeast extract-peptone-dextrose
(YPD) broth at 30°C. Total genomic DNA was extracted using a cetyltrimethylammo-
nium bromide (CTAB) protocol (9). The DNA sample was sheared to obtain an
average fragment size of 500 bp using an M220 focused Ultrasonicator (Covaris,
Woburn, MA), whereafter a single dual-indexed sequencing library was prepared
using the NEBNext Ultra DNA library prep kit. Size selection was performed using
Agencourt AMPure XP beads. The library was then sequenced on an Illumina MiSeq
platform generating 13.9 million paired-end reads with an average length of
250 bp. The quality of the raw sequencing reads was assessed with FastQC v.0.11.5
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) followed by Illumina
adaptor trimming and read quality filtering (Phred score cutoff, 30) using Trim Galore
v.0.4.3 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The quality-
filtered reads were assembled de novo using SPAdes v.3.11 (10). The assembly com-
prises 852 scaffolds, a total length of 30 Mbp, and an N50 of 288,347 bp. Assembly
completeness was assessed with a genome single-copy ortholog analysis using BUSCO
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v.3.0 (11) with a Sordariomyceta data set (3,725 genes), and a genome completeness of
94.9% was reported.

Genome annotation was performed with the Funannotate pipeline v.1.4.1 (http://
www.github.com/nextgenusfs/funannotate), which includes repeat masking, training
of ab initio gene predictors with C. pulveracea CAB 683 RNA-seq data, gene prediction,
and assigning of functional annotation to protein-coding gene models. The Funanno-
tate pipeline yielded a total of 10,035 gene predictions, which were subsequently
investigated for genes encoding carbohydrate-active enzymes using a hidden Markov
model (HMM)-based search of dbCAN HMM v.6.0 (12). The investigation identified 225
glycoside hydrolases, 64 glycosyl transferases, 6 polysaccharide lyases, 52 carbohydrate
esterases, 22 carbohydrate-binding modules, and 64 enzymes with auxiliary activities of
which 24 are lytic polysaccharide monooxygenases (AA9 and AA11 families). Assessing
the genome of C. pulveracea CAB 683 for genes potentially involved in the degradation
of lignin revealed 11 lignin oxidases (8 laccases, 2 cellobiose dehydrogenases, and 1
versatile peroxidase) and 6 lignin-degrading auxiliary enzymes (1 aryl alcohol oxidase,
1 glucose oxidase, 3 vanillyl alcohol oxidases, and 1 benzoquinone reductase).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number QVQW00000000. The version de-
scribed in this paper is version QVQW01000000. The BioProject number of the se-
quenced strain is PRJNA473398. The genomic raw sequencing reads are available in the
Sequence Read Archive (SRA) database under accession number SRR7704703. Raw
sequences of the unpublished RNA-seq data are available in the SRA database under
accession numbers SRR8182960, SRR8182961, SRR8182962, SRR8182963, SRR8182964,
and SRR8182965.
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