
Science of the Total Environment 777 (2021) 146093

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Palearctic passerinemigrant declines in African wintering grounds in the
Anthropocene (1970–1990 and near future): A conservation assessment
using publicly available GIS predictors and machine learning
Bruno Andreas Walther a,⁎, Falk Huettmann b

a Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
b EWHALE Lab, Institute of Arctic Biology, Biology and Wildlife Department, University of Alaska Fairbanks (UAF), Fairbanks, AK 99775, USA
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We generated distribution models of
migratory birds in Africa.

• We linked their declines with informa-
tion in Open Access GIS environmental
layers.

• Model performance was good for two
out of three models describing bird de-
clines.

• Bird declines were linked to locations,
human pressures, and climate.

• Models of future changes predicted
more intense declines all over Africa.
⁎ Corresponding author.
E-mail address: bawalther2009@gmail.com (B.A. Walt

https://doi.org/10.1016/j.scitotenv.2021.146093
0048-9697/© 2021 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 February 2020
Received in revised form 15 February 2021
Accepted 21 February 2021
Available online 27 February 2021

Editor: Paulo Pereira

Keywords:
Palearctic migrants
Non-breeding
Machine learning
Niche modelling
GIS
The Anthropocene causesmanymassive and novel impacts, e.g., onmigratory birds and their habitats. Many spe-
cies ofmigratory birds have been declining on the Palearctic-Africanflyway in recent decades. To investigate pos-
sible impacts on a continental scale, we used 18 predictors extracted from 16 publicly available GIS layers in
combination with machine learning methods on the sub-Saharan distributions of 64 passerine migrant species.
These bird species were categorized as having experienced a ‘Large Decline’ (n = 12), a ‘Moderate Decline’
(n = 6) or ‘No Decline’ (n = 46) based on European census data from 1970 to 1990. Therefore, we present the
first study for these species which uses publically available Open Access GIS-data and a multivariate (n = 18)
and multi-species (n = 64) machine learning approach to deduce possible past impacts. We furthermore
modelled likely future human population change and climate change impacts. We identified three predictor
themes related to the distributions and declines of these migratory birds: (I) locations, represented by African
ecosystems, countries, and soil types; (II) human population pressures and land-use intensities, the latter repre-
sented by land-use categories, habitat area, and cropland proportion; and (III) climatic predictors. This is the first
study to relatemigratory bird declines to human population pressures and land-use intensities using this type of
analysis. We also identified areas of conservation concern, such as the Sahel region. Our models also predict that
the declining trends of migratory birds will continue into the foreseeable future across much of Africa. We then
briefly discuss some wider conservation implications in the light of the increasing drivers of biodiversity change
associated with the Anthropocene as well as some possible solutions. We argue that only comprehensive sys-
temic change can mitigate the impacts on the migratory birds and their habitats.
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1. Introduction

Migratory birds face some natural risks (e.g., Walter, 1968; Elkins,
2004) during migration, but nevertheless bird migration has been a
successful evolutionary strategy for millions of years (Berthold,
2001; Gill, 2007). However, in recent decades, migratory birds have
faced new multidimensional threats deriving from rapid and often
unprecedented human-induced environmental changes, which
many cannot cope with (Butler et al., 2010; Kirby et al., 2008;
Sutherland et al., 2012;Walther, 2016; Yong et al., 2015). The drivers
of these changes are ultimately the exponential growth of the human
economy and its consequential increase of resource use and waste
production (Czech, 2013; Maurer, 1996); this impact has grown so
much that this new epoch in which humans drive the relevant
processes and ultimately decide the fate of the Earth system has
been termed the Anthropocene (McGill et al., 2015; McNeill and
Engelke, 2016; Steffen et al., 2018).

The Anthropocene forces ecologists and conservation biologists into
a newunderstanding of their actions in order to assess and possiblymit-
igate many of its massive and novel impacts, e.g., for migratory birds
and their habitats. These novel and severe problems brought about by
human-induced changes and especially its relation to socio-economic
drivers should be included in analyses of the problemswhichmigratory
birds face (e.g., Huettmannet al., 2016, for theWesternNorth Atlantic or
Walther, 2016, for the Sahel). As a result of these rapid man-made
changes, populations of many migratory bird species all around the
world have declined, some precipitously, over the last few decades
(Kirby et al., 2008; PECBMS, 2009; Sanderson et al., 2006; Sutherland
et al., 2012; Terborgh, 1989; Walther, 2016; Walther et al., 2011; Yong
et al., 2015).

In this study, we focus on passerine migrant species which breed in
theWestern Palearctic regionbutwhichhave their non-breeding grounds
in sub-Saharan Africa (Curry-Lindahl, 1981; Dowsett and Dowsett-
Lemaire, 1993; Moreau, 1972; Walther et al., 2010). Many of these mi-
grants have declined during the last few decades predominantly due to
human-made impacts. Negative impacts differ for different species and
for breeding ranges, overwintering ranges, and migratory stopovers;
however, almost all of them are caused by human-made changes to the
environment. The main impacts named again and again in the literature
cited above (and many others) are: habitat loss and fragmentation,
mostly due to agricultural intensification, but also other land-use
changes; persecution (especially hunting in the Mediterranean); climate
change; and herbicide and pesticide use (Atkinson et al., 2014; Bairlein,
2016; Newton, 2008; Thaxter et al., 2010; Vickery et al., 2014; Walther,
2016; Walther et al., 2011; Zöckler, 2012; Zwarts et al., 2009).

Sub-Saharan migrants have overall declined more than those
species that are resident or engage in shorter migrations (i.e. that re-
main mostly north of the Sahara during the non-breeding season)
(e.g., Berthold, 2001; Gregory et al., 2007; Sanderson et al., 2006;
Thaxter et al., 2010; but see Voříšek et al., 2010). Among the sub-
Saharan passerine migrants, species which overwinter in the Sahel
have mostly been declining since the 1970s, while species which
overwinter in other parts of Africa have overall declined less or
have had stable populations (Walther et al., 2011, but see Thaxter
et al., 2010). The question thus arises: what ecological changes
brought about by spatially explicit climatic and human drivers may
explain these declines?

Part of the answer lies in the severe Sahel drought during the late
20th century, which initially had a negative impact on the popula-
tions of some species. Since precipitation has increased again some-
what in this century, some species have actually recovered, at least
partially (Walther, 2016). However, Adams et al. (2014), Vickery
et al. (2014) and Walther (2016) showed that the important long-
term driver of population losses in the migrants' overwintering
ranges is not precipitation, but the overall biological impoverish-
ment and ecological degradation of their habitats. These habitat
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changes are the consequence of local, regional and global economic
agendas which have been driving the land-use and land-cover
change (LULCC, mostly natural and semi-natural habitats converted
to intensive human uses such as agriculture, mining, urbanization,
etc.) due to industrialization, agricultural intensification, and the
overuse of woody vegetation for timber, firewood and livestock
feed (Walther, 2016). Although LULCC has been rapidly progressing
across Africa (Lambin et al., 2003; Linderman et al., 2005; Vanacker
et al., 2005), it was even more severe in the Sahel than in other
African regions (Brink and Eva, 2009) resulting in the “green desert-
ification” (or agricultural intensification) of the Sahel (Herrmann
et al., 2014). These changes caused the widespread losses of many
species there, including migratory birds. The same process of biolog-
ical impoverishment seen in the Sahel is repeated in large parts of
Africa and the migratory flyways because of humanity's increasing
ecological footprint which negatively impacts the habitats which
constitute the migrants' stopovers and breeding ranges (see litera-
ture cited above).

Whilemany studies have used some environmental metrics and data
to explain changes in African migrant populations in order to infer the
possible causes for their declines, especially those in the Sahel (summa-
rized in Walther et al., 2011, and Walther, 2016), studies which focused
on widespread environmental changes in Africa and its landscapes re-
main relatively few. Theywere further hampered by the considerable in-
accuracy of the distributional maps available for Palearctic passerine
migrants overwintering in sub-Saharan Africa (Chernetsov and
Huettmann, 2005; Walther et al., 2010). For this reason, a comprehen-
sive database on the geographical distribution of migratory passerine
bird species in sub-Saharan Africawas assembledwhich ismore detailed
and reliable than any other available database (Walther et al., 2010,
contra Vickery et al., 2014). This database containing ~250,000 geo-
referenced data points is well accepted by now and has already been
used in a series of biogeographical and conservation studies (Walther
et al., 2004, 2007, 2010, 2011), including the possible effects of future cli-
mate change on the African distributions of migrant passerines (Barbet-
Massin et al., 2009) and the determination of conservation priority areas
for these species (Walther and Pirsig, 2017). Arguably, the establishment
of such a comprehensive database represents valuable progress for help-
ing to investigate environmental questions on this migratory flyway.

This Africa-wide multi-species database of migratory birds in
combination with various publicly available environmental data
layers thus offers a ‘Big Data’ cube and a unique chance to data-
mine, model-predict, and quantify each species' ecological niche
using the latest multivariate statistical techniques (Cushman and
Huettmann, 2010; Drew et al., 2011). These techniques can effec-
tively describe the environmental hyperspace within which a spe-
cies is predicted to exist, but also highlight areas where they
decline and where they should be protected (Walther and Pirsig,
2017; Walther et al., 2010; Walther et al., 2011).

To further illustrate the use of these high-resolution distribution
data and powerful machine learning techniques for the analysis of pos-
sible reasons for population declines, we here used this database of
Western Palearctic migrant passerine birds (Walther et al., 2010) and
machine learning software (1) to better determine environmental
changes relatedwith population declines, and (2) to predict how future
changes may impact these species spatially. Previous studies
(Huettmann et al., 2011; Humphries and Huettmann, 2014) showed
that this approach allows for reliable andmeaningful predictions of spa-
tial distributions, inferences of correlates of population, as well as rele-
vant forecasting of the near future on a large scale. As argued in
Huettmann and Czech (2006) and Huettmann (2015), our approach
provides progressive solutions and new insights explicit in space and
time that are highly relevant to a better understanding why these mi-
gratory species have been declining for decades and how to conserve
them in the complex habitat and human-coupled landscape setting of
Africa and beyond.
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2. Materials and methods

2.1. Bird data

Data acquisition, entry, verification and technical restriction for use
in subsequent niche modelling of species distributions are described
in detail in Walther et al. (2010); see Drew et al. (2011) for the under-
lying concept. Briefly, data for each of themodelled 65 passerine species
were acquired from field ornithologists working in Africa, ringing
schemes, ornithological atlases, field-guides, check-lists, internet
sources (e.g., Kenya Birdfinder, Ornis Net) as well as museum sources
(including the Global Biodiversity Information Facility website
GBIF.org). Data were entered until 2015, while the oldest record is a
museum-based record from 1818. However, most records are recent,
with >70% from 1980 onwards and covering all parts of Africa (see
Table 2 and Fig. 1, respectively, inWalther et al., 2010). To avoid errone-
ous or unreliable data, data were vetted for dubious or obviously erro-
neous coordinates, for vagrant records, and for possible spatial and
temporal errors as suggested by their associate EURING (1979) data
codes. With currently ~250,000 records (of which most are associated
with geographical coordinates), this database presents without doubt
the most comprehensive database on Western Palearctic migrant pas-
serines in Africa. Different species were represented by different num-
ber of records. Numbers ranged from 13 records for the Bimaculated
Lark Melanocorypha bimaculata to 68,092 records for the Barn Swallow
Hirundo rustica, but most species were represented by >100 records
(see Table 1 in Walther et al., 2010).

2.2. Niche modelling to obtain species distributions in Africa

2.2.1. Environmental data layers
With the help of a Geographic Information System (ArcGIS), we used

seven environmental data layers tomodel each species' ecological niche
which was then used to predict its current sub-Saharan distribution
(the entire modelling and prediction procedure is graphically displayed
in Fig. S1). Specifically, we divided theAfrican continent into grid cells of
10-min resolution (10′ × 10′). Each data layer was generated at the
same resolution and overlaid perfectly with the other layers (i.e. had
the same extent, borders, and geographic datum). We first used the
CRU CL 2.0 dataset (New et al., 2002) at a resolution of 10′ × 10′ to gen-
erate six layers which represent the African long-term climate without
climate change (generated from climate data averages spanning the
years of 1961 to 1990). We used these six layers which represent the
major climatic gradients in Africa, namely: annual growing-degree
days, minimum temperature of the coldest month, maximum tempera-
ture of the warmest month, mean annual temperature, annual precipi-
tation, and mean annual potential evapotranspiration. Potential
evapotranspiration estimateswere calculated using the FAO 56 Penman
Fig. 1. Pixel-basedmap of the (A) Large DeclineModel, (B)Moderate DeclineModel, and (C) No
modelled response variable as a relative index of change for the respective model. In all maps, d
interpretation of the references to color in this figure legend, the reader is referred to the web
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Monteith combination equation (Allen et al., 1998).Wealso generated a
layer on land transformation which we resampled from the 0.5′ resolu-
tion “Human Footprint” dataset (Sanderson et al., 2002) to the required
resolution of 10′× 10′. The Human Footprintmeasures human-induced
land transformation using four data types as proxies for human influ-
ence: population density, land transformation, electrical power infra-
structure, and accessibility. The latter was estimated as the distance to
roads, major rivers, or coasts because they usually allow humans to ac-
cess to natural areas. The four data types were combined so that data
values for thehuman footprint range from0 to 1, corresponding, respec-
tively, to completely natural habitat to completely transformed habitat
for wildlife.

2.2.2. Ecological niche modelling
We modelled each species' sub-Saharan distribution using BIOMOD

(Thuiller, 2003) and the seven environmental layers described above
(namely, annual growing-degree days, minimum temperature of the
coldest month, maximum temperature of the warmest month, mean
annual temperature, annual sum of precipitation, mean annual poten-
tial evapotranspiration, and the human footprint layer). BIOMOD aims
tomaximize the predictive accuracy of species distributions by combin-
ing and comparing different types of statistical modelling techniques.
For each species, it computes predictions using the following algo-
rithms: artificial neural networks (ANN), classification tree analysis
(CTA), generalized additive models (GAM), generalized boosting
models (GBM), generalized linear models (GLM), multiple adaptive re-
gression splines (MARS), mixture discriminant analysis (MDA),
Breiman and Cutler's random forests for classification and regression
(RandomForest), and surface range envelope (SRE), the last of these
being essentially equivalent to the well-known BIOCLIM algorithm
(Beaumont et al., 2005; Busby, 1991). SRE identifiesminimumandmax-
imum values for each environmental variable from the localities where
the species is present, and the predicted distribution then includes any
site with all variables falling between these minimum and maximum
limits. While SRE only requires presence data, all other models require
presence-absence data.

Once each distribution model has been calculated using the different
algorithms, BIOMOD compares the performance of each model and
chooses the best performing one by using two evaluation techniques,
the kappa statistic and the area under the curve (AUC) of the receiver-
operating characteristic (ROC) plot (Fielding and Bell, 1997; Manel et al.,
2001; Pearce and Ferrier, 2000). In this study, we exclusively used the
AUC score because, unlike the kappa statistic, it is not dependent on a
probability threshold which differentiates between a site predicted to
be occupied and a site predicted to be unoccupied (Manel et al., 2001;
Pearce and Ferrier, 2000). The AUC score is calculated with the help of
two other measures of model performance: sensitivity and specificity
(Fielding and Bell, 1997; Pepe, 2000). Sensitivity is the ratio of positive
DeclineModel of passerinemigratory birds for the 1970–1990 period. Themap shows the
ark-brown colors refer to a large response and green colors refer to a small response. (For
version of this article.)

http://GBIF.org
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sites (presence) correctly predicted over the total number of positive sites
in the sample,while specificity is the ratio of negatives sites (absence) cor-
rectly predicted over the total number of negative sites in the sample. The
ROC curve is then obtained by plotting sensitivity versus (1-specificity)
for a range of probability thresholds. A 45° line signifies a model that is
no better than one generated by chance, while any curve above the 45°
line signifies a model that is better than one generated by chance. Thus,
goodmodel performance is characterized by a curve that maximizes sen-
sitivity for low values of (1-specificity), i.e. when the curve passes close to
the upper left corner of the ROC plot.

Our procedure for modelling species distributions consisted of six
steps. Step one was to run the SRE model with the presence-only data
(i.e. all the presence localities where each respective species had been
observed). Because it is widely acknowledged that presence-only
modelling techniques often overpredict species distributions (Brotons
et al., 2004; Engler et al., 2004), the second step was to restrict the
SRE-prediction to the ecoregions, regions and countries where the re-
spective species had actually been recorded, using the ESRI country
shape file and the ecoregion shape file generated by Olson and
Dinerstein (Olson and Dinerstein, 2002). For example, the Basra Reed
Warbler Acrocephalus griseldis has never been recorded in West Africa
(Walther et al., 2004), and the Aquatic Warbler Acrocephalus paludicola
has never been recorded in East Africa (Walther et al., 2007). Because
the SRE-prediction predicts the maximum theoretical extension of a
species' distribution, it will predict suitable regions in West Africa for
the Basra Reed Warbler and in East Africa for the Aquatic Warbler
(it would even predict suitable regions in other continents). Therefore,
it is paramount to restrict the SRE-prediction to within regions where
the species has actually been observed. This procedure was previously
used to cut predicted distributions of migrant bird species (Walther
et al., 2004, 2007, 2010).

The following four steps were all first presented in Walther et al.
(2007). In step three, pseudo-absences were randomly placed inside
the African mainland, but outside the restricted SRE-prediction gener-
ated in the second step (using an Arcview GIS 3.3 script). We chose a
balanced design of equal number of presences and pseudo-absences
for each species (e.g., for a species with 20 presence records, we gener-
ated 20 pseudo-absences, but for a species with 1000 presence records,
we generated 1000 pseudo-absence records) because the performance
of AUC scores is best at intermediate sampling prevalence, i.e. an inter-
mediate proportion of data points should be presences (McPherson
et al., 2004). The fourth step was to run all model algorithms provided
by BIOMOD on the combined presence and pseudo-absence data. In
step five, the best of the generatedmodel predictionswas chosen, as in-
dicated by the highest AUC score for the evaluation dataset (i.e. the 30%
of the initial dataset not used to calibrate eachmodel but used to evalu-
ate the performance of each model, see Thuiller, 2004, for details). In
step six, the best prediction was used within the restricted SRE predic-
tion generated in the second step, thus combining the results from the
presence-only model with the results from the best model chosen by
using the presence/pseudo-absence data.

It should be noted that each resulting species distribution is thus the
result of the much more reliable and competing algorithms applied
within BIOMOD and only restricted at the boundary by the clipped
SRE-prediction, the reason being that, outside of this boundary, the spe-
cies has simply never been observed. We took great care to double-
check every available record in the database as well as each available
bird atlas and each distribution map in the Birds of Africa series
(Brown et al., 1982; Fry and Keith, 2004; Fry et al., 1988; Fry et al.,
2000; Keith et al., 1992; Urban et al., 1986; Urban et al., 1997) to ensure
that each species distribution is matched by our current distributional
knowledge of the respective species (for full list of bird atlas projects en-
tered, see Walther et al., 2010).

Each of the resulting 65 species distribution models were repre-
sented as an ArcGIS ESRI grid layer (shown individually in Walther
et al., 2010).
4

2.3. Population trends for 1970–1990

Each bird species was categorized according to its population trend
during the period 1970–1990 as either a (1) LargeDecline, (2)Moderate
Decline, or (3) No Decline (cf. Table 1 in Walther et al. (2011) and Ap-
pendix 1) based on the decline status given in Tucker and Heath
(1994) except for the Basra Reed Warbler whose population trend
was inferred from the information provided by BirdLife International
(2016). Note that one speciesmodelled inWalther et al. (2010), namely
the Isabelline Shrike Lanius isabellinus, was excluded because there was
no information on population changes available for it (Walther et al.,
2011).

2.4. Data layers as predictors of environmental change

We attempted to use environmental data layers which reflect the
environmental changes which we already know to have an impact on
migratory bird populations (see Introduction for cited reviews). To de-
termine which environmental changes during the period 1970–1990
may be related to the above population trends, we conducted an inten-
sive search of publicly available GIS-based data layers which contain in-
formation on relevant ecological impacts during that period for Africa
such as ecosystems, soils, humanpopulation, land use and cropland pro-
portion. We also used countries because each country is a ‘container’ in
the sense that policies which affect ecology and conservation differ be-
tween countries, sometimes dramatically (Doi and Takahara, 2016;
Resendiz-Infante and Huettmann, 2015). We were able to obtain 18
predictors for the study area of Africa (Table S4). Moreover, these pre-
dictors are publicly available so that their presentation here constitutes
value-added information for other researchers. Such a large set of pre-
dictors for Africa consistent across time and space has not been used
yet to explain avian population trends over time and could be used in
future studies for population trends of various taxa and other research
topics. Therefore, this study introduces the overall concept to ecologists
on which further studies can build upon.

Table S4 summarizes those 18 data layers which we used as predic-
tors in our subsequent machine learning analysis (see Section 2.5).
These 18 data layers were selected from a larger set of data layers
which we collected (summarized in Appendix 6) because we a priori
considered that these 18 predictors reflect the most relevant set of pre-
dictors and habitat proxies for environmental change during the se-
lected time period (see Mi et al., 2016, for a similar example using
many predictors). In other words, these predictors allowed us to com-
pare the environmental situation of the 1970s to that of the 1990s
because the 18 predictors represent environmental changes that oc-
curred within that period and which were captured within a quantified
GIS environment. We thus were able to test whether some of the de-
clineswhich had affected populations ofmigratory birds in Africa are re-
lated to environmental changes captured within our predictor set of
environmental predictors (for a similar example of the application of
these methods, see also Regos et al., 2016).

2.5. Machine learning analysis to detect signals of population change

We used machine learning to rank the importance of each predictor
(or independent variable) and to be able to display non-linear relation-
ships between the predictor and the response (or dependent) variable.
The 18 predictor variables are described above, and the response vari-
ables are the distributions of the individual species associated with a
Large Decline, Moderate Decline and No Decline (see Section 2.3 for
details). All these distributions are explained and shown in detail in
Walther et al. (2010, 2011) and represent the most detailed and most
reliable distribution models for these species that are currently
available.

The latest version of the stochastic gradient boosting classification
and regression tree algorithm TreeNet as implemented in the Salford
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Systems Data Mining and Predictive Analytics Software (https://www.
salford-systems.com/) was used. Through the use of a non-linear and
non-parametric machine learning algorithm such as TreeNet, several
of the traditional statistical problems, such as how to deal with a mix-
ture of variable types, missing values, and non-normal distributions,
heteroscedasticity, and how to extract ‘a signal’ from complex data
and to generalize these patterns from the data (sensu Breiman, 2001;
Drew et al., 2011), can be overcome. Furthermore, non-linear relation-
ships can be graphically displayed.

The TreeNet algorithm is described in Friedman (2002, see also
https://www.minitab.com/en-us/products/spm/). It is based on a re-
gression tree analysis in which the algorithm recursively partitions the
entire dataset into two partial datasets based on the predictors and
then optimizes the outcome for best-possible prediction outcome. This
is achieved by using an optimized set of predictors in order to create bi-
nary trees which try to minimize variation within each dataset,
whereby subsequent trees are constructed for the prediction of the re-
siduals from the previous trees, and results are then computed from
the entire group of trees (Friedman, 2002). Specifically, the stochastic
gradient boosting method was used which further optimizes perfor-
mance bymaintaining a running tally which avoids overfitting, a proce-
dure similar to bagging (Friedman, 2002). The pre-set default settings
for TreeNet were used which are known to generally perform very
well in most cases (e.g., Kandel et al., 2015). The maximum number of
trees to be used was set to 10,000, and the learning rate was set to
0.0005. The maximum number of nodes per tree was set between six
and ten (Salford Systems, 2013). We applied 3–10 minimum samples
for terminal branches and a 10-fold cross-validation. In our case, we
used TreeNet because (1) it focuses on predictions, (2) it assigns a var-
iable importance (VI) score to each predictor which allows one to rank
predictors by importance, and (3) it generates one-variable partial de-
pendence plots which graphically display the relationship between
one predictor and the response variable.

It is important to note that a one-variable partial dependence plot
does not necessarily show the raw relationship between the predictor
and the response variable. Instead, the plotted function is more inclu-
sive and depicts how the value of the predictor influences the model
predictions (or response variable) after the influence of all other predic-
tors has been “averaged out” (i.e., kept constant). Themain advantage of
these partial dependence plots is that they can be constructed for any
predictive model, regardless of its form or its complexity. Therefore,
partial dependence plots do not ignore the effect of all the other predic-
tors; rather, they include and average out the effects of the other predic-
tors from the full model. If the predictor is a categorical variable, a box
plot will depict the relationship, with each category of the predictor
shown as giving a positive or negative contribution to the relationship.
However, if the predictor is a continuous variable, a graph will depict
the relationship. Consequently, the resulting plot can look quite differ-
ent to the simplistic linear scatterplot of the predictor versus the re-
sponse variable.

The predictions of eachmodel can be displayed inmaps inwhich the
magnitude of themodelled response variable should be interpreted as a
relative index of change for the respective model developed by the
TreeNet algorithm. In all our heat maps, dark-brown colors refer to a
large magnitude and green colors refer to a small magnitude of the
modelled response variable (or dependent variable).

Following Breiman (2001) we considered that the predictive perfor-
mance is among the most meaningful metric for inference and
benchmarking models (Mi et al., 2016). Therefore, we present four
model performance metrics, namely MAD (or mean absolute deviation)
for the testing data, RMSE (or root mean square error, see Walther and
Moore, 2005) for the testing data, R2 (or variation explained by model),
and the gains curve. Among these, we emphasize the use of the
‘gains curve’ the most (which is similar to a ROC curve but used for a
continuous response; see Pearce and Ferrier, 2000; Huettmann and
Gottschalk, 2010).
5

2.6. Models of future change (~2030)

For our future changemodels, we used future scenarios based on cli-
mate change and human populations as the main drivers.

For future humanpopulation change,we used the projected increase
in human population density of 38% for Africa from 1990 to 2030 (FAO,
2015; Guyer et al., 2007) as a proxy given the absence of a better future
scenario GIS layer for all of Africa. Given that projected population
growth in Africa is estimated to be 209% from 2000 to 2050 (Gerland
et al., 2014), our proxy estimate of 38% is likely to be on the conservative
side. To create this future layer, we multiplied the human population
1990 layer (see Table S4 and HYDE, 2016) by 38% to account for the
projected increased human density which we used as the proxy for
the associated increase in land-use change resulting from the increased
needs of the humanpopulation. The future human population layerwas
generated with the ArcGIS map calculator.

For climate change, we used the WorldClim (2016) database. We a
priori chose the temperature and precipitation layers for December be-
cause it is a meaningful central month for the wintering period of the
migratory bird species. These layers have a 30 s resolution for the green-
house gas scenario rcp60 (Hadley implementationmodel for 2050). The
temperature minimum and maximum layers were averaged in ArcGIS
to obtain the GIS layer which we used. We are aware that this layer is
just a proxy for a changing and dynamic factor such as the weather
but we are here interested in representing long-term means for which
this layer is a useful first approximation for capturing the climatic vari-
ation across the African continent during the migrants' wintering
period.

While these future climate data are assumed to be an estimate for
the climate in the year 2050, we caution that this prediction is likely
to be too conservative; see our arguments in Table S5 and other re-
cent information, e.g., Saunois et al. (2016), Peters et al. (2017),
Proistosescu and Huybers (2017), Raftery et al. (2017), Shaikh
(2017), Brown and Caldeira (2017), Henley and King (2017),
Steffen et al. (2018), Watts (2018), Lenton et al. (2019) and Ripple
et al. (2020) which all point to more rapid climate change than pre-
viously predicted. We therefore argue that our predictions of future
change should be interpreted as the ‘near future’, probably falling
into the period 2030 or shortly thereafter, the reason being that
many assumptions made by current climate models are rather con-
servative, parsimonious, and based on earlier scientific knowledge
which is now considered to be already outdated. The recent rapid
rise in global temperatures further substantiates this assertion. For
pro-active decision-making, we consequently consider a shorter
time frame to be more realistic.

We used the Salford Systems Data Mining and Predictive Analytics
(SPM) Software to project our models for Large Decline species, Moder-
ate Decline species, and No Decline species into the future. The future
predictions were then converted into pixel-based shapefiles in ArcGIS.
Our GIS-based work (including Figs. 1–2) was done using ESRI ArcGIS
version 10.2 and QGIS (www.qgis.org). All the one-variable partial de-
pendence plots in Appendices 3–5 were produced by the automated
graphing options implemented in SPM.

3. Results

3.1. Model performances

The internal performancemetrics of the threemodels show that the
Large Decline Model and the No Decline Model are rather robust
allowing for a reliable inference. The No DeclineModel has the best per-
formance except for the gains curve which is higher for the Large De-
cline Model (Table 1). The Moderate Decline Model has the lowest
performance for all metrics except the R2. This ranks the Large Decline
Model and the No Decline Model for powerful inference, whereas the
Moderate Decline Model is weaker.

https://www.salford-systems.com/
https://www.salford-systems.com/
http://www.qgis.org


Fig. 2. Pixel-based map of the (A) Large Decline Model, (B) Moderate Decline Model, and (C) No Decline Model extrapolated into the near future (~2030). The map shows the modelled
response variable as a relative index of change for the respective model.
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3.2. Predictor importance

Specific locations in Africa, mostly located in Western Africa, as well
as a set of three predictor themesweremost correlatedwith (1) the dis-
tributions and (2) the areas of declines of the migratory birds (the re-
sponse variables): (I) locations, represented by African ecosystems,
countries, and soil types; (II) human population pressures and land-
use intensities, the latter represented by land-use categories, habitat
area, and cropland proportion; (III) climatic predictors (summarized
in Table 2).We use the Roman numerals I-III to identify these three pre-
dictor themes more easily in the Results below.

It is noteworthy that all of these predictors are also known to act in
synergy, e.g., ecosystems are directly driven by climate which drive
many subsequent metrics. Below we present our results in more detail
for each of the three models.

3.3. Specifics of the ‘Large Decline Model’

The Large Decline Model identified the following predictor themes
and their values of relevance for the large declines in Africa (Table 2;
the associated map and figures for this model are shown in Fig. 1A
and Appendix 3, respectively, and the numbers and abbreviations
below refer to the categories in the respective GIS-based data layers;
see also the figures in Appendix 3).

I. a) African Ecosystem: North Sahel Tree'd Steppe & Grassland
(#181, 182, 183, 113), Sudano-Sahelian Dry Savanna (#131, 132, 133).

b) Country: Eritrea, Guinea-Bissau, Senegal, Togo, Burkina Faso,
Nigeria, Ghana.

c) Soil: Luvic Calcozols (Clvvi), Haplic Luvisols (LVhA), Chromic
Luvisols (LVCR), Acrisols (AC), Plinthic Acrisols (ACPL), Brunic
Arenosols (ArBR), Eutric Fluvisols (Fleu), Eutric Gleysols (Gleu), Solidic
Planosols (Plsc).

II. a) Land-use 1970 categories: Grassland/Steppe (13), Grazing land
(2), Cropland (1), Scrubland (15).

b) Human Population 1990: A density of >10 people per km2 re-
sulted in large bird declines.
Table 1
Performance metrics for the three models (for abbreviations, see the Materials and
methods section).

Large Decline
model

Moderate Decline
model

No Decline
model

Metric Estimate Estimate Estimate
MAD (test data) 0.41 0.33 1.23
RMSE (test data) 0.84 0.55 1.96
R2 0.85 0.89 0.90
Gains curve ~0.83 ~0.67 ~ 0.70
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c) Human Population 1970: A density of >5 people per km2 resulted
in large bird declines.

III. a) Air Temperature 1974: A range of 19.0° to 27.0 °C describes the
climate envelope where the large bird declines occurred.

b) Mean Temperature December: A range of 22.0° to 27.0 °C de-
scribes the climate envelope where the large bird declines occurred.

c) Precipitation 1994:<5 units (mm) describes the climate envelope
where the large bird declines occurred.

The three predictors under III describe a specific dry climate enve-
lope defined by temperature ranges and a precipitation threshold.

3.4. Specifics of the ‘Moderate Decline Model’

This model was the least robust of the three models (Table 1). It
identified the following predictor themes and their values of relevance
(Table 2; the associated map and figures for this model are shown in
Fig. 1B and Appendix 4, respectively, and the numbers and abbrevia-
tions below refer to the categories in the respective GIS-based data
layers; see also the figures in Appendix 4).

I. a) African Ecosystem: Moderate decline occurred everywhere ex-
cept for Saharan Desert Pavement (#206), SaharanDesert RockOutcrop
(#207), Saharan Desert Dune and Sand Plain (#208), Mediterranean
Montane Scrub (#606, 607), North Sahel Tree'd Steppe & Grassland
(#181, 182).

b) Country: Botswana, Zimbabwe, Zambia, Uganda, Namibia,
Tanzania, South Africa.

c) Soil: Umbric Ferrasols (Frum), Plinthic Acrisols (Acpl), Haplic Pod-
zols (Pzha), Eutric Planosols (PLEU), Ferralic Arenosols (Arfl); no mod-
erate bird declines occurred on Eutric Nitisol (NT eu).

II. a) Cropland Proportion 1990: Almost any proportion of cropland
resulted in moderate bird declines.

b) Land-use 1970 habitat area: Over 150 units (ha) resulted into
moderate bird declines.

c) Land-use 1990 categories: Grazing land (2) and Cropland (1) re-
sulted in moderate bird declines; no moderate bird declines occurred
in Hot desert (14) and Tropical forest (18).

3.5. Specifics of the ‘No Decline Model’

We identified amodel that can predict the ‘NoDecline’ category. This
model thus serves as a ‘control’ because it allows us to compare and put
the findings into a wider, African and methodological context. The in-
clusion of such controls is an inherent part of the scientific method
(Silvy, 2012). Again, it should be noted that habitats (represented by
pixels) can support different species which experienced Large Declines,
Moderate Declines and No Declines all at once. The No Decline Model
identified the following predictor themes and their values of relevance
(Table 2; the associated map and figures for this model are shown in



Table 2
Predictors that are ranked for ≥10% importance for the three models (Large Decline, Moderate Decline, No Decline), with the percentage for importance ranking given in brackets.

Large Decline Moderate Decline No Decline

Predictor Rank (%) Predictor Rank (%) Predictor Rank (%)

African ecosystem 1 (100) African ecosystem 1 (100) African ecosystem 1 (100)
Country 2 (51) Country 2 (44) Country 2 (46)
Soil 3 (38) Soil 3 (23) Soil 3 (30)
Land-use 1970 categories 4 (23) Cropland proportion 1990 4 (13) Human population 1970 4 (27)
Human population 1990 5 (22) Land-use 1970 habitat area 5 (10) Human population 1990 5 (20)
Human population 1970 6 (22) Land-use 1990 categories 6 (10) Mean temperature December 6 (19)
Air temperature 1974 7 (19) Land-use 1970 categories 7 (14)
Mean temperature December 8 (16) Land-use 1990 categories 8 (13)
Precipitation 1994 9 (10) Cropland proportion 1990 9 (12)
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Fig. 1C and Appendix 5, respectively, and the numbers and abbrevia-
tions below refer to the categories in the respective GIS-based data
layers; see also the figures in Appendix 5).

I. a) African Ecosystem: Sudano-Sahelian Dry Savanna (#132, 131,
133), North Sahel Tree'd Steppe & Grassland (#183), Zambezi Mopane
(#122), Moist Combretum - Terminalia Woodland & Savanna (#101),
Wet Miombo (#96), Western African Mesic Woodland & Grassland
(#112), Eastern African Bushland & Thicket (#176), Southern African
Scarp Forest (#9), Southern Mistbelt Forest (#27), African Tropical
Freshwater Marsh (Demos) (#246), Dry Acacia Woodland & Savanna
(#117), Southern Kalahari Dunefield Woodland & Savanna (#119); no
matching categories: MediterraneanMontane Scrub (#606, 607), Saha-
ran Desert Pavement (#206, 207, 208), 2.B.1 Mediterranean Scrub &
Grassland (#147), Sperregebied Succulent Karoo (#157), Bushmanland
Semi-Desert Scrub & Grassland (#196), Upper Karoo Semi-Desert Scrub
& Grassland #197), Southern Namibian Semi-Desert Scrub & Grassland
(#199).

b) Country: Uganda, Senegal, Guinea-Bissau, Kenya, Ghana, Togo,
Ivory Coast, Eritrea, Guinea.

c) Soil: Plinthic Acrisol (ACpl), Eutric Histosols (HSEU), Eutric
Plaosols (PLEU), Haplic Podsols (PZHA), Haplic Solonetz (SNha), Dystric
Nitisols (NTdy), Cambisols (CMBaye), Chromic Cambisols (CMcr),
Acrisol (AC); no matching categories: Lixisol (LXal), Petric Plinthosol
(Ptpt).

II. a) Human Population 1970: A density of >6 people per km2 re-
sulted in no bird declines.

b) Human Population 1990: A density of >5 people per km2, and es-
pecially >20 people per km2, resulted in no bird declines.

c) Land-use 1970 categories: Grazing land (2), Tropical Woodland
(17), Savanna (16), Scrubland (15), Tropical forest (18), Grassland/
Steppe (13), Cropland (1) resulted in no bird declines; nomatching cat-
egories: Hot Desert (14).

d) Land-use 1990 categories: Cropland (1), Grazing land (2), Tropi-
cal Woodland (17), Savanna (16) resulted in no bird declines. No
matching categories: Hot Desert (14).

e) Cropland Proportion 1990: A cropland proportion of >0.05 (ha),
and especially >0.1 (ha), resulted in no bird declines.

III. a) Mean Temperature December: A range of 21.5° to 27.0 °C de-
scribes the climate envelope where no bird declines occurred and thus
covers almost the entire temperature range of sub-Saharan Africa (cf.
Fig. 1C).

3.6. General results from all three models

From the perspective of the three different populations, the results
of the threemodels (Table 2, Fig. 1) reveal a major emphasis on ecosys-
tems and areas south of the Sahara. For each of the three models, the
highest ranked predictors were always African ecosystem > country >
soil (Table 2). Furthermore, the highest ranked predictor themes were
always Theme I > Theme II > Theme III except for (1) the Moderate
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Decline model which lacks Theme III and (2) the No Decline Model in
which the predictor ‘Mean temperate December’ has a different trend.

While countries such as Eritrea, Guinea Bissau, Senegal, Togo,
Burkina Faso, Nigeria, and Ghana stand out as areas of major declines,
additional regions of regional importance were identified around Lake
Tanganyika (mainly in Kenya, Uganda and Tanzania) (Fig. 1).

3.7. Future predictions (~2030)

Using our prediction of a future human population and climate
change, our three future models (Fig. 2) predict an overall more intense
decline for species within regions already identified as having pixels as-
sociated with declines. Therefore, no large deviation from the existing
spatial patterns is currently predicted. We do not predict large shifts
of ecosystems and associated additional bird declines. Overall, our re-
sults support that the ongoing decaying trend of winter habitat loca-
tions will continue into the near future with no sign of betterment for
migratory birds, especially for those already declining because of ongo-
ing changes which have negatively impacted their populations in the
past and will likely continue to do so in the near future.

4. Discussion

4.1. Predictors associated with declines

The availability and use of publicly available GIS layers (as predictor
variables) for population changes (as response variables) is an underde-
veloped area of macroecological and conservation research which
should be urgently expanded (Huettmann et al., 2011; Ohse et al.,
2009). It should be kept in mind that this is the first time a complex
data cube and many categorical predictors were used for this particular
research topic. This research problem cannot be resolved well with lin-
ear traditional methods. Therefore, we here present a first-time analysis
using datamining andmachine learning to resolve these research ques-
tions. Specifically, we present an example for migratory passerine bird
species in sub-Saharan Africa which may facilitate the use of these ap-
proaches in ornithology, conservation, and management (Huettmann,
2015; Zuckerberg et al., 2011).

Our main finding from this first-of-its-kind study for this particular
system is that we identified three predictor themes which were consis-
tently associated with the distributions and the areas of declines of the
migratory birds from 1970 to 1990 (Table 2). Ranked asmost important
was theme I which identified specific locations, represented by African
ecosystems, countries, and soil types. Naturally, these represent the spe-
cies' ecological niche as represented by their distributions which in-
clude mostly open savanna-type habitats and exclude almost entirely
desert and rainforest habitats (Walther et al., 2010).

The next highest ranked theme II identified human population pres-
sures and land-use intensities (represented by land-use categories and
habitat area, and cropland proportion) as important for bird declines
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(see Discussion below). Finally, only for the Large Declinemodel, theme
III identified a specific dry climate envelope defined by temperature and
precipitation.

Specific locations (or regions) of large decline were the Sahel
zone (as emphasized in Walther et al., 2011) but also countries just
south of it (Ghana, Guinea-Bissau, Togo, as pointed out in Thaxter
et al., 2010). Regions of moderate declines weremost of the southern
African region (including Botswana, Namibia, South Africa, Zambia,
Zimbabwe), as well as the Lake Malawi region, Lake Tanganyika re-
gion and Lake Victoria region (especially in Tanzania and Uganda).
The large declines in the Sahel occurred in the North Sahel Tree'd
Steppe & Grassland and the Sudano-Sahelian Dry Savanna for
whichWalther (2016) summarized their strong rates of land conver-
sion from natural or semi-natural land-cover to man-altered land-
cover, with the vast majority due to agricultural expansion (other
causes of LULCC in the Sahel were also reviewed in Walther, 2016).
Meanwhile, moderate declines occurred in many different ecosys-
tems (see Section 3.4 and Fig. 1 in Appendix 4). Atkinson et al.
(2014) also pointed out that declines occurred in different wintering
habitats.

The control model (No Decline) overlaps in many areas with the de-
cline models (Large and Moderate) which indicates ‘mixed’ pixel
results. Habitats can of course support different species which experi-
enced Large Declines, Moderate Declines, or No Declines. In other
words, large and moderate declines occurred for some species but no
declines occurred for other species within the same locations or habi-
tats. One possible explanation is that these diverging trends are comple-
mentary because each species has of course a different life history and
specific habitat needs that result in different population outcomes in
the same pixels, similar to the notion of ‘winners and losers’when envi-
ronmental changes occur (Bateman et al., 2016; Mace et al., 2010). For
our study species specifically, there were winners and losers in the
past (Walther et al., 2011), and there will be winners and losers due
to future climate change. Barbet-Massin et al. (2009) predicted range
expansions for some species, but range contractions for most of our
study species in response to predicted future climate change. It should
be noted, however, that extreme climate change will be detrimental
for most of biodiversity, especially in Africa (Dike et al., 2015; UNEP,
2016; Soultan et al., 2019).

Apart from the large declines found within specific regions (the
Sahel and the humid West African forests and savannahs), we find it
worrisome that moderate declines are found in most of sub-Saharan
Africa and many different ecosystems. Only hot desert and rainforest
areas which do not harbor any of the migratory species of this study
anyway (Walther et al., 2010) exhibited no relevant trend in our data.

Very importantly, large and moderate declines were also associated
with human population pressures and land-use intensities (theme II).
Large declines were associated with four land-uses (specifically, grass-
land/steppe, grazing land, cropland, scrubland) which cover large
parts of the Sahel and have suffered precipitous biodiversity loss such
as the widespread loss of woody vegetation and agricultural expansion
and intensification (Walther, 2016). Supporting this observation,
Atkinson et al. (2014) showed that those species which showed the
strongest declines during 1970–1990 were associated with more open
habitats. In our study, high human population densities in 1970 and
1990 were associated with large declines, thus suggesting that negative
pressures on these bird populations increase with human population
densities (e.g., Anadón et al., 2010; Brashares et al., 2001; Buij et al.,
2013; Lhoest et al., 2020; Marzluff, 2001).

Meanwhile, moderate declines were associated with cropland pro-
portion, land-use categories, and habitat area. It should be noted that
the functional relationship for cropland proportion (cf. Appendix
4) has the shape of a logarithmic threshold function. This result suggests
that human agriculture negatively impacts migratory birds in sub-
Saharan Africa (Walther, 2016) but also that thresholds may exist
where landscapes can rapidly change from sustaining migrant
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populations to not sustaining them (Kinzig et al., 2006). Moderate de-
clineswere also associatedwith two agricultural land-uses (specifically,
grazing land, cropland), further implicating the impact of intensifying
human agriculture.

No declines were associated with high human population densities,
several land-use categories (specifically cropland, grazing land, sa-
vanna, scrubland, tropical woodland; cf. Appendix 5), and cropland pro-
portion. Non-declining species are associated with a variety of habitats
and regions (Atkinson et al., 2014; Walther et al., 2011; Walther et al.,
2010), which is not a surprising result.

Finally, large declines were also associated with a specific climate
envelope (theme III) which represents the naturally prevalent climate
of the Sahel (Nicholson, 2013; Walther, 2016) (see Donald et al.
(2012) for a similar example). Therefore, climate change will shift cli-
mate envelopes across the African continent and negatively affect
African ecosystems, including the migratory species studied here
(Barbet-Massin et al., 2009) as well as entire African bird communities
(Walther and van Niekerk, 2014).

These results, taken together with the results from Walther and
Pirsig's (2017) determination of conservation priority areas for
these migratory bird species, point to several areas of conservation
concern. The main region of conservation concern is the Sahel and
the broadleaf savannas and woodlands just south of it. Given the
species distributions of these migratory birds, conservation should
be especially focused on a western region which encompasses
Senegal, southern Mali, Burkina Faso, Guinea, and Côte d'Ivoire and
an eastern region which encompasses southern Sudan, Eritrea and
northern Ethiopia. The two other main regions which should be the
focus of conservation efforts are one region which encompasses
southwestern Kenya, Tanzania, and Uganda and one region which
includes much of Zimbabwe and southwestern Zambia. These four
regions should be priority regions for both research and conserva-
tion efforts for the bird species considered here (for concrete sugges-
tions, refer to Section 4.4).

4.2. Forecasting the near future (~2030)

To predict future changes to themigratory bird species of this study,
we used predictors from models that follow the latest, but probably
conservative forecasting scenarios for future climate change by the
IPCC. We assume that the climate science assumptions of this model
are already outdated because they do not take into account the recent
failures to progress and implement climate mitigation policies and
therefore likely underestimate the future speed of climate change
(Table S5 and additional references inMethods). Consequently, our pre-
dictions will likely come about much earlier, probably in the nearer
future (~2030).

Our results suggest that the declining trends of migratory birds will
continue into the foreseeable future, assuming that the species are sen-
sitive to the changes which we modelled (see also Barbet-Massin et al.,
2009). These future declines will likely be unsustainable for some
species, especially for the most endangered and most range-restricted
species and those species which have already declined in the past be-
cause the past's negative drivers (such as crop land change and climate
change) will likely continue to exert similar pressures into the near
future.

Furthermore, we predict that these declines will happen in pixels
across most of sub-Saharan Africa, reflecting human-induced changes
across the entire continent. Scenarios of future biodiversity and climate
change in Africa (e.g., Dike et al., 2015; Kehoe et al., 2017; Koch et al.,
2019; Soultan et al., 2019; UNEP, 2016) suggest that human-induced
changes detrimental to biodiversity will continue well into the future.
Our results also suggest that the problems which affect migratory spe-
cies are not local-scale problems, but regional-scale and even
continent-wide problems and need to be addressed as such (see
Section 4.4 below).
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4.3. Limitations of this study

Our study has some limitations. First, ourmodels did not include ad-
ditional stressors such as human population growth and the resulting
increase in resource consumption (e.g., ongoing land grabs in Africa,
Osinubi et al., 2016) andwaste production (e.g., UNEP, 2016). This is an-
other reasonwhy ourmodels likely remain on the conservative side and
cannot model the full complexity and impact of the real situation. To
better investigate conservation problems in Africa, we thus need pub-
licly available and high-quality environmental and socio-economic
data layers explicit in space and time to better understand past and fu-
ture changes (sensu Stéphenne and Lambin, 2001, and Held et al., 2005;
see Prentice et al., 1992, Rangel et al., 2006, and Ferrier, 2011, for a
model-predicted approach).

We used and benefited from Open Access GIS-based data (sensu
Ohse et al., 2009; Huettmann, 2015; see Huettmann, 2005;
Huettmann, 2007; Zuckerberg et al., 2011) for best professional prac-
tices. These data are made publicly available to enhance scientific prog-
ress and to tackle new research questions, such as the ones posed in this
study about declining, stable, and increasing bird populations. All the
OpenAccess data used in this study originate fromofficial governmental
sources, most of them peer-reviewed and used for research worldwide
(see Table S4 and Appendix 6). The use of such data should be the stan-
dard for research and data agencies funded by public sources to further
public infrastructure and applications in various forms. Metadata are
essential to document data processing (e.g., Huettmann, 2005;
Huettmann, 2015). Any data on a large scale (e.g., remote sensing data
as input) used to create the predictive GIS-layers contain inherent
biases and errors, but usually, such errors are corrected using various
techniques, which are double-checked by the peer-review process for
adequacy. Second, the categorization of the data (e.g., turning remote
data into land-use categories) will also create artefacts. However, the
GIS-data publishers listed in Table S4 are well-established institutions
(e.g., the CRU data were generated from the world-renowned Climatic
Research Unit at the University of East Anglia, the HYDE data by the
Netherlands Environmental Assessment Agency, and the SAGE data by
the Nelson Institute Center for Sustainability and the Global Environ-
ment) with well-trained GIS-teams so that the data are error-checked
and peer-reviewed, which is the reason that they are used worldwide
in thousands of studies. Third, less precise inference may be introduced
due to the GIS-data being proxies while better predictor data once cre-
ated and when made available could prove more effective. The Ecolog-
ical Niche models which we present operate on the pixel scale of the
GIS data, but different scales can of course operate (e.g., microhabitat
choices of species). However, because no GIS-data for microhabitats
exist yet, here we use the best-available scientific data related to larger
ecological features, such as ecosystems and land-use types. Our work is
meant to be adaptive (Huettmann, 2007), and here we show a first ap-
proach and role model for birds in Africa based on such data and the
workflow which we present. The first and second source of error are
constantly being improved upon through improved remote sensing
data and better algorithms and techniques to improve the categoriza-
tion accuracy. The third source of error will likely also improve with
the advent of fine-scaled and multi-dimensional GIS-data becoming
available; this will allow tomodelmicrohabitats. Despite the drawbacks
of the use of GIS-data, here we present best-available science and
state-of-the-art, as we perceive it. In our opinion, the benefits of using
this approach to draw new and important ecological and conservation
inferences widely outweighs the disadvantages.

Second, our study was limited to the time period 1970–1990 be-
cause we were not able to incorporate more recent population trends.
Therefore, analyses for the time periods after 1990 are urgently needed
which we may pursue in the future using this study as a blueprint.

Third, the linkages between the environmental predictors and the
population declines are, of course, correlational. Although they cannot
establish causality, they suggest causality (Drew et al., 2011; Manly
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et al., 2002; see also Thornhill and Fincher, 2013, for an interesting dis-
cussion that “all scientific findings are correlational”). For example, the
cause-effect relationship between agricultural intensification and popu-
lation declines is implied because of the ecological knowledgewhichwe
have accumulated about this particular relationship through the many
studies which have demonstrated it (e.g., Donald et al., 2006; Foley
et al., 2005; Green et al., 2005). However, we can of course not rule
out additional and synergistic cause-effect relationships.

Fourth, the continent-wide scale of our analysis is important as it
constitutes a macroecological-scale study but of course our conclusions
may not hold at smaller spatial scales, such as the scale of field studies
(e.g., Thorup et al., 2019; Willemoes et al., 2018).

4.4. Conservation implications in the Anthropocene

We now briefly discuss the possible linkages between the ecological
system which we studied and the socio-economic drivers of change
which we first discussed in the Introduction. We acknowledge that
some people will not agree with our views, but we believe the following
discussion to be important in order to begin amuchneeded debate about
solutions to the emerging ecological crisis playing out in Africa and be-
yond. For a similarly relevant broad discussion, see Brito et al. (2018).

Our results emphasized that the declines of migratory bird popula-
tions are partly linked to widespread human-made environmental
changes on the African continent (as noted in the Introduction, they are
of course also partly linked to changes in the breeding ranges andmigra-
tory stopovers, but our focus in this study is clearly on the overwintering
ranges so we will focus our discussion on Africa, even though several of
our arguments below do apply to the entire flyway). Therefore, if we
are serious in our ambition to conserve Palearctic-African bird migrants
and the ecosystems on which they depend, then we must realize what
the underlying drivers of change are, and what solutions are needed to
drive change towards a more sustainable future. If we are not honest
and forceful about which “major transformations in the ways our global
society functions and interacts with natural ecosystems” (Ripple et al.,
2020) are urgently needed, the accelerating drivers of change of the
Anthropocene will very soon overwhelm our ability to stop the sixth
mass extinction event (Barnosky et al., 2012; Ceballos et al., 2015).

First, we note that themain region of large declines in the Sahel zone
(Fig. 1A) and specifically in thewestern part of it are inherently unstable
human-climate coupled ecosystems (D'Odorico et al., 2013; Foley et al.,
2003) which have experienced both the highest rates of habitat conver-
sion in sub-Saharan Africa (Brink and Eva, 2009;Walther, 2016) and in-
creasing rates of human conflict in the form of civil unrest, terrorism,
and war (Brito et al., 2014; Nyong, 2011; Walther, 2016; Daskin and
Pringle, 2018). Six out of nine Sahelian countries were involved in
armed conflicts in 2012, and conflicts have increased by >500% since
2011 directly resulting in catastrophic biodiversity losses but also losses
of the human, financial, organizational and infrastructure resources to
stem the biodiversity losses (Brito et al., 2018). This region thus remains
stuck in conflict and poverty despite the fact it has received interna-
tional development aid for many decades (Mann, 2015; Mattelaer,
2016; Somerville, 2019). Instead of promoting ecological resilience,
this kind of development has led to widespread biological impoverish-
ment and ecological degradation, including declining migratory bird
populations (Walther, 2016).

While the large declines were confined to specific regions, the mod-
erate declines weremuchmorewidespread. In our opinion, this finding
suggests that, on a finite piece of land, one cannot have both (1) devel-
opment that removes natural habitat and (2) natural habitat for species
conservation (Green et al., 2005;Maurer, 1996; Trauger et al., 2003). In-
stead, one of the two has to give, and usually that is wilderness and spe-
cies conservation (Daly and Farley, 2011). Moreover, even protected
reserves are now overrun by detrimental human forces and also suffer
from increasing isolation (Brito et al., 2018; Ripple et al., 2016;
Walther, 2016).
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From an avian conservation point of view, changes to economic and
environmental policies are therefore urgently required. First, the
“growth for growth's sake” mantra of the Anthropocene (Daly and
Farley, 2011; Huettmann and Czech, 2006) must be replaced by devel-
opment which is truly sustainable and does not further harm species,
ecosystems and the societies which depend on them. Although desper-
ately needed and fervently advocated by many researchers and conser-
vation practitioners, such a fundamental and radical reorientation of
developmental policies is not really in sight (e.g., Brito et al., 2018;
Unmüßig, 2015). Because of the lack of truly sustainable development,
ongoing biodiversity declines have been identified all over the African
continent (e.g., for the Sahara and the Sahel, Brito et al., 2014; Durant
et al., 2014;Walther, 2016).While these declines call for immediate ac-
tion using pre-cautionary decision-making which fully takes the wider
framework of coupled socio-economic-environmental systems into ac-
count, including online opportunities (Huettmann, 2007), environmen-
tal justice (Rosales, 2008), and ecological economics (Daly and Farley,
2011), little actual conservation or development work is currently
based on essential sustainability principles such as the steady-state
economy (Czech, 2013; Huettmann and Czech, 2006), the pre-
cautionary principle (Cooney, 2004), the non-polluting materials econ-
omy (McDonough and Braungart, 2008), or biocultural importance
(Kronenberg et al., 2017). Furthermore, poverty alleviation, food secu-
rity, good governance and conflict resolution including arms control
are additional core problems which must be resolved (Aloui, 2019;
Brito et al., 2018; Davis, 2017; Hendrix and Brinkman, 2013).

Conservation work which does not pose questions and seeks an-
swers within the wider socio-economic-environmental system cannot
possibly succeed in the long-term (Brito et al., 2018; Miller and
Spoolman, 2012), but will just continue to document the accelerating
habitat loss and biodiversity declines without relevant progress
(e.g., Ceballos et al., 2015; Walther, 2016). Unless a balanced steady-
state socio-economic-environmental system, as very briefly outlined
above, is achieved within the next few decades, it is highly unlikely, if
not impossible, to halt or reverse the ongoing and massive decay of
African biodiversity generally and of many of the bird species of the
Palearctic-African migratory flyway. Negative trends will continue be-
cause currently all drivers of biodiversity loss are increasing in strength
with no reversal in sight (McGill et al., 2015; Pereira et al., 2010; UNEP,
2016).

If our goal is to reverse the declines of migratory birds, conservation
biologists should honestly admit that a few relatively small and isolated
protected areas will do little for the long-term survival of most species.
Given that the wintering grounds of most of the Palearctic-African mi-
grant species are spread across large regions of Africa (Walther et al.,
2010) and that protection levels, enforcement, and funding are pitifully
low and even absent (Brito et al., 2018), we will not be able to protect
them adequately unless we can achieve land-use and management
strategies compatible with species survival in large parts of the African
continent (Walther and Pirsig, 2017). Therefore, a large-scale and
more holistic and sociocultural approach to build resilient societies is re-
quired (Brito et al., 2018; Sheehan and Sanderson, 2012). Unless such
systemic change in land-use and landmanagement across large regions
of the African continent is achieved, the populations of many migrant
species will simply continue to decline. While many conservation biol-
ogists and decision-makers may call such large-scale changes unrealis-
tic, we assert that the objective of science should be to assert what is
necessary, not what is ‘realistic’ (Rosales, 2008). Consequently, conser-
vation biologists should insist that these species require large areas for
their survival, along the lines of Wilson's (2016) assertion that half the
planet must be conserved for wild nature in order for most of the bio-
sphere to have a decent chance for survival. To provide real progress,
we should not dampen down our conclusions and agendas to fit ‘realis-
tic’ requirements, whatever they may be.

Our continent-wide conservation analyses strongly advance the no-
tion that a wholesale change in policy priorities is needed, including
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regulation and enforcement of conservation-based laws on a
continent-wide scale (UNEP, 2013; UNEP, 2016) in which the link be-
tween biodiversity and human health and well-being is nurtured
(Sandifer et al., 2015). Thus, positive conservation outcomes would
not just be restricted to protected areas, but be implemented across en-
tire landscapes and regions to sustainably develop the resilient econo-
mies and stable societies (Brito et al., 2018).

Without the support and understanding of African governments and
civil society and international aid donors and NGOs, analyses such as
this one become essentially meaningless ivory-tower exercises in num-
ber crunching without affecting any positive change. With their sup-
port, however, they could be the launching pads for a sustainable
future for the African continent, the migratory flyways, and beyond.
Both top-down and bottom-up sustainability initiatives are urgently
needed to better informAfrican societies about the value of biodiversity
and sustainability for human well-being and how to incorporate that
knowledge into truly long-term sustainable policies and actions, and
how to strengthen the adherence to laws and regulations to achieve sys-
temic change. This is the key task we have in order to assure the birds'
futures, which goes hand in hand with the future of Africa's people.
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