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Abstract Biological invasion by non-native tree

species can transform landscapes, and as a consequence,

has received growing attention from researchers and

managers alike. This problem is driven primarily by the

naturalisation and invasion of tree species escaping from

cultivation or forestry plantations. Furthermore, these

invasions can be strongly influenced by the land-use

matrix of the surrounding region, specific management

of the source populations, and environmental conditions

that influence seed dispersal or habitat quality for the

invader. A major unresolved challenge for managing

tree invasions in landscapes is how management should

be deployed to contain or slow the spread of invading

populations from one or more sources (e.g. plantations).

We develop a spatial simulation model to test: (1) how to

best prioritise the control of invasive tree populations

spatially to slow or contain the biological invader when

habitat quality varies in the landscape, and (2) how to

allocate control effort among different management

units when trees spread from many source populations.

We first show that to slow down spread effectively,

management strategy is less important than manage-

ment effort. We then identify the conditions affecting

the relative performance of different management

strategies. At the landscape scale, targeting peripheral

stands consistently yielded the best results whereas at

the regional scale, management strategies needed to

account for both habitat quality and tree life-history.

Overall, our findings demonstrate that knowledge of

how habitat affects tree life-history stages can improve

management to contain or slow tree invasions by

improving the spatial match between management

effort and efficacy.

Keywords Biological invasions � Cohort

model � Spatial spread � Tree invasions �Weed

management scenarios

Introduction

Many tree species have been widely introduced for

agriculture, forestry, or ornamental purposes (e.g.
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gardening) and landscape transformation (e.g. habitat

restoration, soil stabilization). However, many of

these introduced tree species have exceeded their

initial purpose and subsequently become naturalized

and invasive (sensu Richardson et al. 2000). Because

of their potential dominance in plant communities,

invasive trees can transform ecosystems at the scale of

entire landscapes (e.g. Hibbard et al. 2001; Haugo

et al. 2011).

A common goal in weed management, including

invasion by non-native tree species, is complete

control or eradication from a site. However, these

weed-centric goals are often unrealistic or are rarely

achieved due to logistic or budgetary constraints (e.g.,

Moore et al. 2011; Hulme 2012). For example, despite

long-term ([10 years) co-ordinated management of

the invasive tree lodgepole pine (Pinus contorta) at a

single location in New Zealand (mid-Dome), an

additional[$5 million NZD is thought to be required

to complete the initial phase of removing currently-

established trees, and more resources will be required

for eradication (The Mid Dome trust 2012). Conse-

quently, managers must often modify the goal of

eradication and shift their focus to efficiently slowing

down or containing the invasion (e.g. Buckley et al.

2005). To this end, identifying the optimal strategies

for minimising the spread of tree invasions or

subsequent reinvasion is a rapidly emerging area of

interest in non-native plant management (Buckley

et al. 2005; Hastings et al. 2006; Graf et al. 2007;

Maxwell et al. 2009; Epanchin-Niell and Hastings

2010).

Substantial progress has been made in understand-

ing the long-term consequences of short-term man-

agement through modelling the potential response of

biological invaders to different management strate-

gies. For example, recent application of sophisticated

population models has shed light on the importance of

plant demographic processes to population persis-

tence, spatial spread, and ultimately the speed and

magnitude of biological invasions (Caplat et al.

2012a). These models are derived from reaction–

diffusion models that use partial differential equations

to incorporate population growth and random-walk-

type dispersal with Gaussian dispersal kernels

(Holmes et al. 1994). Such models have been further

refined in several ways, for instance, through the

inclusion of matrix population models to incorporate

multiple or continuous life stages (Caswell 2001), by

using integrodifference equations to incorporate

highly skewed dispersal kernels (e.g. fat-tailed kernels

with frequent long distance dispersal events) (Neubert

and Caswell 2000; Hui et al. 2011b; Caplat et al.

2012b), and other approaches such as the linked

process model of Maxwell et al. (2009).

To capture the complexity of regional and local

management of invasions in real landscapes where

both time and location are important considerations,

spatially explicit models can be used to address issues

of temporal dependence and environmental heteroge-

neity better than their spatially-implicit counterparts

(e.g. Minor and Gardner 2011; Caplat et al. 2012a).

Such models have provided evidence for invasion

management success by targeting satellite (peripheral)

rather than source (core) populations (e.g. Moody and

Mack 1988). Peripheral populations play a more direct

role in the spread of a population, particularly if the

process of spatial sorting leads to the selection of

individuals with strong dispersal ability at the periph-

ery of a population (Phillips et al. 2006; Shine et al.

2011; Berthouly-Salazar et al. 2012; Hui et al. 2012).

In contrast, core populations contribute less to spatial

spread despite their major contribution to population

growth. Thus a simple expectation is that the most

effective means to slow down the spread of invasive

trees is to target satellite or peripheral populations

before core populations. However, in some situations,

targeting core populations is a better management

strategy if these populations are the only source

contributing to population growth (Maxwell and

Ghersa 1992). Therefore several competing strategies

exist for managing plant invasions, reflecting different

assumptions made about the processes driving tree

invasions. A management strategy can target or

prioritize peripheral sites (Moody and Mack 1988),

sites with high density (thus decreasing propagule

pressure,Von Holle and Simberloff 2005), or popula-

tions on highly suitable habitat (Higgins et al. 2000).

However, most models have not integrated dispersal

with spatial variation in habitat suitability and

subsequent reproductive and recruitment response

into a single assessment of strategies to slow or stop

an invasion.

In addition, the spatial extent of management

affects the prioritization of different control strategies.

This is because the efficiency of a management

strategy in slowing down or containing the spread of

an invader likely depends on the spatial scale and
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context at which management is implemented. Man-

aging trees escaping from deliberate cultivation such

as forestry plantations is complex because the invad-

ing population is constantly growing from one or more

initial source populations (i.e. seed sources from

plantations) as well as subsequent naturalised popu-

lations, leading to multiple invasion fronts (Caplat

et al. 2012a). Slowing down the spread from a single

population might be unimportant if there are addi-

tional populations that are not controlled; this could be

particularly important where multiple managers con-

trol different parts of the landscape. The question then

becomes: how to best distribute effort amongst

managed areas? Because species distribution are

determined by ecological processes working at differ-

ent spatial scales (McGill 2010), a strategy that is

efficient at controlling spread from a single population

(e.g., targeting the periphery) might be unimportant

when considering multiple populations and metapop-

ulations at larger spatial scales. As a consequence, the

landscape-level control of non-native invasive trees

necessitates consideration of management efficacy

across multiple spatial scales.

Conservation managers are faced with complex

decisions to negotiate this multi-scale conundrum and

prioritize alternative feasible control efforts within

budgetary or resource constraints (Roura-Pascual et al.

2010). Indeed, management decisions often occur at

different geographical or administrative levels, and

information accessibility and quality can vary signif-

icantly. Both introduction and management of tree

invasions develops conflicts within and between

different countries depending on what information is

available, and the services or values associated with

these species (van Wilgen et al. 2012). Managing a

population without considering larger-scale outcomes

often results in different choices than managing a

population as part of a regional or national scheme

(Epanchin-Niell et al. 2010).

Here we approach the multiple-strategies, multi-

scale problem simply by contrasting control strategies

at two levels of management. We determine the

effectiveness of different management strategies to

control the spread of tree invasions across heteroge-

neous landscapes using a nested spatial simulation

model. At a first level (management units) we test how

to best control the spread of an invasive tree from one

or two sources, contrasting strategies including: pri-

oritizing sites at the periphery, prioritizing sites with

high density, or prioritizing sites of suitable habitat. At

a second level (region), we test how to most efficiently

distribute effort when multiple sources of invasions

are managed independently. In tandem, these

approaches provide new insights into how different

management strategies can slow or stop tree invasions

at the landscape scale.

Methods

We determine how different management strategies

can slow the spread of an invasive tree from single or

multiple sources using a spatially explicit simulation

model. For this we developed a nested model where:

(1) tree cohorts grow and spread in a realistic fashion

(see Fig. 1 and ‘‘Tree dynamics’’ section below); (2)

invaded cells around plantations are cleared (e.g., the

invasive trees are killed) following one of three

potential spatial selection strategies (see Fig. 1 and

‘‘Spatial management’’ section below); (3) different

spatial management units are allocated a given effort

(number of patches that can be cleared) following one

of three effort allocation strategies (see Fig. 1 and

‘‘Effort allocation’’ section below).

The model simulates an 8 km wide region com-

posed of 20 m 9 20 m cells. The region is comprised

of 16 spatial management units (2 km wide = 10,000

cells each) (Fig. 2). The model was built and ran with

NetLogo V5 (Wilensky 1999).

Tree dynamics

We simulated tree dynamics to capture the spatial

components of spread, but avoided complex parameter

settings. The model is composed of a grid where each

cell is a cellular-automaton, driving the dynamics of

cohorts (i.e. trees of the same age; Fig. 1). Most cells are

initially devoid of trees, representing the original

vegetation (e.g., grassland). Only a few cells are

populated with adult cohorts (i.e. reproductively mature

cohorts of age randomly drawn above Arep, summing up

to K individuals; see Table 1 for the description of all

variables used in the model). Figure 1 shows the

dynamics of a typical grid cell colonised by trees

(thereafter, a ‘‘stand’’). Within each time-step, invading

tree cohorts increase in age. The cohort size in a cell is

defined as the total number of trees (Nt), while the

reproductive potential (Na) is defined by the total

Spread and management of invasive trees 679

123



number of adult trees (age C Arep). During each time

step (1 year), the total number of seeds produced in a

cell is Na 9 f. However, to save computing time the

number of seeds dispersed from a given cell is

Na 9 f 9 Pest1, where Pest1 is the maximum probability

of establishment. This means that conceptually the

model disperses established seedlings. These ‘‘estab-

lished seeds’’ are dispersed following a two-parameter

dispersal kernel that simulates both short- and long-

distance dispersal. Long-distance dispersal occurs with

a probability of PLDD, with distances to the recipient

cells uniformly drawn from 20 m to a user-defined

maximum distance (Dmax). Short-distance dispersal

occurs with probability (1–PLDD), with distances uni-

formly drawn between 0 and 20 m. We favoured the

simple kernel as it allows more transparency in the

dispersal distances than more complex dispersal ker-

nels. For simplicity, we did not include a seed-bank in

our model. Seeds dispersed out of the grid extent are also

discarded (i.e. the spatial model has absorbing bound-

aries). We did not consider natural tree mortality

because the scenarios and model behaviour considered

here operate within the typical lifespan of individual

trees (i.e. 60 years). After reaching a cell with density

Nt, a seedling has an additional probability Pest2 of

establishing if the local number of trees Nt is lower than

the carrying capacity K, or is discarded from the model if

Nt is equal to K.

To account for spatial heterogeneity in habitat

quality, cells are characterized by a binary variable

defining them as ‘‘good’’ or ‘‘bad’’ habitat. We

Fig. 1 Model flowchart,

showing the spread and

management submodels as

they operate at level of a

cell, management unit, and

region

Fig. 2 Model grid showing the distribution of habitat (‘‘good’’

habitat in black and ‘‘bad’’ habitat in white) and the 16

management units (delimited by dashed grey lines). Habitat

cover and spatial autocorrelation values for this habitat grid

were 0.25 and 0.5, respectively. The small grey squares show

the location of the six initial populations
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generated three maps of habitat using the midpoint

displacement algorithm (Jackson and Fahrig 2012),

with proportion of good habitat Hc taking three values

(0.15, 0.25 and 0.8) and spatial autocorrelation fixed to

0.5 (e.g. Fig. 2). We use the habitat variable to modify

local establishment (defining Pest2 = 1 in good hab-

itat, Pest2 = 0.1 in bad habitat), fecundity (trees

growing in bad habitat reproduce with fecundity

f/10), or survival of seedlings (annual survival of trees

younger than 5 years old is sseedl in good habitat and

sseedl/10 in bad habitat). Whether habitat affects

fecundity, establishment or survival of seedlings is

indicated by the values of the variable Htarget, ‘‘habitat

target’’.

Spatial management around a source

When management applies around a given source, a

number Ncp of stands are cleared every year, with all

individuals in targeted cells killed. The way these

stands are chosen defines the selection strategy, which

can be (1) targeting stands with the highest tree

density, (2) targeting stands that are at the largest

distance from the source stand (periphery), or (3)

targeting stands with good habitat only. Hereafter

these are referred to as ‘‘density’’, ‘‘distance’’ and

‘‘habitat’’ selection strategies, respectively. The Ncp

stands are then chosen randomly from the set of stands

of equally high priority. The selection strategies reflect

different assumptions about the processes driving tree

invasions: the importance of peripheral sites (‘‘dis-

tance’’ strategy) (Moody and Mack 1988), propagule

pressure (‘‘density’’ strategy) (Maxwell et al. 2009),

and role of habitat (‘‘habitat’’ strategy). The initial

source of the invasion is never cleared, to better

simulate spread from, for example, a plantation

maintained for economic reasons (Caplat et al.

2012a, b).

Effort allocation

We determined how effort (e.g. budget or work force)

should be allocated among multiple management

units, by including 16 spatial management units

within the spatial models (Fig. 2). The number of

stands cleared of invaded trees per unit (Ncp) is a

proportion of the total management effort (Et). We

defined three effort allocation strategies for allocating

effort between units: (1) evenly (‘‘equal’’ strategy),

where each unit gets an equal share; (2) by habitat

(‘‘habitat’’ strategy), where the share is scaled by the

amount of suitable habitat in each management unit;

Table 1 Model parameters

and their values

Parameters are grouped

according to the level at

which they operate, with

common parameters

operating at both levels.

Parameters marked with a

star can be affected by

habitat and take then the

values shown in brackets in

bad habitat

Name Description Values

Common parameters

K Carrying capacity of a cell 5, 20

f Fecundity, seeds per adult* 500, 5,000 [50, 500]

Arep Age of first reproduction 10, 20

PLDD Probability of long distance dispersal 0.05

Dmax Maximum dispersal distance, m 100, 1,000

Pest1 Maximum establishment rate 0.01, 0.1

Pest2 Local establishment rate* 1 [0.1]

sseedl Seedling survival rate* 0.7, 0.9 [0.07, 0.09]

Tinit time before management starts, years 4

Htarget Process affected by habitat Recruitment, fecundity, survival

Region

Et Total effort 0, 80, 800

Hr Proportion of good habitat in the grid 0.15, 0.25, 0.8

Uf Interval between effort allocation updates 5, 20

Management unit

Ns Number of initial sources 0,1,2

Ncp Number of stands cleared every year 0–800

Hl Amount of good habitat in a unit, cells 0–10,100
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(3) by extent of the invasion (the number of invaded

cells in each management unit; ‘‘extent’’ strategy).

Effort allocation is updated every Uf (Table 1) years to

account for newly invaded areas.

Simulations

To test the model behaviour we first ran a preliminary

sensitivity analysis drawing the model’s parameters

randomly from a wide range of values across 2,000

simulations.

We then used the model to test both the effect of

selection strategies (random, periphery or habitat) and

the effect of allocation strategies on the area invaded

after 60 years. Model parameters were drawn from a

wide ranges of values (Table 1) all combined once,

producing 2,880 unique settings. Each parameter setting

was used to run simulations in turn, first without

management and then with each of the nine strategies to

be tested, combining an allocation strategy with a

selection strategy. In each run the selection strategy was

applied across all management units. Simulations ran

for 60 iterations (years).

We assessed tree invasion spread rate by measuring

the area invaded at the end of a simulation (I, expressed

in percentage), at the regional level and within each

management unit. For each setting, we measured the

effectiveness of every strategy by comparing the final

area invaded resulting from applying the strategy to the

final area invaded obtained in the absence of manage-

ment (I0 thereafter).

Analysis of model outputs

We performed the same sequence of analyses for the

two levels considered, using the model parameters to

explain the effect of: (1) habitat, life-history traits and

effort allocation strategy at the regional level

(n = 2,880); (2) habitat, life-history traits and selec-

tion strategy within each management unit

(n = 13,119) (Table 1). To simplify the results, we

used when possible the percentage invaded in absence

of management (I0) as a predictor of management

actions. I0 can be seen as the ensemble of life-history

traits and habitat conditions favouring invasion.

1. We tested the importance of the parameters on the

final area invaded in the absence of management

(I0), using random forest models from the package

‘‘party’’ in R (R Development Core Team 2008).

Random forests build a large number of classifi-

cation trees (or regression trees for continuous

response variables), and identify the global effect

of predictors by assessing the effect of changing

the values of the nodes (Breiman 2001). They

have been shown to be extremely accurate across

datasets (Caruana et al. 2008), and particularly

adapted for comparison of continuous and cate-

gorical variables (Strobl et al. 2007). We defined

variable importance using the ‘‘mean decrease in

accuracy’’, which measures how much accuracy

decreases when the values of a given variable are

randomly permutated (Breiman 2001; Strobl et al.

2007).

2. We identified the combinations of parameter

settings driving the overall effect of management

on final area invaded (expressed in % of I0), using

random forest models. We excluded for the rest of

the analysis the settings in which management

effect was lower than 10 % of I0.

3. To understand which strategies perform best

under different settings, we ranked the strategies

for each setting by the final invaded area they

produced (from smallest to largest). We consid-

ered that two strategies performed equally if their

final invaded area differed by less than 10 %. The

relative performance of strategies allowed us to

define conditions in which a strategy ranked first,

alone or in a tie.

We identified the conditions leading to different

performance of strategies using Conditional Inference

Trees (CIT), with the ‘‘party’’ package in R. Like

traditional classification trees, CIT recursively perform

splits of a response variable (here, ‘‘strategy X is best’’)

based on values of covariates (here, the model param-

eters) (Hothorn et al. 2006). CIT use permutation tests to

evaluate the significance of covariates and the associ-

ated splits (tree branches). In a predictive framework, it

is recommended to use ensemble modelling (e.g.,

random forests) rather than a single tree (e.g., CIT).

However our analysis aimed to explain the system and

we decided that communication of guidelines regarding

management would benefit from clear decision rules

provided by the individual trees of CIT (see Morelli et al.

2012 for a similar approach).

4. To formulate management recommendations, we

rebuilt CITs excluding I0 from the set of
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predictors. We synthesized our results along a

simple scenario based on: (a) whether or not the

managers know about habitat suitability of the

area (e.g., feasibility of the ‘habitat’ selection and

allocation strategies), and (b) whether or not

remote trees can be easily located and accessed

(e.g., feasibility of the ‘distance’ selection strat-

egy). When habitat suitability was not known, we

excluded the three habitat parameters from the set

of predictors.

Results

Response of spread to the model parameters

In the absence of management, the model showed a

clear effect of the model parameters on spread. The

sensitivity analysis revealed no inconsistency in the

model’s behaviour.

With the set of parameters used for the rest of our

analyses (Table 1), final invaded area in all simula-

tions ranged from 0.02 % of the grid to 100 % of the

grid. The random forest models (Fig. 3) developed at

the two management levels ranked maximum dis-

persal distance (Dmax) first, followed by seedling

survival in good habitat (sseedl), fecundity (f),

maximum probability of establishment (Pest1), and

the stage affected by habitat (Htarget). The amount of

good habitat (Hl or Hr) was found to play a role at the

management unit level (Fig. 3, left), but not at the

regional level (Fig. 3, right). The age of first repro-

duction (Arep) and patch carrying capacity (K) ranked

low at both levels, and the initial number of sources

(Ns) ranked last at the management unit level. Final

invaded area was lowest with short dispersal distances,

low probability of establishment, survival, and fecun-

dity, habitat affecting recruitment, low carrying

capacity, and high age of reproduction.

Overall effectiveness of management

At both the regional and management unit levels, the

effect of management (all strategies considered)

varied greatly (from 0 to 100 % reduction of final

area invaded). Management was defined as ineffective

(i.e. lower than 10 % of I0) in 63 and 50 % of the

settings at the management unit and regional level.

The variables driving management effectiveness in

the model are shown in Fig. 4. The ranking of

variables shows that management effectiveness

responded more to spread in the absence of invasion

(I0) and effort (number of patches cleared) than to any

other variables. In addition to these variables,

Fig. 3 Relative importance

of model parameters for the

final area invaded at two

scales, from the random

forest models (500 trees, 576

observations at the regional

level, 9,216 observations at

the management unit level).

The importance was

measured as an increase in

node purity in every tree.

Light grey columns

correspond to habitat

parameters and dark grey to

life-history traits
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maximum dispersal distance (Dmax) played an impor-

tant role at the regional level (Fig. 4, right) but not at

the management unit level (Fig. 4, left). Management

strategies (selection and allocation) and effort alloca-

tion update frequency Uf were all ranked low in the

model. The models developed at the regional and

management unit level had a prediction accuracy of

0.8 and 0.9, respectively. The spread values at which

management became ineffective varied with effort

(83 % of the area invaded with Et = 800; 24 % of the

area with Et = 80).

Selection strategy within management units

At the management unit level the three selection

strategies performed equally in 92 % of the settings

for which management was effective. A CIT run on all

settings linked equal performance to conditions

favouring low spread (I0 B 17 and Ncp B 3, or

I0 [ 17 and Ncp B 80). When conditions favoured

higher spread (remaining 8 % of the settings), the

‘‘distance’’ selection strategy outperformed the other

strategies in 98 % of settings, and the CIT could not

find any subset of parameters where another selection

strategy dominated.

Comparing only the ‘habitat’ and ‘density’ strate-

gies revealed that selecting by habitat performed

overall better than selecting by density of trees,

although the two strategies performed equally in

92 % of the settings. The ‘density’ strategy outper-

formed the ‘habitat’ strategy in only 1 % of the

settings, mostly when habitat affected establishment,

dispersal distances were high and either the number of

dispersed seedlings (f 9 Pest1) was high or good

habitat was rare (Fig. 5).

Allocation strategy at the regional level

The three allocation strategies performed equally in

75 % of the settings where an effect of management

was observed. As at the management unit level, the

three strategies performed equally when conditions

were particularly unfavourable to spread (I0 \ 3 or

I0 [ 3) and Hr = 0.15).

Amongst the settings where a difference between

strategies was observed, distributing effort equally

amongst management units ranked first more often

than the two other strategies (70 % of settings, against

33 % for the ‘habitat’ strategy and 58 % for the

‘extent’ strategy). It is worth noting that the ‘equal’

strategy, however, rarely outperformed both strategies

Fig. 4 Relative importance

of model parameters for the

reduction of final area

invaded when management

is applied at two scales, from

the random forest models

(500 trees, 13,284

observations at the regional

level, 94,608 observations at

the management unit level).

The importance was

measured as an increase in

node purity in every tree.

Light grey columns

correspond to habitat

parameters, black to

management parameters,

and dark grey to life-history

traits. I0 is the final area

invaded in absence of

management
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(e.g. it performed the same as either the ‘habitat’ or the

‘extent’ strategy in 83 % of settings.).

The ‘habitat’ and ‘equal’ strategy performed

equally in 82 % of the settings. The ‘habitat’ strategy

performed better than the ‘equal’ strategy in only 5 %

of the settings. This occurred mostly when good

habitat was abundant (Hr = 0.8), reproductive output

was low (f * Pest1 B 50) and spread was high (I0 [ 15)

(Fig. 6).

The ‘extent’ and ‘equal’ strategies performed

equally well in 88 % of the settings. Allocating effort

by extent of invasion performed better than an equal

allocation in only 5 % of the settings. This occurred

mostly when: 1) reproductive output was low (f *

Pest1 B 50), spread was high (I0 [ 50); 2) effort was

high (Et = 800) and either carrying capacity was high

(K = 20) or extent was updated every 5 years

(Uf = 5); 3) good habitat was rare and habitat affected

establishment (Fig. 7).

Management scenarios

In all subsets considered, regardless of information

regarding habitat, allocating effort equally to the

different management units largely outperformed the

other strategies (Table 2). No clear combination of

parameters could be identified that led the ‘habitat’ or

‘extent’ strategies to perform better than the ‘equal’

strategy.

To identify the best selection strategy when remote

trees cannot easily be accessed, we considered only

the relative performance of the ‘habitat’ and ‘density’

strategies. The two strategies performed equally in

93 % of settings; the ‘habitat’ strategy outperformed

the ‘density’ strategy in an additional 6 % of settings,

leading the ‘density’ strategy to be selected only when

no other strategy was available.

Discussion

Our results demonstrate that the effectiveness of

different management practices for slowing the spread

of tree invasions depends strongly on both habitat

heterogeneity and tree demography. These results

were robust across a wide range of parameter values in

the spatial simulation model (Table 1). Similarly, the

parameters driving spread in our model including seed

dispersal (Dmax), recruitment rates (Sseedl), and fecun-

dity (f) were identified as important at both scales, and

agree with previous modelling studies (e.g. Coutts

et al. 2011). Thus, our spatial simulation model

Fig. 5 Relative

performance of the ‘habitat’

and ‘density’ selection

strategies under different

parameter combinations.

This tree is part of

conditional inference tree

that was built on a subset of

1,120 parameter

combinations in which the

two management strategies

did not perform equally.

Labels in circles indicate the

variables described in

Table 1. The number ‘n’

indicates the size of each

terminal node. I0 is the final

area invaded in absence of

management. This tree had a

predictive accuracy of 0.87
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produced a consistent, robust description of the

dynamic behaviour of tree invasions. It is worth

noting that, due to our choice of modelling the

dispersal of ‘‘established seedlings’’, fecundity and

establishment had similar ranking in the spread

analysis. An interesting result was the low ranking of

the variable that quantified the amount of habitat at the

regional level, while habitat was ranked higher at the

landscape level. This suggests that habitat suitability

plays a key role in the early stages of invasion, even

when habitat differences are not extreme, but does not

affect large scale dynamics as much as life-history

traits.

Management strategies to slow the spread of tree

invasions included effort allocation and the spatial

selection of stands; these multi-scale strategies are

both practical and in line with the dominant theory for

reducing the spread of biological invaders (e.g. Moody

and Mack 1988; Higgins et al. 2000). However, in

most of the simulations no differences were observed

among management strategies, particularly when

management effort was high enough to strongly

reduce the final area invaded. Indeed, the analysis of

the importance of different variables with random

forests revealed that management effort (i.e. the

number of stands cleared of invaders per year) was

more important than management strategy (i.e. spatial

selection of stands) in reducing the spread (Fig. 4).

This result is driven by the complexity of managing

multiple source populations; because the conditions of

spread vary across space, it is unlikely that a single

management strategy would fit all conditions. When

strategies did differ in efficiency, their ranking

depended on tree life-history and the response of tree

to habitat (Figs. 5, 6).

Single-source management

During tree invasions of landscapes, populations may

begin as single or discrete sources, but as the invasion

progresses to second and higher generations, multiple

seed sources are the norm (e.g. Moody and Mack

1988). Multiple seed sources favour a management

strategy that targets peripheral sites (i.e. the ‘‘dis-

tance’’ strategy). Indeed, the management strategy of

targeting peripheral tree populations first largely

outperformed the habitat quality or tree density

strategies. This is because targeting peripheral sites

has the effect of minimising spread from the source

population. In practical terms, this implies that the

location of source populations is known, and that

peripheral sites can be identified and are accessible for

treatment. We expect that making accessibility of sites

explicit in the model might change the ranking of the

strategies. However, some test simulations including

increasing cost with increased distance travelled did

not change the relative efficiency of the periphery

selection strategy (data not shown). Our results are

Fig. 6 Conditions leading

to the ‘habitat’ allocation

strategy outperforming the

‘equal’ allocation strategy.

This conditional inference

tree was built on a subset of

878 parameter combinations

in which the three allocation

strategies did not perform

equally. Labels in circles

indicate the variables

described in Table 1. The

number ‘n’ indicates the size

of each terminal node. I0 is

the final area invaded in

absence of management.

This tree had a predictive

accuracy of 0.85
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consistent with previous studies suggesting that a

strategy of containment can be most appropriate for

slowing the spread of biological invaders having

known source population (e.g. Epanchin-Niell and

Wilen 2012).

The relative performance of the ‘habitat’ and

‘density’ management strategies emphasized some

stages of the spread dynamics. Selecting by habitat

performed better when habitat affected survival or

fecundity. This highlights the fact that, when habitat

affects establishment, any tree detected has passed the

establishment hurdle, and is likely to perform the

same, regardless of the habitat type. On the other hand,

when habitat affects survival or fecundity, trees

located in good habitat will contribute relatively more

to the spread, and are thus a good target for manage-

ment. However, selecting by habitat still outperformed

selecting by density in most cases, probably because

habitat was spatially autocorrelated by design. A tree

established in good habitat was likely to disperse

offspring into good habitat. This was less true when

spread was high, or habitat was rare (less than 50 % of

a management unit), leading to the ‘density’ strategy

to perform relatively better.

Multi-source management

When dealing with multiple source populations of

invasion, the allocation strategy was not important in

90 % of the settings. Although the equal allocation

performed well in most of the remaining settings, it

can be seen as a ‘‘default’’ strategy (i.e. no choice is

made to allocate the budget based on any particular

criteria), which translates into a very consistent

frequency of good performance across subsets of

settings (Fig. 6). The fact that the ‘equal’ strategy

rarely outperformed both other strategies confirms the

idea that it is a generalist strategy, which can be

outperformed in specific conditions but overall out-

competes more sophisticated schemes (see also Hui

et al. 2011a for a similar result).

Fig. 7 Conditions leading

to the ‘extent’ allocation

strategy outperforming the

‘equal’ allocation strategy.

This conditional inference

tree was built on a subset of

878 parameter combinations

in which the three allocation

strategies did not perform

equally. Labels in circles

indicate the variables

described in Table 1. The

number ‘n’ indicates the size

of each terminal node. I0 is

the final area invaded in

absence of management.

This tree had a predictive

accuracy of 0.87

Table 2 Synthesis of which allocation and stand selection

strategies should be chosen depending on available options

(information on habitat suitability top; feasibility of the dis-

tance strategy, bottom)

Habitat suitability

is known

Yes No

Allocation of

effort

Equal

(91 %)

Equal

(94 %)

Equal

(96 %)

Equal

(95 %)

Selection of

stands by

Habitat

(99 %)

Distance (99.7 %) Density

(na)

Remote

individuals can

be accessed

No Yes No

Percentages in brackets represent the frequency at which a

given strategy ranked first in our analysis
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Allocating management effort equally among units

was less effective than the other strategies in settings

having low reproductive output and high spread. With

low reproductive output, spread was sufficiently slow

to be affected by management, leading to all strategies

performing similarly. However, in the settings favour-

ing faster spread (e.g., no dispersal limitation) other

management units were invaded. Spatial heterogene-

ity in either habitat (high habitat cover combined with

high autocorrelation) or extent of invasion (combined

with frequent updates on invasion extent) would select

for the ‘habitat’ or ‘extent’ allocation strategy,

respectively. With an equal distribution of effort on

the other hand, some of the effort would be wasted on

management units with little population growth. And

because large, fast growing populations are also often

located in suitable habitat, the ‘habitat’ and ‘extent’

strategies often performed equally.

Management implications

An unresolved problem in managing invasive trees is

the relative effort that should be allocated to the

detection of new populations versus controlling

known populations given resource constraints or

limitations on these activities (e.g. Maxwell et al.

2009; Epanchin-Niell and Hastings 2010; Giljohann

et al. 2011). Here we focussed on disentangling the

biological effects of different management strategies

across spatial scales, and did not explicitly model

detection effort, cost, or effectiveness. Rather, we

assumed that surveillance and control were closely

coupled, for example, the effectiveness of the ‘‘dis-

tance’’ selection strategy in our model relies on the

immediate cost efficient detection of satellite trees.

This assumption will likely hold for systems in which

detection of new invasive populations is relatively

easy, i.e. for tree invasions into grasslands (e.g.

Ledgard 2001). In contrast, for systems in which the

detection of new invading populations is non-trivial,

decoupling the costs and efforts required for surveil-

lance and control would be a logical next step.

Management of biological invaders is often accom-

plished by multiple agencies, or more generally,

‘actors’. Here we made the simplifying assumption

in our simulation models that management activities

were universal and unitary. However, managers may

not collaborate fully, may utilise different approaches

or techniques for management, or may have

conflicting goals for management of invasions that

introduce complexity or conflicts in management by

multiple actors (e.g. Epanchin-Niell et al. 2010, Dickie

et al. this issue, also reviewed in Caplat et al. 2012a).

The beneficial or detrimental effect of having different

management units implementing different strategies

was beyond the scope of this paper, but could be

incorporated into our spatial simulation model (Coutts

et al. 2012).

Although inclusion of detection or multiple man-

agement approaches could be useful refinements or

extensions to this modelling approach, this does not

undermine our major finding that no single manage-

ment approach is optimal across spatial scales. This

result is consistent with Maxwell et al. (2009),

indicating that there may be long-term improvement

of managing an invader by replacing some manage-

ment with specific observations to identify source

trees or populations. Rew et al. (2007) also suggested

the surveys to discern the habitat constraints of the

invader is a valuable first step toward prioritizing

populations to manage. Clearly, early detection fol-

lowed by an intense management response will be

most effective, provided that detection is good for

trees in the seedling and pre-reproductive stages.

However, effort is often limited, and prioritization

strategies are generally an appropriate and practical

means to improve the efficiency of management.

Our results demonstrate that successful landscape-

scale management of tree invasions depends on the

spatial arrangement of populations relative to good

habitat. Several clear management principles or rec-

ommendations emerged from our analyses. First, the

best strategy to control tree invasions is to manage

sites most distant from the source (Table 2). If distant

trees cannot be accessed, then one should select stands

by habitat suitability. Second, to control tree spread

over a region having multiple source populations,

effort can be allocated equally to all management units

where trees are detected, with two exceptions: (1)

where habitat is highly heterogeneous between units,

matching management resources to habitat quality can

prevent future spread, and (2) for relatively rapid

invasions, resources should be allocated to areas with

the largest populations—if estimates of population

size can be updated regularly. Overall, these findings

demonstrate that knowledge of how habitat affects tree

life-history stages help improve control when effort is

limited. This confirms the interest in developing cost-
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and time-efficient methods to measure life-history

traits, and to create maps of habitat suitability for

invasive trees.
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