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Early successional
ectomycorrhizal fungi are more
likely to naturalize outside their
native range than other
ectomycorrhizal fungi

Introduction

Ectomycorrhizal fungi (EcMF) are the key symbionts of numerous
woody plants in many ecosystems worldwide (Smith & Read,
2008; Tedersoo, 2017). They positively affect host plant nutrient
uptake (Smith & Read, 2008) and take part in essential ecosystem
processes such as carbon sequestration, nutrient cycling and
decomposition of organic matter (Read & Perez-Moreno, 2003;
Clemmensen et al., 2014; Shah et al., 2016). The majority of
ectomycorrhizal (EcM) plants fully depend on the mycorrhizal
symbionts and cannot complete their life cycle without these root
associations (Smith & Read, 2008).

It has been long recognized that the absence of co-evolved EcMF
can present a significant barrier to successful establishment of
introduced EcM trees (Mikola, 1969; Poynton, 1979; Richardson
et al., 2000a; Pringle et al., 2009). Dickie et al. (2010, 2017)
proposed different strategies of alien EcM plants to overcome
detrimental losses of mutualistic symbionts: (1) co-introduction of
co-evolved mutualists; (2) association with familiar mutualists
native to both native and alien ranges; and (3) novel associations
with local species. Co-introductions of exotic EcMF with their
plant hosts have been increasingly reported as a global phenomenon
in recent years (Vellinga et al., 2009). In some cases, exotic EcMF
can alter nutrient cycling and soil biochemistry (Chapela et al.,
2001) or plant derived carbon competitive links (Wolfe et al.,
2010).

EcMF introductions have been recorded in the past based on
fruiting body collections (Vellinga et al., 2009). However, these
aboveground sexual structures do not represent the whole EcMF
communities associated with host plant roots (Gardes & Bruns,
1996; Kjøller, 2006), because many EcM fungal species produce
either resupinate, hypogeous or microscopic fruiting bodies (e.g.
Tomentella, Amphinema) or lack them altogether. In addition,
many fungal species do not fruit frequently, making it difficult to
record their presence. Therefore, methods of molecular identifi-
cation are better suited for detection of many EcMF species
compared to fruiting body surveys (Nilsson et al., 2019).
Furthermore, in the past few years, the rise of well-developed and
maintained databases such as UNITE (Abarenkov et al., 2010) and

a newly developed database of fungal next-generation sequencing
studies (V�etrovsk�y et al., 2019) provide significantly improved
information about the distribution and biogeography of many
fungal taxa.

In plants, the EcM symbiosis has arisen independently on
multiple occasions in evolutionary time since at least the Creta-
ceous Period (Brundrett & Tedersoo, 2018). Over 80 EcMF
independent evolutionary lineages have been described to date
(Tedersoo & Smith, 2017). In general, EcMF lineages differ in
evolutionary age, geographic distribution, diversity, host specificity
and ecology (Tedersoo & Smith, 2013). Phylogenetically, EcMF
lineages mostly correspond to genus level, although some EcMF
lineages are comprised of more genera. ‘Early’ and ‘late’ succes-
sional status has been recognized for some EcMF species (Mason
et al., 1982; Last et al., 1984). Several fungal functional traits, such
as spore germination rate, spore dormancy and spore longevity and
ability to colonize tree seedlings are usually associated with early
successional EcMF (Agerer, 2001; Bruns et al., 2009). Because
many alien tree species have been frequently transported to new
areas as seedlings along with soil from their native range (Mikola,
1969; Schwartz et al., 2006), EcMFwith early successional strategy
should be better preadapted to spread into new areas (Hayward
et al., 2015). However, this assumption has never been tested
before.

In this study, we explore the diversity of EcMF species
introductions based on literature review and our own unpublished
data from all continents. We expect that a relative number of
naturalized EcMF species will be higher in EcMF lineages with
prevalence in early successional stages.

Materials and Methods

This global-scale meta-study of EcMF co-introductions associated
with alien woody plants is based on Web of Science and Google
Scholar (as of 15 December 2019) search of studies, using
combination of terms ‘non-native’, ‘alien*’, ‘invasion*’ and
‘introduction*’ with ‘ectomycorrhiza*’. This search yielded 267
papers. In addition, we also searched for sequences of EcM
mycobionts associated with exotic EcM plants in public sequence
depositories, such as UNITE (Abarenkov et al., 2010) or INSD
(International Nucleotide Sequence Database). The analysis
included studies in which at least one EcM plant species was
sampled outside its native range (corresponding to the definition of
‘alien’ following the criteria of Richardson et al. (2000b)) and root-
associated EcMF were identified using sequencing of the internal
transcribed spacer (ITS) region of ribosomal ribonucleic acid
(rRNA) operon. The ITS region was chosen, because it represents
the most commonly used barcoding region for fungal species
(Schoch et al., 2012), which serves as a basis formolecularly defined
fungal species hypotheses (SHs; K~oljalg et al., 2013). Studies with
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experimentallymanipulated soil treatments were excluded. If more
than one alien EcM plant species per study was sampled, each
species was treated as separated dataset. This procedure yielded 50
datasets from 30 studies (Supporting Information Table S1). In
addition we included our seven unpublished datasets, which
fulfilled all criteria listed earlier in the text.

The ITS sequences of root-associated EcMF were assigned to
existing fungal SHs (version 8.0; K~oljalg et al., 2013) based on
BLASTN (Altschul et al., 1990) search on 98.5% similarity level.
Detected SHs were assigned to existing EcM lineages based on
Tedersoo & Smith (2017). To determine putative native ranges
of EcM SHs, we used (1) the SH distribution maps
implemented in UNITE (5 November 2018), after excluding
all sequences associated with non-native EcM vegetation or well
known cases of EcMF introductions (i.e. introduced Amanita
phalloides associating with native trees in North America; Wolfe
et al., 2010) and (2) a newly developed database of studies
determining fungal community composition in natural vegeta-
tion based on next-generation sequencing (V�etrovsk�y et al.,
2019). Combining these two independent sources enabled us to
determine the putative native ranges of EcM SHs from Sanger
sequencing (UNITE) as well as next generation sequencing
(NGS) based studies (V�etrovsk�y et al., 2019). It gives probably
the most comprehensive overview of global distribution of
fungal SHs so far. Based on this information, we defined co-
introduction as either concurrent or asynchronous introduction
of naturalized SH with alien plant (Nu~nez & Dickie, 2014;
Dickie et al., 2017). Putative native ranges were not defined for
SHs with a low number of records in UNITE or NGS
databases (less than six records). Total numbers of all SHs (on
1.5% dissimilarity level) per EcM fungal lineage were obtained
from the UNITE database to calculate the proportion of
naturalized EcMF SHs among all SHs in the lineage.

EcM fungal lineages were classified into early and late succes-
sional according to their appearance along the successional
gradients. So far the most comprehensive review of the appearance
of different EcMF genera during succession was published several
years ago (Dickie et al., 2013), which is a relatively long time given
the rapid development of the field and itsmethodological tools.We
extended the data provided by Dickie et al. (2013) with studies
published since then (Table S2). If some EcMF were not recorded
in studies describing EcMF communities along successional
gradient, we identified their putative strategy based on the
appearance on seedling roots or newly developed substrates
(indicating early successional EcMF) or inmature forest vegetation
(indicating late successional species).

To test whether there are differences in the share of naturalized
EcMF in different EcMF lineages (based on Tedersoo & Smith,
2017), their counts were analysed by row9 column contingency
tables, using generalized linear models with the log-link function
and a Poisson distribution of errors (Crawley, 2007). For the
models that showed significant effects of the lineages, adjusted
standardized residuals of G-tests were then compared with critical
values of the normal distribution to ascertain the naturalized EcMF
species counts per lineage that are lower or higher than expected by
chance (�Reh�ak & �Reh�akov�a, 1986; see e.g. Vinogradova et al.,

2018). All calculations were done in R v.3.5.0 software (R
Development Core Team, 2019).

Results and Discussion

In total, 130 co-introduced EcM fungal SHs associated with roots
of alien EcM plants were recorded in 57 analysed datasets
worldwide (Table S3). So far, the most complete list of co-
introduced EcMF compiled by Vellinga et al. (2009) based on
fruiting bodies surveys, identified 224 co-introduced EcMF species
worldwide. Interestingly, only 56 naturalized EcMF species were
shared between our dataset and that of Vellinga et al. (2009).
Collectively, these two studies identified almost 300 co-introduced
EcMF species worldwide. Although 300 species represent a
relatively small share of the tremendous EcMF diversity, we
assume that the number of co-introduced species is much higher
based on the low share of the EcMF species between the two data
sets. The introductions are also probably on the rise due to
increasing global trade and planting exotic material in attempts to
counteract climate change effects on native trees.

The richness of naturalized species largely differed among EcMF
lineages (Fig. 1).We identified numerous naturalizedEcMF taxa in
the /tomentella-thelephora lineage associated with both gym-
nosperms and angiosperms (Walbert et al., 2010; Bogar et al.,
2015). Considering the resupinate fruiting bodies of Tomentella
spp., these species may have been often overlooked in fruiting body
surveys. Therefore, Vellinga et al. (2009) recognized only a few
alien Thelephora spp., and no Tomentella spp., while our data
indicated 18 species from the /tomentella-thelephora as co-
introduced. Several of these were successfully co-introduced to
more than one continent. Nonetheless, these naturalized taxa
represented only a small proportion (< 1%) of all known
/tomentella-thelephora SHs.

Importantly, several EcMF lineages contained a higher share of
naturalized EcMF than expected by chance (Fig. 1). These
lineages, /wilcoxina, /suillus-rhizopogon, /descolea, /laccaria and
/pisolithus-scleroderma, likely include species with ecological
traits favouring successful co-introduction with their alien EcM
partners. As previously proposed by Hayward et al. (2015), such
traits (i.e. production of resistant propagules or preferential
association with widely introduced Pinaceae; Glassman et al.,
2015), could have allowed successful introductions of relatively
small subset of EcMF in the past, which can subsequently drive
host plant invasion (Policelli et al., 2019). Although comprehen-
sive databases of fungal species-level functional traits are still
lacking, information about species distribution as well as their
appearance during succession in previous studies enables us to
estimate rough ecological strategies in EcMF. Species from the
earlier-mentioned lineages were previously repeatedly detected in
early successional plant communities (Table S2). With a few
exceptions, members of these lineages are easily culturable
and exhibit rapid mycelial growth (Chu-Chou, 1979; de la
Bastide et al., 1995; Kennedy et al., 2011). Species from the
Holarctic /wilcoxina lineage dominate on seedlings of EcM plants
in tree nurseries (Mikola, 1965), early stages of succession after
wildfire or following clear-cut harvesting (Barker et al., 2013).
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Similarly, species from the Southern Hemisphere /descolea
lineage are also known as common fungal symbionts on post-
fire sites (Palfner et al., 2008) or on EcM plant seedlings (Kuhar
et al., 2017). Also other more likely co-introduced species from /
laccaria lineage often occur on early successional sites (Table S2)
and they are widespread in nurseries and fruit commonly on
disturbed ground (Danielson, 1984). The Pinaceae-specific
Suillus and Rhizopogon species are among the earliest colonizers
of isolated seedlings (Peay et al., 2012). Rhizopogon spp. build
persistent, extensive spore banks in soil (Taylor & Bruns, 1999)
that may support colonization of emerging seedlings after stand-
replacing wild-fires (Horton et al., 1998). Early successional
strategy was also proposed for species from the /pisolithus-
scleroderma lineage (Gardner & Malajczuk, 1988; Thompson
et al., 1994). However, the situation here may be more difficult,
because species from both Pisolithus and Scleroderma have been
widely used in commercial inoculation programmes and may have
been co-introduced intentionally (Sulzbacher et al., 2018). The
documented ability of EcMF from all these lineages to grow on
early-successional sites can be potentially explained by ease of
germination of their spores and infectivity from small amounts of
spores (Nara, 2009), but to identify particular functional traits
that would explain why EcMF with pioneering life strategy more
often become naturalized is beyond the scope of our study.

We also identified several EcMF lineages, such as /boletus,
/russula-lactarius and /cortinarius, where the proportion of natural-
ized species was lower than expected by chance. Members of these
lineages more often occur in late successional, mature forests
(Table S2) and are known to colonize new hosts mostly through
mycelial growth and to establish less easily from spores (Nara, 2009).
Also, only a very few species of these groups can be isolated into pure
culture and these few are very difficult to maintain. However, the
alien EcMF can sometimes also recruit from the late successional
fungi, such as Amanita muscaria and A. phalloides, which are
frequently reported as co-introduced (Vellinga et al., 2009) with
ability to invasively spread into native vegetation in North America
(Wolfe et al., 2010) and New Zealand (Orlovich & Cairney, 2004;
Dickie & Johnston, 2008). Although simpler recognizability of
A. muscaria andA. phalloidesmay causeover-reporting on introduced
sites relative to more cryptic EcMF species, it is clear, that late
successional fungi may also naturalize outside the native range.

Importantly, our results based on the analysis of environmental
DNAare in accordancewith data provided by fruiting body surveys
summarized in Vellinga et al. (2009). Re-analysis of Vellinga et al.’s
(2009) data showed also a greater share of alienEcMF than expected
by chance inEcMFgenerawith early successional strategy (Fig. S1).
We believe that such concordance between sequencing-based data
and fruiting body surveys gives strength to our conclusion that early
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Fig. 1 Number of naturalized and all
ectomycorrhizal fungal species hypotheses
(SH; a molecularly defined fungal taxa used as
a substitute of biological species) in different
ectomycorrhizal fungal lineages. Numbers on
left and right sides of the row bars indicate
sums of naturalized and all ectomycorrhizal
fungal SHs per lineage, respectively. Numbers
on the x-axis correspond to the share of
naturalized SHs in different ectomycorrhizal
fungal lineages. Arrows indicate significant
deviation of naturalized ectomycorrhizal fungi
numbers from randomdistribution. Up arrows
indicate overrepresentation and down arrows
indicate underrepresentation. ↑↑↑, P < 0.001;
↑↑, P < 0.01; ↑, P < 0.05.
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successional EcMF are better adapted to become naturalized than
other EcMF. What particular traits associated with early succes-
sional strategy play the most fundamental role in alien EcMF
introductions, remains an open question.
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