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Abstract Our ability to predict invasions has been

hindered by the seemingly idiosyncratic context-

dependency of individual invasions. However, we

argue that robust and useful generalisations in inva-

sion science can be made by considering ‘‘invasion

syndromes’’ which we define as ‘‘a combination of

pathways, alien species traits, and characteristics of

the recipient ecosystem which collectively result in

predictable dynamics and impacts, and that can be

managed effectively using specific policy and man-

agement actions’’. We describe this approach and

outline examples that highlight its utility, including:

cacti with clonal fragmentation in arid ecosystems;

small aquatic organisms introduced through ballast

water in harbours; large ranid frogs with frequent

secondary transfers; piscivorous freshwater fishes in

connected aquatic ecosystems; plant invasions in

high-elevation areas; tall-statured grasses; and tree-
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S. Canavan � F. Essl � L. C. Foxcroft � P. Genovesi �
H. Hirsch � C. Kueffer � J. J. Le Roux � J. Measey �
N. P. Mohanty � T. B. Robinson � W.-C. Saul �
R. T. Shackleton � F. A. Yannelli � J. R. U. Wilson

Centre for Invasion Biology, Department of Botany and

Zoology, Stellenbosch University, Stellenbosch, South

Africa

A. Novoa � S. Canavan � D. Moodley � J. R. U. Wilson

South African National Biodiversity Institute,

Kirstenbosch Research Centre, Claremont, South Africa

P. Pyšek
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University, Viničná 7, 128 44 Prague, Czech Republic

L. A. Meyerson

Department of Natural Resources Science, The University

of Rhode Island, Kingston, RI, USA

S. Bacher � H. Müller-Schärer
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feeding insects in forests with suitable hosts. We

propose a systematic method for identifying and

delimiting invasion syndromes. We argue that inva-

sion syndromes can account for the context-depen-

dency of biological invasions while incorporating

insights from comparative studies. Adopting this

approach will help to structure thinking, identify

transferrable risk assessment and management les-

sons, and highlight similarities among events that were

previously considered disparate invasion phenomena.

Keywords Biological invasions � Context

dependency � Invasion science � Invasive species

Introduction

A major challenge in invasion science is to identify

general patterns that help us to predict, prevent and

manage biological invasions. To this end, recent

research has focused on identifying pathways by

which alien taxa are likely to be introduced and

disseminated (Reichard and White 2001; Hulme 2009;

Essl et al. 2015; Pergl et al. 2017; Saul et al. 2017),

alien taxa most likely to become invasive and cause

impact (Hayes and Barry 2008; Tingley et al. 2010;

van Kleunen et al. 2010; Pyšek et al. 2012b; Hawkins

et al. 2015; Kumschick et al. 2015; Bacher et al. 2018),

and environments that are particularly susceptible to

invasion and impacts from alien taxa (Chytrý et al.

2008a, b; Catford et al. 2012; Guo et al. 2015). Some

of the more robust and broadly applicable invasion

patterns (Pyšek and Richardson 2006) include: the

probability that invasion increases with propagule

pressure (Cassey et al. 2018); alien taxa with large

native ranges are more likely to become invasive and

cause impact than those with smaller ranges (Rejmá-

nek and Richardson 1996; Goodwin et al. 1999; Pyšek

et al. 2009; Shah et al. 2011); and isolated oceanic

islands are more susceptible to the establishment of

alien taxa than continental regions (van Kleunen et al.

2015; Dawson et al. 2017; Pyšek et al. 2017; Delavaux

et al. 2019). There are, however, many exceptions to

such generalizations (Kueffer et al. 2013). The prob-

ability of an invasion can be insensitive to propagule

pressures across a wide range of values (e.g. if

invasions are simply not possible due to incompatible

environmental conditions, or if an invasion is likely to

result from the introduction of a single propagule;

Bacon et al. 2014; Duncan et al. 2014). Similarly,

while the positive relationship between native range

size and the likelihood of an alien species becoming

established and/or causing an undesirable impact has

been demonstrated for some aquatic (Bates et al.

2013), bird (Duncan et al. 2001), mammal (Forsyth
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et al. 2004) and plant (Pyšek et al. 2009; Hui et al.

2011; Moodley et al. 2013; Potgieter et al. 2014;

Moodley et al. 2016; Novoa et al. 2016b) species, such

correlations are not always clear-cut (Jeschke and

Strayer 2006; Swart et al. 2018). New formulations

and fine-tuning of generalizations are thus needed

(Jeschke et al. 2012; Kueffer et al. 2013).

Two main approaches have been proposed to deal

with context-dependencies in ecology. Some authors

suggest focusing research efforts on finding relatively

simple general patterns at large scales (i.e. large

numbers of species, large spatial scales, or over long

time periods) (Lawton 1999; Hui et al. 2013; Prins and

Gordon 2014). However, such general patterns

informed by ‘big’ data have many exceptions and

are often heuristic—useful but with limited predictive

value. For example, they are not particularly helpful

when deciding whether a specific alien species of

potential commercial value can be imported or

whether it poses an unacceptable risk (Keller and

Kumschick 2017). Others have argued against seeking

generalizations and instead propose focusing on small

scales to collate and catalogue comprehensive case

studies containing more rigorous evidence (Crawley

1987; Sun et al. 2013; Simberloff 2014). The second

approach helps us understand and manage particular

invasions. However, studying each ongoing invasion

separately is incredibly costly (Dawson et al. 2017). It

is also unclear how insights gained from the increasing

numbers of case studies can be distilled to provide

general lessons for management.

In response to this challenge, Kueffer et al. (2013)

proposed that invasion scientists should focus on

identifying ‘‘typical recurrent associations of species

biology and invasion dynamics with particular inva-

sion contexts such as an invasion stage, invaded

habitat and/or socioeconomic context’’ (p. 616), which

they termed ‘‘invasion syndromes’’ (see Box 1 for a

list of definitions). The premise of ‘‘invasion syn-

dromes’’ is that no single combination of factors is

applicable to all invasions and determines which

management options are appropriate for all alien taxa

in the same way, but that it is still possible to find

useful general patterns (Perkins and Nowak 2013) that

characterize groups of invasion events. The key

challenge is to determine the shared context under

which generalizations are possible, robust, and useful

(Kueffer 2012).

The concept of ‘‘invasion syndromes’’ is often

confused with the traditional concept of ‘‘model

systems’’, defined by Kueffer et al. (2013) as ‘‘in-

depth research of particular invasions of particular

species or in a particular site’’ (p. 616). Model systems

are, however, groups of taxa/ecosystems that contain

many species/sites, have a long history of introduc-

tion/invasion, contain many species at different stages

of the continuum and/or a large literature exist on their

invasion, allowing for in-depth studies (e.g. Moodley

et al. 2013; Richardson et al. 2011). The results from

model system research may therefore allow us to

identify recurrent patterns of species-ecosystem

(pathways) interactions, i.e. ‘invasion syndromes’.

A revised definition

Here we revise the definition of an invasion syndrome

as ‘‘a combination of pathways, alien species traits,

and characteristics of the recipient ecosystem which

collectively result in predictable dynamics and

impacts, and that can be managed effectively using

specific policy and management actions’’ (Fig. 1). Our

definition builds on Kueffer et al. (2013), as well as

some more recent studies (McGeoch et al. 2016;

Wilson et al. 2018; Latombe et al. 2019a), in several

key respects. To improve our understanding of

biological invasions and how to best manage them,

the context of any invasion event must explicitly

consider human actions or pathways, the traits of the

introduced taxa (which determine their invasiveness),

and the characteristics of the recipient ecosystems

(which determine their invasibility), as well as any
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interactions between these factors (Wilson et al.

2018). We also specify the outcomes (i.e. invasion

dynamics and impacts) of invasion events in the

definition, with the intention that the invasion syn-

drome approach is explicitly designed to improve

management efficacy.

Pathways

Pathways are defined as ‘‘a combination of processes

and opportunities resulting in the movement of

propagules from one area to another’’ (Richardson

et al. 2011, p. 412). The different pathways by which

alien taxa are intentionally or unintentionally intro-

duced to areas outside their native range and/or spread

within their introduced range (Hulme et al. 2008) can

influence the dynamics of their invasion or impacts

(Lambdon and Hulme 2006; Westphal et al. 2008;

Wilson et al. 2009; Kueffer 2017; Pergl et al. 2017).

For example, since the number of individuals moved

and the frequency of these movements depend on the

characteristics of the pathway used, pathways are

intrinsically linked to colonization and propagule

pressure, which in turn influence invasion outcomes

(Lockwood et al. 2009, 2013). Some species might

also lack the opportunity to invade because no

pathway currently exists to move them beyond their

native range. Therefore, assessing particular pathways

of introduction and spread is crucial for enhancing

prevention and, more generally, for guiding policies

and management responses to invasions (Padilla and

Williams 2004; Hulme 2009; Kikillus et al. 2012; Essl

et al. 2015).

Pathways can be characterized in general terms

(e.g. ‘‘disseminated as ornamental plants’’), or more

specifically by identifying vectors involved in the

introduction of particular alien taxa from specific

donor regions (Hulme 2009; Novoa et al. 2017).

Whatever the level of pathway specificity, the goal

should be to provide insights of direct relevance for

management and policy. For example, identifying the

stakeholder groups associated with particular

Box 1 Glossary

Alien species traits A combination of attributes that defines alien species in terms of how they interact with the abiotic

environment and with other alien and native species

Case study An in-depth analysis of a specific invasion event and its related contextual conditions, invasion outcomes, and

response options

Characteristics of the recipient ecosystem A combination of abiotic and biotic features that defines the ecosystems where

invasion events might occur

Context The characteristics that form the setting for an invasion event, including the pathways of introduction, the alien species

traits, and the characteristics of the recipient ecosystem

Impact The environmental and socioeconomic changes that alien species cause in the recipient ecosystems. These impacts can be

desirable or undesirable depending on people’s values.

Invasion dynamics A description of the dynamics from introduction to invasion (e.g. a long lag phase, rapid long-distance

dispersal, and more generally the path to commonness). It can include both population-level properties like extent, local

abundance, and dispersal patterns, and community-level properties like biotic interactions

Invasion event The context and details of a particular alien taxon being introduced to a particular recipient environment and the

resulting invasion dynamics and impacts

Invasion syndrome ‘‘A combination of pathways, alien species traits, and characteristics of the recipient ecosystem which

collectively result in predictable dynamics and impacts, and that can be managed effectively using specific policy and

management actions’’. This means an invasion syndrome should be formed of generalisations that are as broad as possible, but

which are still robust and useful. Note: this is a development of the definition proposed by Kueffer et al. (2013) ‘‘typical

recurrent associations of species biology and invasion dynamics with particular invasion contexts such as an invasion stage,

invaded habitat and/or socioeconomic context’’

Invasion outcomes The consequences of an invasion event in terms of invasion dynamics and impacts

Response options The set of actions that can be used to manage the outcomes of invasion events or to prevent them from

happening in the first place

Pathways A combination of processes and opportunities that result in the human-mediated movement of alien taxa from one area

to another
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pathways can provide valuable data about the charac-

teristics of each pathway (e.g. the areas where the

species are moved to, and the identity and number of

species moved), and promote responsible behaviour

(Cole et al. 2019).

The Convention on Biological Diversity (CBD)

recently adopted a hierarchical system of classifying

introduction pathways in particular (Hulme et al.

2008; CBD 2014). This is being applied in the

implementation of the European Union Regulation

1143/2014 on invasive alien species and is being used

in South Africa for its national-level reporting on

biological invasions (van Wilgen and Wilson 2018).

While these are important and increasingly used

classification schemes, it is often also important to

explicitly consider key characteristics of the introduc-

tion pathways, for example, the frequency of intro-

duction, the vectors involved, and the likelihood of co-

introduction of different alien species (Wilson et al.

2009).

Alien species traits

Species traits are attributes that relate to how species

interact with the abiotic environment and with other

species (Dı́az and Cabido 2001). Possessing certain

traits conveys advantages for alien species [e.g. alien

plants with longer flowering durations tend to be more

likely pollinated (Cadotte et al. 2006), and therefore

more invasive]. Research on how traits differ among

species has been a topic of particular interest in

invasion science because it is thought that identifying

and comparing species traits associated with invasion

dynamics and impact can improve the prediction and

management of invasions. Such research has sought to

link species traits with invasion outcomes (Pyšek and

Richardson 2007; Pyšek et al. 2009; Capellini et al.

2015; Mahoney et al. 2015; Gallien and Carboni

2017), impacts (Nentwig et al. 2010; Pyšek et al.

2012b; Elleouet et al. 2014; Novoa et al. 2016b;

Measey et al. 2016), and policy and management

Fig. 1 An invasion syndrome is defined as a combination of
pathways, alien species traits, and characteristics of the
recipient ecosystem which collectively result in predictable dy-
namics and impacts, and that can be managed effectively using
specific policy and management actions. For it to be coherent,

the shared characteristics (pathways, alien species traits, and

characteristics of the recipient ecosystem) must result in

predictable outcomes (regarding invasion dynamics and

impacts) which in turn can be best managed using similar

management or policy responses. This means an invasion

syndrome should be created from generalizations that are as

broad as possible, but which are still robust and useful. The

invasion context is displayed here on three vertical axes (i.e.

vertical black bars) that range from general (at the top) to

specific (at the bottom). For example, the alien species traits

axis could vary (top/general to bottom/specific) from all aquatic

species, to aquatic species within a specific genus, to congeneric

freshwater species within a specific body size range. The

positions along the axes (i.e. black boxes) are adjusted so that all

invasion events within the selected context result in similar

outcomes and response options. A change in any one of the

axes, or a change in the outcomes or response options that are to

be encompassed by the invasion syndrome, will likely affect all

other aspects of the framework, which means that circumscrib-

ing a syndrome is an iterative process
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actions (Murray et al. 2011; Novoa et al. 2015a).

Within the invasion syndrome approach, a wide

variety of alien species traits (from life-history traits

to behavioural traits or ecological preferences; see

Supplementary information for examples) can be

selected to adjust the context.

Characteristics of the recipient ecosystem

The biotic and abiotic characteristics of the recipient

ecosystem, including its anthropogenic modifications

(Kueffer 2017), influence alien species’ invasion

dynamics and impact (Hood and Naiman 2000;

Denslow 2003; Riley et al. 2005; Johnson et al.

2008; Catford et al. 2009; Vermonden et al. 2010;

Pyšek et al. 2012b, 2017). A wide range of character-

istics of the recipient ecosystem can be important:

from broad classifications such as biome types

(Campbell 1996), ecoregions (Olson and Dinerstein

2002; Abell et al. 2008) or habitats (Chytrý et al.

2008a, b; Latombe et al. 2019b), to more specific

abiotic (e.g. altitude, precipitation or nutrient avail-

ability; Chytrý et al. 2008a, b), biotic (e.g. native

biodiversity or abundance of mutualists or natural

enemies; Le Roux et al. 2017; Latombe et al. 2018;

Hui and Richardson 2019) or socioeconomic charac-

teristics and processes (e.g. national wealth or human

population density; Pyšek et al. 2010). Biotic and

abiotic matches between the donor and the recipient

ecosystems can also influence the outcomes of inva-

sions (Thuiller et al. 2005; Gallien et al. 2015; Hui

et al. 2016), their impact (Ricciardi and Atkinson

2004), and management (Sun et al. 2017).

Outcomes

To be considered as an invasion syndrome, the

invasion events defined by the context (i.e. the

pathways, alien species traits, and characteristics of

the recipient ecosystem) must result in similar out-

comes, i.e. they must share similar invasion dynamics

or cause similar impacts. In other words, the outcomes

of an invasion event defined by the context need to be

predictable. Invasion dynamics refer both to the

dynamics from introduction to invasion [e.g. a long

lag phase, rapid long-distance dispersal, and more

generally the path to commonness (McGeoch and

Latombe 2016)]; to general properties like extent, local

abundance, dispersal patterns; and potentially, biotic

interactions (Hui and Richardson 2017). Impacts refer

to a wide range of both positive and negative environ-

mental and socioeconomic changes that invasive alien

species can cause in the social-ecological systems to

which they are introduced (Shackleton et al. 2007;

Binimelis et al. 2008; Kull et al. 2011; Vilà et al. 2011;

Pyšek et al. 2012b; Gallardo et al. 2016; Gallien et al.

2017; Zengeya et al. 2017). For example, depending on

the context, invasive alien species can cause changes in

the biodiversity or the ecosystem properties of the

invaded areas (Pyšek et al. 2012a; Blackburn et al.

2014), or affect human well-being (Vilà and Hulme

2017; Bacher et al. 2018, Shackleton et al. 2019). These

impacts result, in part, from the invasion dynamics

themselves (e.g. extent, abundance, dispersal, and

biotic interactions).

Response options

The context and outcomes associated with a particular

syndrome will affect the set of suitable response

options for managing invasions. For an invasion

syndrome to be of practical value, there have to be

some general rules as to which management responses

are effective to deal with invasion events included in

the syndrome. This might include steps taken to

prevent invasive alien species from entering a new

area; if introduced, efforts to remove species before

they become widely established; and if species are

widely established, and it is no longer possible to

remove them, actions to limit negative impacts while

retaining any benefits (van Wilgen et al. 2011;

Shackleton et al. 2017; Novoa et al. 2019).

Examples of invasion syndromes

Invasion syndromes occur across a broad range of

taxonomic groups and environments (see Fig. 2 for a

schematic summary), and in the following section we

discuss seven examples to highlight this diversity.

A. Cacti with clonal fragmentation in arid

ecosystems

The Cactaceae family contains 1919 species of

succulent plants (Novoa et al. 2015b), almost all of

which are endemic to the Americas (Novoa et al.

2016a). Fifty-seven cactus species are currently listed
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as invasive around the world (Novoa et al. 2015b).

While all cacti have thick, fleshy and swollen stems

and/or leaves, and are adapted to dry environments

[and so primarily invade arid recipient ecosystems

(Anderson 2001)], invasive cacti share several species

traits that include large native range size, spread by

clonal fragmentation, and spines (Novoa et al. 2016b).

They were introduced and spread along similar

pathways—historically a few taxa were used for

food, fodder, as barrier plants, or for cochineal

production; and more recently a wide range of species

have been introduced and spread for horticulture

(Novoa et al. 2016a). Once introduced, they often have

similar invasion dynamics and impacts. Due to the

presence of spines and fragments, invasive cacti can

attach and disperse via animals, clothes or equipment.

The resulting small clumps expand rapidly through

vegetative growth, and coalesce to form monocul-

tures, resulting in impenetrable thickets with negative

impacts on biodiversity, ecosystem functioning,

resource availability, pastoralism, and human health

(Novoa et al. 2016b). Moreover, similar management

actions are highly effective in controlling invasions of

different cactus species (Novoa et al. 2019). Classical

biocontrol agents have been used to manage 28

invasive cactus species, achieving complete control

in many situations (i.e. no other management inter-

ventions are required to reduce impacts to an accept-

able level; Zimmermann et al. 2009). The cacti

syndrome is potentially extendable for all succulent

plants that reproduce vegetatively, have large native

ranges and spines, such as Agave species (Badano and

Pugnaire 2004).

B. Small aquatic organisms introduced through

ballast water in harbors

Ship ballast water is a specific introduction sub-

pathway as per the CBD’s scheme, categorized under

the broader transport-stowaway pathway category.

This pathway explicitly selects for particular species

traits, i.e. aquatic organisms with pelagic life stages

that are small enough to be taken up into ballast water

tanks, and that can survive the journey to a new

destination (Briski et al. 2014). Survival during

transport often correlates with high levels of pheno-

typic plasticity. The recipient ecosystems are inevi-

tably boat harbours and can be marine, estuarine or

freshwater. As such, the invasion dynamics initially

have some similarities, whereby entire pelagic com-

munities are taken up in one or more locations and

transferred to a new location. Alien species establish

in these artificial habitats and expand from these points

of entry. Thus far, there is not enough information on

the common impacts of these invasion events. Var-

ious response options have been proposed but

managing invasions reactively has been found to be

mostly infeasible in marine systems. Therefore, the

focus has been on preventing introductions through

monitoring and pathway management (Ojaveer et al.

2015). Although the Ballast Water Convention came

into force in 2017 with the aim of minimizing the

biosecurity risk associated with ballast water, it is yet

to be fully implemented. Ultimately, it is envisaged

that vessels will carry an international ballast water

management certificate, demonstrating compliance

with ballast management standards, including the

use of on-board ballast water treatment units.

C. Large ranid frogs with frequent secondary

transfers

Ranoidea is a superfamily of frogs that contain

seventeen different families. Ten ranid species within

the genera Lithobates and Hoplobatrachus have been

recorded as invasive in many climatic zones (includ-

ing arid regions). These invaders share the same

pathways of introduction—intentional introductions

for consumption and the pet trade (Tingley et al.

2010), or as contaminants in aquaculture (Mohanty

and Measey 2019). Once introduced, they often

disperse through natural spread between lentic water

bodies, although intentional human-mediated trans-

fers often also occur. In terms of species traits they

tend to have large body sizes ([ 100 mm snout-vent

length). They are environmentally constrained to

breeding in static water bodies, and so recipient

ecosystems with aquatic impoundments, e.g. agricul-

tural impoundments, can be a prerequisite for an

invasion. Invasive large ranid frogs impact native

biodiversity by predating on invertebrates and small

vertebrates, serving as reservoirs of diseases, and

competing with other anurans during the larval stage

(Measey et al. 2016). Removal of metamorphs and

juveniles was identified to be the best management

intervention (Govindarajulu et al. 2005).
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D. Piscivorous freshwater fishes in connected

aquatic ecosystems

Fishes are among the most widely introduced alien

vertebrates and their invasions are a global problem

because of their importance in fisheries, aquaculture,

recreational fishing and the global pet trade (Cucher-

ousset and Olden 2011; Dawson et al. 2017). Pisciv-

orous freshwater fishes (e.g. rainbow trout

Onchorhynchus mykiss, largemouth bass Micropterus

salmoides), are mainly introduced through intentional

pathways (e.g. for enhancing fisheries) and are mostly

released outside of captivity, with high propagule

pressure, to provide opportunities for recreational

fishing (Cucherousset and Olden 2011). Establishment

depends on the interaction between the recipient

ecosystem and species traits, including reproductive

strategy and physiological tolerance (Marchetti et al.

2004). They primarily invade connected aquatic

ecosystems (Marchetti et al. 2004; Ruesink 2005) and

inter-catchment movement is dependent on human

activity resulting in direct releases, escape or dispersal

via infrastructural opportunities, e.g. inter-basin water

transfers (Ellender and Weyl 2014).

The impacts of piscivorous freshwater alien fish

invasions often include hybridization with native

species, introduction of disease, and extirpations of

native taxa by direct predation (Cucherousset and

Olden 2011). Fishes are extremely difficult to eradi-

cate once established. Methods such as dewatering,

manual removal and the use of piscicides are only

practical in small and relatively isolated habitats

(Britton et al. 2011). Moreover, management of

established piscivorous freshwater fishes can be

contentious because of conflicting values of stake-

holders (Zengeya et al. 2017). For this reason, the

management of invasive fishes focusses on prevent-

ing further introductions and limiting their spread. To

guide this process, considerable research has focussed

on developing the widely applied Fish Invasiveness

Screening Kit (FISK) which evaluates invasion risk

(Copp 2013). Retrospective assessments of the FISK

have found the tool relatively robust in predicting

successful invaders (Vilizzi et al. 2019).

E. Plant invasions in high elevation areas

Most human-mediated introductions of alien plants

are to low- or mid-elevation areas (Alexander et al.

2011; McDougall et al. 2011). As a result, invasive

alien plants are rarely mountain specialists, and high

elevation areas are generally less invaded than other

ecosystems (Chytrý et al. 2008b, 2009; Pauchard et al.

2009). Most invasive plant species in high elevation

areas share the same pathways of introduction, since

they are species that were initially introduced to low or

mid-elevation areas and were then able to spread to

higher elevations along roads or other transport

corridors, either through their own dispersal or aided

by human disturbance, construction, or livestock

movements. They also share the species trait of a

broad climatic tolerance, which allows them to

establish in high elevation recipient ecosystems

(Leger et al. 2009; Monty and Mahy 2009; Alexander

et al. 2011; Haider et al. 2011; McDougall et al. 2011;

Gallien et al. 2016). The outcomes of such invasions

are typified by the spread from lower to higher

altitudes, with impacts on soil properties and native

communities along the way (Alexander et al. 2016).

Therefore, when planning the management of plant

invasions in high elevations at regional scales, the

major goal should be to monitor the presence of alien

plants along roadsides and limit their spread (Pauchard

and Alaback 2004). This syndrome of ‘‘plant invasions

in high elevation areas’’ might be extended to other

areas with harsh climates, low propagule pressure and

low human populations, such as polar ecosystems.

It is important to note that those species that are

specialists in high elevation areas might be intention-

ally introduced directly to other high elevations

(instead of low- or mid-elevations) outside their native

range in the future, e.g. through the intensification of

agriculture, as ornamental or forestry plants, for the

restoration of ski runs, or for managed relocation

(McDougall et al. 2011). If this happens and some of

the intentionally introduced species become invasive,

then the syndrome of ‘‘plant invasions in high

elevation areas’’ will become outdated.

F. Tall-statured grasses

Tall-statured grasses include grasses that reach heights

of at least 2 m (*8.6% of grasses; 929 species

scattered among 21 tribes in seven subfamilies;

Canavan et al. 2019). Tall-statured grasses share

similar pathways of introduction outside their native

range (e.g. for use as biomass feedstock and for

bioenergy crops). Moreover, typical species traits that
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confer tall-statured grasses their invasion success

include high biomass production and accumulation,

dual reproductive modes, and a generally great

anthropogenic interest (Canavan et al. 2017, 2019).

Although they can invade different ecosystems (e.g.

grasslands, wetlands and forests), invasions by tall-

statured grasses often have similar outcomes (e.g.

high rates of resource acquisition, competitive exclu-

sion of understory plants, and light reduction) related

to their production of biomass. It remains to be

assessed whether this group of grasses can be

addressed with similar policies or management

actions. However, since the traits of invasive tall-

statured grasses are very specific, targeted risk

assessments should probably be developed. It seems

likely that the tall-statured grasses syndrome can be

extended to include some other tall species within the

order Poales, such as species from the Juncaceae or

Cyperaceae families, but this is still to be explicitly

tested. Additionally, Canavan et al. (2019) found that

species in the subfamily Bambusoideae (woody bam-

boos; tribes Arundinarieae and Bambuseae) have

lower rates of naturalization compared to other tall-

statured grasses, seem to invade predominately forest

ecosystems post-disturbance, and species within the

group typically receive lower risk scores in risk

assessments, suggesting that bamboos might be a

distinct invasion syndrome.

G. Tree-feeding insects in forests

with suitable hosts

Tree-feeding insects are prominent as invasive

species. For example, 455 and 400 non-native tree-

feeding species are recorded in the USA (Aukema

et al. 2010) and Europe (Roques et al. 2016) respec-

tively. They are mainly introduced through uninten-

tional pathways, associated with live plant imports,

machinery, roundwood, sawn timber, sea containers,

ships or wood packaging materials (Roques 2010).

Once introduced, their secondary spread is generally

facilitated by anthropogenic dispersal, such as the

movement of wood (e.g. wood for campfires or home

heating) or attached to live ornamental trees (Brock-

erhoff and Liebhold 2017). Tree-feeding insect inva-

sions share similar species traits. Asexual

reproduction or inbreeding strategies help to avoid

mate-finding failure (Liebhold et al. 2016), and most

tree-feeding insects are host-specific, i.e. they only

feed on their natural hosts or closely related trees.

Therefore, introduced species are only able to estab-

lish when their recipient ecosystems present suit-

able hosts (Brockerhoff and Liebhold 2017), and

phylogeographic patterns can help to predict host

suitability (Gilbert et al. 2012), i.e. the most likely

donors of invasive tree-feeding insects are from

related biogeographic regions. Once established, they

often have similar invasion dynamics. For example,

they often exhibit long lag phases between establish-

ment and impact (Roques et al. 2016). These can be

due to an initial low habitat suitability, or to the need to

reach high densities before their presence and impacts

are detected.

Tree-feeding insect invasions are among the great-

est threats to forests worldwide (Liebhold et al. 1995),

causing highly visible impacts, such as severe defo-

liation, mortality or reduced growth (Morin and

Liebhold 2016). These impacts can, in turn, facilitate

non-host tree species, causing changes in tree compo-

sitions or indirect effects on other species in the food

web. They can also affect other characteristics of the

invaded forests, such as carbon and nitrogen flows,

carbon sequestration and storage or light penetration.

These impacts pose an existential threat to forestry in

some areas (Wingfield et al. 2015; Brockerhoff and

Liebhold 2017). Finally, by killing street trees and

those in gardens, tree-feeding insects can affect both

property values and people’s sense of place (Shack-

leton et al. 2019).

The exchanges of tree-feeding insect species

among world regions is increasing, leading to an

increasing number of established non-native tree-

feeding insect species. For example, in the USA, on

average, two new species are detected each year

(Aukema et al. 2010). Several specific tools are

available to assist with managing such invasions.

For example, phylogenetic relationships can help to

predict host suitability (Gilbert et al. 2012), i.e. are

most likely to come from regions that are biogeo-

graphically and climatically similar to the introduced

regions. DNA barcoding can help detect immature

stages, such as eggs and larvae, at the ports of entry

(Ball and Armstrong 2006), and pheromones can help

in detecting and monitoring post-border (Myers and

Hosking 2002, Suckling et al. 2005).
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A method to identify further invasion syndromes

To facilitate the identification of additional invasion

syndromes, we propose a systematic method for their

circumscription and confirmation (Latombe et al.

2019a), based on the premise that an invasion

syndrome should be formed of generalizations that

are as broad as possible, but which are still robust and

useful (Fig. 3). Often the starting point is to identify

invasion events with similar contexts, i.e. pathways,

species traits, and characteristics of the recipient

ecosystem. However identifying similar outcomes

and responses might also be a useful starting point. If

the invasion events classified into a putative syndrome

vary in the context, outcomes or appropriate

responses, then the syndrome needs to be adjusted

until it encompasses the invasion events. Putative

invasion syndromes should be made progressively

more general (i.e. by including more invasion events),

and if the context, outcomes, and responses still fit the

expanded set of invasion events, then the more general

invasion syndrome should be preferred. In other

words, the more specific the invasion syndrome, the

less useful it is.

The invasion syndrome approach thus helps to

determine under which situations it is meaningful to

generalize, and so make predictions about biological

invasions—this is crucial if management lessons are to

be shared. We argue that jointly considering groups of

invasion events presenting similar management

requirements is the only practical way of dealing with

the growing numbers of alien species (OEPP/EPPO

2008; van Wilgen et al. 2011). The invasion syndrome

approach can facilitate the transfer of lessons between

invasion events; for example, transferring insights

from Australian Acacia spp. (van Wilgen et al. 2011),

Pinus spp. (Nuñez et al. 2017) and Prosopis spp.

(Shackleton et al. 2017) between regions of introduc-

tion. Moreover, grouping invasion events according to

their context and outcomes can identify not only

common management goals but also shared stake-

holders, thereby potentially simplifying decision-

making processes (Novoa et al. 2016a, 2018). We

believe that the approach outlined here will provide

new insights into the drivers of invasion dynamics;

help establish management priorities; and identify

more accurate, efficient and transferable management

responses. Applying invasion syndromes paves the

way for easier sharing of information among

stakeholder groups to reveal and identify solutions

for new or extant invasions. Incorporating invasion

syndromes into decision-making may also help to link

practitioners and managers working on different taxa

or in regions or ecosystems that, perhaps unknow-

ingly, are actually dealing with similar problems.

Testing the approach

The concept of invasion syndromes remains to be

tested empirically. Although data on the characteris-

tics that define the context for an invasion syndrome

are becoming more accessible, challenges remain.

Information on pathways of introduction and sec-

ondary spread is not always available, in particular on

their quantitative aspects such as when, how often, or

how many individuals are introduced or dispersed. On

the other hand, data on species traits are becoming

more accessible due to the development of trait

databases that encompass a large number of taxa

(Supplementary information). For example, the global

TraitBank database contains data on more than 330

different traits for 1.7 million species (Parr et al.

2016). However, data quality remains an issue,

especially: if the methodology used to measure the

traits is not indicated; if traits are not comparable

because they are measured differently or in different

contexts; if it is unclear whether traits were measured

in the native or the alien range; or if trait databases

ignore geographic variations in trait values (Yesson

et al. 2007; Robertson 2008; Moravcová et al. 2010).

Moreover, trait databases often have data for a limited

number of species or have many missing values. Such

data gaps make it difficult to define a syndrome for a

large group of species or invasion events.

Information on the outcomes of invasion events is

also becoming increasingly available for a large

number of taxa (Zenetos et al. 2005; van Kleunen

et al. 2015; Pyšek et al. 2017). For example, the

recently released Global Naturalized Flora (GloNAF)

database contains information on the distribution of

more than 13,000 naturalized alien species in more

than 1000 regions of the world (van Kleunen et al.

2015, 2019; Pyšek et al. 2017). The Global Register of

Introduced and Invasive Species (GRIIS), supported

by the Secretariat of the Convention on Biological

Diversity, currently provides checklists of naturalized

and invasive species for 20 countries, and aims to soon
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provide checklists for most countries globally (Pagad

et al. 2018). This is, however, a very coarse measure

(i.e. naturalized vs. invasive) at relatively large scales

(i.e. country level) and only represents a ‘‘snapshot in

time’’ since many species are still progressing along

the introduction—naturalization—invasion contin-

uum (Pyšek et al. 2012a). GRIIS also conflates the

concepts of spread and impact when defining a species

at a site as invasive (whereas in reality and practice

spread and impact are mediated by different factors).

A coordinated monitoring and reporting scheme with

standard metrics is clearly needed at the global level

(Latombe et al. 2017). More precisely defined cate-

gorizations (e.g. the 11 categories proposed by

Blackburn et al. 2011 to identify the invasion stage

of any invasion event) or population dynamics metrics

(Leung et al. 2012), at finer scales, are preferable for

characterizing invasion syndromes.

A number of analytical approaches could be used

for quantitatively identifying invasion syndromes. As

one example, machine learning techniques (see Kelle-

her et al. 2015 for a detailed review) are possibly the

most powerful approaches for identifying invasion

syndromes (even with the current limitations). Unsu-

pervised clustering techniques (e.g. hierarchical clus-

tering, k-means clustering, etc.) could be applied to

data describing the context, outcomes and response

options of invasions (Fig. 1). While this approach

ignores the links between the three facets of an

invasion syndrome, as shown in Fig. 1, such links

could be specified via numerous regressions between

multiple response variables (i.e. outcomes and re-

sponse options) and multiple predictor variables

(context) and a clustering method applied to these

regressions (Qin and Self 2006). Alternatively, super-

vised classification techniques could be used (e.g.

Random Forest, Support Vector Machines, and Arti-

ficial Neural Networks). Data representing the con-

text, outcomes and response options would be

collected for a training set of invasion events, which

researchers would have already assigned to a prede-

fined invasion syndrome (e.g. cacti with clonal

fragmentation in arid ecosystems). Then, a test dataset

for a collection of invasion events not yet assigned to

any invasion syndrome (e.g. succulents with clonal

fragmentation in arid ecosystems) would be fed into

the model to determine their possible affiliation to this

invasion syndrome. Machine learning techniques are

already widely used in invasion science; for example

to predict the invasion stage of alien plants using trait

and biogeographical data (Chen et al. 2015), to predict

eradication success (Xiao et al. 2018), and to identify

the source of ballast water using bacterial species

composition (Gerhard and Gunsch 2019).

Conclusion

We believe the invasion syndrome approach is a

dynamic, composite, and repeatable way of account-

ing for context-dependencies within invasion science.

Its application will facilitate a more mechanistic and

predictive understanding of biological invasions,

thereby offering better guidelines for management.

We suggest that developing and refining invasion

syndromes should be a key activity of the ‘‘global

networks for invasion science’’ proposed by Packer

et al. (2017).
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European map of alien plant invasions, based on the

quantitative assessment across habitats. Divers Distrib

15:98–107

Cole E, Keller RP, Garbach K (2019) Risk of invasive species

spread by recreational boaters remains high despite wide-

spread adoption of conservation behaviors. J Environ

Manag 229:112–119

Copp GH (2013) The Fish Invasiveness Screening Kit (FISK)

for non-native freshwater fishes—A summary of current

applications. Risk Anal 33:1394–1396

Crawley MJ (1987) What makes a community invasible? In:

Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization.

Succession and stability. Blackwell, Oxford, pp 429–453

Cucherousset J, Olden JD (2011) Ecological impacts of non-

native freshwater fishes. Fisheries 36:215–230

Dawson W, Moser D, van Kleunen M et al (2017) Global hot-

spots and correlates of alien species richness across taxo-

nomic groups. Nat Ecol Evol 1:0186

Delavaux CS, Weigelt P, Dawson W et al (2019) Mycorrhizal

fungi influence global plant biogeography. Nat Ecol Evol

3:424–429

Denslow JS (2003) Weeds in paradise: thoughts on the invasi-

bility of tropical islands. Ann Miss Bot Gard 90:119–127

Dı́az S, Cabido M (2001) Vive la difference: plant functional

diversity matters to ecosystem processes. Trends Ecol Evol

16:646–655

Duncan RP, Bomford M, Forsyth DM, Conibear L (2001) High

predictability in introduction outcomes and the geograph-

ical range size of introduced Australian birds: a role for

climate. J Anim Ecol 70:621–632

Duncan RP, Blackburn TM, Rossinelli S, Bacher S (2014)

Quantifying invasion risk: the relationship between estab-

lishment probability and founding population size. Meth

Ecol Evol 5:1255–1263

Ellender BR, Weyl OLF (2014) A review of current knowledge,

risk and ecological impacts associated with non-native

freshwater fish introductions in South Africa. Aquat Inva-

sions 9:117–132

Elleouet J, Albouy C, Ben Rais Lasram F, Mouillot D, Leprieur

F (2014) A trait-based approach for assessing and mapping

niche overlap between native and exotic species: the

Mediterranean coastal fish fauna as a case study. Divers

Distrib 20:1333–1344

Essl F, Bacher S, Blackburn TM et al (2015) Crossing frontiers

in tackling pathways of biological invasions. Bioscience

65:769–782

Forsyth DM, Duncan RP, Bomford M, Moore G (2004) Climatic

suitability, life-history traits, introduction effort, and the

establishment and spread of introduced mammals in Aus-

tralia. Conserv Biol 18:557–569

Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global
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Supplementary information. Examples of databases containing data on diverse alien species traits 
Name of the Database Trait data Organism Area Traits Number 

of taxa 
Link Reference 

Amniote life-history 
database 

Life history Birds, mammals, and 
reptiles 

Global 29 21 322 http://www.esapubs.org/archive/ecol/E096/269/ 1 

AmphiBIO Ecology, 
morphology and 
reproduction 
features 

Amphibians Global 17 6 500 https://doi.org/10.6084/m9.figshare.4644424 2 

AnAge Ageing and 
longevity 

Animals Global 3275 4244 http://genomics.senescence.info/species/ 3 

BIOTIC Biological Benthic species Global >40 590 https://www.marlin.ac.uk/biotic/ 4 
Carabids.org Hind wing 

development, 
trophic level and 
hunting abilities 

Carabids Global 3 10 000 http://carabids.org/ 5 

CLO-PLA3 Clonal growth 
and vegetative 
regeneration 

Plants Central 
Europe 

29 2 909 http://clopla.butbn.cas.cz/ 6 

Coral Trait Database Life history, 
phylogenetic 
and 
biogeographic  

Corals Global 158 1548 https://coraltraits.org/ 7 

Database of lotic 
invertebrate traits 

Ecology, 
morphology, 
behaviour, and 
physiology 

Invertebrates North 
America 

62 ca. 2200 - 8 

D³ Database Dispersal 
diaspore 

Plants Global 33 5000 www.seed-dispersal.info 9 

Ecological traits of New 
Zealand Flora 

Ecological Plants New Zealand 50-
55 

- http://ecotraits.landcareresearch.co.nz/ - 

FishBase Taxonomy, 
biology, trophic 
ecology, life 
history and uses 

Fishes Global 11 33 700 http://www.fishbase.org/search.php/ 10 

http://www.seed-dispersal.info/
http://www.fishbase.org/search.php


2 
 

FishTraits Database Trophic ecology, 
life history, 
habitat 
associations and 
tolerances 

Freshwater fishes United States >100 809 http://www.fishtraits.info/ 11 

FRED 1.0 Fine-Root 
Ecology  

Plants Global >300 1213 http://roots.ornl.gov/ 12 

freshwaterecology.info Autecological 
characteristics, 
ecological 
preferences and 
biological 

Freshwater fish, 
macroinvertebrates, 
macrophytes, 
diatoms and 
phytoplankton 

Europe 106 21 167 http://www.freshwaterecology.info/ 13 

Global Biotraits 
Database 

Thermal 
responses of 
physiological 
and ecological 

General Global 220 1508 http://biotraits.ucla.edu/ 14 

Life-history trait 
database of European 
reptile species 

Life history Reptiles Europe and 
neighbouring 
Asian and 
African 
countries 

ca. 
25 

122 - 15 

Marine Species Traits Biological, 
ecological, 
distribution and 
species’ 
importance to 
society 

Marine species Global 10 372 388 http://www.marinespecies.org/traits/ 16 

PanTheria Life history traits Mammals Global 30 5000 http://esapubs.org/archive/ecol/e090/184/ 17 
Phytotraits Functional traits 

such as N2 
fixation or 
buoyancy 

Phytoplankton Global 19 2549 https://www.riinaklais.com/phytotraits/ - 

Polytraits Morphological, 
behavioural, 
reproductive 
and larval 

Polychaetes Global 47 > 1000 http://polytraits.lifewatchgreece.eu/ 18 



3 
 

TraitBank General General Global >330 1.7 
million 

http://eol.org/traitbank/ 19 

Trait database for 
marine copepods 

Functional traits 
related to life 
missions, 
feeding, growth 
and 
reproduction 

Marine pelagic 
copepods 

Global 14 ca. 
10 800 

- 20 

Traits Habitat, life 
history, mobility, 
morphology and 
ecological 

Freshwater 
macroinvertebrates 

North 
America 

74 3857 https://www.epa.gov/risk/freshwater-biological-
traits-database-traits/ 

21 

TRY General Plants Global 1 800 148 000 https://www.try-db.org/ 22 
UConn Ornamental 

attributes, 
appropriate use, 
and 
identification  

Woody landscape 
plants 

North 
America 

29 557 http://hort.uconn.edu/ 23 
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