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Nestedness is frequently investigated to understand complex patterns of species
occurrences. Temperature (T) is commonly used for comparisons of nestedness of
different-sized datasets. However, the assumptions made for the standardization of this
metric have not been fully explored, particularly the effects of endemicity. Here we
show that T incorrectly indicates an increase in nestedness with the addition of non-
nested endemics to matrices that are not perfectly nested � a consequence of
standardizing matrix size by the product of species and sites. This problem is
common both to test matrices and to real matrices that are typically subjected to
nestedness analyses. The latter are often characterized by substantial numbers of
endemics and by variation in the numbers of endemics in different taxa. Standardizing
by occupancy resolves this problem, which is demonstrated using a derivative of
discrepancy, d1. A small modification to T, such that it standardizes matrices by
occupancy, would resolve the current problems with this nestedness metric.
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The distribution of species across a landscape can be

envisaged as a species by site matrix with varying levels

of occupancy. How species ranges overlap to produce the

pattern of matrix fill is an essential component of

understanding assemblage structure and the mechanisms

underlying it (Diamond 1975, Cutler 1998, Ovaskainen

2002, Bell 2003), and can be investigated from the

perspectives of variation in range size, beta-diversity,

and matrix nestedness (Gaston and Blackburn 2000). All

of these approaches have enjoyed increasing attention

over the last decade (Brown 1995, Wright et al. 1998,

Gaston 2003, Koleff et al. 2003). Nestedness analyses are

thought to be useful because they apparently expand

ecologists’ abilities to deal with complex patterns of

occurrence, and provide insight into the mechanisms

underlying these patterns, such as the relative impor-

tance of colonization, extinction and nested physiologi-

cal tolerances in generating assemblage-level patterns

(Cutler 1991, Atmar and Patterson 1993, Lomolino

1996, Cutler 1998, Mac Nally et al. 2002). Indeed,

nestedness analyses are now widely used to investigate

assemblage patterns and, because of their apparent

utility, are also being incorporated into assessments of

the effects of human disturbance on assemblages, and

into conservation planning (Boecklen 1997, Fernández-

Juricic 2002, Fleishman et al. 2002, Wethered and Lawes

2005).

Two recurrent themes in the nestedness literature are

which metric should be used to calculate nestedness

(there are various ways of doing so) and the randomiza-

tion procedure that should be applied to test for

significance of the metric (for review see Cutler 1998,

Wright et al. 1998, Gaston and Blackburn 2000). In the

former case, several major issues have been of concern,
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including the use of both unexpected presences and

absences to calculate a metric, the likelihood of un-

expected presences and absences given differential pat-

terns of species occupancy, and standardization for

matrix size to facilitate matrix comparisons (Patterson

and Atmar 1986, Cutler 1991, Wright and Reeves 1992,

Atmar and Patterson 1993, Cutler 1998, Cook and

Quinn 1998, Wright et al. 1998, Jonsson 2001). Owing

to their ability to account for these issues, the metric C,

which counts the number of times that a species’

presence at a site correctly predicts its presence at a

richer site (quantified by Nc), standardized for matrix

size (Wright and Reeves 1992), and the metric T, or a

measure of the disorder of a matrix (Atmar and

Patterson 1993), have been used extensively (Patterson

et al. 1996, Boecklen 1997, Sfenthourakis et al. 1999,

2004, Hadly and Maurer 2001, Fernández-Juricic 2002,

Fleishman et al. 2002, Mac Nally et al. 2002, Bruun and

Moen 2003).

Because nestedness metrics and the null models used

to assess their significance have received much attention,

and the use of T (and C) is now widespread, it might

seem obvious that investigations of nestedness can now

move beyond the stage of pattern documentation to a

more explicit understanding of underlying mechanisms.

Indeed, this is not only being done more commonly, but

the adoption of such an approach is widely advocated

(Lomolino 1996, Cutler 1998, Fleishman et al. 2002,

Bruun and Moen 2003). In both cases the implicit

assumption made is that the behaviour of these metrics,

and the associated randomization procedures, are rea-

sonably well understood � at least sufficiently well to

allow any potential artefacts to be readily comprehended

(reviewed in Wright et al. 1998). However, like other

ecological indices, nestedness metrics have the potential

to hide as much as they reveal. Therefore, they require

ongoing, careful scrutiny, such as that given to beta-

diversity measures (Koleff et al. 2003).

Recently, whilst comparing T values for different

higher taxa that occur on the Southern Ocean islands,

it became clear that T behaved in counter-intuitive ways,

especially when its values for different taxa were

compared across the same sets of islands (Greve et al.

2005). To further explore the likely origin of the counter-

intuitive results, we assessed the behaviour of T and C by

comparing these metrics for a series of presence�absence

matrices that we constructed specifically for this pur-

pose. Here, we present the results of these analyses and

demonstrate that the way in which T corrects for matrix

size is problematic. We show that as the numbers of non-

nested single occurrences (hereafter singletons) in a

matrix, which is not perfectly nested to begin with,

increase, and nestedness thus declines, T (Atmar and

Patterson 1995), and to a lesser extent C (Wright and

Reeves 1992), incorrectly indicate an increase in nested-

ness (or at best no decline in nestedness). Given that

most sets of islands or habitat patches are characterized

to varying degrees by single species occurrences (or

endemicity) (Wilson 1959, Paulay 1985, Ricklefs and

Bermingham 2002) (see also below), this characteristic of

T especially could prohibit a clear understanding of the

mechanisms underlying nestedness, especially in those

archipelagos or sets of habitat patches where large

numbers of endemic species are involved (Hawaii,

Wagner and Funk 1995, Grant 1998). Moreover, the

potential for obscuring understanding is particularly

large when levels of nestedness are compared amongst

archipelagos or amongst taxa. By examining three

methods of standardizing Brualdi and Sanderson’s

(1999) metric, d, for matrix size, we demonstrate the

reason why T behaves in the way it does. We also show

that one of the derivatives of d, d1, resolves the problems

caused by non-nested singletons, and argue that T can be

corrected in a similar fashion.

Methods

Test matrices

Three matrices with 20 islands and 20 species each were

produced: Perfectly Nested matrices (Fig. 1a), which

Atmar and Patterson (1993) define as matrices where

each smaller island contains only a proper subset of the

species found on all larger islands, RandomA matrices

(this matrix has several outliers and holes, Fig. 1b), and

RandomB matrices (more outliers and holes than

RandomA � Fig. 1c). The RandomA matrix was

specifically produced such that its nestedness, measured

with T, was within the range of significant nestedness

values of the real assemblages provided by Atmar

and Patterson (1995), and thus a realistic model

of assemblages occupying either islands or habitat
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Fig. 1. Three matrices which were constructed and subse-
quently altered to test the effect of singletons on nestedness
values. a) Perfectly Nested matrix. b) RandomA matrix. c)
RandomB matrix. By convention, sites are displayed in rows
and species are displayed in columns. Filled squares indicate
species presences.
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patches. RandomB has a nested value that is not

typical of many assemblages (though by no means

wholly unusual), but was specifically included for

illustrative purposes. The behaviour of T, C, and

derivatives of d were then assessed by varying the levels

of endemicity (5�19 endemics, and multiples of 19

endemics), and the positions of the endemics, in the

original matrices (Fig. 2). For assemblages such as birds

or insects on tropical islands these levels of endemicity

are not unusual (Diamond 1975, Adler and Dudley

1994, Wagner and Funk 1995, Ricklefs and Bermingham

2002). However, the 4�/diagonal matrices are somewhat

biologically unrealistic (though see Gillespie 2004). The

diagonal addition of endemics (or singletons) was non-

nested (i.e. singletons were always added to different

islands). Although endemicity is typically not spread

equally across all islands in a matrix, this is the only non-

nested manner in which singletons (endemics) can be

added to test the effect of singletons on matrices.

Assemblages are identical whether singletons are

presented in a diagonal or a random manner in a

matrix: the order in which singletons are added to

patches should not affect the measure of nestedness

obtained, because it is merely a factor of the arrange-

ment of islands and species in the matrix. The null

expectation is that nestedness should decline with

the addition of non-nested endemics to matrices that

are not perfectly nested. Nestedness was determined

using T (Atmar and Patterson 1993) calculated with

Atmar and Patterson’s (1995) temperature calculator, C

(Wright and Reeves 1992), and three derivatives of d

(Brualdi and Sanderson 1999).

Because d increases with the size of a dataset (Brualdi

and Sanderson 1999) it cannot be used for the compar-

ison of different-sized matrices. No metrics have been

derived from d which standardize the size of the datasets

analyzed. Hence, d0 and d1 were created here, while d2

was adapted from Wright et al.’s (1998) PN. The

equations for these three metrics are:

d0�dobs=dcheck (1)

d1�dobs=f (2)

d2�(dobs�dexp)=(dperf �dexp) (3)

where dobs is the nestedness of the original matrix, dcheck

is the discrepancy of a checkerboard matrix with the

same number of columns and rows as the original

matrix, f is the sum of the number of presences in the

matrix, and dexp is expected discrepancy, which equals

the mean discrepancy of, in this study, 10 000 randomly

generated matrices. The value of dperf (the discrepancy of

a perfectly nested matrix) is always zero and is only

shown here for completeness. While d0 and d1 decline,

d2 increases with increasing nestedness.

These three derivatives of d standardize for matrix size

in different ways. Therefore, they provide a means to

understand the effects of different standardization

approaches on the estimate of nestedness. Initial exam-

ination of the behaviour of T suggested that the

standardization approach might be responsible for

problems with estimates of nestedness when singletons

(or endemics) are present. Matrix size in T is compen-

sated for by dividing the measure of disorder by the

product of rows and columns, i.e. habitat patches and

species, of the matrix. To obtain C, Nc is not standar-

dized by the product of the number of habitat patches

and species, but only by a term containing the latter. The

value of dcheck is the product of the number of rows and

(a) 1s-right (b) 5-diagonal-down (c) 5-diagonal-up

(d) 5-diagonal-bottom (e) 10-diagonal

(f) 19-diagonal-down                       (g) 2x diagonals

(h) 3x diagonals

(i) 4x diagonals

(j) 19-diagonal-up

Fig. 2. Schematic representation of the twelve ways in which the
original matrices were altered in order to examine the effect of
single occurrences on measures of nestedness. In this example,
the original matrix from which the above matrices are derived is
the Perfectly Nested matrix (see Fig. 3a). By convention, sites
are displayed in rows and species are displayed in columns.
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the number of columns of the original matrix divided by

four. Like T, d0 is thus a function of the number of sites

(rows) and the number of species (columns) in the

dataset, i.e. the absolute matrix size, regardless of how

many species occur at each site or of species occupancy.

d1, on the other hand, is related to the number of

occurrences in the dataset only. It therefore assumes that

discrepancy increases as the number of species presences,

rather than the number of sites�/ species, increases. The

size of d2 is a function of the mean d of the random

matrices, which, in turn, is informative of the null model

used to generate the random matrices. In this particular

study, the null expectation was that some species are

more ubiquitous than others and therefore more likely to

be present than other species (Fischer and Lindenmayer

2002). The software used for calculating d and its

derivatives, and C, as well as their significance was

custom-written and is available from the authors on

request.

Real assemblages

As we demonstrate below, we found that T indicates an

increase in nestedness even with the addition of non-

nested singletons. A potential criticism of the matrices

we created to investigate the behaviour of the metrics is

that the incidence of singletons (and doubletons, or

species occurring twice, or tripletons, etc.) we used does

not reflect the natural situation. To obtain an idea of

how relevant these findings are to patterns in nature, the

incidence of singletons, doubletons and tripletons was

recorded in each of 173 presence�absence matrices that

are available with the temperature calculator (Atmar and

Patterson 1995). The same matrices that Boecklen (1997)

selected were used here, except that the files afrlm,

brazpfb, namlagc and bajapo were not available or

contained incomplete matrices, and that adfish,

afrmtbrd, amazfish, coloaqh, gbmam93, kadmon, mad-

bird, manuinf, parasite, punukb, saweevil and texaqh

were included. All the matrices used here are indepen-

dent, i.e. contain assemblages from different regions or

of different taxonomic groups. Type III generalized

linear models with a Poisson distribution and log link

function were used to explore the relationships between

each of the three combinations of singletons, doubletons

and tripletons (i.e. singletons vs doubletons, singletons

vs tripletons, and doubletons vs tripletons). A t-test was

used to examine the null hypothesis that the slopes of the

singletons:doubletons, singletons:tripletons and double-

tons:tripletons relationships are equal to one, i.e. that

assemblages always have similar numbers of singletons

and doubletons. If they have equal numbers of endemics,

doubletons or tripletons, then comparisons of nestedness

using T would not be problematic. However, as soon as

they have different numbers of these ‘‘rare’’ species, then

comparisons among them would be confounded because

of problems associated with T.

To further determine whether the problems we dis-

covered with T are likely to be encountered in analyses

of real data (as opposed to those of the test matrices),

nestedness values for published datasets were re-

analysed. Sfenthourakis et al. (1999, 2004) used T to

calculate nestedness of terrestrial snails and isopods on

the Aegean islands. In their first paper, Sfenthourakis

et al. (1999) calculated nestedness of all isopods and

snails, the taxa excluding singletons, and the taxa

without those species endemic to the archipelago as a

whole. In their second paper they measured nestedness

of isopods at different spatial scales � between sites on

islands, between sites of each of two island groupings

(Eastern and Kyklades), and between sites on all islands

(Sfenthourakis et al. 2004). In addition, they measured

the nestedness of entire island assemblages of the East-

ern and Kyklades groups, and of all islands. The

published T-values of the matrices were compared to

d1 and to C. The second analysis was of data from Greve

et al. (2005), who compared nestedness of seabird, land

bird, insect and vascular plant assemblages across

Southern Ocean Islands using d1. Here we re-analysed

the data of all species across all islands, also using T

and C.

Results

Test matrices

T and C

Any additions of singletons to the Perfectly Nested

matrix resulted in an increase in T, implying a decline in

nestedness (Table 1). Even the 1s-right matrix derived

from the Perfectly Nested matrix was less nested than the

original matrix, although it is perfectly nested (Fig. 2a).

In addition, T increased progressively as more singletons

were added to the Perfectly Nested matrix (Fig. 3a).

However, T always declined with singleton additions to

the RandomA and RandomB matrices (Table 1).

Although the sequential additions of singletons actually

enhances the departure from nestedness, T of the

RandomA and RandomB matrices declined with the

first two (5-diagonal and 10-diagonal) sequential addi-

tion of singletons, and only increased again from the 10-

diagonal to the 19-diagonal-down matrix (Fig. 3b, c).

Similarly, the metric C correctly indicated a decrease in

nestedness as 5, 10 and 19 singletons were sequentially

added to the nested matrix, but incorrectly suggested

that nestedness increased in the RandomA and Ran-

domB matrices (Table 1).

The 19-diagonal-down, 2�/diagonals, 3�/diagonals

and 4�/diagonals matrices are a series of matrices of

successive additions of complete rows of diagonals
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(Fig. 2f�i). As more diagonal rows were added to the

Perfectly Nested matrix, T increased (Fig. 4a). In the

case of the RandomA and RandomB matrices, the

addition of diagonals always led to a decline in T to

below the original value. Successive additions of diag-

onal rows initially resulted in a steep decline in T,

whereafter T stabilized (Fig. 4b, c). C indicated a similar

behaviour in nestedness (Table 1).

Five columns were added to the original matrices to

produce the 1s-right, 5-diagonal-down, 5-diagonal-up

and 5-diagonal-bottom matrices. Of these, the latter

always had the highest T, while the 1s-right matrices

always possessed the lowest T and highest C. The 5-

diagonal-up and the 5-diagonal-down matrices have

identical species compositions and differ only by virtue

of the fact that the positions of the singleton species

in the matrix that is fed into the calculator are inverted

(Fig. 2b, c). Accordingly, T of the 5-diagonal-down

and 5-diagonal-up Perfectly Nested matrices was iden-

tical. However, the two 5-diagonal RandomA and

RandomB matrices showed small differences in their

T values. To further explore this behaviour, the 19-

diagonal-up matrix, with the same species composition

as 19-diagonal-down, was created (Fig. 2f, j). None of

the complementary 19-diagonal-up and 19-diagonal-

down matrices possessed equal T values (Table 1). C

generated identical values for the complementary in-

verted matrices (Table 1).

d0

In several respects, d0 behaved similarly to T. Nestedness

of the Perfectly Nested matrices declined with any

additions of presences (i.e. d0 increased), with the

exception of the 1s-right matrix, where d0 remained

zero. d0 was greatest for the original RandomA and

RandomB matrices and declined with any additions to

the original matrices. Furthermore, sequential additions

of singletons (Fig. 2b, e, f) resulted in an increase in d0 of

the Perfectly Nested matrix, and a decline in d0 of both

random matrices (Table 1).

However, unlike T, d0 of the 5-diagonal-bottom

matrices did not differ or differed marginally from d0

of the 5-diagonal-down or -up matrices, because when d

is calculated, unexpected presences (or absences, for that

matter) are not weighted according to their distance

from the isocline of perfect nestedness. Moreover, d0

Table 1. Temperature (T), C and discrepancy (d) values, and percentage fill of the Perfectly Nested, RandomA and RandomB
matrices and their derivatives. A decline in T, d, d0 and d1 indicate increasing nestedness, whilst an increase in d2 and C indicate
increasing nestedness.

Matrix T C d d0 d1 d2 % Fill

Perfectly Nested
Original 0 1 0 0.000 0.000 1.000 52.5
1s-right 0.26 1 0 0.000 0.000 1.000 43
5-diagonal-down 2.61 0.969 5 0.040 0.023 0.898 43
5-diagonal-up 2.61 0.969 5 0.040 0.023 0.898 43
5-diagonal-bottom 9.61 0.845 5 0.040 0.023 0.898 43
10-diagonal 4.66 0.913 10 0.067 0.046 0.807 36.6
19-diagonal-down 13.38 0.786 19 0.097 0.083 0.666 29.3
2�/diagonals 18.99 0.687 38 0.129 0.153 0.450 21.1
3�/diagonals 22.74 0.611 58 0.147 0.216 0.296 17
4�/diagonals 25.03 0.551 77 0.156 0.266 0.203 14.5
19-diagonal-up 13.53 0.786 19 0.097 0.083 0.666 29.3

RandomA
Original 37.59 0.134 52 0.520 0.252 0.237 51.5
1s-right 23.99 0.339 52 0.416 0.246 0.267 42.2
5-diagonal-down 27.66 0.330 54 0.432 0.256 0.240 42.2
5-diagonal-up 27.47 0.330 54 0.432 0.256 0.238 42.2
5-diagonal-bottom 33.20 0.299 57 0.456 0.270 0.195 42.2
10-diagonal 26.85 0.399 57 0.380 0.264 0.226 36
19-diagonal-down 30.32 0.415 66 0.338 0.293 0.160 28.8
2�/diagonals 31.89 0.414 78 0.264 0.318 0.133 20.7
3�/diagonals 33.23 0.388 94 0.238 0.354 0.077 16.7
4�/diagonals 31.3 0.359 107 0.216 0.375 0.061 14.3
19-diagonal-up 30.24 0.415 66 0.338 0.293 0.159 28.8

RandomB
Original 54.49 0.071 67 0.670 0.381 0.019 0.071
1s-right 36.12 0.202 70 0.560 0.387 0.018 0.202
5-diagonal-down 40.23 0.198 72 0.576 0.398 �/0.010 0.198
5-diagonal-up 38.28 0.199 72 0.576 0.398 �/0.010 0.198
5-diagonal-bottom 47.94 0.181 71 0.568 0.392 0.003 0.181
10-diagonal 38.09 0.253 75 0.500 0.403 �/0.008 0.253
19-diagonal-down 39.1 0.278 81 0.415 0.415 �/0.014 0.278
2�/diagonals 37.22 0.287 91 0.308 0.423 0.017 0.287
3�/diagonals 37.2 0.271 105 0.266 0.447 0.008 0.271
4�/diagonals 35.47 0.251 120 0.242 0.471 �/0.006 0.251
19-diagonal-up 38.63 0.278 81 0.415 0.415 �/0.015 0.278
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increased continuously with the sequential addition of

singletons and with the addition of diagonal rows. d0

was identical for all complementary 5-diagonal-down

and -up, and 19-diagonal-down and -up matrix pairs

with identical species compositions (Table 1). This is a

direct result of d being identical for these complementary

matrices.

d1 and d2

When measured using d1 and d2, additions of presences

to the Perfectly Nested matrix resulted in a decrease in

nestedness, with the exception of the 1s-right matrix,

which retained a perfectly nested score (Table 1). By

contrast with T and d0, d1 indicated that nestedness

decreased with the sequential addition of non-nested

singletons (Fig. 2b, e, f) to the RandomA and RandomB

matrices (Fig. 3b, c). d2 was more inconsistent, indicat-

ing, in the case of both random matrices, that nestedness

either increased or decreased with the addition of

singletons (Table 1).

The sequential addition of diagonal rows to the

matrices always produced a decline in nestedness of

matrices measured with d1 (Fig. 4), although this effect

was quite varied when measured with d2. Because the

addition of singletons to the original matrices was non-

nested, the results from d1 conformed with expectations

of nestedness theory (Patterson and Atmar 1986, Wright

et al. 1998).

Nestedness of the 5-diagonal-down and -up matrices,

and the 19-diagonal-down and -up matrices was iden-

tical when measured with d1, once again a consequence

of the fact that d was identical in each of the pairs of

matrices with the same species compositions. However,

d2 of these complementary matrix pairs differed slightly.

Real assemblages

From 173 presence�absence matrices it is clear that

singletons, doubletons and tripletons do not occur in

equal frequencies (Fig. 5). Singletons are more common

than doubletons (x2�/98.22, Estimate�/0.011, DF�/

171, pB/0.001) or tripletons (x2�/46.55, Estimate�/

0.010, DF�/171, pB/0.001), and doubletons occur

more frequently than tripletons (x2�/211.13,

Estimate�/0.053, DF�/171, pB/0.001). Figure 5 also

clearly shows that endemics, double occurrences, and

tripletons are common in matrices that are typically the

subject of nestedness analyses.

Using the Sfenthourakis et al. (1999) data, T and C

indicated that with the removal of singletons, nestedness

of both snails and isopods declined (Table 2). d1

indicated an increase in nestedness in both cases (Table

2). The differences in nestedness values were relatively

small. Trends between the three measures did not differ

when species endemic to the archipelago were removed.

In the case of Sfenthourakis et al. (2004), when

individual islands were examined little congruence was

found between values generated by the three nestedness

measures (Table 3). When comparing the nestedness of

the island groups per sample and per island, it became

clear that T indicated the opposite trend to d1 and C.

The latter both show that nestedness is greater for the

islands/group matrices than for the stations/group ma-

trices. T was lowest for the stations/group analyses,

which was a result of their large matrix size, as

Sfenthourakis et al. (2004) already noted, and not

because of nestedness of the matrices.

For the matrices analyzed by Greve et al. (2005), T

typically declined as matrix size increased, while d1

increased or declined independently of matrix size,

and in most cases nestedness using either index was

(a) Perfectly Nested

0

2

4

6

8

10

12

14

16

Original 5-diagonal-down 10-diagonal 19-diagonal-down 

T

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

d
1

T
d1

(b) RandomA

24

26

28

30

32

34

36

38

40

Original 5-diagonal-down 10-diagonal 19-diagonal-down 

T

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

d
1

T
d1

(c) RandomB

35

40

45

50

55

60

Original 5-diagonal-down 10-diagonal 19-diagonal-down 

T

0.380

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420

d
1

T
d1

Fig. 3. The behaviour of temperature (T) and d1 with the
sequential additions of non-nested singletons to the a) Perfectly
Nested, b) RandomA and c) RandomB matrices.
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significant (Table 4). Matrices that were least nested

according to T, were most nested when measured with

d1. These also happened to be the smaller matrices. C

behaved similarly to d1, except for the land bird

matrices, which, according to C, were less nested than

all other (except seabird) matrices. For example, the

indigenous seabirds matrix includes 24% singleton

species (total no. of endemics�/19), whilst the indigen-

ous plant matrix is characterized by 30% singletons

(total no. of endemics�/143). T for the seabirds and

plants was 32.948 and 7.998, respectively, indicating that

plants, which possess large numbers of singletons, are

considerably more nested than seabirds, which have

considerably fewer singletons. By contrast, d1 indicates

that seabird assemblages (d1�/0.325) are more nested

than those of vascular plants (d1�/0.577), across the

same set of islands (nestedness is significant in all cases).

Discussion

Additions of singletons (i.e. species that occur only at

one site) to non-nested presence�absence matrices result

in the inflation of nestedness estimates measured with T,

even if, in reality, these additions cause a decline in the

nestedness of a matrix. To a lesser extent, the problem is

also true for the metric C. T and C only indicate a correct

decline in nestedness with the addition of singletons

when these are added to a perfectly nested matrix. This is

not surprising given that T of a perfectly nested matrix

cannot decrease to below the value (zero) and C cannot

rise above the value (one) for a perfectly nested matrix.

The initial addition of a diagonal row of singletons

had the most pronounced effect on the inflation of

nestedness measured with T. Additions thereafter did not

necessarily lead to further declines in T. With sequential

additions of singletons to the original random matrices,

nestedness measured with T also increased, except in the

case of the 19-diagonal-down matrix (Fig. 3b, c). Thus,

as the number of singletons in a matrix increases, so its T

declines. T of the 19-diagonal-down increased to values

above 10-diagonal only because the singletons in the

bottom right corner of this matrix (which are absent

from other matrices) are heavily weighted and contribute

greatly to the temperature of the system. For this same

reason T of the 5-diagonal-bottom matrices was con-

siderably greater than that of the 5-diagonal-down or -up

matrices.

An additional, relatively minor problem characterises

T. Atmar and Patterson (1993) defined a perfectly nested

subset as a set of islands where ‘‘each smaller island

would contain only a proper subset of the species found

on all larger islands’’. By this definition, the 1s-right

Perfectly Nested matrix is perfectly nested � it contains

no unexpected species presences or absences (outliers or

holes): the biotas of the habitat patches are ‘‘proper

subsets’’ of one another. Matrices of the kind illustrated

by the 1s-right Perfectly Nested matrix should thus

possess a T of zero. However, this was not the case. It

should also be noted that the position of the species in

the unsorted matrix that is fed into the calculator has an

effect on T of the matrix, as shown by T values of the

complementary diagonal-down and diagonal-up (5 and

19) matrices. Thus, the position of columns of the matrix

that is fed into the temperature calculator has an effect

on T, although this effect is not large.

One advantage of T over d and its derivatives is that T

weights species absences and presences according to

their distance from the matrix’s isocline of perfect

nestedness (Atmar and Patterson 1993). This explains

why the 5-diagonal-bottom matrices always had the

lowest T of the matrices to which five columns were

added. Their unexpected presences are situated far from

the isocline of perfect nestedness and thus contribute

more to T than unexpected presences close to the
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Fig. 4. The behaviour of temperature (T) and d1 with the
additions diagonal rows of non-nested singletons to the a)
Perfectly Nested, b) RandomA and c) RandomB matrices.
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isocline. This property of T also explains the low values

calculated for 1s-right matrices (singletons were added to

the matrix rows where the unexpected presences con-

tribute least to the value of T).

The derivatives of d provide insight into the reasons

for the increase in T, when in reality nestedness declines

with the addition of singletons. All three metrics � d0,

d1 or d2 � correctly indicate that the 1s-right Perfectly

Nested matrix is indeed perfectly nested. However, they

behave very differently with the addition of non-nested

singletons. When measured with d0, nestedness increases

with the addition of singletons, even more consistently

so than does T. This is because d0, like T, is directly

related to the inverse of the product of sites and species

(i.e. row and column) sums. This function was included

in the metrics’ equations to compensate for matrix size

(Atmar and Patterson 1993). Therefore, T and d0

effectively assume that the chances of unexpected pre-

sences or absences occurring in a matrix are directly

proportional to the number of species and patches in a

matrix, regardless of the species’ patch occupancy or the

species richness of patches. Thus, their null assumption is

that all patches are likely to be occupied by all species.

This is hardly the case in nature, where some species tend

to be more widespread than others and some patches

more species-rich than others (Gaston and Blackburn

2000, Bell 2003).

By contrast, d1 showed theoretically appropriate

behaviour by indicating that nestedness declines with

the sequential addition of non-nested singletons or

diagonal rows. d2, on the other hand, was inconsistent

in indicating the effects of randomly distributed single-

tons on nestedness. Because the value of a matrix’s d was

insensitive to species ordering in a matrix, d0 and d1

were, unlike T, always consistent for matrices with the

same species composition. The value of d2 varied slightly

for differently packed matrices with the same species

composition. However, this variation declines to insig-

nificant levels as the numbers of randomizations increase

and the denominator converges on a single value.

While d2 behaved unpredictably, the performance of

d1 conformed to nestedness theory. Unlike T and d0, d1

assumes that the chance of unexpected presences or

absences occurrence is related to species incidences

across the patches. This is a realistic assumption given

that most groups of assemblages contain a few wide-

spread species, many narrowly distributed species, and a

varying number of endemic species (depending on the

type of study, e.g. archipelagos vs habitat patches, and its

spatial extent) (Ricklefs and Bermingham 2002).

Although the significance of nestedness of individual

matrices is unlikely to be affected by the singleton-

related behaviour of T and d0, comparisons between

different-sized matrices that do not possess equal

proportions of single-, double-, triple, etc. -occurring

species, as well as those that do not have equal species

richnesses, will be confounded. As we have demon-

strated, real matrices typically do not possess equal

proportions of singletons, doubletons and tripletons,

and they generally possess more singletons than dou-

bletons and tripletons. In addition, comparing T with d1

of published studies, it is apparent that T might provide

a biased estimate of nestedness, which complicates

biological interpretation (Sfenthourakis et al. 2004). In
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Fig. 5. The relationship between the number of (a) singletons
and doubletons and (b) singletons and tripletons in 173
presence�absence matrices. Note that most assemblages have
several, and commonly many endemic or rare species, and that
the numbers thereof vary substantially between the assemblages.

Table 2. T, d1 and C of presence�absence matrices from 14
Kyklades islands (Sfenthourakis et al. 1999). Here, singletons
refers to species found on one island only, whilst endemics refers
to species endemic to the archipelago as a whole. A decline in T
and d1 indicate increasing nestedness, whilst an increase in C
indicates increasing nestedness.

Matrix T d1 C

Isopods (total) 35.03 0.205 0.548
Isopods (no singletons) 36.79 0.193 0.488
Isopods (no endemics) 32.24 0.175 0.567
Snails (total) 35.19 0.281 0.42
Snails (no singletons) 39.63 0.258 0.341
Snails (no endemics) 32.68 0.271 0.425
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other words, the problems we have shown to be

characteristic of T, and to a lesser extent of C, are not

restricted to the test matrices we used. Rather, real

matrices constructed from assemblages on islands or

occupying habitat patches have similar varying levels of

endemicity to those we used in our assessments. More-

over, we demonstrate clearly for several real matrices

that assessment of nestedness using T can lead to results

that are either incorrect or complicate interpretation of

the actual patterns of nestedness. Indeed, the problems

we have identified are not simply quantitative, but are

qualitative to the extent that the different metrics often

lead to opposite conclusions. That is, wholly incorrect

conclusions regarding the extent of nestedness and the

way in which this differs between taxa occupying the

same patches might be reached.

C does not make the assumption of equiprobable

species occurrence across patches (Wright and Reeves

1992). However, the metric also displays inconsistent

behaviour such that, in some cases, it decreases

with additions of singletons to matrices. For that reason

d1 was employed to examine the behaviour of T

with addition of non-nested singletons. Despite C’s

inconsistency in the test matrices, nestedness between

different-sized matrices measured with C and d1

were not always different. Therefore we advocate that

caution be taken if C is used. One advantage of C is

that it can be used to assess the effect of patch

characteristics by ranking them according to variables

that characterise them (Loo et al. 2002), which cannot be

done using d1. Conversely, d1 can be used to measure

the effect of species characteristics by ranking species

according to variables differentiating them, which is not

possible with C.

In conclusion, investigation of the behaviour of the

three derivatives of d has shown that the way in which

matrix size is standardized has a considerable effect on

the response of nestedness metrics to endemicity, to the

extent that conclusions opposite to those actually shown

by the data are reached. Thus, previous studies which

compare different-sized datasets using T (Patterson et al.

1996, Wright et al. 1998, Sfenthourakis et al. 1999,

Puyravaud et al. 2003), will have to be revisited. In

addition, because endemicity is a general property of real

assemblages (Wilson 1959, Paulay 1985, Ricklefs and

Bermingham 2002), its effects on certain nestedness

metrics are likely to be common, and should be

considered in all analyses. Nonetheless, a small mod-

ification of T, such that matrix size is standardized by

occupancy, rather than by species�/ sites, would correct

for the problems we have demonstrated here. T would

then correctly take into account richness of the assem-

blages, endemicity, and the distances of unexpected

presences and unexpected absences from the isocline of

Table 3. T, d1, C and matrix size (no. of rows�/ no. of columns)
of presence�absence matrices from the Aegean Islands
(Sfenthourakis et al. 2004). Nestedness was measured for
patches on each of 20 islands, for all patches on all Eastern*
and Kyklades**, and all 20*** islands, and for islands of the
Eastern group$, Kyklades group$$ and all islands$$$. A decline
in T and d1 indicate increasing nestedness, whilst an increase in
C indicates increasing nestedness.

Matrix T C d1 Matrix
size

Kalymnos 20.2 0.4293 0.1857 160
Sifnos 12.6 0.6259 0.1935 231
Kythnos 31.9 0.5028 0.2184 208
Serifos 28.3 0.4766 0.2235 220
Nisyros 22.4 0.4211 0.2414 140
Patmos 39.6 0.2672 0.25 85
Tinos 37.3 0.3761 0.2609 325
Amorgos 48.9 0.3355 0.2874 253
Paros 30.2 0.3137 0.2883 270
Leros 36.4 0.104 0.3036 126
Kea 23.7 0.3921 0.3043 52.2
Astypalaia 23.5 0.3101 0.3117 220
Syros 34.2 0.3721 0.32 300
Mykonos 42.7 0.2946 0.3281 160
Andros 26.7 0.3378 0.3467 624
Ikaria 26.5 0.2938 0.3724 494
Kos 37.6 0.2456 0.391 435
Naxos 23.7 0.3457 0.3984 608
Samos 27.3 0.2958 0.424 522
Milos 26.2 0.2187 0.4643 286
Eastern$ 42.6 0.4421 0.1977 368
Eastern (per station)* 19.7 0.2982 0.504 4508

Kyklades$$ 34.6 0.4917 0.2317 600
Kyklades (per station) ** 15 0.4044 0.3984 8500

All$$$ 37.2 0.4561 0.2706 1180
All (per station)*** 13.6 0.3545 0.4563 15812

Table 4. T, d1, C and matrix size (no. of rows�/no. of columns) of presence�absence matrices across 26 Southern Ocean islands
(Greve et al. 2005). A decline in T and d1 indicate increasing nestedness, whilst an increase in C indicates increasing nestedness.
Significantly nested if *pB/0.05, ***pB/0.001.

Matrix T d1 C Matrix size

Indigenous land birds 13.86*** 0.341*** 0.026 1625
Indigenous seabirds 32.94*** 0.325*** 0.366*** 2028
Indigenous insects 8.63*** 0.705*** �/0.007 20 150
Indigenous vascular plants 7.99*** 0.577*** 0.157 10 833
All indigenous taxa 10.47*** 0.603*** 0.167 36 114
Alien land birds 32.7 0.333* 0.030 135
Alien insects 7.56*** 0.576*** 0.120*** 3784
Alien vascular plants 5.43*** 0.434*** 0.360*** 8096
All alien taxa 7.41*** 0.532*** 0.221 12 936
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perfect nestedness. Doing so is of considerable signifi-

cance, especially because nestedness metrics are being

increasingly used to comment on conservation questions,

and especially on the suitability of particular sets of

patches for different taxa.
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