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Abstract

Accurate models for species’ distributions are needed to forecast the progress and impacts of alien invasive species

and assess potential range-shifting driven by global change. Although this has traditionally been achieved through

data-driven correlative modelling, robustly extrapolating these models into novel climatic conditions is challenging.

Recently, a small number of process-based or mechanistic distribution models have been developed to complement

the correlative approaches. However, tests of these models are lacking, and there are very few process-based models

for invasive species. We develop a method for estimating the range of a globally invasive species, common ragweed

(Ambrosia artemisiifolia L.), from a temperature- and photoperiod-driven phenology model. The model predicts the

region in which ragweed can reach reproductive maturity before frost kills the adult plants in autumn. This aligns

well with the poleward and high-elevation range limits in its native North America and in invaded Europe, clearly

showing that phenological constraints determine the cold range margins of the species. Importantly, this is a ‘for-

ward’ prediction made entirely independently of the distribution data. Therefore, it allows a confident and biologi-

cally informed forecasting of further invasion and range shifting driven by climate change. For ragweed, such

forecasts are extremely important as the species is a serious crop weed and its airborne pollen is a major cause of

allergy and asthma in humans. Our results show that phenology can be a key determinant of species’ range margins,

so integrating phenology into species distribution models offers great potential for the mechanistic modelling of

range dynamics.
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Introduction

Species’ ranges are largely considered to be determined

by the climate and so climate change is expected to

have a major impact on biodiversity (Thuiller et al.,

2005). Among the most important documented impacts

of recent warming are poleward and uphill range shifts

(Kelly & Goulden, 2008; Lenoir et al., 2008) and chang-

ing phenology (Menzel et al., 2006; Sherry et al., 2007;

Chapman, 2013). Recent studies have suggested that

these may be linked (Chuine, 2010) because the timing

of development determines exposure to seasonal

climatic variation, which will be a key determinant of

individual demographic rates, population dynamics

and distribution (Inouye, 2008). Spatial variation in

climate and phenology are therefore thought to interact

in setting the position of species’ range margins

(Chuine, 2010).

Despite this, phenology has rarely been included in

species distribution models (Chuine & Beaubien, 2001;

Morin et al., 2007). Instead, prediction is nearly always

based on correlative models that do not explicitly repre-

sent biological mechanisms (Thuiller et al., 2005;

Dormann et al., 2012). These use data-driven, statistical

relationships between climate and species’ occurrence

to predict range shifts (Thuiller et al., 2005) or forecast

non-native species invasion (Petitpierre et al., 2012).

Their strength lies in their efficiency for modelling large

numbers of species. However, correlative models have

been criticized on several grounds. Model fitting and

calibration is troubled by spatial autocorrelation (Chap-

man, 2010; Chapman & Purse, 2011), spurious correla-

tions can arise from spatial bias in the distribution data
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(Dormann et al., 2012) and a lack of biological process

impedes transfer or extrapolation to novel combina-

tions of climatic drivers in potentially invaded regions

or after climatic change (Gallien et al., 2010).

This has motivated the development of mechanistic

or process-based distribution models that are comple-

mentary to the correlative approach (Dormann et al.,

2012). These explicitly represent environmental effects

on physiology, demography and/or dispersal and pre-

dict distributions as the regions in which population

persistence is possible (Kearney & Porter, 2009). A use-

ful distinction is often made between process-based

models that are fitted vs. ‘forward’ models whose for-

mulation, parameters and predictions are based on eco-

logical knowledge rather than being tuned to

reproduce a known distribution (Dormann et al., 2012).

Forward models are especially valuable for testing

hypotheses about species’ ranges and invasions

because they have a much lower potential to predict

the correct distribution for the wrong reason than do

correlative or fitted mechanistic models (Dormann

et al., 2012). For example, if accurate range predictions

can be made by projecting a phenology model in space

then this will provide powerful evidence for phenologi-

cal limitation of species’ ranges (Chuine & Beaubien,

2001; Chuine, 2010) and yield a mechanistic and biolog-

ically informed basis for predicting range shifts and

invasive spread. However, while there are several

examples of fitted mechanistic models for alien species

(e.g. Gallien et al., 2010; Smolik et al., 2010), very few

forward process-based models of invasives have been

developed (Kearney et al., 2008), and we are unaware

of any for invasive plants.

We used a forward model to test whether phenol-

ogy imposes a limit on the native and invasive distri-

butions of common ragweed (Ambrosia artemisiifolia

L.). Ragweed is native to North America where it is

a serious agricultural weed (Chikoye et al., 1995) and

its extremely allergenic pollen is a major cause of

allergic rhinitis (hay fever) and asthma (Oswalt &

Marshall, 2008). Outside of North America, ragweed

has invaded temperate Europe, Asia, Australia and

South America, bringing similar problems (Oswalt &

Marshall, 2008). Predicting its potential distribution

in the native and invaded continents is therefore very

important for planning responses to ensure human

health and well-being.

Previous modelling from correlative (Dullinger

et al., 2009; Essl et al., 2009; Petitpierre et al., 2012;

Cunze et al., 2013) and fitted process-based (Smolik

et al., 2010) perspectives has suggested that ragweed’s

invasive distribution is temperature-dependent. Phe-

nological studies have also shown that warming is

lengthening the pollen season (Ziska et al., 2011). As

an annual species, we hypothesized that ragweed’s

poleward and high-elevation range limits would

occur where thermal and photoperiod constraints

mean that mature seeds rarely develop before winter

frost. This study tests that hypothesis by assessing

forward predictions of the native and invasive ranges

made from a phenology model developed and

parameterized from published growth experiments

(Deen et al., 1998a,b, 2001; Shrestha et al., 1999). We

use the model in three ways: (i) to compare its phe-

nological predictions with observations of wild rag-

weed plants; (ii) to predict the native and European

invaded range of ragweed as the region in which

phenological development to reproductive maturity

occurs; (iii) to project how climate change may

expand this range. In so doing, we explicitly link the

phenology and distribution of a highly damaging

invasive weed and provide a mechanistic basis for

projecting distribution shifts promoted by global

climate change.

Materials and methods

Phenology model

We made several substantive adaptations to an existing model

of A. artemisiifolia phenology (Deen et al., 1998a,b, 2001) allow-

ing it to be used in the novel context of mapping continental-

scale phenology and predicting the range. The original model

formulation and parameterization are based on growth trials

that quantified the rate of ragweed development from strati-

fied seeds to reproductive maturity at fixed temperatures and

photoperiods (Deen et al., 1998a,b, 2001).

In the model, phenology is simulated with an hourly time

step where each hour contributes r(T)k(L) ‘biological hours’ of
development, i.e. chronological hours at optimal temperature

T and photoperiod L. The functions r and k describe the

responses of development rates to T and L, respectively. Each

phenological phase has a characteristic duration in ‘biological

days’ (BDs, i.e. 24 biological hours) quantified in the growth

experiments (Deen et al., 1998a,b, 2001). The sequence of no-

noverlapping phases in the model are germination (3.5 BDs),

seedling emergence (1 BD, assuming a 1 cm burial depth

(Fumanal et al., 2008)), emergence to end of juvenile phase (7

BDs), appearance of main stem terminal bud (4.5 BDs),

appearance of pistillate flowers (4.5 BDs), anthesis (4.5 BDs)

and seed maturity (14.5 BDs) (Deen et al., 2001). Therefore, a

total of 39.5 BDs are needed to complete the lifecycle. By com-

puting a cumulative BD sum through chronological time, the

model estimates phenology as the day at which each stage is

reached in a given location.

The original model used a triangular function for r (T),

which is biologically unrealistic. We replaced this with a gen-

eralized plant growth function based on minimum, optimum

and maximum growing temperatures, Tmin, Topt and Tmax, and

a scaling parameter c (Yin & Kropff, 1996),
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We fitted r(T) to growth rate data digitized from three pub-

lished data sets (Deen et al., 1998b; Shrestha et al., 1999) by

least squares (R2 = 0.956) with parameters Tmin = 4.88 °C,
Topt = 30.65 °C, Tmax = 42.92 °C and c = 1.696 (Table 1, see

Appendix S1 for details). These cardinal temperatures are

close to those in the original model, but our function limits

low temperature growth more strongly, as is consistent with

other experimental data on development rates (Shrestha et al.,

1999) (Appendix S1).

From the growth experiments, the modelled photoperiod

response k(L) delays flowering when the day is longer than

14.5 h, which occurs in summer at latitudes above 36.5°N. The

photoperiod delay is controlled by a sensitivity parameter Ls,

taking a value of 0.400 from the end of the juvenile phase to

the appearance of pistillate flowers (see below), and a value of

0 (i.e. no sensitivity) at other stages of the life cycle (Deen

et al., 1998a, 2001) (Appendix S1),

kðLÞ ¼ eðL�14:5Þ lnð1�LsÞ if L� 14:5
1 if L\14:5

�
.

The original model was based on planted stratified seed

and so gives no indication as to when seed dormancy is bro-

ken and BD accumulation should begin. Studies on other

plants have successfully applied ‘chilling degree day’ models

whereby the species must accumulate exposure to low tem-

perature before breaking winter dormancy (Chuine, 2000).

Since we had no data on which to model such an effect, we

elected to break seed dormancy on the first day after the

spring equinox when the average daily minimum temperature

exceeds Tmin. The estimated Tmin is close to the minimum

known ragweed germination temperature (Shrestha et al.,

1999) and the temperature evaluated as the best of three alter-

natives for stratifying ragweed seed (Willemsen, 1975). The

equinox constraint prevents unrealistically early germination

in the far southern parts of the USA where average winter

temperatures do not fall as low as Tmin. We note that this will

have no effect on predictions of the northern range margin,

where winters are always cold enough.

During model testing, we found a positive correlation

between latitude and predicted anthesis date. However,

Ambrosia pollen season start dates reported for 10 North

American locations between 30 and 52°N in 1995 and 2009 are

not significantly correlated with latitude (n = 20, r = �0.236,

P = 0.316) and had changed little (mean of 2.7 days earlier,

within the start date estimation error) (Ziska et al., 2011). The

biological explanation for this is likely to be local adaptation

of phenology (Hodgins & Rieseberg, 2011), possibly in the

photoperiod response. Since there are insufficient data to

model this, we enforced a minimum anthesis date of day 208

(27 July) which is the median pollen season start date across

America (Ziska et al., 2011). This predicts flowering to occur

synchronously in warm low-latitude locations, but later in

cooler and more northerly latitudes where sufficient BDs are

not accumulated before day 208. As with the assumption

about dormancy breaking, this does not affect predictions

of northern range limits since these are in sufficiently cool

locations to delay flowering.

Validation of predicted phenology

Validating the phenological predictions is a precursor to using

the model to predict the species’ range. As such, we tested the

Table 1 Phenology range model parameters, their sources (also see Appendix S1) and results of a sensitivity analysis. For the lat-

ter, the model was run with 250 random parameter draws (uniform distributions given in the table) over sample blocks from North

America (�95–90° longitude, 40–60° latitude) and Europe (10–15° longitude, 45–65° latitude). Sensitivity was estimated as the

t-value from a multiple linear regression predicting the modelled northern range limit (highest latitude where reproduction is possi-

ble) from the parameters (R2 = 0.900 for North America and 0.854 for Europe). This gives a standardized measure of the parameter

effect direction (sign) and importance (absolute magnitude)

Parameter

Default

value Source

Range for sensitivity

analysis

Sensitivity for North

America

Sensitivity for

Europe

Seed dormancy breaking and minimum

development temperature (Tmin)

4.88 °C A 0–7.5 °C �20.8 �16.5

Optimum development temperature (Topt) 30.65 °C A 28–33 °C �10.1 �7.60

Maximum development temperature (Tmax) 42.92 °C A 40–46 °C �0.08 2.18

Temperature shape parameter (c) 1.70 A 1–2 �15.5 �14.2

Threshold day length (L0) 14.5 h B 13–16 h 22.7 13.3

Photoperiod sensitivity (a) 0.40 B 0–1 �26.4 �23.8

Minimum day of anthesis 208 C 200–216 �1.3 0.91

Growing season termination temperature 0 °C D �7.5–7.5 °C 1.2 �0.02

A, Fitted to data on leaf appearance, shoot growth and seed germination rates from controlled environment growth experiments

with populations from southern Canada (Deen et al., 1998b; Shrestha et al., 1999).

B, Values based on original phenology model, developed from growth experiments in southern Canada (Deen et al., 1998b).

C, Median start of Ambrosia pollen season for 10 monitoring stations across North America (Ziska et al., 2011).

D, Widespread observation that ragweed is killed by frost.
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model’s ability to predict ragweed phenology using data from

across the native range in 2009–2012 (USA National Phenology

Network, 2013). These data were not used for parameteriza-

tion and so allow independent evaluation of the model’s

applicability to wild populations. Records from five observers

reporting implausible flowering before the summer equinox

were excluded, as these are not consistent with ragweed’s

short-day nature (Ziska et al., 2011). We also removed leafing

observations as leaves occur at all times between emergence

and senescence, so are not informative for testing phenology

model predictions.

This left 47 georeferenced observations, comprising a dated

record of the phenophase of a ragweed individual, at latitudes

of 28–46°N. Although the data set was small, it is the only

available information for validating the model. NPN pheno-

phases were assigned to the corresponding phases (or range

of phases) represented in the model. To assess how well the

model predicted the observed phenology, the day ranges

when ragweed was predicted to be in those phases was esti-

mated, and the range midpoint plotted against the observation

day. As a test statistic for comparing these, the root-mean-

square-error (RMSE) was calculated.

Range prediction

We used our refined phenology model to make a binary pre-

diction of the native (North America) and invaded (Europe)

cold range margins, by estimating the region where seed

maturity was reached before autumn frost. We also mapped

the region where ragweed could germinate and grow to

anthesis, but was killed by frost before setting seed, as intro-

duced ragweed plants growing in these areas may lead to

occurrence records of the species. Termination of the growing

season was modelled as the first day when minimum temper-

atures fell to 0 °C, when we expect frost to kill plants and

terminate seed ripening.

Gridded long-term average (1960–1990) hourly tempera-

tures were estimated from monthly average minimum and

maximum temperatures in the 2.5 arc-min WorldClim data-

base (Hijmans et al., 2005). Monthly averages were projected

onto 5 9 5 km equal area grids (Albers Equal Area Conic for

North America and Lambert Azimuthal Equal Area for Eur-

ope – this resolution was chosen as a compromise between

computational demand and strong topographic variation in

temperature in mountainous regions near ragweed’s range

margin) and temporally downscaled to a daily resolution

using a method based on bias-corrected regression splines.

This involved fitting a thin plate regression spline (R package

‘mgcv’; Wood, 2003, 2013) with one degree of freedom per

month to the averages and computing predicted values for

each day. Monthly means recovered from this were strongly

correlated with the observed (r > 0.999 for every month,

r > 0.997 for every grid cell), but overpredicted the coldest

month and underpredicted the warmest month. To remove

this bias, we refitted the spline to monthly data that was

expanded or contracted about its annual mean by the transfor-

mation bðT � �TÞ þ �T, where T is the monthly temperature and

b = 1.0247 minimized the sum of squares between observed

and fitted recovered monthly mean temperatures for 1000 ran-

domly chosen grid cells. Hourly temperature time series were

created by assuming temperatures pass between the estimated

daily minima and maxima following a transformed sine wave

with 24-hour periodicity.

We investigated the effects of the model parameters on the

range prediction by means of a sensitivity analysis using ran-

dom parameterizations drawn within fixed limits (Table 1).

Because of the model’s computational demands, we restricted

this to 250 parameterizations and a subset of the native and

invaded range, centred on the margin.

Testing the range prediction

Range predictions of the phenology model were contrasted

with the observed distribution in both continents. For this, we

assembled a database of ragweed occurrences in North Ameri-

can counties, using the county-level United States Department

of Agriculture Plants Database as a starting point. This was

supplemented with records from reliable online sources and

the literature (see Appendix S2). European occurrences from

1990 to 2010 were compiled on 50 9 50 and 10 9 10 km grids.

Data were retrieved from online databases, published maps,

literature references and databases held by herbaria, universi-

ties and individuals (Appendix S2). Data quality varied

among countries due to different survey efforts. For example,

no data were retrieved for Iceland, Russia, Belarus, Lithuania,

Estonia, Bosnia and Herzegovina, Albania, FYR Macedonia,

Kosovo or Turkey.

As the forward model prediction is entirely independent of

the distribution, we calculated standard measures of agree-

ment between the binary range prediction and the observed

presence or ‘absence’ (lack of a record). These were sensitivity

(proportion of presences correctly predicted), specificity (pro-

portion of ‘absences’ correctly predicted), Cohen’s kappa and

the true skill statistic (TSS) (Allouche et al., 2006).

We also conducted a more sophisticated test that accounted

for two major limitations in the former measures, namely that

kappa strongly depends on the ratio of presences to ‘absences’

and both kappa and TSS treat presence as equivalent to

‘absence’ (Allouche et al., 2006). This latter is highly question-

able since a lack of filling within a species’ predicted range

will occur because of limitation by nonmodelled factors, e.g.

drought, land use, dispersal or under-recording (Petitpierre

et al., 2012). Instead we wished to assess whether ragweed can

only persist within the region where phenology permits repro-

duction and whether this correlates with its range margin,

indicating that phenology is an important determinant of the

distribution (Kearney et al., 2008).

To do this, we examined variation in sensitivity for two

spatially- or climatically informed range scenarios. First the

phenologically predicted range was expanded or contracted

by fixed distances, and sensitivity was plotted as a function of

the expansion/contraction distance. Second, we identified the

monthly mean, minimum or maximum temperature isotherm

most closely corresponding to the range prediction in each

continent. We then plotted sensitivity against a range of iso-

therm values for that month. In both cases we expected an

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 192–202
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optimal range prediction to lie at the transition between very

high sensitivity (overly optimistic prediction with too large a

region suitable) and a rapid drop-off in sensitivity (overly con-

servative model with many records beyond the margin).

Projection to 2050

To illustrate the use of the model in predicting climate

change-driven range shifts, we predicted the area suitable for

ragweed reproduction using downscaled projections of

monthly mean temperatures in the 2050s for emissions

scenario A2a of the Intergovernmental Panel on Climate

Change Special Report on Emissions Scenarios (SRES). Spa-

tially downscaled, gridded monthly minimum and maximum

temperature estimates from the Hadley Centre Coupled

Model (HADCM3) (Johns et al., 2003) were obtained from the

CCAFS-climate data portal (http://www.ccafs- climate.org/).

This predicts mean increases in mean annual temperature of

2.6 °C in Europe and 3.1 °C in North America, mainly with

greater warming during summer than winter. The largest pre-

dicted increases in mean annual temperature are in eastern

and Arctic areas, with the least warming near the western

coasts. Projected monthly data were converted to hourly time

series equivalently to the current-day data for use in the

phenology model.

Results

Phenology predictions aligned reasonably with inde-

pendent observations from the USA National Phenol-

ogy Network (Fig. 1; n = 47, regression slope = 0.899,

R2 = 0.708). Calculation of RMSE showed an average

absolute difference between the predicted phenophase

midpoints and the actual observations of 46.6 days.

This large difference can be attributed to several factors

including the comparison of phase midpoints with

actual days, the use of long-term average climate data

rather than meteorological data and prediction of popu-

lation averages vs. observations of individual plants, as

well as error in model specification of ragweed’s phe-

nology. Indeed the phenophase group means (which

average out much of the observation data noise) were

much better predicted by the model (mean RMSE

weighted by group size = 17.7 days).

At the landscape scale, the phenology model predicts

that in an average year ragweed can reach maturity

and produce seed in lowland USA and southern Can-

ada, and in lowland Europe south of northern Britain,

Estonia and Fennoscandia (Fig. 2a–c). The higher

mountain ranges (e.g. Rocky Mountains, Sierra Nevada

and Alps) are predicted too cold for successful repro-

duction (Figs. 2–3). Sensitivity analysis showed that

these predictions were most strongly affected by the

photoperiod response parameters and the minimum

growing temperature (Table 1).

Visual comparison with the distribution shows that

the reproductive boundary aligns to the poleward and

high-elevation limits of the species in both the native

North American and invaded European ranges

(Figs. 2–3). A few ragweed occurrences lay beyond the

predicted margin in both continents, mainly in the

region with flowering but not reproduction (Fig. 2). No

southern range limit was predicted because tempera-

tures were not high enough to limit phenological devel-

opment and other factors which may be more

important here (e.g., drought or lack of winter chilling)

did not feature in the model.

Formal measures of agreement showed very high

sensitivity (excellent prediction of presences; 0.997 for

North America and 0.920 for Europe) but poor specific-

ity (most ‘absences’ within the predicted range; 0.055

for North America and 0.418 for Europe). As a result

kappa and TSS were low. On first consideration this

suggests the model performed badly. However, our

testing of the range prediction based only on ragweed

presences, which we believe to be more appropriate,

gave more optimistic results.

The very high sensitivity shows that ragweed rarely

occurs where the phenology model predicts that the

species cannot complete its lifecycle. Furthermore, two

tests showed that this high sensitivity was not due to

the model predicting too large a region to be suitable.

First, expansion or contraction of the predicted range

caused an abrupt transition between a loss of sensitivity
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Fig. 1 Comparison of the phenology model predictions with

phenological observations of A. artemisiifolia in 2009–2012 from

the USA National Phenology Network (NPN). NPN phenopha-

ses were assigned to a corresponding range of phases in our

model and the observed day plotted against the predicted day

range midpoint. Predictions therefore show the long-term aver-

age expected day of the observations.
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during contraction, and a negligible gain in sensitivity

during expansion (Fig. 4a–b). Second, the isotherm

most closely aligned to the range prediction was close

to the transition between very high sensitivity and

sensitivity falling off rapidly (Fig. 4c–d). Both tests

show that the northern and uphill range limit predic-

tion of the phenology model approximately bounded

but did not exceed the ragweed occurrences, both in

geographic and climate space.

Applying the model to predicted temperatures in the

2050s showed substantial northwards and uphill shifts

in the range margins (Fig. 5 compared to Fig. 2). The

model predicted expansion into central and eastern

Canada and northeast Europe (e.g., Sweden, Finland,

Estonia and Russia). This reflects both increases in sum-

mer temperatures and delays in autumn frost (median

of 10 days later in North America and 18 days later in

Europe). No change in the southern part of the range

was projected by the model for the same reason as for

the current day.

Discussion

Using a forward and process-based phenology model,

we showed a clear correspondence between the

(a) (b)

(c) (d)F

A

R

1 – 4

5 – 10

11 – 18

19 – 25

Fig. 2 (a and c) Phenology model prediction of the regions in which A. artemisiifolia fails to reach maturity (F), grows to anthesis but

fails to produce mature seed (A) or successfully reproduces (R) before autumn frost strikes in an average year in North America and

Europe. The predicted range margin is at the boundary of R and A. (b) North American counties in which ragweed has been recorded.

The occupied islands in the Canadian Arctic are a single county with one record. (d) The European distribution at a 50 9 50 km grid

scale, expressed as the number of constituent 10 9 10 km grid cells with a ragweed record (or 1 if only a 50 9 50 km resolution record

is available). Hatched countries are considered to have poor quality distribution data, while countries where we obtained no data are

omitted.

0 140 28070 km
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Italy

Germany
France

Switzerland

Slovenia

Fig. 3 Phenology model prediction around the European Alps

equivalent to Fig. 2c, with 10 9 10 km records of A. artemisiifoli-

a occurrence overlaid as open squares. Very few records were

obtained for Italy despite widespread invasion (D�echamp et al.,

2009).
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predicted limit of ragweed life-cycle completion and its

observed northern and high-elevation range limits in

two continents. This suggests that thermal and photo-

period constraints on development are a key determi-

nant of the ‘cold’ range margins, leading to the firm

prediction that climatic warming will increase the area

in which ragweed can reproduce. Ragweed has strong

human-aided dispersal ability (Lavoie et al., 2007) and

so range expansion seems almost certain. Predicting

spread of this species is very important given its inva-

sive nature and significant impacts on crops and

human health (Chikoye et al., 1995; Oswalt & Marshall,

2008). Our process-based model and accurate ‘forward’

range prediction is therefore an important step towards
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Fig. 4 (a–b) Expansion of the phenology model range limit prediction using Euclidean distance buffer functions has little effect on sen-

sitivity (proportion of presences correctly predicted) in North America and Europe. By contrast, contraction sharply reduces sensitivity.

(c–d) Temperature isotherms that most closely match the predicted range (dashed lines, as estimated by the kappa statistic between iso-

therm and predicted range) are also close to the transition between high and sharply falling sensitivity for ragweed occurrences in both

continents. The type of isotherm used in each continent was the one that most closely matched the range prediction.

(a) (b)
Fails to mature

Anthesis reached

Reproduction reached

Fig. 5 Illustration of the use of the model for projecting future range expansion driven by climate change. Maps show predicted rag-

weed ranges in the 2050s according to the SRES A2a emissions scenario and HADCM3 climate model, equivalent to Fig. 2a,c.
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a biologically informed modelling of native and inva-

sive species distributions.

Although correlative models would represent similar

associations, they are fitted to the distribution and lack

ecological process, so there will always be uncertainty

over their functional significance and transferability in

space or time (Dormann et al., 2012). By contrast, our

process-based model explicitly represents ragweed

development and was formulated and parameterized

from published phenological experiments (Deen et al.,

1998a,b, 2001; Shrestha et al., 1999) and first principles,

rather than being fitted. Therefore, it is interesting to

compare how our model differs from correlative mod-

els. The most relevant example for A. artemisiifolia is by

Cunze et al. (2013), who fitted several models to the

native range to predict the invasive distribution in Eur-

ope. Their prediction for the range expansion up to

2080 for the same scenario as in Fig. 5 indicates a quite

different pattern than was predicted by this model

(albeit over a longer time period), with less northwards

spread in western Europe and greater spread in eastern

Europe. One reason for this difference may be in our

model’s depiction of photoperiodic limitation, which

our sensitivity analysis (Table 1) shows could be very

important in limiting latitudinal range expansions

driven by climatic warming. We cannot conclude which

model makes the better prediction, but this neverthe-

less highlights the potential for process-based models

to make quite different predictions compared with

correlative ones. Since nearly all predictive studies of

climate change impacts on species distributions use

correlative models (Thuiller et al., 2005; Dormann et al.,

2012), the difference between both modelling strategies

adds to their uncertainty.

To our knowledge, this is the first time phenology

has been used to predict an invasive plant distribution.

Phenological limitation of tree distributions has previ-

ously been demonstrated using a model that integrates

phenology and mortality in winter and drought

(Chuine & Beaubien, 2001; Morin et al., 2007). Drought

is undoubtedly also important for ragweed (Shrestha

et al., 1999), as is suggested by the thinning of the distri-

bution towards southwest USA and Mediterranean

Europe (Fig. 2; Dullinger et al., 2009; Essl et al., 2009;

Petitpierre et al., 2012). Including a drought effect in the

model would increase the accuracy of the current day

prediction and allow forecasts of changes in the south-

ern range margin driven by future changes in precipita-

tion. However, a lack of experimental data meant that

we were unable to include drought in the model with-

out fitting to the distributions (a factor also common to

the tree studies).

Instead we concentrated on defining the thermal and

photoperiodic phenological limits using a process-based

model parameterized from experimental studies, ensur-

ing a strict ‘forward’ prediction entirely independent of

the observed phenological observations and distribution

patterns (Dormann et al., 2012). Virtually all ragweed

occurrences lay within the predicted range, leading to

very high sensitivity and providing good evidence that

ragweed cannot persist in areas where frost truncates

development of its lifecycle. However, specificity (cor-

rect prediction of ‘absence’) was very low and so kappa

and TSS, two standard measures of model agreement,

were also low. We contend that in this analysis poor

specificity is not necessarily a weakness as it can be

explained by two factors that have nothing to do with

the performance of the model in identifying areas phe-

nologically suited to ragweed persistence. First, there is

a lack of range filling within the predicted and observed

range (e.g. due to limitation by nonmodelled abiotic or

biotic factors, dispersal constraints or poor recording)

(Petitpierre et al., 2012). Therefore, many locations with-

out records will be phenologically suitable, and poten-

tially or actually inhabited. Second, the analysis was

hampered by geography – the correct prediction of

absence from most of Canada had little effect on the

agreement statistics because of the large county size

(Fig. 2b), while the prediction of a high latitude margin

in Europe meant there was only a small region of (lar-

gely correct) predicted absence (Fig. 2c). As pointed out

by Kearney et al. (2008), forward process-based models

aim to map that part of the species’ fundamental niche

explicitly formulated in the model, i.e. the potential

range with respect to the modelled processes, while the

actual geographic range of the species is expected to be

more restricted.

This raises an important issue over how similar for-

ward process-based models should be properly vali-

dated. Our approach was to examine variation in

sensitivity for two spatially or climatically informed

range predictions (Fig. 4). The spatial test showed that

the prediction geographically bounded but did not

exceed the known ragweed occurrences. The climatic

test showed that the predicted range approximately

spanned the warmest region in which the ragweed

occurrences could be contained. From this, we conclude

that the high model sensitivity was achieved from an

extremely conservative prediction, rather than by pre-

dicting too large a region to be suitable. This not only

suggests that phenology contributes to the species’ fun-

damental niche, but that it is the limiting factor deter-

mining ragweed’s ‘cold’ range margins in both the

native and invasive distribution.

Given the arguments presented above, the most seri-

ous inaccuracies of the model are when ragweed

records occur beyond the predicted range. This was a

bigger problem in Europe than the native region
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(ignoring the single anomalous occurrence in the

Canadian Arctic, Fig. 2b). However, the literature on

A. artemisiifolia in northern Europe reveals that these

occurrences represent cases where the species has been

accidentally introduced as a contaminant of imported

agricultural or bird seed, but failed to reproduce and

persist. For example, consistent reproductive failure is

reported from Norway, Finland, Sweden (away from

the southern coast) and Estonia (Dahl et al., 1999; Saar

et al., 2000; D�echamp et al., 2009). By contrast, there are

many references to seed production in the northern

part of the predicted range, such as in Germany, Neth-

erlands, southern UK, Poland, coastal Sweden and Lith-

uania (Rich, 1994; Dahl et al., 1999; Saar et al., 2000;

Brandes & Nitzche, 2006; D�echamp et al., 2009; Sauliene

et al., 2011). These reports confirm the model predic-

tions about where ragweed is able to set seed but sug-

gest that ragweed can be recorded beyond the

phenologically-suitable region because of repeated

introductions (Gaudeul et al., 2011), causing part of the

apparent difference between the model and the data.

In addition many of the northern populations within

the predicted range are considered casual, despite suc-

cessfully reproducing (e.g., UK, northern Germany,

the Netherlands; D�echamp et al., 2009). Cool summers

in these locations probably mean that although the

lifecycle is completed, the number, survival or viabil-

ity of seeds is too low to sustain long-term population

growth. Without repeated introductions the observed

invaded range would therefore probably be restricted

to below approximately 50°N, where ragweed is most

invasive (D�echamp et al., 2009; Dullinger et al., 2009).

As a consequence, the projected spread of the species

in Fig. 5 will likely overpredict the region where rag-

weed will become a major problem in the future. This

emphasizes the need to integrate interactions between

demography, phenology and dispersal in the future

development of process-based distribution models

(Chuine & Beaubien, 2001; Dullinger et al., 2009;

Dormann et al., 2012). In the context of this study, the

phenology model seems to accurately predict the lim-

its of ragweed reproduction, but the species has been

introduced across Europe and the serious invasion

seems to be limited by other factors not captured in

the model.

The model was mainly parameterized with experi-

mental data on populations near the northern edge of

the native range (Table 1). A sensitivity analysis

showed that range prediction was most sensitive to the

two photoperiod response parameters (L0 and a) and

the minimum growth temperature (Tmin). Uncertainty

in these parameters will therefore lead to uncertainty in

the position of the predicted range margin. This may

be particularly important for Tmin, since ragweed

emergence was only modestly well predicted (Fig. 1).

Where confidence intervals or distributions can be

placed on these parameters it would be possible to esti-

mate this margin uncertainty through a sampling of

parameter space. Such an exercise was beyond the

scope of this study, but could prove useful for evaluat-

ing apparent mismatch between the observed and

predicted range margins.

Further uncertainty may arise through geographical

variation in the model parameters, not captured in the

model and consistent with local adaptation (Chuine &

Beaubien, 2001; Hodgins & Rieseberg, 2011). However,

we do not consider this very important for this study as

the model was parameterized near the northern edge of

the native range where plants should be close to the

limit of adaptation to cold and northerly conditions.

Furthermore, the European populations are mainly

derived from the northern part of the native range

(Gaudeul et al., 2011).

A further limitation was our use of long-term average

temperature data. We would ideally have used annu-

ally varying daily meteorological data but these were

not available at sufficiently high resolutions for both

continents. Nevertheless, we were able to investigate

this for a region where such data were available (UK).

We found a sharp spatial transition between successful

reproductions in nearly all years vs. very few years,

centred on the climatologically predicted margin

(Appendix S3). Furthermore, post-1990 warming,

which is not captured in the average temperature data-

base, had only a small impact on the prediction

(Appendix S3). We suggest that this justifies our deter-

ministic range prediction based on climatological data.

This study is among the first applications of a for-

ward process-based model for predicting invasive spe-

cies’ distributions (Kearney et al., 2008). While

correlative models are useful tools for understanding

the structure and dynamics of species’ ranges (Thuiller

et al., 2005; Chapman et al., 2008; Chapman & Purse,

2011; Petitpierre et al., 2012) we believe that a wider

adoption of forward process-based models would be a

major advance. However, the development of such

models is difficult and we suggest it requires the fol-

lowing steps: (i) collection of experimental data on how

environmental drivers affect key biological processes;

(ii) formulation of models to capture those effects; (iii)

collection of independent data to test predictions of the

processes (Fig. 1); (iv) model estimation of the region of

potential persistence (Figs. 2–3) and (v) testing model

predictions against distribution data (Fig. 4). Further

work will establish the most important modelled pro-

cesses, though these are likely to include phenology

(this study, Chuine, 2010; Chuine & Beaubien, 2001),

mortality (Morin et al., 2007), energy/mass balances

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 192–202

200 D. S . CHAPMAN et al.



(Kearney & Porter, 2009), dispersal (Kearney et al.,

2008; Smolik et al., 2010; Bullock et al., 2012), local

adaptation (Morin et al., 2007) and interspecific interac-

tions (Bullock et al., 2008). Capturing all of these within

one model will always be challenging and require con-

siderable empirical and theoretical effort. However, we

suggest that integrating strongly climate-dependent

biological processes such as phenology into distribution

models will be very important for accurately predicting

impacts of climate change on biodiversity and the

progress of ongoing invasions.
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