
ARTICLE IN PRESS
Journal of Insect Physiology 54 (2008) 114–127
0022-1910/$ - se

doi:10.1016/j.jin

�Correspond
E-mail addr
www.elsevier.com/locate/jinsphys
Thermal tolerance in a south-east African population of the tsetse fly
Glossina pallidipes (Diptera, Glossinidae): Implications for forecasting

climate change impacts

John S. Terblanche�, Susana Clusella-Trullas, Jacques A. Deere, Steven L. Chown

Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Received 27 June 2007; received in revised form 11 August 2007; accepted 14 August 2007
Abstract

For tsetse (Glossina spp.), the vectors of human and animal trypanosomiases, the physiological mechanisms linking variation in

population dynamics with changing weather conditions have not been well established. Here, we investigate high- and low-temperature

tolerance in terms of activity limits and survival in a natural population of adult Glossina pallidipes from eastern Zambia. Due to

increased interest in chilling flies for handling and aerial dispersal in sterile insect technique control and eradication programmes, we also

provide further detailed investigation of low-temperature responses. In wild-caught G. pallidipes, the probability of survival for 50% of

the population at low-temperatures was at 3.7, 8.9 and 9.6 1C (95% CIs: 71.5 1C) for 1, 2 and 3 h treatments, respectively. At high

temperatures, it was estimated that treatments at 37.9, 36.2 and 35.6 1C (95% CIs: 70.5 1C) would yield 50% population survival for 1, 2

and 3 h, respectively. Significant effects of time and temperature were detected at both temperature extremes (GLZ, po0.05 in all cases)

although a time–temperature interaction was only detected at high temperatures (po0.0001). We synthesized data from four other

Kenyan populations and found that upper critical thermal limits showed little variation among populations and laboratory treatments

(range: 43.9–45.0 1C; 0.25 1C/min heating rate), although reduction to more ecologically relevant heating rates (0.06 1C/min) reduce these

values significantly from �44.4 to 40.6 1C, thereby providing a causal explanation for why tsetse distribution may be high-temperature

limited. By contrast, low-temperature limits showed substantial variation among populations and acclimation treatments (range:

4.5–13.8 1C; 0.25 1C/min), indicating high levels of inter-population variability. Ecologically relevant cooling rates (0.06 1C/min) suggest

tsetses are likely to experience chill coma temperatures under natural conditions (�20–21 1C). The results from acute hardening

experiments in the Zambian population demonstrate limited ability to improve low-temperature tolerance over short (hourly) timescales

after non-lethal pre-treatments. In flies which survived chilling, recovery times were non-linear with plateaus between 2–6 and 8–12 1C.

Survival times ranged between 4 and 36 h and did not vary between flies which had undergone chill coma by comparison with flies which

had not, even after factoring body condition into the analyses (p40.5 in all cases). However, flies with low chill coma values had the

highest body water and fat content, indicating that when energy reserves are depleted, low-temperature tolerance may be compromised.

Overall, these results suggest that physiological mechanisms may provide insight into tsetse population dynamics, hence distribution and

abundance, and support a general prediction for reduced geographic distribution under future climate warming scenarios.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent demonstrations and predictions of the biological
effects of anthropogenic climate change have revived
interest in the factors determining the abundance and
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distribution of plants and animals (Walther et al., 2002;
Thomas et al., 2004; Thuiller et al., 2005; Wilson et al.,
2005; Kerr et al., 2007). Among the organisms in which
range shifts have already been documented (Parmesan and
Yohe, 2003) and are predicted to continue (Helmuth et al.,
2002; Roura-Pascual et al., 2004; Kearney and Porter,
2004; Urban et al., 2007), disease vectors are of consider-
able significance given their roles in compromising human

www.elsevier.com/locate/jinsphys
dx.doi.org/10.1016/j.jinsphys.2007.08.007
mailto:jst@sun.ac.za


ARTICLE IN PRESS
J.S. Terblanche et al. / Journal of Insect Physiology 54 (2008) 114–127 115
and veterinary health, and in consequence, regional
economic development (Patz et al., 2000; Patz, 2002;
Harvell et al., 2002; Rogers et al., 2002; Sutherst, 2004;
Pascual et al., 2006). Much theoretical and empirical work
has been undertaken on the likely effects of climate change
on disease vectors (Martens et al., 1999; Githeko et al.,
2000; Bourne et al., 2001; Kovats et al., 2001; Rogers and
Randolph, 2006), demonstrating that substantial differ-
ences in climate change responses exist among vectors, and
therefore the diseases they transmit (Hulme, 1996; Martens
et al., 1999). For example, climate change has been strongly
associated with increasing risk of transmission of blue-
tongue virus (Kuhn et al., 2003; Purse et al., 2005) but not
for that of malaria (Rogers and Randolph, 2000) or tick-
borne encephalitis (Sumilo et al., 2007).

In the case of tsetse-born trypanosomiasis, declared
recently an under-investigated vector-borne disease (Cat-
tand et al., 2006), few predictions have been made
concerning likely climate change effects. Rogers and
Packer (1993) suggested that in East Africa, climate change
would result in an increase in available habitat and thus a
possible expansion of the overall range of tsetse, particu-
larly into high-altitude areas that may currently exclude the
species owing to low temperatures (see also Rogers and
Randolph, 1993). By contrast, other reports have suggested
a net decline in the distributional range of the tsetse species
considered. For example, under various future climate
change scenarios Glossina morsitans is expected to experi-
ence a reduction in suitable habitat and hence a contraction
of its geographic range (Hulme, 1996). Further confound-
ing the issue is the related question of whether autonomous
control will effectively render tsetse-borne trypanosomiasis
an increasingly unimportant problem (Bourne et al., 2001;
see also Rogers and Randolph, 2002). Nonetheless, it
might be predicted that changes in temperature and
moisture regimes would have a substantial influence on
the abundances and distributions of tsetse owing to the
strong relationships between these population-level char-
acteristics and the environmental variables.

Many studies have demonstrated strong relationships
between temperature and moisture availability, and the
abundance and/or distribution of Glossina spp. at both coarse
and fine scales. For example, spatial distribution data collected
for regions such as south-central Africa show strong relation-
ships with these environmental variables (e.g., Robinson et al.,
1997a,b; Rogers and Robinson, 2004), as does distribution
and abundance data recorded across the continent (Rogers
and Williams, 1994; Rogers, 2000; Rogers and Robinson,
2004). In the case of G. morsitans, suitable habitat, as indicated
by fly presence or absence, is marked by a temperature
difference of only 0.5 1C for the sub-species in south-central
Africa (Robinson et al., 1997a,b). Likewise, at both short and
long time scales, fly abundance is positively related to
temperature and humidity (Kitron et al., 1996; Mohamed-
Ahmed and Wynholds, 1997; see also Huyton and Brady,
1975; Van Etten, 1982; Rogers and Randolph, 1991;
Esterhuizen et al., 2005). Indeed, tsetse demographics are
strongly influenced in all life stages by temperature, and by
moisture availability (Bursell, 1959; Langley, 1977; Rogers,
1990; Hargrove, 2001, 2004), although the functions describing
these relationships can differ markedly within and between
various life stages. For example, increasing mean monthly
maximum temperature in the range of 25–36 1C is correlated
with a linear reduction in weekly survival probability,
especially in Glossina morsitans morsitans (Hargrove, 2001),
and declining water availability may have a similar influence
(Rogers and Randolph, 1986; Hargrove, 2004).
Despite these obvious links between environmental

variables, demographic change, and estimates of field
abundance and distribution, it is not yet clear what the
mechanistic basis is thereof. For example, the negative
relationship between increasing temperature and survival
probability might reflect direct physiological temperature
sensitivity, an indirect physiological effect mediated
through increasing metabolic rates requiring more frequent
feeding and therefore higher foraging risk (Torr and
Hargrove, 1999; Hargrove, 2004; Terblanche and Chown,
2007), or simply an increase in predation owing to greater
activities of other species (see Leak, 1999). Each of these
mechanisms has very different implications for models of
the impacts of climate change on tsetse abundance and
distribution. The first suggests that reasonably straightfor-
ward climatic envelope models (see Hijmans and Graham,
2006) might be extrapolated to future conditions, whilst the
latter two mechanisms indicate that matters may be
substantially more complicated. In consequence, mechan-
istic understanding of the likely links between the abiotic
environment and the dynamics of a population is required
to develop realistic climate envelope models, particularly
those which use physiological information to define limits
or critical thresholds to animal function and performance
(Helmuth et al., 2005). Indeed, such a mechanistic
approach can provide major insights into the likely effects
of climate change on species distributions and abundance
(see Kearney and Porter, 2004; Pörtner and Knust, 2007),
because it presents an alternative to the more correlative
climate-matching approaches typically used to make such
forecasts (e.g., Rogers et al. (2002), Rogers and Robinson
(2004), Sumilo et al. (2007); for recent reviews of climate
modelling methods, see Graham and Hijmans, 2006;
Rogers, 2006). Thus, in the first part of this study we
examine the direct responses of an important south-east
African vector of trypanosomiasis, Glossina pallidipes, to
high and low temperature, to determine whether these
responses might constitute an important link between
temperature, population dynamics and geographic distri-
butions (see Gaston (2003) for general review of this field).
In the second part of the study, we examine the short-term

responses of this species to low temperatures. Early work
suggested that low-temperature developmental constraints
probably set the low-temperature limits to tsetse distribution
(e.g., Bursell, 1960; Phelps and Burrows, 1969). In conse-
quence, the low-temperature physiology of adult tsetse is
typically not well studied (exceptions include early work by
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Mellanby (1936), Burnett (1957), Phelps and Burrows (1969);
reviewed in Bursell (1964)). Also, thermal limits to activity
have not been well explored in tsetse (but see, for example,
Macfie, 1912; Mellanby, 1936), and lower lethal limit data are
restricted to a few species only. Moreover, interest in the low-
temperature physiology of tsetse is increasing because of the
ongoing, though controversial (see Rogers and Randolph,
2002) proposals for the use of sterile insect technique (SIT)
for their control and eradication. Indeed, flies reared for SIT
are typically chilled for handling and sorting prior to and
during aerial dispersal (Burnett, 1957; Leak, 1999), and
chilling is regularly used for sorting flies in the laboratory.
Much interest therefore exists in understanding how low-
temperature treatments may influence fly performance (e.g.
Mutika et al., 2001) and survival. For example, a rapid cold
hardening response, as has been found in other fly taxa (Lee
et al., 1987; Nilson et al., 2006), could result in flies recovering
during handling and transport, which in turn could negatively
affect the efficacy of laboratory work and SIT programmes.
Moreover, broad divergence in physiology between labora-
tory colonies and field populations (Terblanche et al., 2006)
raises issues of mating compatibility and the competitiveness
of colony-bred flies released into wild populations.

Therefore we (i) investigate acute time� temperature
effects on adult survival and limits to activity, (ii) synthe-
size available information and explore sources of intra-
specific variation in thermal tolerances in G. pallidipes (e.g.,
geographic variation, acclimation, experimental methodol-
ogy), (iii) determine if this species has the capacity to
rapidly cold harden (reviewed in Chown and Nicolson
(2004), Terblanche et al. (2007)) after pre-exposure to sub-
lethal temperatures, (iv) explore the effects of temperature
on chill coma recovery time and (v) examine short-term
costs associated with chill coma and assess the possibility
that energy metabolism plays a role in cold tolerance.

2. Methods and materials

2.1. Study sites and collection

The work focuses on adult flies because they are the life
stage most susceptible to high-temperature effects in the
wild (Hargrove, 2004), and because adult flies are those
that will be released in SIT operations (Leak, 1999). Field-
Table 1

Geographic co-ordinates, mean annual temperature (MAT), mean monthly te

sampling locations used to estimate inter-population physiological variability

Population Latitude Longitude (1E) MAT (1

Lambwe, Kenya 0.641N 34.31 22.5

Narok, Kenya 1.121N 35.20 16.0

Nguruman, Kenya 1.851S 36.10 24.9

Kwale, Kenya 4.181S 39.46 25.1

Mfuwe, Zambia 13.031S 31.45 23.9

Climate data obtained from DIVA-GIS software (see Hijmans et al. (2005) for

populations were reported in a previous study (Terblanche et al., 2006). Data
collected G. pallidipes (Diptera: Glossinidae) were trapped
in the South Luangwa National Park, Zambia (Mfuwe,
Table 1). For each of the field experiments, flies were
collected from 10 odour-baited Ngu traps (key attractive
components: 4-methyl-phenol, 3-n-propynol, and acetone)
spread over several kilometres near the park entrance.
Following removal from the traps, the flies were trans-
ported in an insulated container to the field laboratory
situated o2 h away. At the laboratory, flies were randomly
separated into groups for each of the experimental
procedures after which experiments commenced immedi-
ately. All experimental work took place over a 3-week
period in October 2006 prior to the start of the rainy
season. For some measures of thermal tolerance, data from
a previous study (Terblanche et al., 2006) were used to
document thoroughly intra-specific variation (see Table 1
for geographic and climate details of all populations
included in this analysis).

2.2. Lethal temperatures

Instead of attempting to age flies in the field by wing-fray
techniques, we assumed that age, gender and feeding status
effects were relatively small for temperature tolerance
estimates. Preliminary laboratory experiments for criti-
cal thermal limits suggested that this is the case for
G. pallidipes (see detailed appendix in Terblanche et al.,
submitted for publication; Terblanche et al., 2006). Lethal
temperature limits were assessed using a ‘plunge’ protocol
(as in, for example, Sinclair et al., 2006). Active flies were
selected for experiments while flies with flattened or folded-
over abdomens which indicate severe starvation and could
potentially influence stress resistance were deliberately
excluded. Flies were sorted into groups and loaded into
60ml polypropylene vials (n ¼ 8–12 individuals per vial).
Each temperature treatment was repeated at three different
durations: 1, 2 and 3 h. A minimum of five replicated vials
was used per temperature/time treatment. Low-tempera-
ture treatments covered the range 0–18 1C while high-
temperature treatments included 30–44 1C. During lethal
temperature experiments, relative humidity (r.h.) was
controlled to �76% using saturated NaCl solutions within
each vial. A piece of plastic mesh ensured that flies did not
come into direct contact with the salt solution. After water
mperature range (MMTR), mean annual rainfall (MAR) and altitude for

in Glossina pallidipes

C) MMTR (1C) MAR (mm) Altitude (m a.s.l.)

12.9 1500 1353

14.2 1205 1691

13.5 490 670

8.3 1143 388

14.1 865 600

details on interpolation and averaging). Physiological data for the Kenyan

from the present study is given in bold font.
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bath temperatures had been verified with mercury thermo-
meters, flies held in non-airtight vials placed within
watertight plastic bags were submerged in water baths for
each treatment. Upon completion of a temperature
treatment, vials were transferred to a Peltier-controlled
temperature cabinet (PTC-1, Sable Systems, Las Vegas,
NV, USA) for 4 h at 30 1C before survival was scored. The
use of field-collected flies precluded survival assessments
after longer periods because we sought to eliminate the
confounding effects of starvation (attempts made to feed
flies using the membrane tray system typically used for
feeding laboratory-reared flies were unsuccessful likely
owing to learned feeding behaviour (Bouyer et al., 2007)).
Survival was considered co-ordinated behaviour (such as
flight or walking) or a co-ordinated response to mild
stimulus (prodding). Analyses were performed to investi-
gate the effects of time, temperature and the interactions
thereof on survival, using generalized linear models in SAS
v. 9.0 (SAS Institute, Cary, NC, USA), assuming a
binomial distribution and a logit link function with
deviance scaled to 1 to correct for overdispersion (results
presented in Table 2).

2.3. Critical thermal limits

Preliminary laboratory work and field investigations
(Terblanche et al., 2006) have shown that these traits are
reliable and repeatable indicators of thermal tolerance
within populations over time (and reviewed in Chown and
Nicolson (2004)). To enable comparisons with a previous
study of populations of this species from East Africa
(Terblanche et al., 2006), critical thermal limits were
assessed using that study’s methods. In brief, a program-
mable water bath (LTC-12, Grant Instruments, UK) was
used to regulate the temperature of water flowing through
an insulated double-jacketed series of chambers (‘organ
pipes’). Flies placed individually into these chambers
were subjected to heating or cooling at constant rates
(0.25 1C/min) and the temperature at which critical thermal
limits occurred was recorded. The point of critical thermal
minimum (CTMin) was defined as the loss of co-ordinated
muscle function, and critical thermal maximum (CTMax)
Table 2

Summary of the effects of temperature, time and their interactions on

survival in Glossina pallidipes

Treatment Effect w2 p

Upper lethal temperatures Temperature 5.44 o0.05

Time 57.07 o0.0001

Time� temperature 57.45 o0.0001

Lower lethal temperatures Temperature 33.53 o0.0001

Time 29.35 o0.0001

Time� temperature 0.87 0.35

Generalized linear model (Type III) analyses were performed assuming a

binomial distribution with a logit link function in SAS and correcting for

overdispersion.
was defined as the onset of muscle spasms. A sample size of
n ¼ 10–20 was used for all CTMax experiments and n ¼ 20
for CTMin experiments. All critical thermal limits data were
assessed for normality of distributions (Shapiro–Wilks test)
prior to analyses, and since these traits are known to be
unaffected by factors such as gender, feeding status and
post-developmental adult age in G. pallidipes (Terblanche
et al., 2006) these variables were not incorporated into the
analyses. Intra-specific variation in thermal tolerances in
G. pallidipes was assessed by comparing the present data on
the Mfuwe population with information on East African
populations and laboratory-reared flies subjected to
various acclimation treatments as reported previously in
Terblanche et al. (2006) using one-way ANOVA (popula-
tions treated as a fixed effect) and Tukey–Kramer post hoc
tests for homogeneity of groups.
To further assess the relationship between CTMax values

and the environmental temperatures thought to compro-
mise survival in this species (see Hargrove, 2001, 2004), we
also report here the outcome of additional work under-
taken to assess rate and starting temperature effects on
CTMax and CTMin (Terblanche et al., submitted for
publication). In this experiment, the protocols as described
above were followed, but rather than using a single heating
rate, we also investigated CTMax and CTMin follow-
ing heating or cooling, respectively, at 0.25, 0.12 and
0.06 1C/min. Starting temperatures for CTMax included 35,
38 and 41 1C while for CTMin these included 16, 20 and
24 1C (detailed in Terblanche et al. (submitted for publica-
tion)), but for the present study we only present data from
a single starting temperature for each (24 1C in CTMin and
35 1C in CTMax). Comparison of experimental treatment
groups was made using one-way ANOVA (followed by
Tukey–Kramer post hoc tests) for three different rates at
upper and lower temperatures in order to illustrate these
effects.

2.4. Rapid cold hardening

Rapid hardening responses were assessed using a plunge
protocol similar to methods described previously (e.g.
Kelty and Lee, 1999; Sinclair and Chown, 2003;
Terblanche et al., 2007). To obtain a suitable discriminat-
ing temperature at which low but non-zero survival
occurred, field-collected flies were sorted into non-airtight
60ml polypropylene vials in groups of 8–12 individuals and
replicated a minimum of five times per temperature group.
Groups were plunged into a water bath (Grant LTC-12 or
LTD-6) at the set temperatures from 2 to 18 1C (in 2 1C
increments) for 2 h. Survival, defined as co-ordinated
movement and response to a stimulus, was assessed after
4 h recovery at 30 1C (76% r.h.). A discriminating
temperature of 2 1C was chosen as it produced low, but
non-zero survival (�20% survival as estimated from
preliminary experiments).
For the pre-treatments, flies were sorted into 60ml

polypropylene vials in groups of 8–12 per vial. Vials were
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placed in water baths (8, 10 and 14 1C pre-treatments) or
Peltier-controlled temperature cabinets (PTC-1) (36 1C pre-
treatments). After 2 h, vials were removed and immediately
placed into a water bath set to 2 1C. After 2 h vials were
removed from the water bath and transferred into a PTC-1
incubator set at 30 1C (76% r.h.) and survival was scored
after 2 h. This period was selected to minimize effects of
mortality as a consequence of starvation. A replicated
‘handling control’ was included in each treatment group.
The handling controls were subjected to sorting, placed
into 30 1C (76% r.h.) for 2 h, transferred to 2 1C for 2 h,
and then placed at 30 1C for 2 h to allow recovery before
scoring survival. Within each vial, relative humidity was
carefully regulated during these experiments to �76%.
Inside each 60ml vial containing flies, a perforated 2ml
plastic tube held damp cotton wool soaked in saturated
NaCl solution and was affixed to the lid of the vial. The
inner plastic tube prevented flies from coming into direct
contact with the salt solution.

A variety of pre-treatments were undertaken to encom-
pass a range of conditions which might stimulate hardening
responses while remaining cognisant of the range of
environmental temperature variation that might be experi-
enced in tsetse habitats. These pre-treatments included gap,
desiccation, controlled cooling rates and direct plunge
treatments (see Fig. 1 for a schematic diagram). Gap
treatments involved waiting 1 h (36 1C) or 2 h (10 1C
treatments) after pre-treatments before plunging groups
into the discriminating temperature to allow full develop-
ment of a possible heat shock protein response (for
rationale see Sinclair and Chown, 2003). All experiments
Fig. 1. Schematic diagram of experimental protocols used to induce a hardeni
were performed under controlled relative humidity (76%
r.h.) except for the ‘361 Dry’ treatment which was
undertaken at o5% r.h. by including silica gel in vials
and aimed to identify if desiccation could induce hard-
ening. Cooling treatments were ramped at a constant
cooling rate of 0.25 1C/min (LTC-12) after 10min equili-
bration at 25 1C. The ‘101 Cool 45min’ treatment was
ramped down to 10 1C and transferred immediately to 2 1C
for 2 h. The duration of the latter treatment was therefore
approximately 45min. By contrast, the ‘101 Cool 2 h’
treatment was cooled from 25 1C (at 0.25 1C/min) to 10 1C
but held for 2 h at this temperature before transferring flies
to 2 1C for 2 h. All other plunge treatments involved 2 h
pre-treatments prior to exposure at the discriminating
temperature. All statistical comparisons are made in a pair-
wise fashion using randomization statistics for pre-treat-
ment versus control groups on a given day (as described in
Terblanche et al. (2007)) and corrected for False Discovery
Rates (FDRs) to reduce the likelihood of rejecting the null
hypothesis falsely in multiple testing (Benjamini and
Hochberg, 1995).

2.5. Chill coma recovery times

Flies were chilled in 60ml polypropylene vials using
calibrated water baths set at 2 1C increments ranging from
2 to 12 1C (following the methods described in David et al.,
2003). Previous work on critical thermal limits in G.

pallidipes field populations and laboratory colonies has
suggested little effect of gender on temperature tolerance
(Terblanche et al., 2006). However, since work on chill
ng response (see Section 2.4 for a thorough description of each treatment).
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coma recovery time in Drosophila has found gender effects
in some cases (David et al., 1998), but not in others (Gibert
et al., 2001), and because no previous work on Glossina

spp. has reported gender effects or a lack thereof in this
trait, only female flies were used to avoid potentially
confounding comparisons of treatment groups if sex ratios
varied by chance. A 2 h period at the treatment tempera-
tures was chosen as a compromise between complete
recovery of all individuals upon return to ambient
conditions and recovery occurring within too short a time
span to record accurately. Essentially, field-collected flies
were subjected to constant temperatures for 2 h and
returned to ambient temperature where their recovery time
was recorded. For each test temperature, five to six
replicated vials (n ¼ 10–20 per vial) were used. Upon
completion of the 2 h temperature exposure, flies were
transferred onto paper towels in an open plastic container
and recovery times were scored. The ability to fly or walk in
a co-ordinated fashion was defined as ‘recovery’ and the
time taken to achieve this was noted for each individual. As
expected from the results of the lower lethal temperature
experiments, many flies did not recover at the lower
temperatures (often in excess of 70% at the lowest
temperatures) even after an hour, and these flies were
excluded from analyses. Thus, replication of experiments
was necessary to obtain sufficient sample sizes. Upon
recovery, flies were captured with soft forceps and weighed
immediately to 0.1mg on an electronic balance (FA 304T,
Avery Berkel, Fairmont, USA) to investigate potential
relationships between body size and recovery time. Within
each temperature treatment group linear regression ana-
lyses confirmed that recovery times were not related to
body size (p40.1 in all cases). Ambient laboratory
temperatures (Ta) were recorded at the start and end of
each experiment and varied by less than 2 1C between
replicates and treatments (Ta: 35–37 1C). Chill coma
recovery times were log10 transformed to normalize the
right-skewed frequency distributions that are typical of this
trait (see David et al., 2003).

2.6. Survival after exposure to the critical thermal minimum

We next considered the potential costs of experiencing
chill coma, which may be particularly apparent in chill-
susceptible insects such as tsetse. Female flies were selected
at random from traps and divided into two treatment
groups. Survival times, at 30 1C and 76% r.h., were
compared among flies which had and had not experienced
chill coma. Individual flies were weighed to 0.1mg, placed
singly into polypropylene vials, and submerged in a water
bath which lowered temperature at 0.25 1C/min after
12min equilibration at 20 1C. Twenty flies were removed
once the water bath reached 18 1C and 20 flies were
removed after the bath reached 8 1C. All flies were then
placed individually into 60ml vials and held in a
temperature cabinet (PTC-1) at 30 1C and 76% r.h.
Survival time was scored every 2 h until all flies had died.
Thus, flies in these two groups had either been subjected to
a temperature at which CTMin had been experienced (8 1C)
or not experienced (18 1C) (see critical thermal limits
results) and thus represented a group of individuals which
had undergone chill coma vs. a group which had not. The
difference in time between these two treatments was
�40min and starvation effects are therefore considered
negligible between these two groups.
The influence of low-temperature events and body

condition on survival was further explored to assess the
possibility of physiological trade-offs between body condi-
tion and low temperature tolerance (as in Drosophila,
Hoffmann et al., 2005). Here, female flies selected at
random from traps (n ¼ 20) were run as in Section 2.2
using the double-jacketed chambers but at the point of
CTMin (chill coma) induction the temperature was noted,
the fly was removed from the system immediately, weighed,
and transferred to individual, labelled vials. Flies were then
placed into the temperature cabinet (PTC-1) at 30 1C and
76% r.h. and survival time was scored every 2 h until all
flies had died. At the time of death, flies were again
weighed. After all individuals had died, flies were weighed,
dried to constant mass (50–60 1C, 0% r.h.) and weighed
again to estimate body water content. Subsequently, body
lipid extractions were performed on these individuals using
standard chloroform: methanol (1:1) solvent extraction
techniques. Lipid content was defined as the dry mass of
the fly prior to lipid extraction subtracted from its dry,
lipid-free mass (termed ‘residual dry mass’; as described in
Terblanche et al., 2006). Regression analyses (Type III
model) were undertaken in Statistica 7.0 (Statsoft, OK,
USA) to determine if a relationship existed between low
temperature tolerance (CTMin as the dependent variable),
body condition (either water or fat content) and survival
time following chill coma.

3. Results

3.1. High-temperature responses

Time and temperature had a significant effect on survival
at high temperatures and the interaction between time and
temperature was also significant (Table 2; Fig. 2A). Here,
longer exposure time or more severe temperatures resulted
in a reduction in high-temperature survival, but the form of
the relationship between temperature and survival differed
depending on exposure time. The temperature at which
50% of the population survived (Upper Lethal Tempera-
ture, ULT50) for the 1, 2 and 3 h treatments was 37.9, 36.2
and 35.6 1C, respectively (95% CIs: 70.5 1C).
Upper critical thermal limits were influenced substan-

tially by the rate of temperature change (Fig. 3A). Mean
heating rates calculated from shaded microclimate data for
fly resting sites (verified by observation) were 0.0507
0.010 1C/min (mean7S.D.; n ¼ 10 days). Therefore, the
slowest heating rates (0.06 1C/min) starting from a
temperature approximating ambient conditions (35 1C)
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represent the temperature tolerance estimates most ecolo-
gically relevant to G. pallidipes in its natural thermal
environment (Terblanche et al., submitted for publication).

3.2. Low-temperature responses

3.2.1. Low-temperature tolerance

The effects of temperature and time on survival were
significant such that more severe temperatures or longer
durations at a given temperature resulted in lower survival
(Fig. 2B). However, interactions between time and
temperature were not significant, indicating that the form
of the relationship between temperature and survival did
not depend on exposure time (Table 2), even though initial
inspection of the data suggested that this might be the case.
High variances in the low temperature data likely account
for this finding. The temperatures at which 50% of the
population survived the low-temperature range (lower
lethal temperature, LLT50) for 1, 2 and 3 h treatments
were 3.7, 8.9 and 9.6 1C, respectively (95% CIs were
71.5 1C).
Low-temperature critical thermal limits starting from

24 1C are profoundly influenced by the experimental
protocol such that a reduction in cooling rate results in
higher CTMin values (Fig. 3B). Mean cooling rates
calculated from microclimate data during the study period
were 0.02070.007 1C/min (mean7S.D.) across a 10-day
period. Again, the slowest rate of cooling can be regarded
as the most ecologically relevant one to assess likely chill
coma in the wild.
Flies recovered slowest from chill coma after the lowest

temperature exposure, although this relationship was
clearly non-linear across the range of temperatures
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investigated (Fig. 4). In consequence, chill coma recovery
times were strongly influenced by the temperature of expo-
sure (GLZ in SAS, poisson distribution, log link function,
d.f. ¼ 1, 187, Wald w2 ¼ 25386.2, po0.0001).

3.2.2. Low-temperature plasticity: a lack of hardening

response

No evidence of rapid cold hardening in response to
several low- or high-temperature treatments, desiccation,
or treatments with gaps (delays) was found (p40.73 after
FDR correction in all cases), with the exception of the
group cooled to 10 1C and immediately subjected to the
discriminating temperature (‘10 1C Cool 45min’, t ¼ 4.235,
po0.0001 after FDR correction). However, this group
experienced almost one third of the time during pre-
treatment by comparison with the other groups (Fig. 5),
and the seemingly positive effect of pre-treatment may
actually have been a consequence of a reduction in
duration, and thus severity, of the temperature exposure.
Indeed, as soon as time was controlled for in a similar
experiment in which flies were similarly cooled but held at
10 1C for 2 h prior to plunging into the discriminating
temperature (‘10 1C Cool 2 h’ treatment), survival was not
significantly improved relative to the control group
(t ¼ �1.672, p40.72 after FDR correction).

3.2.3. Chill coma, body condition and survival time

No difference in mean subsequent survival time was
evident between the group which had experienced chill
coma compared with the group which had not (F1,38 ¼

0.44, p40.51) even after correction for body condition
(body lipid content and water content summed) (F1,37 ¼

0.43, p40.51), body water content (F1,37 ¼ 0.44, p40.51)
or lipid content (residual dry mass) (F1,37 ¼ 0.41, p40.50).

In the group used to test for a relationship between cold
tolerance and body condition, a weak negative relationship
was obtained between CTMin and survival time (r2 ¼ 0.25;
F1,18 ¼ 5.99; po0.05) indicating that the least low-
temperature tolerant flies were the first to die of starvation.
Flies which begun experiments with higher body water
content had an advantage during the survival assays as
they could resist desiccation for longer. As expected, a
positive relationship was found between body water
content and survival time (r2 ¼ 0.51; F1,18 ¼ 18.94;
po0.001). However, no relationship was found between
CTMin and residual (fat-free) dry mass (F1,18 ¼ 0.44,
p40.51). Thus, little support for a trade-off between
starvation resistance and chill coma temperatures in female
G. pallidipes was found.
3.3. Inter-population comparison: data synthesis

3.3.1. High-temperature responses

Because work on the Kenyan and laboratory-acclimated
populations was undertaken using a 0.25 1C/min heating
rate and experimental protocol started at 35 1C (Ter-
blanche et al., 2006), we could only make a comparison
between this study and the previous one with the CTMax

data obtained using the same heating rate and start
temperature. This comparison revealed significant varia-
tion in CTMax among wild populations (ANOVA:
F4,134 ¼ 8.539, po0.0001), although the full range of
variation among all laboratory treatments and field
populations was only (ca.) 1 1C (Table 3). CTMax values
for flies from various temperature acclimation treatments
(after �10 days; Lab19-29) fell within the range of the East
African population values, and in general acclimation
treatments had little effect on CTMax even though the 19 1C
acclimation group was identified as being statistically
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different from the 29 1C acclimation group in the full
ANOVA (Table 3; Terblanche et al., 2006).

3.3.2. Low temperature responses

Using population data from our previous study com-
bined with the present study (all data obtained using a
similar cooling rate (0.25 1C/min) and starting temperature
(16 1C)), CTMin differed among populations with an overall
Table 4

Summary of thermal biology studies undertaken on tsetse flies (Glossina spp.)

Species Physiological trait

G. m. orientalis ULT, LLT

G. morsitans ULT, cold survival, heat survival

G. morsitans ULT, LLT

G. tachinoides, G. m. submorsitans ULT, LLT

G. morsitans LLT

G. morsitans Survival times, ULT

G. morsitans LLT, cold survival

G. swynnertoni LLT, cold survival

G. palpalis Survival, CTMin/activity
c

G. palpalis Survival, CTMin/CTMax/activity
c

G. palpalis Cold survival

aColony supplemented with field flies.
bCited in Phelps and Burrows (1969).
cMay approximate critical thermal limits.

Table 3

Summary data for field populations and laboratory acclimation treat-

ments of critical thermal limits in Glossina pallidipes

Population Critical thermal

maximaa
Critical thermal

minimab

Mean7S.E.

(1C)

N Mean7S.E.

(1C)

N

Lambwe, Kenya 44.670.1A,C 30 13.470.2A 30

Narok, Kenya 44.470.1A 30 10.570.2B 30

Nguruman, Kenya 44.970.1C 30 13.870.2A 30

Kwale, Kenya 45.070.1C 30 13.870.2A 30

Mfuwe, Zambia 44.370.1
A,B

20 13.070.2
A

20

Lab19 43.970.1B 20 4.570.2C 20

Lab24 44.470.2A,B,C 10 7.870.3D 12

Lab29 44.270.1A,B 19 7.270.2D 20

Mfuwe—Zambia, this study; Lambwe, Narok, Nguruman, Kwale—

Kenya; Lab19—laboratory colony reared at 19 1C for 10 days as adults;

Lab24—laboratory colony reared at 24 1C for 10 days as adults; Lab29—

laboratory colony reared at 29 1C for 10 days as adults; source: Terblanche

et al. (2006). For detailed description of Kenyan populations sampling

sites, laboratory acclimation procedures and statistics, see Terblanche et

al. (2006). All data obtained using identical experimental procedures (rate

of temperature change: 0.25 1C/min; starting temperature: 35 1C and 16 1C

for critical thermal maxima and minima, respectively). Data from the

present study is given in bold font. Superscript letters indicate statistically

homogeneous groups after ANOVA followed by Tukey–Kramer post hoc

tests. Statistics for comparisons of natural populations only (i.e., excluding

laboratory colony flies) are reported in Section 3.
aF7,181 ¼ 12.93; po0.0001.
bF7,214 ¼ 338.26; po0.0001.
range of �3.5 1C (Table 3). However, this was largely due
to the high-altitude Narok population from Kenya
(ANOVA: F4,135 ¼ 43.181, po0.0001) as the remaining
populations were homogeneous. In the laboratory flies,
43 1C variation could be induced by temperature acclima-
tion, although some differences in absolute low tempera-
ture tolerance is evident between colony-reared and natural
populations assayed under identical conditions (Table 3;
Terblanche et al., 2006).

4. Discussion

4.1. Thermal limits, mortality, and geographic range

Temperature tolerance has long been a topic of interest
to biologists investigating tsetse, given indications that high
temperatures have negative effects on populations of
these species (summarized in Bursell, 1964; Leak, 1999;
Hargrove, 2004; see also Hargrove, 2001; Table 4).
Typically, physiological estimates of high-temperature
tolerance are substantially higher than the estimates of
survival probability derived from mark-recapture studies in
tsetse. For example, experimental work in G. palpalis,
Glossina tachinoides and Glossina morsitans submorsitans

has suggested upper lethal limits of approximately
40–44 1C (Buxton and Lewis, 1934; Mellanby, 1936), whilst
in the field, population declines commence at temperatures
at least 12 1C lower in G. m. morsitans and G. pallidipes

(Hargrove, 2001, 2004). Thus, it might at first appear that
physiological tolerances have little direct role to play in
determining tsetse demographics or distributions (see Torr
and Hargrove, 1999), despite the strong relationships
between temperature variables and distributions and
abundance found in correlative studies (e.g. Robinson et
al., 1997a, b; Hendrickx et al., 1999). Based solely on our
results for critical thermal maximum (Table 3), one
might again suggest that this is the case though little
variation among populations does provide one mechanism
by which distributions may be limited by little evolutionary
from the Anglophone literature

Life stage Source Reference

Pupae Laboratorya Phelps and Burrows (1969)

Pupae/adults Laboratory/field Potts (1933)

Pupae Field Jack (1939)b

Pupae/adults Field Buxton and Lewis (1934)

Pupae Field Bursell (1960)

Jack (1942)

Adults Field Burnett (1957)

Adults Field Burnett (1957)

Adults Field Mellanby (1936)

Adults Field Macfie (1912)

Adults Field Burnett (1957)
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change of flexibility (Terblanche et al., 2006). However,
we are of the opinion that experimental protocol con-
tributes to the discrepancy between field and laboratory
studies.

Two lines of evidence suggest that this is the case. First,
prolonged exposures to high temperatures result in a
substantial decline in survival (ca. 40% at 35 1C; Fig. 2A),
suggesting that even longer exposures to moderately high
temperatures might result in substantial mortality. This has
been found previously in G. palpalis (Mellanby, 1936).
Second, when heating rates are reduced to those typically
experienced by field flies, and starting temperatures are
more typical of the field Ta, cessation of activity via heat
coma also falls within the range of values typical of field
conditions (cf. Fig. 3A with Fig. 6). These results, together
with the limited flexibility in critical thermal limits shown
by G. pallidipes (Table 3), suggest that the direct negative
effects of high temperature may well play an important role
in reducing survival in the field (see Hargrove, 2004), and
setting geographic range limits in this species as the
correlative data suggests (Robinson et al., 1997a, b).
However, because mortality rates typically start increasing
from a mean temperature of approximately 27 1C in the
field (Hargrove, 2004), and because metabolic rates are also
strongly related to temperature (Terblanche et al., 2005;
Terblanche and Chown, 2007) and influence internal
resource availability (Bursell and Taylor, 1980), indirect
effects of temperature might also be important (discussed
in Torr and Hargrove (1999)). Specifically, it seems likely
that, as Hargrove (2004) proposed, feeding to make up
internal resource shortages (precipitated by enhanced
metabolic costs at high temperature) is likely to elevate
predation risk, resulting in enhanced mortality. What the
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relative contributions are of these mortality factors has yet
to be ascertained. Although thermal refugia might enable
tsetse to live at temperatures 2–6 1C lower than ambient
values (Torr and Hargrove, 1999; Muzari and Hargrove,
2005), maximum temperatures might still reach values close
to those of the absolute limits of individual flies.
Irrespective, the available physiological and environmental
data (Terblanche et al., 2006; Hargrove, 2001, 2004)
support the prediction that, at least in south-eastern
Africa, the geographic range of G. pallidipes is likely to
decline with warming climates, as has been predicted for
other species of tsetse (see Hulme, 1996; Rogers and
Robinson, 2004; but see Rogers and Randolph, 1993).
At the other end of the temperature range, the lower

lethal limit data and CTMin data at the slowest cooling
rates suggest that at temperatures as high as 20 1C, adult
flies might either experience mortality, or might be unable
to be active, respectively. In the case of limits to activity,
the co-occurrence of low-temperature periods and those of
minimal tsetse activity (all species are diurnal foragers
although they readily adjust peaks in activity time to
microclimate temperatures—see, for example, Huyton and
Brady, 1975; Hargrove and Brady, 1992) mean that
relatively high cold stupor temperatures are unlikely to
negatively influence adult survival in areas that have high
diurnal temperatures. Likewise, the mortality effects of low
temperature in such regions might be mitigated by selection
of thermal refugia (Muzari and Hargrove, 2005), so
resulting in little change in daily mortality rates with
declining temperatures as typically found in such areas
(see, for example, Hargrove, 2004). However, the lower
thermal limits documented here might explain the absence
of tsetse from cooler, high elevation or more southerly
regions (discussed in Bursell (1960); and see, for example,
Rogers and Packer, 1993; Hulme, 1996). Even though it
has previously been claimed that limits to pupal develop-
ment (Glossina spp. typically do not emerge below 14–16 1
(Bursell, 1960; Phelps and Burrows, 1969)) might set in
before low temperature limits to adult survival and activity
(Bursell, 1964), our data show that this is unlikely to be the
case for G. pallidipes. Rather, activity can be limited at
temperatures as high as 22 1C, and mortality already sets in
between 14 and 18 1C in adults. Whilst tsetse may be able
to circumvent low temperature mortality and the negative
effects of low temperature on pupal development rate by
selection of appropriate thermal refuges (Bursell, 1959,
1960; Torr and Hargrove, 1999; Muzari and Hargrove,
2005), the use of the same refuges for both purposes must
mean that the stage with the greatest sensitivity to
temperature would be affected first. Moreover, adult tsetse
are unable to survive for longer than 4–6 days without a
blood meal even at relatively low temperatures (Buxton
and Lewis, 1934; Jackson, 1954). If ambient temperatures
remain below the critical limits for activity for longer than
this period, then clearly mortality will increase substan-
tially, making adult thermal tolerance rather than the
temperature sensitivity of pupal development most sig-
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Table 5

Summary of annual weather data for Mfuwe, Zambia taken from

interpolated weather station data using DIVA-GIS software over

1950–2000 (for details on interpolation methods and climatic variables,

see Hijmans et al. (2005))

Tmin (1C) Tmax (1C) Rainfall (mm)

January 20.1 30.6 220

February 20.0 30.3 195

March 19.5 30.7 130

April 17.7 30.4 40

May 14.2 29.2 3

June 11.2 27.6 0

July 10.8 27.8 0

August 12.7 29.8 0

September 16.2 33.5 0

October 19.4 35.5 13

November 20.6 34.8 86

December 20.3 31.5 178

Annual 16.9 31 865

Tmin, minimum temperature within the month; Tmax, maximum tempera-

ture within the month.
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nificant in affecting survival, and ultimately for limiting
geographic range in low-temperature areas (see Bursell,
1960; Hargrove and Brady, 1992). Nonetheless, substantial
plasticity in critical thermal limits (see Table 3) might
partially mitigate the effects of low temperatures on adult
activity. Indeed, this might provide an ultimate explanation
for why substantial plasticity exists in lower, but not in
upper critical limits, and why plasticity effects are so much
larger in the adult than in the pupal stage (Terblanche and
Chown, 2006). Nonetheless, these data suggest that
increasing temperatures are likely to affect tsetse popula-
tion dynamics and distributions not only via the pupal
stage, but also via mortality effects on adults. Hence,
bottom-up modelling work (e.g. Hargrove and Williams,
1998) must take cognisance of the likely significance of
thermal biology of the adults.

4.2. Rapid cold hardening and chill coma recovery

By contrast with the longer term acclimation effects (see
Terblanche et al., 2006; Terblanche and Chown, 2006), the
hardening experiments in the present study suggest that
G. pallidipes are characterized by little plasticity of acute
low-temperature tolerance at short (hourly) time scales.
Similar results have been obtained in laboratory colonies of
G. pallidipes and Glossina fuscipes (see FAO/IAEA, 2002).
Little or no hardening has been documented in other
terrestrial arthropod species, but these are typically from
polar environments. For example, the sub-Antarctic
caterpillar Pringleophaga marioni and adults of the kelp
fly Paractora dreuxi show little change in survival of a low
temperature following exposure to sub-lethal temperature
pre-treatments (Sinclair and Chown, 2003; Terblanche
et al., 2007). Likewise, the Arctic collembolan Hypogastrura

tullbergi shows limited improvement in survival of lethal low
temperatures following low-temperature pre-treatments
(Hawes et al., 2006), as do adults of the Antarctic midge
Belgica antarctica (Lee et al., 2006). Quite why these species
and the tropical G. pallidipes should show little or no rapid
cold hardening response, whilst the majority of other species
investigated to date do (see Chown and Nicolson, 2004;
Sinclair and Chown, 2006) is not clear. However, the
similarity of the species in this respect might be entirely
coincidental given that the presence or absence of rapid cold
hardening is likely to be affected by the cold tolerance
strategy typically adopted by the species (Sinclair and
Chown, 2003, 2006), the duration of the stage (Lee
et al., 2006), predictability and variability of the environment
(Hawes et al., 2006), and the mobility and activity period of
the adults relative to periods of low temperature (Terblanche
et al., 2007).

In the case of chill coma recovery times, the non-linear
patterns documented for G. pallidipes, with plateaus at 2–6
and 8–10 1C, are similar to those found in Drosophila,
although the absolute temperature ranges differ. David et
al. (2003) found a plateau in recovery times in the range of
�4 to �6 1C in Drosophila subobscura and suggested that
this plateau was governed by the interplay of two distinct
physiological mechanisms acting at different temperatures.
In Drosophila melanogaster, MacDonald et al. (2004) also
found evidence for a recovery time plateau but in the range
of 2 to �2 1C depending on the duration of exposure, and
they suggested that rapid cold hardening responses may
play a role in determining the plateau in recovery time.
However, because G. pallidipes does not show RCH, it
seems unlikely that hardening responses are responsible for
the plateau in chill coma recovery times. To date, only a
few studies have investigated these non-linear effects (see
Rako and Hoffmann, 2006; Chown and Terblanche 2007
and references therein) and the mechanisms underlying
them remain obscure.

4.3. Costs to chill coma and the influence of body condition

Since G. pallidipes cannot rapidly cold harden, at least
not under the conditions examined in the present study, it
is highly likely they will experience chill coma with diurnal
temperature variation under natural field conditions. For
example, inspection of climate data (Table 5) and CTMin in
the Mfuwe population (Table 3 and Fig. 3B) suggest that
this is the case during certain times of the year (e.g. July)
under the experimental conditions reported in the present
study. Regardless, a separate study (Terblanche et al.,
submitted for publication) which investigates the effects of
varying start temperatures, rates of temperature change
and their interactions on critical thermal limits suggests
that under the most ecologically relevant experimental
conditions wild flies are highly likely to experience chill
coma or heat stupor on multiple occasions during the
course of the year. It is therefore relevant to consider the
potential costs of experiencing chill coma, which may be
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particularly apparent in chill-susceptible insects such as
tsetse. For example, costs to growth, development rate, and
final body size have been associated with repeated freezing
and thawing in the freeze-tolerant caterpillar P. marioni

(Sinclair and Chown, 2005). In the present study, the chill
coma survival experiments suggests there are few short-
term costs and that G. pallidipes can survive for similar
durations whether they have experienced chill coma as
compared with no chill coma even after factoring body
condition into the analyses. This is in keeping with findings
from studies of other tsetse species. For example, in
G. submorsitans and G. tachinoides, Buxton and Lewis
(1934) reported that 2 h exposures at 4 or 8 1C resulted in
no long-term effects on survival, and that flies were capable
of normal feeding behaviour upon return to ambient
temperature. However, energy resources are increasingly
being highlighted for their role in cold tolerance, as
demonstrated by proline metabolic enzyme inhibition
reducing a rapid cold hardening response (Misener et al.,
2001), the role of energy reserves in surviving cold exposure
(Colinet et al., 2006) and the trade-off between starvation
resistance and cold tolerance (Hoffmann et al., 2005). In
G. pallidipes, at short time scales it appears that there are
few direct effects of chill coma on survival. However, the
negative relationship between body condition and critical
thermal minimum suggests an important role for energy
and/or water reserves in determining low temperature
tolerance. Under conditions of low host availability or
infrequent feeding flies should be particularly susceptible to
low temperature effects. Regardless, in G. pallidipes little
direct evidence was found for trade-offs between starvation
resistance and low-temperature tolerance since the most
low temperature tolerant individuals had the greatest
starvation resistance, not the converse.

In conclusion, this work on G. pallidipes, as well as
previous studies on this species and G. morsitans (e.g.
Terblanche et al., 2005, 2006; Terblanche and Chown,
2006, 2007), suggest that both direct and indirect physio-
logical mechanisms could lie at the heart of the relationship
between environmental variation and the distribution and
abundance of tsetse. In particular, the southern and high-
altitude limits to tsetse distributions, which have long
concerned those working on the group (e.g. Rogers and
Williams, 1994), may be explained on the basis of limits to
adult survival and activity, as well as limits to development.
These findings suggest that climate envelope modelling
should provide a useful first step for analyzing the likely
change in tsetse distributions with climate change. Of
course, realized range alterations will depend also on the
availability of hosts and on the flexibility of tsetse
behaviour (see Robays et al., 2004). Our work also suggests
that G. pallidipes has limited scope for short-term (hours)
acclimation to low-temperature treatments; rendering any
concerns about recovery effects during chilling for SIT
irrelevant. However, longer-term, low temperature accli-
mation effects differentiate laboratory and field popula-
tions of these flies.
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