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Abstract: Two commercially available enzymes, Dextrozyme (α-amylase) and Esperase (protease),
were covalently immobilized on non-woven electrospun poly(styrene-co-maleic anhydride) nanofiber
mats with partial retention of their catalytic activity. Immobilization was achieved for the enzymes
on their own as well as in different combinations with an additional enzyme, β-galactosidase, on the
same non-woven nanofiber mat. This experiment yielded a universal method for immobilizing
different combinations of enzymes with nanofibrous mats containing maleic anhydride (MAnh)
residues in the polymer backbone.
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1. Introduction

Enzymes play a key role in catalyzing biological reactions. As a result, they are often active
under relatively mild conditions and their catalysis can be highly specific. Due to these characteristics,
enzymes are increasingly being used in modern biotechnological settings, such as the food, biofuel
and fine chemical industries [1]. However, enzyme purification from its native source is often difficult
and costly [2]. Due to the increased demand for industrial enzymes, a sizable portion of commercial
enzymes are, therefore, recombinantly produced [3,4]. Advances in recombinant enzyme technology
have enabled the production of large quantities of robust enzymes, specifically functionalized to
meet industrial demands [5,6]. Presently, commercial enzymes are available both freeze-dried and
in solution. However, advances have also been made in immobilization of enzymes for use in batch
reactors [7]. Enzymes may be immobilized by adsorption or covalent attachment to polymers and other
high-surface-area substrates that find application in fine-chemical synthesis, fabrication of biosensors,
food processing, protein digestion, and bioremediation [8].

Immobilized enzymes have the advantage over free enzymes in solutions in that they can be used
repeatedly, and the risk of product contamination is significantly reduced. However, in certain cases,
the immobilization substrate matrix (immobilization support) may influence the catalytic activity of the
immobilized enzymes, depending on the characteristics of the substrate [9]. Enzyme immobilization
on mesoporous ceramics, for instance, can lead to the loss of catalytic activity because the enzyme
is contained within the support. This containment prevents diffusion of the enzyme substrate to
the active site and release of the product from the enzyme active site [8,10]. Nonwoven nanofibrous
mats can overcome this disadvantage because their high level of porosity and interconnectivity allow
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mass transfer of the substrates and products. The high surface to volume ratio of nanofibrous mats,
furthermore, provides a relatively large surface area for enzyme immobilization, which results in
higher enzyme loadings compared to other solid supports [11]. Nanofibrous mats could also be
spun from a variety of polymers allowing for site-directed immobilization of enzymes (e.g., via a
polyhistidine tag) [12]. This would enable the design and manufacture of tailor-made surfaces that
limit the loss of enzymatic activity.

In a study by Li et al. [13], the use of enzymes immobilized on high surface area nanofibrous
materials for the conversion of raw materials into value added products is described. In this study,
the authors hydrolyzed soybean seed oils using a lipase from Candida rugosa immobilized on
polyacrylonitrile (PAN) fibers, illustrating the feasibility of this technology. Enzyme immobilization
also allows for greater control of the product since contact time can be optimized to suit specific
demands. For this reason, immobilized enzymes are preferential to batch solution processes, which
allow very little control over the product. The immobilization of enzymes on high-surface-area
fiber mats could also potentially increase their economic feasibility for industrial use. For instance,
a major drawback of converting starch into maltose using α-amylase enzymes is that this conversion
is performed in a batch reaction, limiting the possibility to recover the enzyme after use [14]. In an
industrial setting, this would result in increased production costs. Immobilized enzyme technology
allows for reuse of the enzyme, which is one of the key expenses and most vital components of
the process.

Furthermore, enzymes are not only widely used in processes to convert bio-matter into value
added products, but also in the remediation of biofouling that occurs in drainage systems, filtration
processes, and bioreactors [15]. Biofouling is a common phenomenon in moist nutrient-rich
environments, such as the drainage systems of abattoirs and dairies [16]. In addition to biofouling, the
formation of biofilms could also pose a health risk. Mature biofilms can lead to the proliferation and
spreading of pathogenic bacteria, which would necessitate frequent cleaning and strict sterilization
regimes, resulting in additional costs. Although chemical treatments may be effective if performed
correctly, the chemicals used are often harmful to the environment. It has been shown that enzymes
such as proteases and amylases could be used for the remediation of biofilms, since biofouling can be
drastically decreased in the presence of these enzymes [17]. In a quest to create anti-biofouling coatings
and surfaces, Cordeiro et al. [18] showed that immobilized enzymes are able to counteract biofouling,
and subsequently concluded that co-immobilization of different enzymes is the most effective route to
inherently anti-biofouling surfaces. Therefore, a definite need exists for the capability to immobilize
different enzymes onto the same matrix.

Currently, the best strategy to prevent the formation of biofilms is to inhibit initial adhesion of
microorganisms. However, the size, shape, and nature of the biofilms, and the extracellular polymeric
substances (EPS), are not yet fully understood. Due to this complexity, immobilization of multiple
enzymes on the same surface is often required to prevent the formation of mature biofilms. Application
of combinations of enzymes have shown promise in so-called clean-in-place systems related to the
food industry. However, since each biofilm differs with relation to the microbial community that
produces it, different combinations of immobilized enzymes need to be screened to establish the
optimal combination of immobilized enzymes for each specific application.

It is known that maleic anhydride (MAnh) residues spun into nanofibers can be used as a solid
support for the immobilization of enzymes [18–23]. Our research group has developed a facile approach
to enzyme immobilization on electrospun nanofibers containing MAnh residues. This approach does
not require rigorous modification or activation steps prior to immobilization, and therefore may provide
a low-cost alternative for industrial applications [24]. Here, we extend the previous work. We report
on the immobilization of commercial proteases and α-amylases on electrospun MAnh-containing
nanofiber mats to pioneer the manufacturing of membranes that are inherently anti-biofouling or could
be used in membrane reactors for application in the food industry. The primary role of proteases is the
hydrolysis of proteins, resulting in the liberation of smaller peptides and amino acids. α-Amylases,
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on the other hand, hydrolyze starch into mono- and oligosaccharides. In this manuscript, we assess the
ability of two enzymes, a commercial protease (Esperase) and α-amylase (Dextrozyme), immobilized
on electrospun nanofibrous materials, to degrade proteins and starch in solution, both separately and
in combination. The ability to immobilize multiple enzymes is further extended through the inclusion
of an additional enzyme, β-galactosidase (β-gal), in combination with one or both of the other enzymes
used in this study. In doing so, we sought to prove that employing nanofibrous mats, containing
reactive MAnh residues in the polymer back bone, can be used as a universal method for immobilizing
a variety of enzymes with retention of their catalytic activity.

2. Materials and Methods

2.1. Reagents

All reagents were used as received, and all buffer solutions were previously prepared and
used as stock solutions and diluted as needed. Unless stated otherwise, all reagents and chemicals
used were of analytical grade. Chemical grade azo-casein, used for the protease activity assay,
and the Ceralpha α-amylase assay kit were purchased from Megazyme, Wicklow, Ireland. The
o-nitrophenol-β-D-galoctoside (ONPG) used for determination of β-gal activity was 99.0% pure and
was obtained from Sigma-Aldrich, Schnelldorf, Germany. All buffer reagents, polystyrene cuvettes,
96-well microtiter plates (Greiner), phenylmethane sulfonyl fluoride (PMSF), and the Pierce BCA
protein determination kit were also obtained from Sigma-Aldrich.

2.2. Enzyme Assays

Commercially available enzyme kits and previously described methods were used to assess
the enzyme activities of both the free and immobilized enzymes. Protease activity was determined
using azo-casein as a substrate, as previously described by Sheng-Feng Li et al. [13]. Amylase activity
was determined using the Ceralpha α-amylase assay procedure (AOAC Method 2002.01, Megazyme
International, Wicklow, Ireland). The activity of immobilized β-gal was determined using the method
described by P. Held using ONPG (Sigma Aldrich) as a substrate [25]. All the assays were chosen so
that each substrate, upon conversion, would lead to the formation of a readily detectable UV-active
dye. The absorbance for the protease, and α-amylase assays were determined using a Cary 60 UV-Vis
spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). β-gal activity was discontinuously
monitored using a BioTek PowerWave microtiter plate reader (BioTek Instruments, Winooski, VT,
USA). The determined absorbance was subsequently used to quantitatively determine and compare
the enzyme activity of both the free and immobilized enzymes. In all cases, bovine serum albumin,
immobilized on an electrospun nanofibrous mat, was used as a control. Enzyme loading was decided by
determining the protein concentration of the stock enzyme solutions prior to, and after, immobilization.
The protein content of each wash step was also determined.

3. Experimental Section

3.1. Electospinning of Poly(styrene-alt-MAnh) Nanofibrous Mats

The synthesis of poly(styrene-alt-maleic anhydride) and subsequent electrospinning into
nanofibres were performed as previously described by Cloete et al. [24] Briefly, the polymer was
produced by copolymerizing, in solution, a 1:1 molar ratio of styrene and maleic anhydride under
inert conditions using AIBN as an initiator at 60 ◦C. Electrospinning of the polymer was done from a
1:2 DMF/acetone solution (15 wt%) with the collector at a distance of 15 cm and offset of 4 cm from
the needle tip that was connected to a high voltage supply (25 kV, 400 µA, 10 W) set at 15 kV, and
the polymer solution was fed at 0.01 mL·min−1 by means of a feed pump (Harvard, Model 33 Twin
Syringe Pump, Holliston, MA, USA).
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3.2. Enzyme Immobilization

Protein immobilization was achieved by incubating a 4 cm2 fiber mat in 5 mL protein solution
(ca. 43 mg/mL for protease and ca. 296 mg/mL for α-amylase, used as supplied without dilution)
for 1 h at room temperature with gentle agitation. As a control, bovine serum albumin (10 mg/mL)
was also concurrently immobilized on a separate mat and in combination with both protease and
α-amylase. When co-immobilization with the protease was performed, the protease activity was
reversibly inhibited using phenylmethane sulfonyl fluoride (PMSF) to prevent loss of activity via
protein hydrolysis. Bovine serum albumin was used as an immobilization control to verify if
immobilization of protease and α-amylase can be achieved in combination with an arbitrary additional
protein. This was necessary because the enzyme solutions in this study were commercially available
and used as supplied, without purification and reconstitution prior to immobilization. Samples
of each protein solution (1 mL) were collected prior to incubation, and the protein concentration
was subsequently determined as described below. After incubation, each fiber mat was extensively
washed with phosphate buffered saline (PBS, pH 7.0) containing 0.1% Tween 20 (4 × 5 min) to remove
non-covalently bound protein. Four 1 mL aliquots of the PBS-Tween wash solutions were collected,
and the protein content was determined, together with the original protein solution collected prior to
incubation with the membrane, using the Pierce BCA protein assay kit with bovine serum albumin as
standard. The amount of immobilized protein was calculated as the difference in protein content prior
to- and following immobilization. The same immobilization procedure described above was used for
all enzyme and control solutions and is graphically depicted in Figure 1.
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Figure 1. General scheme for immobilization of enzymes on poly(styrene-alt-maleic
anhydride) nanofibers.

3.3. Enzyme Activity Assays

3.3.1. Protease Activity Assay

During protease immobilization studies, the protease was evaluated for retention of enzymatic
activity using an assay adapted from Li et al. [13]. Azocasein substrate solution (2.5 mL of 2.5% stock
in 50 mM borax buffer, pH 9.5) was added to the electrospun fibre mat containing 0.6 mg immobilized
protein. The reaction was quenched with 2.5 mL of 10% trichloroacetic acid (TCA) in deionized
water, after 5 min incubation at 30 ◦C. The solutions were held at a constant pH of 9.5 to simulate the
conditions under which Esperase is used in laundry detergents. After centrifugation of each reaction
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mixture, the UV absorbance of the supernatant was determined at 340 nm. The rate at which the
immobilized protein hydrolyzed the azocasein substrate was calculated using Equation (1), where
∆A represents the change in absorbance at 340 nm, V the reaction volume (in mL), ε is the extinction
coefficient of the product of azocasein hydrolysis at 340 nm (38 mM−1·cm−1) (Li et al. [13]), l is the
optical light path length of 1 cm, and t is the reaction time of 5 min.

3.3.2. Amylase Activity Assay

The Ceralpha method (AOAC Method 2002.01) was used to quantify α-amylase activity of the
immobilized and free enzyme using the Megazyme α-amylase kit (Megazyme International) as per
manufacturer instructions. Briefly, 10 mL of the substrate solution, ONPG, was equilibrated to 40 ◦C
separate from the fiber mat samples. After 5 min, 800 µL of the substrate was added to each fiber
mat and incubated for exactly 10 min at 40 ◦C. After incubation, enzyme activity was quenched
by the addition of 8 mL 1% Tris-base. A sample blank was prepared by incubating 200 µL liquid
enzyme solution with 8 mL 1% Tris-base prior to the addition of the substrate. Incubation was
performed as described with the fiber mat samples. The samples were then thoroughly mixed, and
the absorbance of the supernatant was determined at 400 nm against the sample blank. Total enzyme
activity was calculated using Equation (1), where ∆A represents the change in absorbance at 400 nm
following incubation (final absorbance—blank absorbance), V is the total reaction volume in mL, ε

is the millimolar extinction coefficient of para-nitrophenol (18.1 mM−1·cm−1, as per kit instructions),
l is the optical light path length of 1 cm, and t is the total incubation time of 10 min for a surface
immobilized area of 4 cm2.

U/mg protein/cm2 =
(∆A × V)

(t × ε × l ×
(
[protein]

cm2

)
)

(1)

3.3.3. Co-Immobilization of Multiple Enzymes on the Same Surface

Co-immobilizations of Dextrozyme and Esperase, inhibited with PMSF (Thermo Scientific,
Rockford, IL, USA), were mixed in a buffered solution and added to a 4 cm2 membrane, as with the
immobilization of individual enzymes. PMSF reversibly inhibited the catalytic activity of the protease,
preventing the degradation of the α-amylase during immobilization. Subsequent to immobilization,
the PMSF was removed along with any non-covalently bound enzyme during the wash steps, with PBS
Tween-20 to restore protease activity. The enzymatic activity of Dextrozyme was assayed as described
previously and calculated in the same way as before, using Equation (1).

A co-immobilization experiment with Dextrozyme, Esperase, and commercial β-gal was also
performed using nanofibrous mats obtained through a high-throughput industrial electrospinning
process using commercially available poly(styrene-co-MAnh) (SMA) [XIRAN SZ28110, Polyscope,
28 wt% MAnh, Mw = 110 kDa, Ð ~ 2]. SMA was provided to the Stellenbosch Nanofiber Company
(Cape Town, SA) who optimized the electrospinning conditions for large scale production, and
the electrospun nanofibrous mats were used as received. Protease and α-amylase activities were
determined as described above. The activity of immobilized β-gal was determined using OPNG
as substrate. A discontinuous assay was used to determine enzyme activity alongside a fiber mat
containing immobilized BSA as the assay blank. The substrate solution consisted of 100 mM sodium
phosphate buffer (pH 7.0), 0.1 mM MgCl2, 50 mM β-mercaptoethanol, and 1.33 mg/mL ONPG.
The final solution was equilibrated at 37 ◦C in a water bath. Of the equilibrated substrate solution,
5 mL was added to 4 cm2 mats with immobilized β-gal. 100 µL aliquots were collected at 10 s
intervals for the β-gal and amylase—β-gal co-immobilized samples and at 1-min intervals for the
α-amylase—β-gal-protease co-immobilized samples. Each aliquot was added to a 100 µL 2% Tris
base in the wells of a 96 well plate. The UV absorbance of the solution in each well was subsequently
determined at 420 nm with a BioTek PowerWave HT plate reader (Biotek, Broadview, IL, USA).
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4. Results and Discussion

The proposed mechanism for enzyme immobilization in the current approach works through
a nucleophilic reaction of the primary amines of lysine residues with MAnh residues of the SMA
copolymer. Since the 3D structures of enzymes are not rigid, all available lysine residues are equally
likely to undergo the amidation reaction to the reactive MAnh residues. This probability could result
in a random orientation of the immobilized enzyme, limiting substrate access to the active site [26,27].
For this reason, enzyme immobilization is often associated with a decrease in catalytic activity when
compared to native enzymes in solution [26,28].

Based on the results presented in Table 1, both the protease and α-amylase were successfully
immobilized on the electrospun nanofibrous mat individually and in combination. Both enzymes
partially retained their catalytic activity; however, immobilization did result in an overall decrease
in enzyme activity. Interestingly, when immobilized in combination with the protease, α-amylase
activity showed a 3-fold increase compared to individually immobilized α-amylase. On the other
hand, the activity of the protease decreased by ca. 98% when co-immobilized with α-amylase. Similar
results have been reported for co-immobilized cholesterol oxidase (COD) and horseradish peroxidase
(HRP) [29]. In this case COD and HRP make use of the same substrate, H2O2, and the increase in
activity was proposed to be due to enhanced mass transfer effects and the proximity of the immobilized
enzymes [29]. This phenomenon was also proposed to be the mechanism for the observed increase
in activity of co-immobilized glucoamylase and glucoisomerase, which similarly make use of the
same substrate [30]. Regarding changes in activity for enzymes employing different substrates, an
increase/decrease in activity cannot be readily explained through mass transfer and proximity alone.

Since amylase activity was increased when co-immobilized with a protease, it is possible that
α-amylase activity was augmented by proteolytic activation. It has been reported that some enzymes,
especially those involved in host defenses, are post-translationally activated by proteolysis [31]. The
marked reduction in protease activity upon co-immobilization with α-amylase could be because of
immobilization efficiency. As discussed earlier, enzyme immobilization relies on the availability of
free lysine residues. Since the primary structures of the protease and α-amylase used in this study are
not known, it is possible that the α-amylase has more available lysine residues that could undergo
amidation to the reactive MAnh residues, resulting in increased α-amylase loading. However, since
it was not possible to quantitatively determine the loading of individual enzymes in this study, this
possibility could not be confirmed. Although post-translational activation and enzyme loading could
potentially explain the results obtained, the exact mechanism for the observed increase in α-amylase
activity and the concurrent decrease in protease activity could not be confirmed. This is, therefore,
a possible avenue for future investigation.

Table 1. Enzymatic activity and protein loading of enzymes immobilized on poly(styrene-alt-maleic
anhydride) nanofibrous mats (n = 3).

Enzyme Enzyme Loading a Activity b Free Enzyme Activity b % Retention c

protease 7.54 ± 0.98 7.78 × 10−4 ± 1.32 × 10−5 8.87 × 10−4 ± 8.58 × 10−6 87.0%
α-amylase 39.7 ± 0.42 0.808 × 100 ± 2.78 × 10−3 8.81 × 100 ± 0.175 × 100 9.0%

protease + α-amylase N/A 1.54 × 10−5 ± 4.40 × 10−7 8.87 × 10−4 ± 8.58 × 10−6 1.7% (protease)
N/A 2.37 × 100 ± 1.17 × 10−1 8.81 × 100 ± 0.175 × 100 27.0 % (α-amylase)

a in mg·cm−2. b in µmol·min·mg·cm−2. c is the activity retained after immobilization vs. the activity of the
free enzyme.

To prove the commercial viability of the immobilization process, and to verify whether the
co-immobilization of protease and α-amylase is not in fact a special case, the experiments were
extended to include the immobilization of an additional enzyme, β-gal. As can be seen in Figure 2,
β-gal activity was retained once immobilized individually and in combination with protease and
α-amylase. However, as can be seen in Figure 2, a reduction in β-gal activity was observed
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when co-immobilized with only α-amylase. A further reduction in β-gal activity occurred when
co-immobilized in combination with both α-amylase and protease.
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and in combination with α-amylase, as well as a combination of α-amylase and protease. Activity
was spectrophotometrically determined as a function of time using ONPG as substrate. All results are
shown as the mean ± SD of triplicate experiments (n = 3).

Determination of α-amylase activity when co-immobilized with protease and β-gal indicated that
enzyme activity is partially retained regardless of the combination of immobilized enzymes. As can be
seen in Table 2, α-amylase activity was once again augmented when immobilized in combination with
the protease. Since α-amylase activity is only augmented when the protease is also present, this result
further indicates a proteolytic activation mechanism for the amylase enzyme.

Table 2. Enzymatic activity of α-amylase immobilized on its own and in combination with
β-galactosidase and protease on poly(styrene-co-maleic anhydride) nanofibrous mats (n = 3).

Enzyme Total Enzyme Loading (mg) Amylase Activity
(µmol·min·mg·cm−2)

α-amylase 35.2 ± 0.47 16 × 10−3 ± 2.40 × 10−4

α-amylase + protease 10.5 ± 3.81 36 × 10−3 ± 2.60 × 10−4

α-amylase + protease + β-galactosidase 18.3 ± 1.58 5 × 10−3 ± 1.11 × 10−5

BSA 1.35 ± 0.63 N/A

5. Conclusions

The results presented in this study demonstrate that commercial protease and α-amylase
enzymes could be immobilized on SMA nanofibrous mats with partial retention of catalytic activity.
Co-immobilization of protease and α-amylase led to a marked increase in α-amylase activity
with a concurrent decrease in protease activity. It was also demonstrated that α-amylase retains
catalytic activity when co-immobilized with protease and an additional enzyme, β-gal, on the same
nanofibrous mat. Recommended future research includes an investigation of additional combinations
of co-immobilized enzymes, and the evaluation of membranes with immobilized enzymes for
continuous use in the digestion of complex solutions of biomolecules, which may allow them to
withstand biofouling. A combination of immobilized enzymes targeted at the digestion or degradation
of a variety of proteins and other biomolecules will go a long way toward providing surfaces that
prevent the attachment and proliferation of microbial foulants. This opens the door to designing single
membranes that can perform cascade reactions or single membranes that can digest complex solutions
of proteins and other biomolecules. Nanofibrous mats are feasible and promising materials for use as
filtration membranes [32,33]. The design of tailor-made nanofibrous filter materials with immobilized
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enzymes may provide a solution for the prevention of biofouling by excluding organic fouling agents
or converting and metabolizing nutrients that sustain biofilm growth. The ultimate application would
be a means to pre-treat the feed in water purification, as in the remediation of effluents and waste
streams, or for use in bioreactors, to convert starch and oils into feedstock for the food industry.
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