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Abstract

The aim of the proposed research is to investigate methods to identify objects

of interest and classify dicentric and normal chromosomes in metaphase images

using suitable digital image processing techniques. Dicentric chromosomes are

abnormal chromosomes with two centromeres (instead of one) created by a

variety of processes, including irradiation. When a chromosome is exposed to

radiation, two chromosome segments, each with a centromere may join together

resulting in a dicentric chromosome. An acentric fragment, i.e. a partial

chromosome with no centromere, is also formed. The first stage of the proposed

system is geared towards the detection of objects of interest, i.e. isolated

normal and isolated dicentric chromosomes, as well as acentric fragments and

clusters of overlapping chromosomes. The last stage of the proposed system

is geared towards the classification of isolated chromosomes as either normal

or dicentric. The proposed system automatically detects objects of interest

not associated with dirt. The classification of the aforementioned objects into

isolated and clustered chromosomes, as well as acentric fragments, is conducted

manually, while the automation of this stage is reserved for future work. The

proposed system subsequently automatically categorises isolated chromosomes

as either normal or dicentric. It is demonstrated that the system correctly

detects and classifies a significant number of the aforementioned chromosomes

within metaphase images provided by iThemba LABS.
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Uitreksel

Die doel van die voorgestelde navorsing is om metodes te ondersoek wat

voorwerpe van belang in metafase-beelde identifiseer en disentriese en normale

chromosome met behulp van geskikte beeldverwerkingstegnieke klassifiseer.

Disentriese chromosome is abnormale chromosome met twee sentromere (in

plaas van een) wat deur verskeie prosesse, insluitende bestraling, geskep

word. Wanneer ’n chromosoom aan bestraling blootgestel word, kan twee

chromosoomsegmente, elk met ’n sentromeer, saamgevoeg word wat ’n

disentriese chromosoom tot gevolg het. ’n Asentriese fragment, dit wil sê ’n

gedeeltelike chromosoom sonder ’n sentromeer, word ook gevorm. Die eerste

fase van die voorgestelde stelsel is op die opsporing van voorwerpe van belang

gerig, dit wil sê gëısoleerde normale en gëısoleerde disentriese chromosome,

sowel as asentriese fragmente en groepe van oorvleulende chromosome. Die

laaste fase van die voorgestelde stelsel is op die klassifikasie van gëısoleerde

chromosome as normaal of disentries gerig. Die voorgestelde stelsel bespeur

outomaties voorwerpe van belang wat nie met vuilheid verband hou nie.

Die klassifikasie van bogenoemde voorwerpe as gëısoleerde en gegroepeerde

chromosome, asook asentriese fragmente, word met die hand gedoen, terwyl

die outomatisering van hierdie fase vir toekomstige werk gereserveer is. Die

voorgestelde stelsel kategoriseer vervolgens gëısoleerde chromosome outomaties

as normaal of disentries. Daar word aangetoon dat die stelsel ’n beduidende

aantal van bogenoemde chromosome korrek opspoor en klassifiseer binne die

metafase-beelde wat deur iThemba LABS verskaf is.
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Chapter 1

Introduction

1.1 Background and motivation

The dicentric chromosome assay is a well-established method used to estimate

exposure to ionising radiation. Dicentric chromosomes are considered to be

specific to radiation exposure as they are primarily generated by ionising

radiation and only a few radiomimetic drugs. As a result, the background

levels of dicentric chromosomes are low in non-exposed individuals, which

makes it possible to assess irradiation doses as low as 0.1 Gy. Due to the

aforementioned advantages, this assay is considered to be the gold standard of

radiation biodosimetry (Romm et al. (2013)).

Figure 1.1: Formation of a dicentric chromosome with accompanying acentric
fragments.

The formation of a dicentric chromosome is illustrated in Figure 1.1. This

aberration involves an interchange between two separate chromosomes. If

ionising radiation causes breaks in two chromosomes and the sticky ends are

sufficiently close to one another, they may rejoin so that a grossly distorted

dicentric chromosome, with two centromeres, is produced. The two remaining
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fragments that possess no centromeres are referred to as acentric fragments.

Since the assay is labour-intensive and time-consuming, automated tools for

detecting and classifying metaphase images are of considerable interest to

increase throughput for biodosimetry in radiation mass casualty incidents.

1.2 Scope and objectives

Several image processing-based techniques and machine learning-based

techniques have been successfully implemented for the purpose of chromosome

detection and classification (Jindal et al. (2017), Markou et al. (2012), Rogan

et al. (2014) and Shirazi et al. (2016)). Due to variations in imaging equipment

and differences in methods for treating samples, implementations are often

specific to a single laboratory. The quality of the images from a single

experiment may also vary significantly as a result of differences in the imaging

and biological effects.

The purpose of this research is to investigate the feasibility of image

processing techniques for the purpose of detecting and classifying chromosomes

in metaphase images produced at iThemba LABS. This may eventually

constitute an essential part of a semi-automated system that lessens the burden

on human operators.

The scope of this work is limited to an investigation into image

segmentation strategies for the purpose of object detection in metaphase

images. Said strategies involve the application of a novel binarisation method

in order to optimise the number of objects of interest to be detected. After

the segmentation process has been completed, the scope of this work is further

limited to the classification of only the isolated chromosomes as either normal

or dicentric. The segmented acentric fragments and clusters of chromosomes

that are either on top of each other or in close proximity of one another is

17
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manually discarded. The automated classification of these objects therefore

falls outside the scope of this thesis.

Chromosome classification is not only a time-consuming process for

well-trained experts, but these same experts often disagree on the classification

results. It is also important to note that, within the context of this thesis, the

ground truth can only be as good as the judgments of the experts that were

considered in generating the ground truth for the purpose of this research

study. The reported proficiency and contribution to the current state of the

art of the systems developed in this thesis should therefore be judged against

this background.

1.3 Thesis overview

In this section the reader is provided with a concise overview of the

thesis. This overview comprises of (1) the proposed region of interest (ROI)

detection protocol, (2) the proposed feature extraction protocol for isolated

chromosomes, (3) an outline of the experiments performed in order to assess

the efficacy of the systems developed in this thesis, and (4) the experimental

results.

1.3.1 System design

A general system composed of three stages is proposed for this research. The

proposed system is conceptualised in Figure 1.2. During Stage A all objects of

interest are detected, while isolated chromosomes are selected during Stage B.

Stage C is employed for the purpose of classifying the isolated chromosomes as

either normal or dicentric. For the purpose of this research Stages A and C are

automated, while Stage B is manually executed. The automation of Stage B

is reserved for future work.
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Figure 1.2: Conceptualisation of the chromosome detection, selection and
classification protocol proposed in this research.

1.3.2 Data

The experimental data constitutes metaphase images from healthy male

and female individuals that were prepared in the radiobiology laboratory at

iThemba LABS. This dataset consists of grey-scale images that are captured

under a light microscope at a resolution of 1280× 1024 pixels. The metaphase

images are subsequently exported as TIFF files from the Metafer4 system for

further analysis. In order to validate the system proposed in this thesis, a

semi-automated protocol is developed in order to generate a ground truth. In

generating the ground truth for the acquired metaphase images in the dataset,

seven experts from iThemba LABS with varying degrees of experience were

utilised.

19

Stellenbosch University  https://scholar.sun.ac.za



1.3.3 Image segmentation

In Stage A all objects of interest, that do not constitute dirt, are automatically

detected. These objects include isolated normal chromosomes, isolated

dicentric chromosomes, acentric fragments and clusters of chromosomes. The

aforementioned clusters may contain more than one chromosome that are either

located on top of each other, or are in very close proximity of each other.

Stage A (the generic detection phase) is implemented in three steps:

1. Preprocessing for the purpose of enhancing image quality,

2. segmentation for the purpose of determining possible regions of interest

(ROIs) in the metaphase image, and

3. object of interest detection for the purpose of eliminating dirt within the

slide image.

In Stage B (the selection phase) the detected objects are manually

categorised into dirt, acentric fragments, clusters of chromosomes, isolated

normal chromosomes and isolated dicentric chromosomes. All acentric

fragments, clusters of chromosomes and dirt are manually discarded, while

only the isolated chromosomes are retained.

The proposed generic detection phase (Stages A and B) is conceptualised

in Figure 1.3.

1.3.4 Feature extraction

In Stage C (the classification phase) the manually selected isolated

chromosomes are automatically classified as either normal or dicentric. This

stage is implemented in three steps:

1. Preprocessing for the purpose of image analysis,

2. feature extraction for the purpose of maximising the proficiency of the
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classifier, followed by

3. categorisation through merging the aforementioned information.

The proposed classification phase (Stage C) is conceptualised in Figure 1.4.

Figure 1.3: Conceptualisation of the proposed generic detection phase (Stages
A and B) implemented in this thesis.

Figure 1.4: Conceptualisation of the proposed classification phase (Stage C)

1.3.5 Abbreviated results

In this thesis experiments are carried out in order to determine the proficiency

of the novel strategies proposed to detect regions of interests. In order to

evaluate the proposed protocols a ground truth is generated. The detection

phase that employs the image segmentation protocol proposed in this thesis
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detects isolated objects of interest with a promising true positive rate (TPR) of

90.10% and detects objects of interest which includes cluster of chromosomes

with a TPR of 94.37% when compared to the ground truth obtained from

experts at iThemba LABS.

In classifying the isolated chromosomes, three strategies were considered,

that is (1) width profile analysis, (2) curvature analysis and (3) an

aggregated approach that combines width profile analysis and curvature

analysis. Accuracies of 37.49%, 87.14% and 89.95% are respectively reported

in classifying isolated chromosomes as normal or dicentric. It is therefore

concluded that width profile analysis (in isolation) does not perform adequately

for the iThemba LABS dataset, and that the proposed novel protocol based on

curvature analysis is much more robust and proficient. However, the ulilisation

of width profile information in conjunction with curvature information, may

improve the accuracy of the results. When the curvature analysis and

aggregated approaches are compared, true positive rates (TPRs) of 87.04% and

81.48% are respectively reported. The overall TPR is deemed an important

metric to consider when comparing these two approaches.

1.4 Contributions

The task of manually scoring metaphase images is an extensive process that

is very time-consuming. Determining the manual assay requires well trained

experts which makes it an extremely costly task. The time-consuming nature

of manually scoring metaphase images is eliminated by introducing automated

or semi-automated systems. The aforementioned systems can assist experts in

cases of large scale radiation exposure. The main contributions made in this

thesis are as follows:
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A novel chromosome segmentation protocol. A novel automated

segmentation protocol for detecting chromosomes in a metaphase image

produced at iThemba LABS is proposed by automatically determining the

threshold value needed to binarise the image in a heuristic way. Since

metaphase images is specific to the laboratory where they are produced, the

iThemba LABS dataset did not perform well using well known binarisation

methods (like Otsu’s method). However, by implementing the proposed

heuristic binarisation method, significantly better results are obtained. It

is demonstrated in Chapter 4 that the proposed chromosome segmentation

and detection protocol successfully segments the chromosomes in a metaphase

image.

A novel feature extraction protocol that employs curvature

analysis on isolated chromosomes. To the best of our knowledge, the

utilisation of curvature analysis to exploit shape information for the purpose

of classifying chromosomes is novel and constitutes one of the contributions of

this study.

Publication. The proposed system was published in the Proceedings

of the 2020 International SAUPEC/RobMech/PRASA Conference (Galloway

et al. (2020)).
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Chapter 2

Literature study

2.1 Introduction

As mentioned in the previous chapter numerous research studies on automated

chromosome detection and classification have been conducted. In this chapter

a concise overview of relevant existing chromosome detection and classification

systems is presented, irrespective of whether these systems are based on

metaphase images, karyotyped images or isolated chromosome images. The

discussion provided on the aforementioned systems is therefore in some way

related to the work presented in this thesis.

The relevant systems are therefore categorised into (1) algorithms

proposed for the automated analysis and classification of chromosomes

using predominantly image processing techniques (see Section 2.2) and (2)

algorithms proposed for the analysis and classification of chromosomes using

predominantly machine learning techniques (see Section 2.3).

Since most existing chromosome detection and classification systems have

not been evaluated on the same datasets than those considered in this thesis,

it is not possible to directly compare the reported proficiency of these systems

to those proposed in this thesis.

2.2 Analysis and classification of chromosomes using

predominantly image processing techniques

Moradi et al. (2003) tested the proficiency of landmarks such as the location

of the centromere, the medial axis of a chromosome, as well as endpoints
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and branching points of the medial axis. The medial axis is obtained using

morphological thinning. The global minimum of the horizontal and vertical

projections of the aligned chromosome indicates the location of the centromere.

The proposed strategy was evaluated on 219 single chromosome images

provided by the cytogenetic laboratory of the Cancer Institute, University of

Tehran. The results for the proposed automated landmark detection protocol

is in most cases in complete agreement with the cytogeneticist expert.

Markou et al. (2012) proposed an automated methodology for human

chromosome classification based on basic image preprocessing techniques,

morphological operations and Support Vector Machines (SVMs). The proposed

strategy employs established image segmentation techniques in order to obtain

individual chromosomes from an already karyotyped image. Karyotyping is

the process of analysing a metaphase image of chromosomes by identifying

and organising the chromosomes into their type, the number of chromosomes

and abnormalities. Chromosome localisation is achieved using a median

filter and contrast enhancement, followed by global thresholding to obtain

a binary image. Morphological operations (closing and opening techniques)

are implemented after a binary image is obtained. Standardisation of each

chromosome is achieved by straightening out the chromosome and conducting

a medial axis computation using morphological thinning and pruning. Curve

smoothing is subsequently employed to improve the estimated accuracy of the

curve’s derivative. Polynomial extrapolation is applied at the two ends of the

chromosome so that the medial axis extends the full length of the chromosome.

Feature extraction is finally employed and the feature vector is classified

using a SVM. The proposed strategy was evaluated on images captured

at the Laboratory of Molecular Biology, 1st Department of Obstetrics and

Gynecology, General Regional Hospital Papageorgiou, Thessaloniki (Greece).

For the purpose of classifying dicentric chromosomes in a metaphase image,
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Rogan et al. (2014) employ (1) a gradient vector field (GVF), (2) discrete

curve evolution (DCE) and (3) a histogram projection method (HPM) as

feature extraction techniques. The GVF is used to produce a descriptive

outline of the input chromosome after which DCE is applied to obtain the

minimum polygon, which is subsequently pruned to create the centreline of

the chromosome. The HPM constitutes a popular technique that is often used

for the purpose of feature extraction. In classifying the centromere location in

chromosome images a sensitivity of 85% and a specificity of 94% are reported.

Shirazi et al. (2016) presented a novel automated chromosome

segmentation algorithm that involves the following techniques: image

preprocessing, segmentation, and feature extraction, followed by the

localisation of the centromere. The input chromosome image is first smoothed

by a median filter, after which adaptive histogram equalisation is applied

for contrast enhancement. An active contour model is employed for the

purpose of moving the contours towards the outline of an object. Subsequently,

Canny edge detection is used to obtain the prominent contours of the object.

The chromosome image is rotated by determining the polynomial of degree

one that best fits the medial axis, followed by boundary tracing in order

to obtain the coordinates of the object. The proposed detection of the

centromere location is carried out by searching for a local minimum in the

width profile of a chromosome image. This is achieved by determining the

distance from the upper to the lower part of the chromosome orthogonal to

the medial axis. The authors investigate 311 chromosome images which are

manually extracted from 80 different metaphase images. In order to test the

proposed chromosome detection technique the authors created four different

classes representing normal chromosomes, dicentric chromosomes, tricentric

chromosomes and chromosome fragments, respectively. Detection accuracies

of 96.7%, 87.6%, 60% and 93.8% are reported for the respective classes.
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Jindal et al. (2017) proposed a chromosome classification strategy that

involves preprocessing images utilising a straightening method and classifying

chromosomes via Siamese networks. Straightening of the chromosomes is

performed using Straightening via Medial Axis extraction and Crowdsourcing

(SMAC) and Straightening via Projection Vectors (SPV). The use of SMAC

is motivated by the fact that its goal is to extract the centreline of a

chromosome using morphological thinning. The centreline extraction through

morphological thinning forms the basis of this procedure, yet it is prone to error

and thus has a crowd source component from untrained individuals to assist the

algorithm in choosing the correct centreline. Crowdsourcing via Medial Axis

is achieved when multiple individuals draw a centreline on each chromosome

which is validated by spammers identification and consensus. When SVP

is applied, a global minimum is found in the horizontal projection of a

chromosome. The chromosome image is subsequently split into two subimages

that are rotated and recombined to yield the straightened chromosome image.

The authors concluded that SVP is superior to SMAC. Classification of

chromosome images is achieved using a Siamese network and comprises of

twin neural networks which determines whether input images are similar or

dissimilar. The proposed SMAC in conjunction with a Siamese network, and

SPV in conjunction with a Siamese network, are evaluated on 209 chromosome

images resulting in accuracies of 80.4% and 85.2% respectively.

2.3 Analysis and classification of chromosomes using

predominantly machine learning techniques

The research published by Sharma et al. (2017) aims to alleviate the work

and cognitive load of domain experts when performing segmentation and

classification tasks in the karyotyping process. They propose a method for

automatic segmentation and classification of chromosomes for healthy patients
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using a combination of crowdsourcing, preprocessing and deep learning.

The automatic segmentation process utilises non-expert crowd sources to

segment chromosome boundaries from metaphase images after which they are

extracted for further processing. The ensuing preprocessing method entails

chromosome length normalisation and the straightening of bent chromosomes

which is motivated by a marked classification accuracy improvement in the

deep neural network. A custom built, yet traditional, convolutional network

is consequently used for classification purposes and consists of a standard

categorical cross-entropy loss function which is optimised with stochastic

gradient descent. As their objective was not to replace the domain expert, but

to alleviate the associated cognitive burden of segmenting and karyotyping

chromosomes, their crowdsourcing method shows promise. After stringent

filtering and consensus steps, non-experts were able to identify on average

68.5% of available chromosomes per image. The efficacy of their automatic

classification task also showed encouraging results despite relatively sparse

training data, reporting a classification accuracy of 86.7% when used in

conjunction with their preprocessing steps.

Sharma et al. (2018) proposed an end-to-end trainable Super-Xception

network for automatic chromosome classification in low-resolution images. A

Super-Xception network consists of two sub-networks, that is a super-resolution

network and a classification network. The convolutional super-resolution layers

enhance the resolution and recover the textural detail of the low-resolution

images. The classification network uses layers of the Xception network to learn

the feature representation of the images, while a softmax layer is employed to

assign the labels. Each 50 × 50 grey-scale input image is first rescaled to the

required resolution of 227×227 through interpolation. Length normalisation is

then applied to every chromosome in the dataset. The Super-Xception network

is subsequently applied to each of the chromosome images. The proposed
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system was evaluated on the Bioimage Chromosome Classification dataset. 

By employing the proposed protocol for the purpose of classifying chromosome 

images, the accuracy of existing models was increased by 2.91%, resulting in 

an accuracy of 92.36%. Qin et al. (2019) developed a deep learning method 

to hasten the diagnosis procedure of karyotyping in abnormal diagnosis. Their 

novel approach, named Varifocal-Net, consists of a three step process towards 

classifying chromosome types and polarities simultaneously. Their first step 

consists of feeding preprocessed chromosome images into independent global 

and local feature learning networks. By leveraging the zoom capabilities of 

cameras they locate discriminative local regions and extract features on both 

the global and local scale. The second stage, built with two multi-layer 

perceptron classifiers, predicts from the two-scaled extracted features the 

chromosome’s type and polarity. Their third stage adopts a dispatch strategy 

to allow assignment of each chromosome to a type, based on its predicted 

probabilities. Their method proves to be successful for clinical practice with 

healthy and unhealthy chromosomes accurately classified. Their method 

also allows for diagnosing numerical abnormalities if the number of classified 

chromosomes is irregular.

2.4 Conclusion

In the next chapter the biological background to the problem at hand is 

provided.
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Chapter 3

Biological background

3.1 Introduction

In this chapter the biological background relevant to this research is briefly

outlined. The primary objective of this discussion is to focus the reader’s

attention on (1) the structure of a chromosome, (2) how dicentric chromosomes

are formed and (3) the stage at which a metaphase image is captured. This

chapter begins with an introduction to the cell cycle (see Section 3.2), followed

by a discussion of the chromosome itself (see Section 3.3).

3.2 The cell cycle

The cell cycle consists of a number of stages in which a cell passes from

one cell division to the next. This process is illustrated in Figure 3.1. The

cell cycle is divided into two main phases: (1) the interphase where the cell

grows, duplicates DNA and prepares for division and (2) the mitotic phase

where the division process of one cell into two identical daughter cells occurs

(University of Leicester (2017)). The division of the cell nucleus is known

as mitosis. Mitosis is divided into five stages: (1) the prophase, (2) the

prometaphase, (3) the metaphase, (4) the anaphase and (5) the telophase.

Prophase: The nucleus envelope, that separates all the genetic material

from the rest of the cell, begins to disperse. The sister chromotids begin to

coil more tightly with the aid of proteins and become visible under a light

microscope.

Prometaphase: The chromosomes migrate to the center of the cell. This

region is identified as the metaphase plate. The chromosomes continue to

30

Stellenbosch University  https://scholar.sun.ac.za



compress. Single spindle fibres wrap on each side of a structure associated

with the centromere of each chromosome. This structure can be identified as

the kinetochore.

Metaphase: At this stage the chromosomes are maximally condensed where

they align themselves along the metaphase plate. This is the optimal stage to

see the condensed chromosomes under a light microscope. This is the critical

stage within the context of the research conducted in this thesis.

Anaphase: The connection between the sister chromotids breaks down, and

the microtubules pull the chromosomes toward opposite poles.

Telophase: During this last stage the chromosomes reach the opposite poles

and begin to unravel and decondense. Around each set of 46 chromosomes a

nucleus envelope starts to form. In the telophase each chromosome has only

one chromatid.

Figure 3.1: Conceptualisation of the five stages of mitosis in the cell cycle,
that is (1) prophase, (2) prometaphase, (3) metaphase, (4) anaphase and
(5) telophase. University of Leicester (2017)
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3.3 The chromosome

The structure of a chromosome is illustrated in Figure 3.2. Chromosomes

are packaged tightly only when a cell is going though mitosis. This structure

increases the cell’s durability when it is divided into two identical daughter

cells. Other proteins do not accompany the cellular DNA. Various protein

partners form a complex to help package the DNA into such a tiny space. This

DNA-protein complex is known as chromatin. Within each cell a folded object

forms a characteristic formation, which is called a chromosome. Along with

the packaging proteins each chromosome has a single double-stranded DNA

piece. As chromosomes undergo cell division they can be viewed through a

light microscope. A cell being only a few micrometers wide can contain about

two meters of human DNA, and is enabled by DNA packaging which assists

in conserving space in cells. The chromatin within chromosomes are packed

less tightly during the interphase when cells are not dividing. This important

phase allows transcription to occur (O’Connor and Adams (2010)).

Figure 3.2: The structure of a chromosome. O’Connor and Adams (2010)
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As is evident in Figure 3.2, a normal chromosome contains a single

centromere where the two sister chromatids are joined. A chromosome

with two centromeres is known as a dicentric chromosome which is formed

when two chromosome segments, each with a centromere, fuse (Romm et al.

(2013)). This results in the formation of a dicentric chromosome and acentric

fragments (that lack a centromere). The formation of a dicentric chromosome

is illustrated in Figure 3.3. (Figure 1.1 is reproduced here to provide context.)

Figure 3.3: (Figure 1.1 is reproduced here to provide context.) Formation of
a dicentric chromosome with accompanying acentric fragments.

3.4 Conclusion

In the next chapter we discuss the novel single chromosome image segmentation

protocol developed during the course of this study.
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Chapter 4

Image segmentation

4.1 Introduction

For the isolation and extraction of chromosomes in metaphase images, a novel

image segmentation strategy is proposed in this chapter. Since the research in

this thesis is solely based on the iThemba LABS dataset, the proposed method

is specific to the metaphase images produced in their laboratory. For reference

purposes, a visual representation of three typical metaphase images obtained

from iThemba LABS is shown in Figure 4.1.
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Figure 4.1: A visual representation of typical metaphase images obtained from
iThemba LABS.
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The image segmentation strategy will follow a principled approach to

extract isolated normal as well as dicentric chromosomes. The procedure can

be partitioned into the following three stages:

1. Preprocessing of metaphase images (see Section 4.2).

2. Extraction of regions of interest (ROIs) (see Section 4.3).

3. Manual extraction of isolated chromosomes from ROIs (see Section 4.4).

The proposed chromosome detection protocol is graphically conceptualised in

Figure 4.2 and discussed in detail in the remainder of this chapter.

Figure 4.2: Conceptualisation of the protocol for detecting isolated normal and
dicentric chromosomes as proposed in this research.
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4.2 Preprocessing of metaphase images

Before extracting the ROIs, the metaphase images need to be first tailored and

standardised using various preprocessing techniques. The primary purpose of

the preprocessing procedure is to manipulate the grey-scale metaphase images

provided by iThemba LABS in such a way that they better capture sharp

details and remove unwanted distortions. Using specific image processing

methods, a systematic approach to reduce noise and blurriness in the input

images is applied, after which the images are resized. As previously stated,

these preprocessing steps are required for the successful extraction of ROIs

from metaphase images and are discussed below.

In order to remove any potential noise in metaphase images, some form

of smoothing technique is required. A median filter is chosen as a well suited

order-statistical filter for suppressing the effect of salt and pepper noise in

metaphase images since it ensures a minimal definition loss when compared

to alternative linear smoothing filters of the same size. When a median filter

is applied to an image, the image is smoothed by replacing the value of every

pixel with the median of the intensity levels in its neighbourhood. The process

can be formulated as follows,

f̂(x, y) = median(s,t)∈Sx,y{g(s, t)},

where Sx,y represents the set of all the pixels in a selected image window of

size 3×3, with the center of the set indicated by the point (x, y). The function

takes the median of the original image g(x, y) in the area designated by Sx,y.

The value of the restored image f̂ at point (x, y) is the computed arithmetic

median using the pixels in the designated region Sx,y (Gonzalez et al. (2010)).

A proven process to sharpen images consists of subtracting the features

obtained by employing a smoothed or unsharpened mask from the original
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image. This process, called unsharp masking (Gonzalez et al. (2010)), proceeds

as follows:

1. Blur the original image as denoted by f̄(x, y).

2. The mask is obtained by subtracting the blurred image f̄(x, y) from the

original image f(x, y),

gmask(x, y) = f(x, y)− f̄(x, y).

3. The sharpened image is obtained by adding a weighted portion, w (w ≥
0), of the acquired mask to the original image,

g(x, y) = f(x, y) + w ∗ gmask(x, y),

where ∗ denotes multiplication. The weight w therefore determines the degree

of sharpening. In general when images are sharpened by employing a weight

of 0 ≤ w < 1 the process is referred to as de-emphasising since the sharpness

effect is mitigated. When images are sharpened by employing a weight of w = 1

the process is referred to as unsharp masking whilst the process is referred to

as highboost filtering when w > 1 (Gonzalez et al. (2010)). The proposed image

sharpening strategy employs unsharp masking by setting w = 1.

The preprocessing of an input metaphase image is therefore achieved by

applying a median filter of size 3×3, and with the weight specified as w = 1 for

the purpose of achieving unsharp masking. These steps ensure that sufficient

noise and non-prominent edges are removed while preserving critical features

typically associated with the curved edges of chromosomes. For reference

purposes, the effect of the proposed preprocessing strategy when applied to

three of the metaphase images from the iThemba LABS dataset is illustrated

in Figure 4.3.
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(a)

(b)
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(c)

Figure 4.3: Preprocessing. (Top) Input metaphase images. (Bottom)
Smoothed and sharpened versions of the corresponding images on the top after
the application of the median filter and unsharp masking.

4.3 Extraction of ROIs

After performing the necessary preprocessing steps, the regions of interest

(ROIs) can be determined. As is evident in Figure 4.1, the prominent

chromosomes are found near the center of the metaphase images. Other objects

are however also present. Keeping in mind that the objective is to detect single

isolated chromosomes, all the possible objects found in a typical metaphase

image are categorised as follows:

1. Isolated normal chromosomes (see Figure 4.4 (a)).

2. Isolated dicentric chromosomes (see Figure 4.4 (b)).

3. Acentric fragments (see Figure 4.4 (c)).

4. Clusters of chromosomes (see Figure 4.4 (d) and (e)).
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5. Dirt (see Figure 4.4 (f)).

(a)

(b)

(c)

(d) (e)

(f)

Figure 4.4: Visual representation of objects of interest (see (a) to (e)) and dirt
(see (f)). (a) Isolated normal chromosome. (b) Isolated dicentric chromosome.
(c) Acentric fragments. (d) Clusters of overlapping chromosomes. (e) Clusters
of chromosomes in close proximity of one another. (f) Dirt.

41

Stellenbosch University  https://scholar.sun.ac.za



Note that the aforementioned clusters may contain more than one

chromosome that can either be located on top of one another (see Figure 4.4

(d)), or reside in very close proximity to one another (see Figure 4.4 (e)).

Each candidate ROI is evaluated in order to determine whether it

constitutes a viable object of interest. In order to assist in determining these

viable objects, the following information is considered: (1) prior knowledge

such as the fact that the expected number of chromosomes within a normal

cell is 46 and (2) the fact that certain artifacts such as noise (a component that

is too small) or dirt (a component that is too large) (see Figure 4.4 (f)) may

be miss-classified as an ROI. The steps in defining the ROI within the context

of the iThemba LABS dataset constitutes the following manageable tasks:

1. The detection of connected components (see Section 4.3.1).

2. The elimination of debris (see Section 4.3.2).

3. The extraction of ROIs and final segmentation (see Section 4.3.3).

4.3.1 Detection of connected components

The detection of connected components requires a heuristic approach towards

automatically estimating a suitable global binarisation threshold. Once an

optimal global binarisation threshold has been determined, debris are removed

from the resulting binary images and suitable ROIs are extracted. The

objective of the binarisation threshold is to create binary images in such a way

that the targeted foreground objects are separated from the background. The

objective is therefore to set pixel values within the grey-scale metaphase input

image f(x, y) that exceed a fixed threshold to a binary value of 1 (rendered

white), whilst the remainder of the pixels are assigned a binary value of 0

(rendered black). Once a binary image has been produced, the connected

components can be determined. Formally a connected component can be

described as a set of 8-connected white (1-valued) pixels within a binary image.
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As reference, Figure 4.5 shows the conceptualisation of the proposed protocol

for detecting connected components as well as all other necessary steps to

produce the final binary image from a metaphase image.

Figure 4.5: Conceptualisation of the novel heuristic binarisation method
proposed in this thesis.

As indicated in Figure 4.5, a histogram of the intensity values of the

image in question is first constructed before a threshold is applied. Given

a metaphase image with intensity levels (pixel values) ranging between 0 and

255, a histogram can be constructed using the function h(rk) = qk where rk

is the kth intensity in the given range whilst qk is the number of pixels in the

grey-scale image with intensity rk.
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From a created histogram, various thresholds in the range [0, 255] can be

tested for binarisation purposes, but due to computational costs this proves

to be impractical. Through observation, however, it has been noted that

lower valued intensities tend to contain objects of interest while higher valued

intensities contain background elements. To facilitate these observations and

constraints, a localisation approach is adopted to find thresholds within a

subset of the full range. In order to obtain the localised set, the local minimum

is calculated using the following equation,

localmin(h(rj) = qj), where j ∈ [100, 180].

Through observations, the interval [100, 180] is deemed appropriate.

Recall that a threshold of a specific localised intensity value will produce

a number of connected components within a binary image. A feasible set

of thresholds can subsequently be determined. More specifically, when the

application of a threshold results in a total number of connected components

that is greater than the minimum and less than the maximum number of

allotted objects per image, the threshold is deemed feasible. If the total number

of connected components do no meet these criteria, the threshold is discarded.

This process is iteratively executed for the entire set of localised intensity

values until the set of all feasible thresholds is obtained. Finally the most

suitable global binarisation threshold is obtained by taking the average of all

the feasible thresholds.

In order to obtain the desired binary image, the most suitable global

threshold is applied to the grey-scale metaphase image in question, separating

the foreground objects from the background. The principles involved in the

novel binarisation method proposed in this thesis is graphically conceptualised

in Figure 4.6. It is important to note that the proposed binarisation method
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produces significantly superior results to that of the well-known Otsu method

(Otsu (1979)).

(a)

(b)

(c)

Figure 4.6: (Left) A grey-scale metaphase image. (Centre) The histogram of
the image on the left, where the location of the appropriate threshold value as
determined by the novel binarisation method developed in this thesis is denoted
by the red line. (Right) The binary image obtained after the appropriate
threshold is applied to the image on the left.
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4.3.2 Elimination of debris

By considering the binary image produced using the strategy outlined in

Section 4.3.1, each connected component is assessed to determine whether it is

deemed too small (noise) or too large (dirt) by counting the number of pixels in

the connected component in question. Therefore, if the connected component

falls within this category it is tagged as debris and eliminated. The debris are

subsequently deemed part of the background of the binary image in question

(see Figure 4.7).

4.3.3 Extraction of ROIs and final segmentation

The remaining connected components that are deemed not to be debris are

each individually extracted to form a set of ROIs that are suitable for further

analysis. In addition to this, the coordinates of the ROIs are stored to assist

in generating the ground truth as outlined in Section 6.3. This is illustrated

in Figure 4.8.

4.4 Manual extraction of isolated chromosomes

Given the set of individual ROIs (see Figure 4.8 (right)), each ROI is manually

categorised into dirt, acentric fragments, clusters of chromosomes and isolated

chromosomes (see Figure 4.4). All acentric fragments, clusters of chromosomes

and dirt are manually discarded, while only the isolated chromosomes are

retained. The automated classification of acentric fragments and clusters of

chromosomes falls outside the scope of this research study. The automated

categorisation of the isolated chromosomes as either normal or dicentric is

however investigated in the remainder of this thesis. It is also important

to note that, in Figure 4.8, the process of extracting the ROIs is performed

automatically from the relevant binary image on the left.
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(a)

(b)

(c)

Figure 4.7: (Left) Binary image obtained using the protocol outlined in
Section 4.3.1. (Right) Final binary image after the removal of debris.
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(a)

(b)

(c)

Figure 4.8: (Left) Final binary image obtained using the protocol outlined in
Section 4.3.2. (Right) Extracted ROIs.
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4.5 Concluding remarks

In this chapter a segmentation protocol was developed, which facilitates

the automatic detection of a region of interest (ROI) that encloses normal

chromosomes, dicentric chromosomes, acentric fragments and clusters of

chromosomes. The aforementioned protocol employs several preprocessing

techniques and a novel binarisation algorithm, which is followed by the manual

extraction of isolated normal and dicentric chromosomes. The proposed feature

extraction protocol is discussed in detail in the next chapter.
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Chapter 5

Feature extraction

5.1 Introduction

The automated detection of dicentric chromosomes within metaphase images

can provide valuable information towards determining the extent of exposure

to radiation. In this chapter novel strategies for classifying chromosomes as

either normal or dicentric are investigated. The objective of these strategies

is to put into place a protocol that uses shape information from isolated

chromosomes (as obtained through the protocol outlined in the previous

chapter) to automatically classify the chromosomes as normal or dicentric

based on the extracted features.

The proposed feature extraction protocol will only focus on classifying

isolated normal and dicentric chromosomes, and will disregard clusters and

acentric fragments. For reference, grey-scale representations of a typical

isolated normal and dicentric chromosome cropped from metaphase images

are shown in Figure 5.1.

(a) (b)

Figure 5.1: Grey-scale representations of isolated chromosomes. (a) Typical
normal chromosomes. (b) Typical dicentric chromosomes.
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Figure 5.2 depicts the resultant binary images obtained following the

proposed image segmentation protocol outlined in the previous chapter.

(a) (b)

Figure 5.2: Binary representations of isolated chromosomes after employing
the segmentation protocol outlined in Section 4.4. (a) Typical normal
chromosomes. (b) Typical dicentric chromosomes.

Recall from Section 3.3 that the thinnest part of a chromosome constitutes

a centromere where two sister chromatids are joined together. The important

distinguishing feature of isolated normal and dicentric chromosomes is the

presence of one or two centromeres respectively. Subsequently, determining

the number of centromeres associated with a chromosome is a critical step in

classifying the chromosome as either normal or dicentric. It is clear from

Figure 5.2 that a centromere exhibits two distinct characteristics: (1) It

constitutes the thinnest region of a chromosome. (2) The segment of the edge

of the chromosome in the region of the centromere is significantly more concave

towards the outside than the remainder of the edge. These two fundamental

features associated with the location of a centromere within a chromosome can

be identified by considering the chromosome’s width profile and conducting

curvature analysis on the chromosome’s edge respectively.

Overall, the feature extraction process can be divided into the following

stages:

1. Preprocessing for image analysis (see Section 5.2).

2. Width profile analysis (see Section 5.3).
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3. Curvature analysis (see Section 5.4).

The proposed chromosome classification protocol is graphically conceptualised

in Figure 5.3 and discussed in detail in the remainder of this chapter.

Figure 5.3: Conceptualisation of the novel feature extraction protocol proposed
in this thesis.
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5.2 Preprocessing for image analysis

The preprocessing protocol proposed in this section is based upon modifying

the binary image of an isolated chromosome obtained in Section 4.4. Before

feature extraction can be conducted, the binary image is modified in such a way

that a normalised edge graph with only the outside boundary of the primary

chromosome is obtained. The steps in obtaining the edge graph is divided into

the following manageable tasks:

1. Image simplification (see Section 5.2.1).

2. Feature normalisation (see Section 5.2.2).

3. Closing the ends of the chromatids (see Section 5.2.3).

4. Edge graph extraction (see Section 5.2.4).

In order to serve as a visual guide, the proposed preprocessing protocol is

graphically conceptualised in Figure 5.4.

5.2.1 Image simplification

In order to modify each binary chromosome image obtained from Section 4.4,

morphological transformations need to be applied to isolate, fill and smooth

the chromosome in question. These steps are necessary to ensure that a

successful feature normalisation and extraction protocol can be applied. In

order to obtain the edge graph that is required for width profile analysis and

curvature analysis, the borders of the binary image must first be cleared. The

fundamental task of border clearing is used to allow only complete objects

within an image to be extracted. This step is therefore crucial in ensuring that

partial objects (that touch the boundary of the binary image) are removed so

that the resulting image only contains a single isolated object associated with

a full chromosome.
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Figure 5.4: Conceptualisation of the preprocessing for image analysis protocol
as proposed in this research.

After border clearing, further simplifications on the chromosome object

itself may be required. Investigations have shown that irregularities such

as holes may be present within isolated objects. In order to remedy this, a

commonly employed morphological algorithm, known as hole filling (Gonzalez

et al. (2010)) is applied to detect and fill holes within the binary images.

Holes may be defined as any background region surrounded by a connected

component in an image. This step ensures that each chromosome is fully

connected and consistent throughout.

As a result of the image capturing process, small gaps and inconsistencies

may also be present along the boundaries of the isolated chromosome. A type

of smoothing technique known as morphological closing reduces the raggedness

of the edges. In general, morphological operations such as closing employs an
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appropriately shaped and sized sub-image, known as a structuring element

(SE) to determine regions that should be retained or filled along an object

boundary in order to render it smoother. By placing and progressively moving

a SE along the outside boundary of a connected component, any regions the

SE does not fit into, or make contact with are subsequently filled. The reader

is referred to page 657 of Gonzalez et al. (2010) and page 23 of Beukes (2018)

for a more detailed description of the morphological closing operation.

The step by step application of the above-mentioned image simplification

protocol is illustrated from left to right in Figure 5.5.

Figure 5.5: A visual representation of the progression of the binary image
simplification protocol. (Column 1) Original binary input images obtained
in Section 4.4. (Column 2) Binary image obtained after border clearing
is applied. (Column 3) Binary image obtained after hole filling is applied.
(Column 4) Binary image obtained after morphological closing is applied.
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5.2.2 Feature normalisation

After the morphological transformations outlined in the previous section

have been applied, isolated chromosomes are further modified using feature

normalisation techniques. The techniques’ primary goal is to ensure rotational

invariance between all chromosome objects. This feature normalisation

protocol assists in the process of detecting centromeres, since the proposed

feature extraction protocol (which is discussed at a later stage) will require

objects to be aligned along a specific axis, namely the horizontal axis. By

applying a discrete Radon transform (DRT) on an input image, the appropriate

alignment for rotational invariance of a chromosome can be determined and

enforced.

Figure 5.6: The application of the discrete Radon transform to a typical binary
isolated chromosome image is conceptualised.
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The DRT of an image is obtained when multiple, parallel-beam projections

of an image is calculated from equally distributed angles within an interval

φ ∈ [0◦, 180◦) (Coetzer (2005)). Specifically, each projection ρ constitutes a

vector, of which each component represents a beam-sum. Within the context

of the system proposed in this thesis, each projection component approximates

the number of chromosome pixels within the relevant beam. The DRT �(ρ, φ)
of an input image, I(x, y), therefore constitutes a matrix where each column,

ρ, of the DRT represents a projection profile of the input image, acquired

from a specified angle, φ. The calculation of a projection profile of a typical

binary isolated chromosome image from a specific angle φ is conceptualised in

Figure 5.6.

Using the projection profiles obtained from calculating the DRT we can

therefore determine different bounding boxes by considering the properties of

two perpendicular projection profiles as will be explained shortly. As Figure

5.7 shows, creating the most compact bounding box around a chromosome

encapsulates its rectangular nature and represents the smallest possible area

that contains a chromosome.

Figure 5.7: The targeted most compact bounding box manually annotated and
superimposed in red onto an isolated normal chromosome.
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Therefore the most compact bounding box minimises the number of

background (black) pixels relative to the number of foreground (white) pixels.

The protocol for calculating the most compact bounding box and in turn

determining the appropriate degree of rotation for rendering the chromosomes

rotational invariant is outlined below. Formally, let

� ′(ρ, φ) =

⎧⎪⎨
⎪⎩
1, �(ρ, φ) > 0

0, elsewhere

define the piecewise function which transforms beam-sums of � to a binary

function. The total number of non-zero beam-entries from a projection profile

can subsequently be calculated as follows,

l(φ) =
m∑
i=1

� ′(ρi, φ), where i ∈ [1,m] and φ ∈ [0, 180).

Therefore l represents the maximum variation of the connected component

for each angle φ and m denotes the total number of beams per angle. Taking

into consideration the fact that the area of a rectangle is defined by the product

of its dimensions, the most compact bounding box can be determined using

the maximum variation l. By considering perpendicular pairs from the various

orientations within the interval [0, 180), the bounding box area for each possible

chromosome orientation can be calculated. Formally this can be written as

φ1 ⊥ φ2 where φ1 ∈ [0, 90) and φ2 ∈ [90, 180) with the area a defined as

a(α) = l(φ1) · l(φ2) where α ∈ [0, 90).

Subsequently, finding the minimum area a will result in the most compact

bounding box around the object. The parameter α now represents the angle

through which the object has to be rotated so that it is aligned horizontally.
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In scenarios where more than one value of α is associated with a minimum

area a, the average of these values constitutes the required angle of rotation

that will ensure horizontal alignment.

Given the fact that the bounding box of an object is orientated along

a specific axis, it should be noted that the same area can be produced by

rotating the object through 90◦. The final step towards determining the degree

of rotation is to ascertain whether the major axis is orientated horizontally or

vertically after the rotation has been performed. Should the major axis be

orientated vertically, the object is simply rotated trough another 90◦ in order

to ensure that it is orientated horizontally. The rotational invariant versions

of the images obtained in Section 5.2.1 are depicted in Figure 5.8.

(a) (b)

Figure 5.8: Rotational invariant versions of the images obtained in Section 5.2.1
(a) Typical normal chromosomes. (b) Typical dicentric chromosomes.

Note that for some cases where the chromosomes are significantly bent the

proposed protocol may fail to guarantee rotational invariance. Straightening

of bent chromosomes should rectify this issue (Jindal et al. (2017), Markou

et al. (2012) and Sharma et al. (2017)), but this strategy does not fall within

the scope of this thesis.
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5.2.3 Closing the ends of the chromatids

In order to ensure that the centromere detection protocol proposed later in this

thesis is successful, the ends of the chromatids on each side of the chromosome

image must be morphologically closed. This step is necessary for the width

profile protocol introduced in Section 5.3 as well as for the curvature analysis

protocol introduced in Section 5.4 to function properly.

In order to perform the closing procedure, a specific mask is digitally

superimposed onto the rotated binary image of a segmented chromosome for

the purpose of filling the ends of the chromatids. This process is automated.

In order to create the mask, the centre-point of the most compact bounding

box along its horizontal axis is first determined. From this centre-point, a

centre-line is drawn horizontally so as to split the image into two sub-images,

each roughly containing a chromatid of the chromosome. The mask is created

by drawing a line between the leftmost pixels and between the rightmost

pixels detected in the respective chromatid sub-images. Figure 5.9 shows

the digital superposition of the aforementioned mask onto the rotated binary

image of a chromosome.

(a) (b)

Figure 5.9: A visual representation of an appropriate mask being digitally
superimposed onto rotated binary chromosome images. (a) Typical normal
chromosomes. (b) Typical dicentric chromosomes.

The final step involves the application of the morphological hole filling

protocol introduced in Section 5.2.1 in order to fill the empty regions. For
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clarity, Figure 5.10 shows the results.

(a) (b)

Figure 5.10: A visual representation of the binary chromosome images after
the ends of the chromatids have been digitally closed. (a) Typical normal
chromosomes. (b) Typical dicentric chromosomes.

Again note that when the chromosomes are bent (not perfectly straight)

this protocol may fail.

5.2.4 Edge graph extraction

A commonly used method, known as Moore’s algorithm (Moore (1968)), is

employed for edge graph extraction. Edge graph extraction produces data

points along the edges of objects and proves to reduce the computational

burden of processing large amounts of data from an image matrix. This is

therefore a necessary and efficient preprocessing step for feature extraction.

The boundary associated with the binary image is traced with Moore’s

algorithm such that the edge graph depicted in Figure 5.11 is obtained. Moore’s

algorithm (Moore (1968)) operates by finding the left most, lowest pixel on

the boundary, after which the chromosome boundary is traced in a clockwise

direction. A 2 × n matrix (where n denotes the number of boundary points)

containing the x and y coordinates of the chromosome boundary is then

obtained. Figure 5.11 shows a visual representation of the plotted x and y

coordinates.
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(a) (b)

Figure 5.11: A visual representation of the edge graphs associated with isolated
chromosome images. (a) Typical normal chromosomes. (b) Typical dicentric
chromosomes.

5.3 Width profile analysis

A protocol to extract and detect the most telling features of normal and

dicentric chromosomes is now proposed. As stated previously, the number

of centromeres a chromosome possesses will determine whether a chromosome

is normal or dicentric. A protocol based on the width profile is therefore

proposed for the purpose of analysing the edge graph of a chromosome. The

aim of the technique is to successfully locate centromeres given an edge graph

of a chromosome.

The width profile is determined from the x and y coordinates of the edge

graph depicted in Figure 5.11. These coordinates are first segmented into

the upper and lower sections of the chromosome by applying a threshold that

constitutes the average value of the width of the graph,

threshold =
1

n

n∑
i=1

yi,

where yi is the vertical coordinate of a point on the graph and n is the total

number of points in the graph.

The end points of the upper and lower sections is a key concern in

identifying the local minima within the width profile. In order to remove
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unwanted local minima at the end points of the width profile, 10% of the

length is truncated at each end of the upper and lower sections.

Next, smoothing is applied to the upper and lower sections of the edge

graphs so as to discard insignificant local minima. In order to achieve this,

a robust local regression smoothing technique is implemented, which uses a

weighted linear least squares algorithm and a second degree polynomial model.

In order to smooth a given data point the weighted neighbouring data points

defined within the span is used. In this case a robust weight function is applied,

which makes the process unsusceptible to outliers (Cleveland (1979)). The

resulting upper and lower sections of the edge graphs as well as their respective

smoothed versions are graphically illustrated in Figure 5.12.

Finally, the distance between the respective y (vertical) coordinates for a

corresponding x (horizontal) coordinate associated with the upper and lower

edge graphs is calculated so as to obtain the width profile (see Figure 5.13).

The position of the centromere(s) within the width profile is typically

associated with a deep (strong) valley. Due to the prevalence of noise in the

chromosome edges, a large number of shallow (weak) valleys are often present.

In order to mitigate this the prominence of each local minima detected in the

width profile is taken into account. The prominence of each local minima

measures how the valley stands out with respect to its depth and location

relative to other valleys. Recall that the important distinguishing feature

of isolated normal and dicentric chromosomes is the presence of one or two

centromeres respectively. Subsequently, the two most prominent local minima

are extracted whenever more than two local minima are detected.

It is clear from Figure 5.13 (a) (right) that the number local minima

detected using the width profile analysis protocol proposed in this thesis is

not always as expected. This is due to the fact that chromosomes are typically
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irregular. In order to improve upon the width profile analysis protocol proposed

in this thesis, an investigation into the location of the local minima with respect

to one another may be investigated, but this is considered to be part of future

work.

The number of the local minima in the width profile will be used

in conjunction with curvature analysis to determine whether the isolated

chromosome is normal or dicentric (see Section 6.4).

(a)

(b)

Figure 5.12: A visual representation of the upper (red points) and lower (yellow
points) sections of the edge graphs obtained through applying an appropriate
threshold. The resulting smoothed upper section (black line) and smoothed
lower section (blue line) are obtained by applying robust local regression.
(a) Typical upper and lower section of edge graph of normal chromosomes.
(b) Typical upper and lower section of edge graph of dicentric chromosomes.
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(a)

(b)

Figure 5.13: A visual representation of the width profile. The most prominent
local minima are indicated by the red stars. (a) Typical representation of
normal chromosomes. (b) Typical representation of dicentric chromosomes.
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5.4 Curvature analysis

In this section a feature extraction protocol that relies on the curvature of

a given chromosome is proposed. The aim of the extraction protocol is to

locate concave regions in the edge graph obtained in Section 5.2.4 that may be

associated with centromeres.

An equation for the curvature of a twice differentiable curve will be derived

in Sections 5.4.1 and 5.4.2.

5.4.1 Curvature equation

Let C be a twice differentiable plane curve as depicted in Figure 5.14.

Figure 5.14: Plane curve.

At the point P on the curve a tangent line L is drawn. The angle that L makes

with the x-axis is labelled θ. As P moves along the curve, it causes L and θ to

change. The magnitude κ of the change in θ per unit arc length is called the

curvature and can be expressed as follows,

κ =
dθ

ds
, (5.1)
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where ds denotes the change in the position of P .

If the curve is a twice differentiable function y = y(x), then the curvature κ

can be calculated using the formula

κ =
d2y
dx2

[1 + ( dy
dx
)2]

3
2

. (5.2)

Derivation of Equation 5.2

The angle θ is related to the first derivative by tanθ = dy
dx
. Therefore, it follows

that θ = tan−1( dy
dx
). Differentiating with respect to x gives

dθ

dx
=

1

1 + ( dy
dx
)2
.
d

dx

(
dy

dx

)
=

d2y
dx2

1 + ( dy
dx
)2
. (5.3)

Figure 5.15: The relationship between dx, dy and ds.

From Figure 5.15 it follows that

ds =
√
(dx)2 + (dy)2

or
ds

dx
=

1

dx

√
(dx)2 + (dy)2
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which may be expressed as

ds

dx
=

√(
dx

dx

)2

+

(
dy

dx

)2

,

i.e.

ds

dx
=

√
1 +

(
dy

dx

)2

. (5.4)

From Equation 5.4 the chain rule can be applied. It follows that,

dθ

dx
=

dθ

ds
.
ds

dx
=

dθ

ds

√
1 +

(
dy

dx

)2

=
d2y
dx2

1 + ( dy
dx
)2
. (5.5)

From Equation 5.5 it follows that

dθ

ds
=

d2y
dx2

[1 + ( dy
dx
)2]

√
1 +

(
dy
dx

)2 .

Therefore

κ =
dθ

ds
=

d2y
dx2

[1 + ( dy
dx
)2]

3
2

, (5.6)

which completes the derivation of Equation 5.2. �

5.4.2 Parametric curvature equation

If the curve is specified parametrically by a twice differentiable vector function

r(t) = x(t)i+ y(t)j,

then

κ =

(
dx
dt

) (
d2y
dt2

)
− (

dy
dt

) (
d2x
dt2

)
[
(dx
dt
)2 + (dy

dt
)2
]3/2 . (5.7)
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Derivation of Equation 5.7

dy

dx
=

dy

dt
/
dx

dt
=

y′

x′

From differentiation rules it follows that

d2y

dx2
=

x′y′′ − y′x′′

(x′)3

Therefore, from Equation 5.2 and the above expressions for dy
dx

and d2y
dx2 , the

curvature can also be expressed as,

κ =
x′y′′ − y′x′′

[(x′)2 + (y′)2]3/2
, (5.8)

which completes the derivation of Equation 5.7. �

From Equation 5.8 it follows that the curvature can be negative or positive

(see the curvature plot of Figure 5.17). If a curve is traversed in a clockwise

fashion and a peak (which is considered convex) is passed, the curvature is

positive. When a valley is passed (which is considered concave), the curvature

is negative. This is illustrated in Figures 5.16 and 5.17.

Figure 5.16: A visual representation of curvature analysis using a toy example.
(Left) Edge graph with 807 points. (Right) Corresponding curvature plot
using 200 neighbouring points. The concept of neighbouring points and the
need for boundary smoothing are discussed in Section 5.4.3
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Figure 5.17: A visual representation of curvature analysis using an idealised
chromosome. (Left) Edge graph with 1339 points. (Right) Corresponding
curvature plot using 200 neighbouring points. The concept of neigbouring
points and the need for boundary smoothing are discussed in Section 5.4.3

5.4.3 Parametrisation and curvature calculation

The chromosome boundary can be viewed as a contiguous curve, with each

chromosome boundary point viewed as a parametric function pair (xj, yj), j =

1, ..., n, where n denotes the number of boundary points.

The curvature at any point on the curve is given by

C(t) =
ẋ(t)ÿ(t)− ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)
2
3

, (5.9)

as illustrated in the Section 5.4.2. To assert that a curve has as curvature 1
r
at

an arbitrary point P on the curve, is to say that the curve is turning at a rate

of a circle of radius r. The smaller the circle, the tighter the turn and, thus,

the greater the curvature. When computing the curvature of the chromosome

boundary, the curvature at the valleys near centromeres is typically negative.

Since the angle between neighbouring pixels in digital images is one

of the following, (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦), as illustrated in

Figure 5.18, the chromosome boundary has to be smoothed in order to

accurately approximate the first and second derivative.
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Figure 5.18: Graphical depiction of pixels.

An economic way of achieving the smoothing is to use approximations

for the derivatives in Equation 5.9 based on the number of coordinates.

Therefore, the least square method provides a suitable technique for accurately

approximating the first and second derivatives.

The equation of a straight line is as follows,

x(t) = mxt+ cx, (5.10)

where mx is the gradient of the line and cx is the intersection of the line with

the x(t) axis. Since the equation of the line contains two unknowns, mx and cx,

two equations are needed to solve them. If more than two points are involved,

an over-determined system is obtained, which can be solved by means of the

least squares method. The resulting line is then a least squares fit through the

points. The over-determined system is given by,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t1

1 t2
...

...

1 tc
...

...

1 tN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
cx

mx

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t1)

x(t2)
...

x(tc)
...

x(tN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where N is the number of neighbouring pixels. Solving the above

over-determined system gives an approximation of the gradient of the curve

at x(tc). From Equation 5.10 it follows that the first derivative is given by

ẋ(t) ≈ mx. A similar result is used when computing the first derivative of y(t),

that is ẏ(t) ≈ my.

In order to approximate the second derivative of a smoothed version of x(t)

the best parabola, with equation

x(t) = axt
2 + bxt+ cx, (5.11)

is fitted through the N points, where the resulting over-determined system is

given by, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 t21

1 t2 t22
...

...
...

1 tc t2c
...

...
...

1 tn t2N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
cx

bx

ax

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t1)

x(t2)
...

x(tc)
...

x(tN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and N is the number of neighbouring pixels. From Equation 5.11 it follows

that the second derivative of x(t) is given by ẍ(t) ≈ 2ax, which can be easily

obtained from the least squares solution. Similar results follow when computing

the second derivative of y(t), that is ÿ(t) ≈ 2ay.

The next step is to find the points where the centromeres are located,

known as extremal points. These points will later contribute to the main

objective, which is the classification of an isolated chromosome as either

normal or dicentric. When calculating the curvature, it is noted that scaling

with respect to the total number of points, n, in the edge graph is required.

Therefore, the number of neighbouring points N that is used for a given

chromosome is determined as follows, N = 2
65

× n+ 32, which is subsequently

72

Stellenbosch University  https://scholar.sun.ac.za



rounded to the nearest integer in intervals of 5. This ensures that large

enough curvatures are located at the extremal points to distinguish them from

flatter curves, as is illustrated in Figure 5.20. The dashed lines in Figure 5.19

graphically represent the threshold values employed in order to determine the

extremal points from the curvature plot.

(a)

(b)

Figure 5.19: A visual representation of the curvature plot of an isolated
chromosome using appropriate smoothing. The resulting local minima which
are less than the threshold (dashed line) are indicated by the red stars.
(a) Typical representation of normal chromosomes. (b) Typical representation
of dicentric chromosomes.
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(a)

(b)

Figure 5.20: A visual representation of the located valley points (red stars) on
the edge graph that is obtained in Section 5.2.4. (a) Typical representation of
normal chromosomes. (b) Typical representation of dicentric chromosomes.

The number of the located valleys in the curvature analysis are then used

in conjunction with width profile analysis to determine whether the isolated

chromosome is normal or dicentric (see Section 6.4).

5.5 Concluding remarks

In this chapter a suitable feature extraction protocol was proposed in order to

obtain valuable shape information. In order to exploit the shape information
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the image should be preprocessed and rotated to ensure rotational invarience.

Edge graph extraction was employed in order to obtain the data points along

the edges of objects. Finally two feature extraction protocols were proposed in

order to determine the number of centromeres present for a given chromosome.

This was achieved by determining the width profile and conducting curvature

analysis associated with the chromosome. In the following chapter a ground

truth is generated in order to determine the proficiency of the proposed

system.
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Chapter 6

Experiments

6.1 Introduction

In this chapter experiments are carried out in order to determine the proficiency

of the novel strategies proposed to detect regions of interest (ROIs), as well as

the proficiency of the novel strategies proposed to classify isolated chromosomes

as normal or dicentric. Recall that due to variations in imaging equipment

and differences in methods for treating samples, implementations are often

specific to a single laboratory. Therefore the aforementioned experiments are

exclusively conducted on and compared to the metaphase images provided by

iThemba LABS. This dataset is described in Section 6.2. In order to evaluate

the proposed protocols, a ground truth is developed and outlined in Section 6.3.

For each individual experiment that is conducted, the experimental protocol

and the corresponding results are outlined in Section 6.4.

6.2 Data

The dataset considered in this study was acquired directly from the

radiobiology laboratory at iThemba LABS. This dataset consists of grey-scale

images that were captured under a light microscope and contains 742

metaphase images from healthy male and female individuals.

In order to obtain the metaphase images, small rectangular glass

microscope slides with metaphase spreads were prepared in the radiobiology

laboratory at iThemba LABS on which the specimens are mounted. In order

to stain the chromosomes in the metaphase spreads, a nucleic acid stain

called Giesma stain is used. The Giesma stain joins itself to the parts of
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the DNA where high amounts of adenine-thymine is found. The stained

specimen is subsequently scanned with the Metafer4 system using a Carl

Zeiss AxioImager.Z2 microscope (Metasytems, Germany). The automated

metaphase finding module (MSearch) was used at a 10x magnification to detect

the metaphases on the microscope slide. Thereafter, the unattended image

acquisition module (AutoCapt) was used to capture metaphases at a higher

magnification with a 63x/1.40 oil objective. The images were captured at a

resolution of 1280× 1024 pixels and exported as TIFF files from the Metafer4

system for further analysis. Figure 6.1 shows a typical grey-scale metaphase

image.

Figure 6.1: A visual representation of a typical grey-scale metaphase image
obtained from iThemba LABS.

6.3 Ground truth generation

The process of manually scoring metaphase images is proven to be labour

intensive, highly time-consuming and open to human error depending on the

expert experience. For these reasons, laboratories all over the world have

implemented analytical processes and protocols for dicentric assay. In order
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to validate the proposed protocol in the following sections, a protocol for

generating a ground truth must first be put into place. In generating the

ground truth for the acquired metaphase images in the dataset, seven experts

from iThemba LABS with varying degrees of experience were employed. In

order to initialise the scoring protocol, each expert is tasked to score 400

random metaphase images out of the total of 742 metaphase images in the

dataset. Each expert is therefore given the following instructions:

1. Indicate whether the metaphase image is score-able or has to be

discarded.

2. For each chromosome on a metaphase image, indicate the chromosome’s

category using a coloured dot as follows:

(a) a red dot for a normal chromosome,

(b) a cyan dot for a dicentric chromosome, and

(c) an orange dot for an acentric fragment.

Given the instructions above, the scored images are returned for ground

truth generation. Figure 6.2 shows an example of a scored image obtained

from the experts.

Figure 6.2: A visual illustration of scored metaphase images returned from the
experts.
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Each expert is ranked according to his/her experience in scoring metaphase

images. A scale of 1 to 7 is used where an expert with a ranking of 1 is the

most advanced, while an expert with a ranking of 7 is the least experienced.

At minimum, each metaphase image is scored by two experts independently.

Once the images are scored, the analysis to evaluate the ground truth is started.

The proposed ground truth generation protocol can be divided into four main

steps:

1. Discarding metaphase images (see Section 6.3.1).

2. Collection of data points (see Section 6.3.2).

3. Labelling using ROIs (see Section 6.3.3).

4. Manual labelling (see Section 6.3.4).

6.3.1 Discarding metaphase images

The first stage in generating the ground truth is to remove metaphase images

that are deemed to be not score-able. The experts returned a table with two

columns containing the image number and a string stating whether the image

should be discarded. In order to determine which metaphase images should

be discarded, the tables from the experts are joined according to the image

number. The resulting table therefore has three columns: the image number,

an array containing the rankings of the experts that scored the metaphase

image in question, and an array containing the strings that state whether the

metaphase image in question should be discarded. The array of strings are

converted into a binary value where the capitalised ‘Yes’ is converted to 1 and

the capitalised ’No’ is converted to a 0. Given the prepared table, the array of

strings is assessed as follows so as to determine whether the image should be

discarded:

1. A majority vote decision is first employed to determine whether the image
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should be discarded.

2. In the event of a tie, the scorers’ expert ranks are used to swing the vote

by considering the minimum average rank per category, since a scorer

with a lower rank is deemed to be more experienced.

Using the above-mentioned protocol, 99 images were discarded, leaving 643

images for further analysis. Figure 6.3 shows examples of images that were

discarded. Images may be discarded for the following most common reasons:

1. The metaphase spread is not clear enough.

2. The image consists of more than the metaphase spreads.

3. The view to analyse the chromosomes is obstructed.

4. The image is of low quality.

Figure 6.3: A visual illustration of discarded images.

6.3.2 Collection of data points

In order to determine the category of a chromosome in each expert’s metaphase

image, colour segmentation is applied using the RGB colour model. The RGB

colour model is based on the fact that a colour image has three primary spectral

components that is red (R), green (G) and blue (B). The colour of a given

pixel can be defined as a vector (R,G,B) in 3-dimensional space by specifying
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the intensity level ranging between 0 and 255 for each of the red, green and

blue components. Colour segmentation for each metaphase image is achieved

through the extraction of specific colours associated with a corresponding

category. Therefore, enforcing the requirement that R = 255 while G = B = 0

will extract all the red dots (considered to be normal chromosomes) in the

image. The image is subsequently binarised by allocating the pixels in question

an assigned value of one (rendered white), while the other pixels are assigned

a value of zero (rendered black).

In order to determine the location of the extracted dots, the centres of

mass of the connected components in the binary image is calculated using

regionprops in MATLAB. It therefore returns the x and y coordinates of

the centres of mass. These coordinates, in conjunction with the category

and ranking of the expert scoring the image, is sorted in an array for further

analysis. This process is repeated for all the (R,G,B) values associated with a

specific category. Consequently, by enforcing the requirement that (R,G,B) =

(0, 255, 255), all the cyan dots (considered to be dicentric chromosomes) in an

image are extracted. In the case of acentric fragments multiple shades of orange

is extracted, since the different experts did not use the same shade of orange.

6.3.3 Labelling using ROIs

The above-mentioned stored data points containing the location, category and

ranking of the experts for each scored chromosome in a metaphase image can

now be used in order to generate the ground truth. In this section the focus is

on assigning a final label to each ROI obtained during the image segmentation

protocol (see Section 4.3.3). In the context of labelling the ROIs it can be

assumed that each bounding box will contain one chromosome and can be

used to indicate the position of each chromosome in the metaphase image.

The stored coordinates from the set of ROIs in a metaphase image can now
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be used to determine which data points are in a given bounding box. In the

following equation,

x2 ≤ x ≤ x1,

y2 ≤ y ≤ y1,

the coordinates (x1, y1) and (x2, y2) represent the top left and bottom right

corners of the bounding box and (x, y) represents the location of the data

point in question. The dots within each bounding box are identified, after

which analysis is conducted on the identified dots using the category specified

by the experts so as to determine the label according to the following criteria:

1. A majority vote decision is first employed to determine the correct label

for a given bounding box.

2. In the event of a tie, the scorers’ expert ranks are used to swing the vote

by considering the minimum average rank per category, since a scorer

with a lower rank is deemed to be more experienced.

6.3.4 Manual labelling

Manual labelling is applied to the following objects: (1) all chromosomes

and fragments that were not detected during the image segmentation process,

(2) all clusters of chromosomes (on top of each other or in very close proximity

to each other), and (3) all chromosomes where a bounding box contains another

bounding box.

6.4 Experimental protocol and results

In this section the protocol and effectiveness of the proposed image processing

based detection and classification experiments are elaborated and reported on.

In this study, for the purpose of quantifying the proficiency of the proposed
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detection and classification experiments, the following statistical measures are

used:

• Number of true positives (TP), that is the number of correctly accepted

positives instances.

• Number of false positives (FP), that is the number of incorrectly accepted

negatives instances.

• Number of false negatives (FN), that is the number of incorrectly rejected

positives instances.

• Number of true negatives (TN), that is the number of correctly rejected

negatives instances.

In order to quantify the proficiency of the proposed system the following

statistical performance measures are used:

Performance measure Definition Relationship

False positive rate (FPR) FP
FP+TN

FPR = 1−TNR

False negative rate (FNR) FN
FN+TP

FNR = 1−TPR

True positive rate (TPR) TP
TP+FN

TPR = 1−FNR

True negative rate (TNR) TN
TN+FP

TNR = 1−FPR

Accuracy (ACC) TP+TN
TP+TN+FP+FN

The above-mentioned performance measures are measured using a range [0, 1]

where the first two measures indicates a higher accuracy if they are close to 0

since they represent error rates, while the last three measures represent system

proficiency and indicate a higher accuracy when it is close to 1. For reference

purposes Table 6.1 shows the confusion matrix with the appropriate statistical

measures.
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Actual class
Positive Negative

Predicted Positive TP FP FPR
class Negative FN TN FNR

TPR TNR ACC

Table 6.1: Illustration of confusion matrix with the appropriate statistical
measures.

6.4.1 Experiment 1: Detection of ROIs in metaphase images

The main objective of the image segmentation protocol is to successfully detect

objects of interest. Recall that an object of interest constitutes either a

normal chromosome, a dicentric chromosome, an acentric fragment or a cluster

of chromosomes. In this experiment a questioned ROI is matched to the

corresponding reference bounding box containing a label that was assigned

to its location during the ground truth generation phase. The questioned

ROI should be detected (accepted) as an object of interest if and only if the

corresponding reference contains a label. In scenarios where the corresponding

reference has not been assigned a label, the ROI constitutes dirt and should

therefore not be detected. The number of true negatives (that is dirt classified

as dirt) is not reported on, since dirt is simply discarded during the image

segmentation phase. Table 6.2 illustrates the resulting effectiveness of this

detection phase.

Actual class
Positive Negative

Predicted Positive 27611 1384 �
class Negative 1646 � 5.63%

94.37% � �

Table 6.2: Detection of objects of interest. Use Table 6.1 as a reference.

An object is quantified as dirt when it is significantly larger or smaller

than the average size of an object in a metaphase image. Consequently,
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dirt of a size similar to that of a normal chromosome is detected as an

object of interest. Note that a cluster of chromosomes is detected as a

single object of interest since it constitutes a single connected component.

The single object of interest therefore contains multiple labels. Out of the

27611 detected objects of interest, 365 constitute clusters that contain 993

individual chromosomes. The separation of these chromosomes is challenging

and forms part of future work. The detection of a cluster that is associated

with chromosomes in close proximity of each other is usually the result of poor

image quality. Therefore only 26618 isolated chromosomes and fragments are

detected. The separation of these chromosomes may be facilitated by improved

image enhancement techniques and forms part of future work. The detection

of isolated chromosomes can be further broken down into the respective

categories. Table 6.3 illustrates the resulting effectiveness of this detection

phase within the context of each category.

Category (isolated) Total in ground truth Total detected TPR

Normal chromosomes 27794 25438 91.52%
Dicentric chromosomes 529 386 72.97%
Acentric chromosomes 934 794 85.01%

Total objects of interest 29257 26618 90.1%

Table 6.3: The effectiveness of the detection phase within the context of each
category.

Within the context of detecting isolated objects of interest, a TPR of 90.1%

is achieved. Within the context of detecting objects of interest, which includes

clusters of chromosomes, a TPR of 94.37% is achieved.

6.4.2 Experiment 2: Classification of isolated chromosomes

The main objective of the classification protocol is to classify an isolated

chromosome as either normal or dicentric using the extracted features. In
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the feature extraction protocol discussed in the previous chapter two main

methods are used, namely (1) width profile analysis and (2) curvature analysis.

Width profile analysis returns the number of local minima in the width profile

for an isolated chromosome, while curvature analysis returns the number of

located valleys on the boundary of the chromosome. In this experiment a

questioned isolated chromosome is matched to the corresponding reference

bounding box containing a label that was assigned to its location during the

ground truth generation phase. The questioned isolated chromosome should

be accepted as dicentric if and only if the corresponding reference contains the

label “dicentric”. In classifying isolated chromosomes, three sub-experiments

are conducted: (a) classification based only on the local minima obtained

through width profile analysis, (b) classification based only on the located

valleys obtained through curvature analysis, and (c) classification based

on information obtained through both width profile analysis and curvature

analysis.

Experiment 2a: Width profile analysis. In order to classify an

isolated chromosome using width profile analysis the following guideline is

taken into account: centromeres are typically located within the slimmest

region of a chromosome. After a single ROI has been automatically identified

and the detected object has been orientated and analysed, the chromosome

is classified as dicentric (or accepted as an instance belonging to the positive

class) when its width profile has two prominent local minima and therefore

contains two centromeres. A chromosome is classified as normal (or rejected

as an instance belonging to the negative class) when its width profile has only

one (or less than one) prominent local minimum and therefore contains only one

centromere. Table 6.4 illustrates the proficiency of the classification protocol

using only width profile analysis.
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Actual class
Positive Negative

Predicted Positive 342 16065 63.30%
class Negative 36 9313 9.52%

90.48% 36.70% 37.49%

Table 6.4: Classification of isolated chromosomes using width profile analysis.
Use Table 6.1 as a reference.

From the results presented in Table 6.4 it is clear that the proposed

width profile analysis-based classification system is more proficient in correctly

classifying dicentric chromosomes. It is also noted from the FPR of 63.30% that

the proposed system is not proficient in classifying normal chromosomes. This

deficiency of the proposed protocol may be due to the fact that chromosomes

are typically irregular. In addition to this, isolated chromosomes may often be

bent, while in other cases, the concavity associated with a centromere may be

very subtle.

Experiment 2b: Curvature analysis. In order to classify an isolated

chromosome using curvature analysis the following guideline is taken into

account: the boundary segment in the vicinity of a centromere is generally more

concave towards the outside of the chromosome than is the case for the rest

of the boundary. After a single ROI has been automatically identified and the

detected object has been orientated and analysed, the chromosome is classified

as dicentric (or accepted as an instance belonging to the positive class) when its

curvature analysis yields four or more local valleys and is therefore concluded

to contain two centromeres. A chromosome is classified as normal (or rejected

as an instance belonging to the negative class) when its curvature analysis

yields three or less local valleys and is therefore concluded to contain only one

centromere. Table 6.4 illustrates the proficiency of the classification protocol

using only curvature analysis.
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Actual class
Positive Negative

Predicted Positive 329 3263 12.86%
class Negative 49 22115 12.96%

87.04% 87.14% 87.14%

Table 6.5: Classification of isolated chromosomes using curvature analysis. Use
Table 6.1 as a reference.

From the results presented in Table 6.5 it is clear that the proposed

curvature analysis-based classification system is equally proficient in correctly

classifying dicentric and normal chromosomes.

Experiment 2c: Width profile analysis and curvature analysis. In

this section an experimental protocol is proposed to evaluate the proficiency of

an aggregated classification system which employs both curvature analysis and

width profile analysis. After a single ROI has been automatically identified

and the detected object has been orientated and analysed, the chromosome

is classified as dicentric (or accepted as an instance belonging to the positive

class) when its curvature analysis yields four or more local valleys and its width

profile analysis yields two local minima. A chromosome is classified as normal

(or rejected as an instance belonging to the negative class) when its curvature

analysis yields three or less local valleys and its width profile analysis yields one

or less local minima. Table 6.4 illustrates the proficiency of the classification

protocol using this aggregated approach (width profile analysis combined with

curvature analysis).

Actual class
Positive Negative

Predicted Positive 308 2519 9.93%
class Negative 70 22859 18.52%

81.48% 90.07% 89.95%

Table 6.6: Classification of isolated chromosomes using a combination of width
profile analysis and curvature analysis. Use Table 6.1 as a reference.
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From the results presented in Table 6.6 it is clear that the proposed

classification system is sufficiently adequate at correctly classifying dicentric

chromosomes, while being more proficient in correctly classifying normal

chromosomes.

6.5 Discussion

Based on the experiments described in this chapter it was demonstrated that

the detection phase which employs the proposed image segmentation protocol

detects isolated objects of interest with a promising true positive rate (TPR) of

90.1% and detects objects of interest which includes clusters of chromosomes

with a TPR of 94.37% when compared to the ground truth obtained from

experts at iThemba LABS.

In classifying isolated chromosomes as normal or dicentric, experiments

using three strategies were conducted, that is (1) width profile analysis, (2)

curvature analysis and (3) an aggregated approach that combines width profile

analysis and curvature analysis. Accuracies of 37.49%, 87.14% and 89.95%

were respectively reported in classifying normal and dicentric chromosomes.

It is therefore reasonable to conclude that width profile analysis (in isolation)

for chromosome classification did not perform sufficiently well for the dataset

from iThemba iThemba LABS, and that the proposed novel protocol based on

curvature analysis proved to be much more robust and proficient. However,

the ulilisation of width profile information in conjunction with curvature

information, improved the accuracy of the results. When comparing the

classification results when curvature analysis (in isolation) and the aggregated

(combined) approach are respectively employed, it is worth noting that true

positive rates (TPRs) of 87.04% and 81.48% were reported. When considering

the fact that the employed dataset is extremely imbalanced, that is, the

ratio of dicentric to normal chromosomes is approximately 1:67, the relatively
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small difference in the performance of the proposed strategies my be deemed

irrelevant. The overall TPR is however deemed an important metric to consider

when comparing these two approaches.

The research provided useful insight into detecting and classifying

chromosomes within a metaphase image and unfolded new avenues for future

research. This is discussed in the final chapter.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis chromosome detection and classification systems were proposed. 

Firstly, a segmentation protocol which facilitates the automatic detection 

of a region of interest (ROI) that encloses normal chromosomes, dicentric 

chromosomes, acentric fragments and clusters of chromosomes was developed. 

The aforementioned segmentation protocol involves preprocessing techniques 

and a novel binarisation protocol, which is followed by the manual extraction of 

isolated normal and dicentric chromosomes. Preprocessing for image analysis 

was subsequently achieved by modifying each binary chromosome image 

through the application of morphological transformations in order to isolate, fill 

and smooth the chromosome in question. This was followed by the application 

of a discrete Radon transform (DRT), so as to determine the appropriate 

alignment for the purpose of achieving rotational invariance. Masking was 

applied to the ends of the chromatids for the purpose of closing the gaps 

between them. Edge graph extraction was employed in order to obtain the data 

points along the edges of objects. Finally two feature extraction protocols were 

proposed in order to determine the number of centromeres present for a given 

chromosome. This was achieved by determining the width profile and curvature 

associated with the chromosome. In order to determine the width profile, the 

chromosome is divided into upper and lower segments. Said segments were 

subsequently smoothed and subtracted from each other in order to determine 

the width profile. The number of prominent local minima was calculated in 

order to determine whether a chromosome has one or two centromeres. In
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order to determine the curvature of a chromosome boundary, the least squares

method provided a suitable technique for accurately approximating the first

and second derivatives. These derivatives were then used to determine the

curvature at any given point. In order to locate prominent valleys in the

boundary of the chromosome a suitable threshold is employed. The number of

located valleys is then used to determine whether the chromosome has one or

two centromeres.

In order to estimate the proficiency of the proposed system a ground

truth has been generated with the help of experts at iThemba LABS. The

proficiency of the novel strategy proposed to detect regions of interest during

the detection phase is validated by the detection of objects with a reasonable

accuracy when compared to the ground truth. During the phase in which

isolated chromosomes are classified as normal or dicentric, three experiments

are conducted, namely (1) width profile analysis, (2) curvature analysis, and

(3) an aggregated approach that combines width profile analysis and curvature

analysis. Width profile analysis (on its own) did not perform well on the

iThemba LABS dataset. However, the classification results for curvature

analysis (on its own), as well as the aggregated approach, are very promising.

The objectives mentioned in Section 1.2 have therefore been successfully

achieved.

7.2 Future work

The research conveyed in this thesis provided valuable insights into numerous

aspects relating to the detection and classification of chromosomes in a

metaphase image, but due to time constraints, certain avenues were not

pursued and should therefore be considered as future work:

1. The image segmentation protocol developed in this thesis relies on the
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manual categorisation of the set of individual ROIs into dirt, acentric

fragments, clusters of chromosomes and isolated chromosomes. An

investigation into the automated categorisation of the set of individual

ROIs into dirt, acentric fragments and clusters of chromosomes should

be conducted so as to render the classification system fully automatic.

2. An in-depth investigation into the separation of clusters of chromosomes,

in which the individual chromosomes reside in very close proximity to one

another, should be conducted.

3. An in-depth investigation into the automated straightening of bent

chromosomes should be conducted in order to improve the feature

extraction protocols proposed in this thesis.

4. The relative computational complexity of the strategies adopted in this

thesis should be reported on.

5. An investigation into the feasibility of machine learning-based approaches

to solving the problem at hand should also be conducted. This is however

subject to the availability of a very large set of slide images for the

purpose of training and validation.
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