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Tarebia granifera (Lamarck, 1822) (Gastropoda: Thiaridae) 
is a freshwater prosobranch gastropod commonly referred 
to as the ‘Quilted Melania’. Although originally from 
South-East Asia, it has become an invasive snail on at 
least three continents, including North and South America 
and Africa (Appleton et al. 2009). Tarebia granifera was first 
reported in South Africa in 1999, established in a concrete 
lined reservoir in Mandeni, northern KwaZulu-Natal 
(Appleton and Nadasan 2002). Presumably introduced 
via the aquarium trade (Madsen and Frandsen 1989; 
Appleton et al. 2009), it has since become widespread 
in the eastern half of South Africa, particularly in the 
provinces of KwaZulu-Natal and Mpumalanga (Appleton 
et al. 2009). Kruger National Park, South Africa’s flagship 
national park, has also seen recent invasions with spread 
of T. granifera increasing substantially between 2001 and 
2006 (Wolmarans and de Kock 2006). Although predomi-
nantly a freshwater snail, T. granifera has also established 
populations in several South African estuaries (Appleton 
et al. 2009; Miranda et al. 2011b), showing tolerance for 
wide ranges of both, salinity and temperature (Miranda et 
al. 2011b). According to the unified framework proposed 
by Blackburn et al. (2011), T. granifera can be classified 
as fully invasive in South Africa (category E), ‘with individ-
uals dispersing, surviving and reproducing at multiple sites 
across a greater or lesser spectrum of habitats and extent 
of occurrence’, because it has spread over approximately 
five degrees of latitude (25 °S–30 °S) since its discovery in 
1999 (Appleton et al. 2009). 

The spread of T. granifera in South Africa has been 
rapid and both passive (e.g. dispersal through aquatic 
weeds attached to boats or trailers, or via water transfers) 
and active (e.g. via attachment to feathers or droppings 
of waterfowl) pathways have been proposed for its swift 
dispersal (e.g. Gittenberger et al. 2006; Appleton et al. 
2009; van Leeuwen et al. 2012; Reynolds et al. 2015). Its 
broad physiological tolerances and reproductive strategies, 
including parthenogenesis and ovoviviparity, have resulted 
in population explosions of the T. granifera in South African 
ecosystems (Miranda et al. 2011b). Reported population 
densities of >1 000 individuals/m2 makes this invader the 
dominant component of local invertebrate macrofauna in 
many localities (Miranda et al. 2011b).

Tarebia granifera is a microphagous feeder and despite 
minimal evidence for direct food resource competition 
with indigenous benthic macroinvertebrates (Miranda 
and Perissinotto 2012; Hill et al. 2015), high densities 
may indirectly limit energy transfers within a food web 
(Moslemi et al. 2012; Hill et al. 2015), and in the case of 
nutrient limitation, may also result in reduced growth rates 
for coexisting macroinvertebrates (Connor et al. 2008; 
Riley et al. 2008; Riley and Dybdahl 2015). In addition, 
there is some evidence to suggest that the establishment 
of T. granifera populations may be followed by the extirpa-
tion of indigenous snails (Chaniotis et al. 1980; Prentice 
1983; Samadi et al. 1997; Pointier et al. 1998; López-López 
et al. 2009). Comparatively, the effects of T. granifera 
invasions on aquatic ecosystem biodiversity have been 
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The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it 
has become widespread across the country, with some evidence to suggest that it reduces benthic macroinver-
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that it should be controlled where possible and prevented from invading other systems in the region. 

Keywords: distribution, invasion, Mollusca, physicochemical drivers, Quilted Melania

Introduction



Jones, Hill, Coetzee, Avery, Weyl and Hill76

difficult to quantify, but in recent years, several studies have 
suggested that the establishment of T. granifera populations 
often (however, not always; see Miranda et al. 2010) result 
in decreased benthic macroinvertebrate biodiversity e.g. 
Quintana et al. 2000; Pointier 2001 (as cited in Facon and 
David 2006); Perissinotto et al. 2014.

The Nseleni River in KwaZulu-Natal, South Africa, is 
a highly invaded freshwater ecosystem (Appleton et al. 
2009; Jones et al. 2013; Hill et al. 2015), which falls within 
the protected Nseleni Nature Reserve and within which 
T. granifera has been established for more than a decade. 
Densities in the Nseleni River of 20 764 ± 13 828 individ-
uals/m2 in 2006 (Appleton et al. 2009) are an order of 
magnitude higher than found elsewhere in South Africa. 
Differences in density are attributed to a preference for 
slow moving water, with soft mud devoid of rooted vegeta-
tion, in comparison with sandy mud and sparsely vegetated 
shores, exposed to wave action (Appleton et al. 2009). 
Understanding patterns in T. granifera abundance and 
its potential impacts on benthic biodiversity may inform 
biodiversity conservation and management plans. The aims 
of the current study were to quantify the current relative 
abundance of T. granifera in three different regions of 
the Nseleni River to identify the primary abiotic drivers of 
abundance patterns. 

Material and methods

Records of relative abundance of T. granifera were 
taken on three separate sections of the Nseleni River; 
the Nseleni River (Figure 1; sites 1–3), the Mposa River 
tributary (Figure 1; sites 4–6) and the river after the conflu-
ence of the Mposa and Nseleni rivers, just above the 
inflow into Lake Nsezi (Figure 1; sites 7–9). Jones et al. 
(2013) provides detailed river section descriptions. For 
each of the three sites in each river section, three depths 
were sampled; shallow (~0.5–2.4 m), (~2.5–3.4 m) 
and deep (~3.5–4.0 m). Relative abundance of benthic 
macroinvertebrates was quantified using colonization rates 
of artificial substrates, as described by Thirion (2000), 
Midgley et al. (2006) and Coetzee et al. (2014). Briefly, 
artificial substrates were constructed using mesh bags 
(20 cm wide × 50 cm long) of coarse shade cloth (12 mm 
mesh netting to allow for recruitment of macroinverte-
brates) and filled with 2.0 kg of small pebbles (4.0–8.0 cm 
diameter). Bags were closed using cable ties and attached 
to a 2.4 mm nylon string running from the riverbank 
(shallow) to the centre of the river (deep). Substrates 
were then deployed for six weeks, one substrate for 
each site × depth combination, to allow complete coloni-
zation by invertebrates (see Thirion 2000; Midgley et al. 
2006; Coetzee et al. 2014). Upon sample collection, each 
substrate bag was carefully removed from the water and 
placed separately into a large, individually labelled, plastic 
bag. Upon removal, each substrate was immediately 
replaced by a new artificial substrate bag at each site. This 
was repeated every six weeks for ten sampling events 
from March 2011 to March 2012.

After collection, the contents of each bag were emptied 
into a separate sorting tray and both contents (pebbles) 
and bag were washed with clean water to separate out 

macroinvertebrates. Each pebble was individually cleaned with 
fresh water and a small paintbrush before removal from the 
sorting tray. The contents of the sorting tray were then poured 
through a sheet of mosquito gauze (1.0 mm mesh size) and 
all macroinvertebrates were removed with forceps and placed 
into 20% formalin for later identification and enumeration.

Physico-chemical data were collected quarterly during 
the sampling period (Mar 2011, Jul 2011, Oct 2011 and 
Feb 2012); pH, water temperature (°C), salinity, total 
dissolved solids (TDS; ppm) and conductivity (µS) were 
collected using a Hanna H1 9828 multiparameter probe; 
dissolved oxygen (DO; mg l−1) was collected using a Sper 
Scientific DO Pen (850045) and NO3

− and PO4
3− were 

analysed at Integral Laboratories (Pty) Ltd), Empangeni, 
South Africa. Abundance of T. granifera was modelled 
for these four sampling occasions with corresponding 
physico-chemical data. 

Generalized Linear Models (GLMs) were used to 
investigate the drivers of abundance of T. granifera. 
Models were created using factors for river section 
(Nseleni, Mposa, Confluence), depth (shallow, middle, 
deep) and physico-chemical variables (pH, DO, water 
temperature, salinity and conductivity). Longitudinal 
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South Africa, reproduced from Hill et al. 2015
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effects or repeated measures during the four sampling 
dates with physico-chemical factors, and by including all 
sampling dates, were considered using a mixed-model 
approach. Site and/or river were included as a random 
intercept effect and/or river section as a random slope 
effect. Physico-chemical factors were first tested for 
collinearity and where highly correlated factors existed, 
the factor with the best range of values in relation to 
the response, or the factor with greater biologically 
importance, was chosen. Including highly correlated 
factors within models inflates standard errors of coeffi-
cients causing issue with model fit and interpretation. 
GLMs were diagnosed for fit using diagnostic plots (e.g. 
Q-Q and residual plots). Interactions between model 
terms, e.g. depth and physico-chemical properties, were 
not considered, because they are nonsensical. Models 
were selected based on analysis of dispersion (where a 
value close to 1 validated model fit) and by the Akaike 
Information Criterion (AIC). Nested models were tested 
against each other using likelihood ratio tests (Zeileis and 
Hothorn 2002) and non-nested models using the Vuong 
tests (Vuong 1989). 

Initially models using the Poisson distribution were 
created, because count data follow a Poisson distribution. 
However, because counts contained many zeros, they 
suffered from overdispersion (dispersion statistic >1.00), 
which is more zeros than expected for a Poisson/negative 
binomial distribution i.e. the variance was greater than the 
mean. Ultimately, zero-inflated negative binomial (ZINB) 

models showed favourable dispersions indicating a better 
model fit (Zurr et al. 2013). ZINB models have two parts, 
the ‘zero’ part that models the presence of ‘true’ zeros 
using a binomial model with logit link and a ‘count’ part that 
models the response, in this case, abundance (counts) of 
T. granifera using a log link. Model coefficient differences 
with a probability value of p < 0.01 were considered signifi-
cant, because p-values are estimates only (Zurr et al. 2013) 
and comparisons among model coefficients should be done 
conservatively (Colquhoun 2014). Similarly, models were 
considered statistically different using the same criterion. 
Group comparisons (e.g. shallow vs deep) and compari-
sons of model estimates to observed means were done 
using SE. Comparisons with overlapping SE are consid-
ered not statistically significant. All modelling analyses were 
completed in R version 3.2.2 (R Core Team 2015). 

Results

Snail abundance was greatest at shallow depths, with 
shallow > middle > deep for all river sections (Figure 2, 
Table 1). Overall, abundance of T. granifera was highest 
in the confluence section and lowest in the Mposa River 
section; with an overall range in abundance of 0–694 
individuals (Figure 2, Table 1). Tarebia granifera was 
found at >60% of all site-depth combinations over the 
12-month period on all rivers, except for middle and deep 
depths on the Mposa River section. Here, T. granifera 
individuals were rare, recorded on five shallow and three 
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Figure 2: Mean abundance of Tarebia granifera (number of individuals ± SD) over the 13 month sampling period, at three depths (shallow, 
middle and deep) on three sections of the Nseleni River System (Nseleni, Mposa and the Confluence).
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middle depths, but never at deep depth. In addition, the 
majority of individuals were counted in February and 
March 2012, when it appears that the population generally 
increased (Figure 1).

Salinity, TDS and conductivity were all highly correlated 
(correlation coefficients all ≥0.98). Conductivity provided 
the best range of values and the most relevant physico-
chemical measure and was chosen to represent this suite 
of physico-chemical properties. Temperature and pH were 
also highly negatively correlated (−0.805, p < 0.001); 
however, because both were considered biologically 
important, initial (full) models were created with each. The 
full model that included temperature was better than the 
one with pH (p < 0.001), therefore, temperature was used in 
subsequent models. In addition, in any model that included 
pH, pH was never a significant factor.

Longitudinal mixed models with all sampling dates were 
restricted to factors of river, depth and site. The best model 
included river and site as random intercepts. The random 
effect of site (SD of intercept = 0.67) was about three times 
less variable than river sections (SD of intercept = 1.99). 
The model containing both random factors significantly 
improved the model over one with just river (site p = 0.048) 
or just site (river p = 0.005). In addition, a significant 
increase in abundance was observed during the year of 
sampling (p < 0.001; Figure 2). Variability in river section 
was primarily caused by rare Mposa counts (Figure 2). 
Increases in abundance are sporadically noted yet might be 
seasonal (Figure 2). Over the 12-month sampling period, 

T. granifera was observed on other occasions and at all 
depths (Figure 2), but these values were not available for 
physico-chemical modelling, because of missing variables.

Tarebia granifera abundance declined with water 
depth. This trend was best described with a model that 
included river, depth, conductivity and temperature in the 
count part of the model; zeros were best described with 
river, depth and temperature. This model had a disper-
sion of 1.04 indicating that the variance was only slightly 
greater than the mean. Of the 12 samples per depth for 
the four dates included in the model, Mposa had only one 
T. granifera count greater than zero at one depth (shallow) 
resulting in a standard deviation greater than the mean 
(Figure 3; note the elongated lower error bar in Mposa 
that crosses ‘zero’ on the log scale). Model predicted 

River section
Tarebia granifera abundance

Shallow Middle Deep
Nseleni 90 ± 125

(0–391)
18 ± 39
(0–169)

2 ± 5
(0–23)

Mposa 4 ± 13
(0–68)

1 ± 3
(0–15)

0 ± 0
(0–0)

Confluence 155 ± 165
(0–694)

28 ± 41
(0–173)

5 ± 9
(0–31)

Table 1: Mean abundance (number of individuals ± SD; range) of 
the invasive snail Tarebia granifera pooled over sampling events 
and sites (3 sites × 10 months; n = 30) at shallow (~0.5–2.4 m), 
middle (~2.5–3.4 m) and deep (~3.5–4.0 m) depths.
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Figure 3: Observed vs model predicted abundances (counts) of Tarebia granifera, driven predominantly by conductivity and water 
temperature. Boxplots are of observed data overlaid with both observed means (black dots ± SE) and predicted means (grey dots ± SE).
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values were in general agreement with observed mean 
and median counts, except for the Mposa River section 
(Figure 3). In the Mposa section, the predicted abundance 
for middle depth waters was greater than observed, but 
in shallow waters, the predicted abundance was lower 
than observed. The latter is a result of only one observa-
tion in the Mposa section in shallow waters within the 
four sampling dates used in modelling. Consequently, in 
the case of Mposa, predicted abundances are derived 
from estimates considering all river sections; that is, the 
overall model estimates regardless of river section. It was 
concluded sampling methods (e.g. adding habitat bags) 
and time between repeated site sampling (3 or 4 months) 
for the four-date model likely reduces autocorrelation 
effects. Low variability associated with sites in comparison 
to rivers and general agreement between observed and 
predicted values, increase confidence in model outcomes. 
The reduced variability in predicted values is a result of 
exclusion of a portion of zero values from the zero-inflated 
modelling method.

Discussion

The abundance data demonstrate that T. granifera is 
firmly established throughout the Nseleni River system, 
with an overall preference for shallow waters and an 
apparent seasonal pattern of abundance. Distributions 
of T. granifera were patchy, a common phenomenon 
with freshwater benthic macroinvertebrates (Covich et 
al. 1999), which was consistent with T. granifera distribu-
tion patterns in other South African localities (Appleton 
et al. 2009; Miranda et al. 2010, 2011b; Miranda and 
Perissinotto 2014b). The seasonal abundance pattern 
and sporadic pulses in abundance are likely explained 
in part by the continuous boom and bust population 
dynamics reported for T. granifera (Perissinotto et al. 
2013) and its capacity for reproduction, embryo develop-
ment and live births throughout the year (Kun-Jun 2004; 
Miranda et al. 2011b). Overall, T. granifera abundance 
was highest in the confluence section of the Nseleni River, 
but surprisingly, was much lower in the Mposa River 
section. Although not specifically investigated, this might 
be related to periodic inputs of sewage from a wastewater 
facility situated on the banks of the Mposa River (Jones 
2001). It is possible that T. granifera are sensitive to 
high sewage loads and prefer to establish in areas less 
impacted by wastewater pollution.

The highest abundances and densities were consist-
ently recorded from shallow (~0.50–2.40 m water 
depth) sites, supporting recent findings that T. granifera 
are numerically dominant in shallow habitats (<2.6 m 
depth) in South Africa (Miranda et al. 2011b; Miranda 
and Perissinotto 2014a; Perissinotto et al. 2014) and 
elsewhere (Abbott 1952; Lachner et al. 1970; Chaniotis 
et al. 1980). Models that best described the abundance 
of T. granifera in the Nseleni River system were driven 
by conductivity and water temperature. Comparatively, 
Miranda et al. (2011b) suggest that T. granifera popula-
tions are not strongly affected by any one physico-
chemical factor, rather they demonstrate increased 
abundance in response to heightened environmental 

stress (e.g. salinity and/or desiccation) (Miranda et al. 
2011a). Aquatic shelled molluscs are often particularly 
sensitive to low pH values, which may impair Ca2+ uptake 
and deposition, resulting in shell erosion (Wilbur 1964; 
Økland 1983; Raddum et al. 1988; Ewald et al. 2009) 
and there is some evidence to suggest that T. granifera 
is sensitive to lower pH (Abbot 1952; Yong et al. 1987; 
Miranda et al. 2011b; Miranda and Perissonotto 2014b). 
However, pH values in the current study were highly 
negatively correlated with water temperature and were 
not a significant factor when replacing temperature 
in models. Models clearly showed that water tempera-
ture was a driving factor describing the abundance 
of T. granifera. The association between T. granifera 
abundance and conductivity may indicate that population 
numbers are linked to the availability of detritus, because 
conductivity can be positively related to increases in 
detrital inputs and its subsequent degradation (Carvalho 
et al. 2005). Appleton et al. (2009) described a similar 
scenario suggesting the variability in T. granifera popula-
tion sizes is linked to habitat heterogeneity and food 
availability associated with allochthonous input (e.g. 
leaf litter). Routinely described as a generalist feeder, 
T. granifera can utilise large amounts of microphytoben-
thos in addition to detritus (Miranda et al. 2011; Miranda 
and Perissinotto 2012) and Hill et al. (2015) reported that 
in the Nseleni River, a large proportion of T. granifera 
diet comprises degrading leaf litter primarily from the 
invasive Eichhornia crassipes (Mart.) (Solms-Laubach) 
(1883) and Azolla filiculoides (Lamarck 1783), but also 
from the indigenous mangrove Barringtonia racemosa 
(L.) Spreng. (1826). 

The Nseleni River is a heavily disturbed ecosystem, with 
flow modifications, sewage inputs and recent establish-
ments of multiple invasive species (Jones et al. 2013; Hill 
et al. 2015). Tarebia granifera, with large tolerance ranges 
for salinity and temperature, high fecundity and a lack 
of natural predators, may represent a highly opportun-
istic and resilient species, which can flourish in highly 
disturbed environments. 
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