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ABSTRACT

• Habitat fragmentation and small population size can lead to genetic erosion in threat-
ened plant populations. Classical theory implies that dioecy can counteract genetic
erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate
outcrossing. However, in small populations, sex ratios may be strongly male- or
female-biased, leading to substantial reductions in effective population size. This may
theoretically result in a unimodal relationship between sex ratios and genetic diversity;
yet, empirical studies on this relationship are scarce.

• Using AFLP markers, we studied genetic diversity, structure and differentiation in 14
highly fragmented Antennaria dioica populations from the Central European low-
lands. Our analyses focused on the relationship between sex ratio, population size and
genetic diversity.

• Although most populations were small (mean: 35.5 patches), genetic diversity was
moderately high. We found evidence for isolation-by-distance, but overall differentia-
tion of the populations was rather weak. Females dominated 11 populations, which
overall resulted in a slightly female-biased sex ratio (61.5%). There was no significant
relationship between population size and genetic diversity. The proportion of females
was not unimodally but positively linearly related to genetic diversity.

• The high genetic diversity and low genetic differentiation suggest that A. dioica has
been widely distributed in the Central European lowlands in the past, while fragmen-
tation occurred only in the last decades. Sex ratio has more immediate consequences
on genetic diversity than population size. An increasing proportion of females can
increase genetic diversity in dioecious plants, probably due to a higher amount of sex-
ual reproduction.

INTRODUCTION

Habitat fragmentation and small population size are known to
reduce genetic diversity in plant populations and to increase
genetic differentiation among populations (i.e. genetic erosion;
Young et al. 1996). Consequently, many endangered species
face genetic drift and increased levels of inbreeding (e.g. Hei-
nicke et al. 2016). This is alarming, as a loss of genetic diversity
is often accompanied by reduced reproductive fitness (reviewed
in Leimu et al. 2006). However, genetic erosion can be consid-
erably decelerated in plant species that exhibit prolonged clonal
growth and/or increased longevity, particularly if the period of
habitat fragmentation is relatively short compared to the
species0 life span (Mona et al. 2014). Furthermore, the mating

system has a dominant impact on the strength of genetic ero-
sion. More specifically, in outcrossing species, habitat fragmen-
tation and decreasing population size may result in mate
limitation (Thrall et al. 2014), and thus outcrossing species
show higher susceptibility to genetic erosion than self-compati-
ble species (Heinken & Weber 2013).
Dioecy (i.e. the occurrence of distinct male and female indi-

viduals) is a comparatively rare mating system, representing
only 5–6% of all angiosperms (Renner 2014). The separation of
sexes is a mechanism that ensures obligate outcrossing, which
may promote high rates of gene flow and reduce the frequency
of inbreeding due to the prevention of self-pollination (Allen &
Hiscock 2008). As a consequence, theory predicts that dioecy
should maintain high levels of genetic diversity and limit
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genetic differentiation (Hamrick & Godt 1996; Barrett et al.
2010). However, among the few studies on genetic erosion in
dioecious plant species, Lauterbach et al. (2012; for Silene
otites) and Vandepitte et al. (2009; for Mercurialis perennis)
revealed that dioecy does not inevitably avoid genetic erosion
in fragmented populations. In fact, unbalanced sex ratios may
critically decrease the effective size of populations, which may
override the benefits of an obligate outcrossing mating system
(Dubreuil et al. 2010).
In natural populations of dioecious plants, sex ratios often

depart from the expected 1:1 ratio. Indeed, Barrett et al. (2010)
found that out of 126 dioecious plant species, 70% were biased
towards the male or female sex. The reasons for male- or
female-biased sex ratios are likely related to different resource
allocation patterns for sexual reproduction in males and
females. While males produce only pollen, females produce
ovaries, seeds and fruits. As such, females often spend more
resources on successful reproduction than males (Obeso 2002).
This can be related to the evolution of sex-specific life-history
traits, and/or sex-specific stress susceptibility, resulting in dis-
tinct adaptation strategies of males and females to their natural
habitat (Esp�ırito-Santo et al. 2003; Iszkuło et al. 2008; Munn�e-
Bosch 2015). Consequently, biased sex ratios may occur as a
result of distinct growth rates and mortality of males and
females in specific habitats (Varga & Kyt€oviita 2011). In addi-
tion, demographic stochasticity, which is particularly pro-
nounced in small and isolated populations, may randomly alter
sex ratios (Vandepitte et al. 2009). Thus, populations that con-
sist of only a few individuals show a high probability that either
males or females are overrepresented, which may result in
reduced sexual reproduction due to mate limitation or, ulti-
mately, in the total loss of sexual reproduction in populations
comprising only one sex (Rosche et al. 2014).
Yet, to what extent sex ratios can influence genetic diversity

in plant populations remains obscure. One might expect that
species-specific optimal sex ratios should result in frequent sex-
ual reproduction. As such, genetic diversity should show a uni-
modal relationship to sex ratio, with the highest genetic
diversity in populations possessing optimal sex ratios (i.e. sex
ratio resulting in highest reproductive success), and declining
genetic diversity towards both extremes of female- and male-
biased sex ratios. However, the only two empirical studies that
related biased sex ratios to population size and genetic diversity
in dioecious species revealed contrasting results. Hilfiker et al.
(2004) found female-biased sex ratios in small, and genetically
depleted populations of Taxus baccata. Vandepitte et al. (2009)
detected a positive relationship between the proportion of
females and genetic diversity in M. perennis and related this
finding to environmental conditions favouring reproductive
success. Overall, a thorough understanding of the interplay of
fragmentation, small population size and sex ratio, on the one
hand, and genetic diversity, on the other, is still lacking.
Here, we studied sex ratio and genetic diversity in 14 Central

European lowland populations of Antennaria dioica (L.) P.
Gaertn. (Asteraceae), a dioecious species that shows slightly
female-biased sex ratios in natural populations (Eriksson 1997;
Varga & Kyt€oviita 2011). In our study region, both size and
connectivity of A. dioica populations have severely declined
over recent decades, mainly due to land-use change and nutri-
ent deposition (Rosche et al. 2014 and references therein). In
dioecious plants, such small and fragmented populations may

face an increased extinction risk, where demographic stochas-
ticity results in deviations from the optimal sex ratio. Using
this study system, we tested the following hypotheses: (i)
genetic diversity is generally low and genetic differentiation is
high in Central European populations of A. dioica due to
effects of habitat fragmentation and decreasing population size;
and (ii) genetic diversity shows a unimodal relationship with
sex ratio, since both female- or male-biased sex ratios result in
mate limitation.

MATERIAL AND METHODS

Study species

Antennaria dioica is a dioecious and diploid (2n = 2x = 28;
Bayer 1984) chamaephyte. The species exhibits clonal growth
through surface-creeping runners and occurs in dense patches
that are often, but not inevitably, monoclonal (Rosche et al.
2014). Inflorescences are sexually dimorphic: female anthodia
and involucral bracts are long and narrow, whereas male
anthodia and involucral bracts are broad and short. Flowers
are effectively pollinated by dipterans, coleopterans, lepidopter-
ans and hymenopterans (€Oster & Eriksson 2007). Wind-dis-
persed achenes are light (0.05 mg; €Oster & Eriksson 2007) and
build a transient seed bank (up to 3 years; Sch€utz 1989). To
our knowledge, no information is available on how many years
a distinct clone of A. dioica can live in natural habitats. How-
ever, in view of our first hypothesis, it is pertinent to note that
increased longevity may substantially increase the resistance of
species to the detrimental effects of fragmentation, such as
demographic (Rosche et al. 2017) and environmental fluctua-
tions (Rosche et al. 2018a).

The geographic distribution of A. dioica stretches over an
extensive longitudinal gradient from Western Europe to East-
ern Russia (Tutin et al. 1976). The species is mainly distributed
in subalpine and mountainous zones, reaching altitudes of up
to 3000 m a.s.l., but can be occasionally found in lowlands, e.g.
in Central Europe. In the latter habitats, it occurs in a wide
variety of semi-natural and natural sites, including dry calcare-
ous or neutral-acidic grasslands, heathlands, and semi-open
oak and pine woodlands, which have shallow and nutrient-
poor soils (Ellenberg et al. 2001). Although such open habitats
were widespread in Central Europe in recent history, their
extent has declined considerably due to abandonment of tradi-
tional land use forms (Korneck et al. 1996).

Sampling scheme

For a previous study (Rosche et al. 2014), we sampled a total of
32 populations in central, northern and eastern Germany, as
well as in the western Czech Republic, which covered a large
proportion of all known stands in this region. In this study, we
specifically focused on the clonal structure of the 32 A. dioica
populations and found that 18 populations consisted of a very
low number of genets (i.e. monoclonal up to five genets).
Moreover, the majority of these very small populations had
either exclusively male (n = 4) or exclusively female (n = 9)
patches. For estimating genetic diversity and differentiation in
the present study, we did not consider these 18 very small pop-
ulations, because the small number of genets does not allow for
any meaningful assessment of genetic diversity and among-
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population genetic structure (Bonin et al. 2007). Here, we
rather focus on the 14 largest populations, all of which con-
tained both sexes and had at least nine genets (Table 1). These
14 populations were separated by at least 3 km (maximum
539 km). In each population, we collected fresh leaves from ten
to 14 different A. dioica rosettes, which were equally distributed
over the entire population (see Rosche et al. 2014 for further
details). Leaf material was stored on silica gel until further use.

Population size was estimated through (1) counting the
number of distinct patches (i.e. ‘number of patches’), and (2)
calculating the total area of patches in the entire population
(i.e. ‘cumulative patch size’). Patches were defined as a spatially
coherent group of ramets separated by at least 20 cm from
another group of ramets. We determined patch area by analys-
ing photographs of individual patches based on a size standard
in ArcMap 8.1 (ESRI, Redlands, CA, USA) and visually esti-
mated the percentage coverage of A. dioica rosettes within each
individual patch from the photographs. Subsequently, we cal-
culated the size of each individual patch as patch area 9 per-
centage cover of A. dioica rosettes/100. Finally, we summed the
sizes of all individual patches within each population to obtain
an estimate for the cumulative patch size for the entire popula-
tion. In populations that consisted of more than 20 patches, we
only determined the patch size of 20 haphazardly chosen
patches and multiplied the mean patch size with the total num-
ber of patches to infer the cumulative patch size of the consid-
ered population.

To estimate sex ratio, we counted the number of male,
female and non-flowering patches in each population. Patches
encompassing both sexes were scored for both genders. Based
on the number of flowering patches, sex ratio was calculated as

the proportion of females. We decided to use an estimate based
on the number of patches rather than on the number of inflo-
rescences per population because (1) most A. dioica patches are
monoclonal (Rosche et al. 2014) and (2) their inflorescence
numbers underlie strong annual fluctuations.

Analysis with AFLP

We applied the same DNA extraction and AFLP procedure as
described in Stein et al. (2014), except for the selection of
primers. For the selective amplification, ten different primer
combinations were tested on 15 samples for their level of
variability, resulting in four primer combinations chosen to
fingerprint all samples: 50-EcoRI+AAG*FAM-30/50-MseI+CTT-
30, 50-EcoRI+AGC*HEX-30/50-MseI+CTT-30, 50-EcoRI+AAG*
FAM-30/50-MseI+CAC-30 and 50-EcoRI+AGC*HEX-30/50-
MseI+CAC-30. Polymorphic DNA bands were scored as present
(1) or absent (0) using the automatic peak scoring and selec-
tion function of the MegaBace Fragment Profiler software 1.2
(Amersham Biosciences, Freiburg, Germany) and corrected
manually. Monomorphic peaks were deleted from the output
table. Samples that did not produce electropherogram patterns
of sufficient quality (e.g. smeared and weak bands) were omit-
ted from further analyses. Out of all 135 samples that revealed
clear electropherograms, 28 randomly chosen samples (21%)
were run repeatedly under the conditions outlined above to
identify non-reliable loci. In particular, out of 454 scored AFLP
loci, 168 were polymorphic and showed reliable patterns when
comparing among replicates. Our error rate of the 168 loci was
2.8%, which is in line with other AFLP studies (Hansen et al.
1999).

Table 1. Overview of studied Antennaria dioica populations. Geographic coordinates in latitude °N and longitude °E. No. patches: population size estimated

as number of distinct patches, Cum. size (m2): population size estimated as cumulative patch size in m2, N: number of genets included in the analyses, Br(9):

Band richness rarefied to the minimum sample size of nine genets per population, He: expected heterozygosity, PPB: proportion of polymorphic bands, ♀:
number of female patches, ♂ number of male patches, ♂/♀: number of patches including both sexes, non-flowering: number of patches that did not flower.

Population Locality No. patches

Cum.

size (m2) °E °N

Sex

ratio ♀ ♂ ♂/♀
Non-

flowering N Br(9) He PPB

BB1 Brandenburg, Mallnow 12 2.14 52°29’21 14°26’46 0.73 7 2 1 2 9 1.462 0.198 58.9

BB2 Brandenburg,

B€uhlow links

176 60.72 51°37’35 14°21’39 0.60 65 40 10 61 10 1.540 0.199 57.7

BB3 Brandenburg,

B€uhlow rechts

47 12.68 51°37’42 14°21’15 0.72 29 9 4 5 13 1.511 0.212 57.7

SA1 Saxony-Anhalt, D€oblitz 48 10.60 51°33’4 11°50’36 0.74 27 9 1 11 10 1.525 0.212 61.3

SA2 Saxony-Anhalt,

Lerchenh€ugel

8 2.06 51°32’53 11°51’57 0.71 4 1 1 1 10 1.546 0.217 60.7

SH1 Schleswig-Holstein,

L€owenstedt

8 2.48 54°37’33 9°08’52 0.75 5 1 1 1 9 1.550 0.214 63.7

SH2 Schleswig-Holstein,

Nordoer Heide

7 0.86 53°53’11 9°30’26 0.50 1 1 0 5 10 1.462 0.201 56.5

SY1 Saxony, Z€oblitz 3 6.20 50°39’13 13°15’59 0.33 0 1 1 1 9 1.379 0.177 47.0

TH1 Thuringia, R€udigsdorf 39 19.55 51°32’05 10°48’37 0.33 10 24 3 2 10 1.530 0.203 64.3

TH2 Thuringia, Pfaffenberg 30 18.08 51°31’30 10°50’57 0.67 18 8 2 2 10 1.579 0.218 67.3

TH3 Thuringia,

Goldener Mann

36 5.08 51°25’22 11°04’21 0.57 12 9 0 15 9 1.509 0.193 57.7

TH4 Thuringia, Engerda 7 2.01 50°47’56 11°24’19 0.80 4 1 0 2 9 1.550 0.216 60.7

TH5 Thuringia, Martinsroda 64 34.36 50°47’47 11°29’29 0.53 22 18 20 4 11 1.480 0.181 59.5

UR1 �Usteck�y Region, Mêdinêc 12 6.76 50°25’28 13°06’42 0.64 6 3 1 2 10 1.498 0.201 67.3
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Clone identification

To identify clones, we conducted pair-wise comparisons of all
samples using the AFLPdat package (Ehrich 2006) in R 3.2.3
(R Development Core Team 2015). To this end, the threshold
of pair-wise band differences between two genetically differing
individuals (i.e. two different genets) was set visually with the
help of a histogram showing the pair-wise differences of bands
(see Stein et al. 2014). In addition, we calculated the expected
band difference as BDexp = number of polymorphic loci 9
error ratio (see Douhovnikoff & Dodd 2003). Both approaches
revealed a threshold of maximum five band differences between
ramets of the same genet (i.e. clone). For further calculations in
the present study, i.e. estimating genetic diversity and differen-
tiation, we included only one sample per genet in our analyses.

Genetic diversity

The proportion of polymorphic bands (PPB) and Nei’s expected
heterozygosity (He) were calculated in AFLPsurv 1.0 (Vekemans
et al. 2002) assuming Hardy-Weinberg equilibrium and applying
a Bayesian method with non-uniform prior distributions of allele
frequencies (Zhivotovsky 1999). Due to the dominant character
of AFLPs, we further performed another band-based approach
for estimating genetic diversity (Bonin et al. 2007): Band richness
(Br), i.e. the mean number of phenotypes expected per locus, as
calculated with AFLPdiv 1.1 (Coart et al. 2005). We rarefied this
estimate to a minimum sample size of nine individuals per pop-
ulation [Br(9)], which allowed us to correct for different sample
sizes (see also Al-Gharaibeh et al. 2016).

Genetic differentiation

To explore relationships among populations, we calculated pair-
wise Nei’s genetic distances in Arlequin 3.5.1.2 (Excoffier & Lis-
cher 2010) and used them to generate a Neighbour-Net with the
software SplitsTree 4.14.2 (Huson & Bryant 2006). Furthermore,
we performed an analysis of molecular variance (AMOVA) in Arle-
quin to investigate the distribution of genetic variation within
and among populations. We extracted Φ statistics (analogues of
F statistics) and tested significance based on 999 permutations.
In addition, we applied a Mantel test (Mantel 1967) using the
vegan package 2.3-2 (Oksanen et al. 2015) to test for a correla-
tion between genetic (pair-wise FST/(1 – FST) values) and geo-
graphic (loge-transformed) distances among populations.

Statistical analyses

To test for linear relationships between response variables
describing genetic diversity (i.e. He, Br(9) and PBB) and the
predictors sex ratio and population size, we fitted multiple lin-
ear regression models in R. Here, we fitted two different mod-
els for each response: one with cumulative patch size as a
measure of population size, and one with number of patches as
a measure of population size. To test for unimodal relation-
ships between sex ratio and genetic diversity, we additionally
fitted multiple linear regression models that included the
genetic diversity estimates (He, Br(9) and PPB) as response
variables and population size (number of patches; linear rela-
tionship) as well as both the linear and the quadratic terms for
sex ratio as predictors. All multiple linear regression models

were simplified by step-wise backward selection to obtain mini-
mum adequate models. Here, we removed fixed effects terms
with P > 0.05 based on F tests. Any transformation decisions
were based on visual inspection in R (i.e. graphical assessment
of normality of errors and homogeneity of variance; see Craw-
ley 2014) and were as follows: cumulative patch size, number
of patches, He, and Br(9) were loge-transformed, sex ratio was
logit-transformed, and PPB remained untransformed. To test
whether sex ratio is correlated with one of the two measures of
population size, we applied Pearson correlation tests using the
same transformations of variables as described above.

RESULTS

Genetic diversity and genetic differentiation

Genetic diversity within populations was moderately high:
expected heterozygosity (He) varied between 0.18–0.22
(mean = 0.2; Table 1), percentage of polymorphic bands (PPB)
between 47.0–67.3% (mean = 60.2%) and band richness
[Br(9)] between 1.38–1.58 (mean = 1.51). The Neighbor-Net
network did not reveal any clear partitioning among the 14
populations (Fig. 1). A Bayesian STRUCTURE analysis and a
principal coordinates analysis also showed no obvious genetic
structure among the populations (data not shown). Accord-
ingly, the AMOVA revealed that the molecular variance was
mainly within (89%) and not among (11%) populations. As
such, the overall ΦST value of 0.11 demonstrated moderate
genetic differentiation. The pair-wise FST values varied between
0.008 (89 km; populations SA2 and TH4) and 0.143 (220 km;
populations BB1 and SY1). We found a weak but significant
correlation between genetic and geographic distance among
populations (Mantel statistics: rM = 0.25, P < 0.05; Fig. 2).

Population size and sex ratio

The number of patches varied between three and 176, where
cumulative patch size varied between 0.9 and 60.7 m²
(Table 1). Both variables were highly positively correlated
(r = 0.81, P < 0.001). The percentage of flowering patches
within each population varied between 29% and 100% (mean
77%). Females were dominant in 11 out of the 14 populations.
Sex ratio varied between 32.5% and 80.0% females, with a
mean of 61.5%. There was no correlation between sex ratio
and population size, neither for the number of patches and sex
ratio (r = �0.01, P > 0.05) nor for cumulative patch size and
sex ratio (r = �0.30, P > 0.05).

Influence of population size on genetic diversity

There was no linear relationship between He and number of
patches or cumulative patch size (F2,11 = 0.01, P > 0.05 and
F2,11 = 0.03, P > 0.05), between PPB and number of patches or
cumulative patch size (F2,11 = 0.87, P > 0.05 and F1,12 = 0.78,
P > 0.05) and between Br(9) and number of patches or cumula-
tive patch size (F2,11 = 3.72, P > 0.05 and F2,11 = 2.36, P > 0.05).

Influence of sex ratio on genetic diversity

The percentage of females was linearly positively related to He

(F1,12 = 11.36, P < 0.01; Fig. 3a) and to Br(9) (F1,12 = 5.41,
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P < 0.05; Fig. 3b), but not to PPB (F1,12 = 2.22, P > 0.05).
There was no unimodal relationship between sex ratio and any
of the genetic diversity measures (He: F2,11 = 0.65, P > 0.05;
Br(9): F3,10 = 0.46, P > 0.05; PPB: F3,10 = 0.01, P > 0.05).

DISCUSSION

High genetic diversity and low differentiation may result from
population history

Despite overall small population size (mean: 35.5 patches),
A. dioica showed surprisingly high within-population genetic
diversity (He = 0.18–0.22, PPB = 47.0–67.3%), which was simi-
lar or even higher than reported from AFLP studies on other

dioecious species, such as S. otites (He = 0.16–0.24,
PPB = 45.6–66.0%; Lauterbach et al. 2012) and M. perennis
(PPB = 0–41%; Vandepitte et al. 2009). In addition, genetic
diversity exceeded values found in other obligate outcrossing
species (mean of 21 AFLP-studies: He = 0.19, PPB = 50.4%;
reviewed in Reisch & Bernhardt-R€omermann 2014). Genetic
differentiation was moderate (ΦST = 0.11) and much lower
than reported for the above two dioecious species, M. perennis
(ΦST = 0.39; Vandepitte et al. 2009) and S. otites (ΦST = 0.36;
Lauterbach et al. 2012), and the mean for other obligate out-
crossers (ΦST = 0.2; reviewed in Reisch & Bernhardt-
R€omermann 2014).
In general, the high genetic diversity and low differentiation

are remarkable, given that A. dioica populations in the German

Fig. 2. Correlation between logarithmic geographic dis-

tances and genetic distances among the studied Anten-

naria dioica populations.

Fig. 1. Neighbour-net network based on Nei’s pair-wise

genetic distance among the 14 Antennaria dioica popu-

lations. Population abbreviations are given in Table 1.
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lowlands are strongly declining and that the high level of frag-
mentation makes efficient gene flow among populations unli-
kely (Rosche et al. 2014). Therefore, our results may have
arisen from larger population size and frequent gene flow in
the past. Isolation occurred mainly throughout the last decades
and was probably not long enough to result in substantial
genetic erosion (i.e. very few generations since strong fragmen-
tation; see also Rosche et al. 2018b). In fact, A. dioica is charac-
terised by three attributes that are widely accepted to slow
genetic erosion: pronounced perennial life span (Rosche et al.
2016), clonal propagation (Stein et al. 2014) and obligate
outcrossing (Barrett et al. 2010).
Also, the weak but significant isolation-by-distance pattern

and the lack of a clear genetic structure of A. dioica populations
in the Central European lowlands suggest that populations could
have formerly had a much more continuous distribution, or
were functionally connected, e.g. by seed dispersal via domestic
livestock (Rico et al. 2014). Remarkably, several studies on other
outcrossing dry grassland species that are currently rare in our
study area also revealed low genetic differentiation among popu-
lations (e.g. Pulsatilla vulgaris, Hensen et al. 2005; Adonis ver-
nalis, Hirsch et al. 2015). Contrasting examples are Globularia
bisnagarica (ΦST = 0.53; Honnay et al. 2006), Muscari tenuiflo-
rum (ΦST = 0.21; Hornemann et al. 2012) and Silene chlorantha
(ΦST = 0.36; Lauterbach et al. 2011), but these species were
never reported as common in the dry Eurasian grasslands and
have probably never formed large continuous populations.
In contrast to a large body of literature (see Leimu et al.

2006 for a review), genetic diversity was not related to popula-
tion size in A. dioica. A positive relationship between popula-
tion size and genetic diversity was also absent in other species
that declined rapidly relative to their life span (e.g. Mona et al.
2014). Again, this supports that the studied A. dioica popula-
tions were larger in the past and have faced a sudden decline in
size throughout the last decades. In accordance, M€unzbergov�a
et al. (2013) found that current allelic diversity in the long-
lived grassland species Succisa pratensis is rather related to
habitat connectivity in the past than to current population size.
This implies that fragmentation-mediated genetic erosion is
not generally absent in long-lived species but may occur with
some delay. In addition, the lack of effects of population size
on genetic diversity may also be related to the fact that our
population size estimates do not inherently reflect effective
population size, as single patches may consist of more than one
individual (as an example see population SY1; Table 1). More

specifically, in dioecious species, genetic diversity may not be
solely related to classical estimates of population size but also
to the frequency of females and males.

The proportion of females increases genetic diversity

Our study is among the first to reveal that the sex ratio in dioe-
cious plants can significantly affect genetic diversity. Since sex
ratio can have immediate consequences for generative repro-
duction, it seems to be more important for maintaining genetic
diversity than population size in A. dioica. However, in con-
trast to our hypothesis, the proportion of females was not uni-
modally but positively linearly related to genetic diversity in
A. dioica. The only previous study that found a significant rela-
tionship between sex ratio and genetic diversity also found that
genetic diversity increases linearly with the proportion of
females (M. perennis; Vandepitte et al. 2009). However, most
of their populations were male-biased (mean 66.7% males in
their study), and therefore an increasing number of females
may simply represent more balanced sex ratios and the increase
in number of mates (pollen receptors). For species with
female-dominated sex ratios, such as A. dioica, an increasing
number of females may be favoured due to increased seed pro-
duction, which is especially important when reproductive suc-
cess is strongly controlled by low seedling recruitment rather
than pollen limitation. Indeed, Eriksson (1997) found very few
established seedlings of A. dioica in the field, while Varga &
Kyt€oviita (2011) suggested that A. dioica rarely suffers from
pollen limitation, most likely due to effective pollinators (but
see €Oster & Eriksson 2007). In accordance with that study, we
found that females in all of our 14 populations generated viable
seeds, whereas established seedlings were largely absent (K.
Schrieber unpublished data). Note that in extremely small pop-
ulations, the probability of strongly unbalanced sex ratios is
much more pronounced due to increasing demographic
stochasticity (see also Vandepitte et al. 2009). Indeed, Rosche
et al. (2014) found that 13 out of 32 A. dioica populations
comprised only one sex (females: nine, males: four) and were
consequently not able to generate seeds. However, as long as a
few males are present, an increasing number of females does
not necessarily result in pollen limitation, but may rather
increase the success of generative reproduction.

Our 14 study populations of A. dioica were mostly female-
biased (61.5% females in this study; 56.0% females in Eriksson
1997; 66;.0% females in Varga & Kyt€oviita 2011). This finding

Fig. 3. Relationships between sex ratio and genetic

diversity measured as (A) expected heterozygosity (He)

and (B) band richness [Br(9)]. Solid lines represent predic-

tions of the minimum adequate linear models analysing

14 Antennaria dioica populations. Sex ratio reflects the

proportion of female patches within populations.

Dashed vertical lines refer to a sex ratio of 50% males

and 50% females. Note that the majority of the popula-

tions are female-dominated.
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contrasts with the observation that male-biased sex ratios are
twice as frequent as female-biased sex ratios in dioecious plant
species, which is usually explained by the increased need for
resources in females to produce ovaries, seeds and fruits (Bar-
rett et al. 2010; Munn�e-Bosch 2015). Yet, in A. dioica, there is
no difference in adult mortality between the sexes and no spa-
tial sex segregation (Varga & Kyt€oviita 2011). As such, early-
acting genetic factors, or differing germination and seedling
mortality may be responsible for genetically controlled female
bias in natural populations (see also Che-Castaldo et al. 2015).
This may indicate selection for female bias in A. dioica, which
could result from its favourable effects on genetic diversity.

CONCLUSIONS

The unexpectedly high genetic diversity and low differentiation
suggest that populations of A. dioica were much larger and
formed a more continuous distribution in the past. While the
effects of population size on genetic diversity may occur with

some delay, our results revealed that sex ratio has more imme-
diate consequences on genetic erosion. Specifically, a larger
proportion of females could be crucial for preserving within-
population genetic diversity of A. dioica, which has important
implications for its conservation management: considering the
low seedling recruitment in this species, populations could
benefit from a female bias that can ensure sufficient seed out-
put to counteract the random loss of genets and negative popu-
lation growth. In the currently very small populations, the
probability of unfavourable sex ratios is high and could nega-
tively affect reproductive success.
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