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A B S T R A C T

Ecosystem engineers often affect structural complexity of habitats. There are multiple methods of quantifying
complexity, variously measuring topography, surface area, volume, fractal dimension, or rugosity. We compared
eight methods, four employing the 3D modelling program ‘Blender’ to estimate total surface area, top surface
area, their ratio, and interstitial volume; and four empirically measuring interstitial volume, fractals and two
indices of rugosity. We compared these using seven metrics: 1) correlations among comparable measures; 2)
consistency; 3) accuracy; 4) precision; 5) discrimination among configurations of objects; 6) discernment of
complexities among zones on rocky shores; and 7) practicality. Of the eight methods, the virtual volumetric
method, Blender interstitial volume, performed the best. Direct measurements of three-dimensional space re-
lated more closely to patterns in biodiversity than did measurements of two-dimensional space or indirect
measures of complexity like fractals. Blender interstitial volume is thus the recommended means of measuring
structural complexity of benthic environments.

1. Introduction

Many marine ecological studies have demonstrated the impacts of
structural complexity on organismal abundance and species diversity
(Jones et al, 1994; Beck, 1998; Johnson et al., 2003; Gratwicke and
Speight, 2005; Borthagaray and Carranza, 2007; Shumway et al., 2007;
Gestoso et al., 2013), and the vast majority agree that an increase in
complexity correlates with an increase in biological diversity. However,
the methods and definitions of complexity vary, making it difficult to
compare results. Difficulties are caused by 1) the use of different
measures of complexity, 2) the array of different methods used even
when the same measure is applied, and 3) the multiple terms and de-
finitions used in describing complexity (McCoy and Bell, 1991; Tews
et al., 2004; Kovalenko et al., 2012).

McCoy and Bell (1991) define ‘habitat structure’ as a combination of
three parts: heterogeneity, complexity and scale, and ‘complexity’ as
“variation attributable to the absolute abundance of individual struc-
tural components”. Therefore, methods of measuring complexity can
encompass Euclidean measurements of length, surface area and vo-
lume, or indirect indices of those measurements. Euclidean measure-
ments are difficult to determine in the field, as most shapes in nature
are irregular. In addition, Euclidean measurements are likely to be

species-specific or object-specific (Frost et al., 2005). They are none-
theless important. Surface area affects recruitment, settlement and the
turbulent exchange of materials such as water, nutrients and oxygen
across the surface, whereas volume can be indicative of space available
for shelter from physical stress and predators, and as feeding ground.
Rugosity is a measure of the ‘roughness’ of the topography; high rug-
osity is likely to increase settlement of larvae and particles that get
trapped while passively transported along the surface, whereas low
rugosity decreases the amount and size of shelter (Parravicini et al.,
2006). It is common for studies to utilize indices, either a ratio or a
standardised variable, to measure complexity. However, these ratios of
Euclidean measurements (e.g. surface area to volume ratios) are in-
capable of explaining the arrangement of structural elements within the
space being measured (Kovalenko et al., 2012). Fortunately, the diffi-
culties of measuring surface area or volume directly can be alleviated
by assessing samples and measurements in a virtual environment.

Several papers have reviewed methods that measure complexity on
rocky shores (Beck, 1998; Frost et al., 2005; Wilding et al., 2010), but
so far none have compared methods in a standardised manner with
controlled conditions, allowing an objective measure of their merits.
Additionally, none have compared a wide array of methods that mea-
sure various aspects of complexity (e.g., surface area, volume, fractal
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dimension or rugosity). Using artificial, standardised spheres and
mussel samples as objects, we compared eight methods of measuring
complexity, three of which are novel and five that previously have been
used to measure the complexity of mussel aggregations and other biotic
communities on rocky shores. Our aim was to objectively and quanti-
tatively compare the merits of alternative methods of measuring
structural complexity created by rigid ecosystem engineers (e.g., bar-
nacles, mussels or corals) in benthic habitats, in terms of a predefined
set of criteria, using a combination of virtual modelling and empirical
experiments. In particular, we introduce a virtual method known as
‘Blender interstitial volume’ that allows various measures of complexity
and, as we will demonstrate, has the capacity to make retrospective
estimations based on community composition.

2. Materials and methods

The eight methods we compared included four derived from the
simulation program ‘Blender’ and four that rely on other means of
measurement, as follows: 1) Blender measures of total surface area; 2)
Blender measures of top surface area; 3) the ratio of total:top surface
areas from Blender; 4) Blender interstitial volume, which uses the
concept of virtual ‘shrink-wrapping’ of objects, in which a modifier is
used to deform or ‘vacuum-form’ an object to the surface of a another,
target object; 5) Displacement interstitial volume; 6) Fractal analysis; 7)
Substrate rugosity index; and 8) Bidimensional rugosity index (Fig. 1;
Table 1).

2.1. Description of methods

2.1.1. Measuring surface area
Three measures of surface area (total, top, ratio of total:top) were

performed in Blender 2.74 (Blender Foundation, 2012), a 3D modelling
program that digitally measures the first two aspects of surface area
using the add-on ‘Measure Panel’. Details of the program and its op-
eration are covered in a companion methodological paper providing
written and video instructions (Sadchatheeswaran et al., submitted).
This add-on, which is not available in later versions of Blender, calcu-
lates the surface areas and volumes of irregular objects by measuring
the scale and number of faces and points that make up the mesh of the
object. Samples were modelled in Blender on a 10 cm×10 cm plane.
All the objects, except for the plane, were combined into one object
prior to measurement. Total surface area of the combined object re-
presented the total amount of substrate to which organisms may attach
(Fig. 1a, Table 1). However, seaweeds and other autotrophic organisms
are more likely to attach to the top of structures such as a mussel bed,
and so top surface area was also calculated using Blender, by allowing
Measure Panel to determine the surface area of the fraction of the object
that is visible from above (Fig. 1b, Table 1). To do this, the vertices that
could be viewed from the top were disconnected from the rest of the
object and this top fraction was measured. The ratio of total:top surface
areas was calculated as the proportion of the total substrate surface that
was present on the top of the aggregation (Table 1). If the value was
small, then top surface area accounted for most of the surface area, as
would be the case for a unilayered mussel or barnacle bed. If the value
was large, the sample was complex and multi-layered, with a pro-
portionally small top surface area.

2.1.2. Measuring volume
Blender interstitial volume was used to calculate the volume of in-

terstitial space between assemblages of objects, including organisms in
a mussel bed, once again using the add-on ‘Measure Panel’
(Sadchatheeswaran et al. submitted). In short, the method involves
creating a model of a sample of objects in Blender on a 10 cm×10 cm
plane (Fig. 1c, Table 1), joining all the objects into one object, calcu-
lating the solid volume of this single object and then ‘wrapping’ the
object with the ‘shrinkwrap’ modifier. The volume of this shrink-

wrapped object was expanded and scaled up by 0.5× on the top and all
sides within Blender (to allow inclusion of substrate) to obtain the
‘expanded shrinkwrap volume’. Effectively, this amounted to multi-
plying the shrinkwrap volume by 1.27. The difference between the
shrinkwrap volume and the solid volume was calculated to get the
‘expanded interstitial volume’, henceforth referred to as ‘Blender in-
terstitial volume’ (Fig. 1c, Table 1).

Displacement interstitial volume is a physical method developed by
Tsuchiya and Nishihara (1985) and adapted by Van Dover and Trask
(2000) (Fig. 1d). Following this method, a physical sample was taken,
wrapped tightly in plastic and then lowered into a plastic graduated
cylinder (10ml gradations) filled with 1000ml of water. The volume at
the raised water level was recorded when the sample settled to the
bottom of the cylinder. The displaced volume was the volume after
introduction of the sample, minus 1000ml. The sample was then un-
wrapped and measured again in the same manner to determine the
‘solid volume’ of the sample. The difference between the plastic-
wrapped displaced volume of the sample and the sample's solid volume
was the interstitial volume (Table 1).

2.1.3. Measuring fractal dimension
Fractals were first applied and defined by Mandelbrot (1977, 1983)

Fig. 1. Illustrations of seven of the eight methods used to calculate complexity.
a) Blender total surface area (Method #1); b) Blender top surface area (#2); c)
Blender interstitial volume (#4); d) Displacement interstitial volume (green
water layer= displaced water volume from which the solid volume of the
object is subtracted) (#5); e) Fractal analysis (outline of the bisected mussel
sample on a grid of square cells) (#6); f) Substrate rugosity index (#7), g)
Bidimensional rugosity index (#8). In (c and d), the green wireframe sur-
rounding the sample represents the shrink-wrapped volume of an object. The
two rugosity measures (f and g) are the ratio of contour length (red) to linear
length (green). Figure omits ratio of total:top surface area (a/b) (Method #3).
See Table 1 for more information. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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as complex geometric shapes that are composed of self-replications of
one shape at, ideally, infinite scales. Over time, Fractal analysis has
been used to measure the fractal dimensions of habitats and organisms
in multiple fields of ecology, including mussel beds and rocky intertidal
shores (Snover and Commito, 1998; Commito and Rusignuolo, 2000;
Kostylev and Erlandsson, 2001; Frost et al., 2005). Unfortunately, there
is no single preferred way to create profiles of samples to calculate
fractal dimensions. In one study, aerial photographs were taken of the
top of each sample and then the outlines of the mussels in each pho-
tograph were traced onto paper for later analysis (Snover and Commito,
1998). In another study a 10-cm thick layer of plaster of Paris, mixed
with seawater, was poured over mussel beds at low tide and allowed to
harden and cure in an oven; the surface of the plaster cast was coated in
black graphite before the samples were cut into cross-sections 1.30 cm
thick so that the profile of the mussel beds was easily visible (Commito
and Rusignuolo, 2000). Because of time and financial constraints, and a
decision to examine cross-sections of samples rather than just the top
surface, virtual samples were created for Fractal analysis in our study
(Fig. 1e).

To calculate the fractal dimension of a sample, two diagonal cross-
sections of each sample were analysed in a series of sixteen
10 cm×10 cm square grids created in Photoshop CS. From the top
view, the first cross-section bisected the sample from the top left corner
to the bottom right corner, and the second cross-section bisected the
sample along the opposite diagonal. These grids were made up of an
increasing number of square cells (Fig. 1e). The number of cells (y) in
each grid was =y 2 x2 where x ranged from 0 to 15, and so the length of
each cell ( ) per grid decreased with an increase in the number of cells.
Each cross-section was placed behind each grid and the number of cells
(C) that intersected with the outline of the sample was counted
manually. Fractal dimension was calculated by finding the ratio of the
total sum of logC over the 16 grids, and the total sum of log of the 16
grids, calculating the slope of this ratio and multiplying the result by
−1 (Table 1).

2.1.4. Measuring rugosity
Risk (1972) developed a widely used measure of complexity, the

Substrate rugosity index, otherwise known as the ‘chain and tape’
method. It calculates rugosity as a ratio of the contour length and the
shortest distance between the beginning and the end of the contour
length (Fig. 1f, Table 1). Gestoso et al. (2013) adapted this method into
the Bidimensional rugosity index, the product of two Substrate rugosity
indices from samples of mussels, standardised by the mean weight of
the dried mussel shells (Fig. 1g, Table 1).

2.2. Calculating control measures of complexity

‘Control samples’ from which absolute measures could be obtained
were built with virtual spheres of defined sizes in Blender 2.74, so that
the surface areas, volume, fractal dimension and rugosity for the control
measures of complexity could be calculated exactly using formulae
(Fig. 2). In these control samples, two aspects were considered: (1) the
effects of homogeneous or heterogeneous mixes of objects, and (2) the
packing of objects. The first aspect was addressed by creating five
configurations that fitted on 10 cm×10 cm panels, drawn from com-
binations of large spheres (radius 2.5 cm) and small spheres (radius
1.5 cm). The configurations were named ‘Large’ (comprising six large
spheres), ‘Small’ (25 small spheres), ‘Mix 1’ (a mix of six large spheres
and six small spheres), ‘Mix 2’ (three large spheres and 15 small
spheres) and ‘Mix 3’ (three large spheres and 18 small spheres) (Fig. 2).
The rationale for the choice of configurations was based on the ar-
rangements of small and large organisms on the shore, as found in
surveys on the rocky intertidal shores of Marcus Island, on the west
coast of South Africa (Robinson et al., 2007; Sadchatheeswaran et al.,
2015, 2018), which recognised seven zones on the shore, termed 1, 2,
3a, 3b, 4, 5 and 6 from the top to the bottom of the shore. In this paper,
we consider two high-shore zones (Zones 2 and 3a) in which there were
numerous small (0–30 cm) mussels (mimicked by ‘Small’), and a third
zone at the bottom of the shore (Zone 6) where there were aggregations

Table 1
Methods used to measure sphere configurations, and the measurements, description and formulae required for each. In the empirical surface area and volumetric
measurements, nL is the number of large spheres (radius of 2.5 cm), nS is the number of small spheres (radius of 1.5 cm), xL is the fraction of large sphere that was
visible from above while in configuration, xS is the same but for small spheres, nr is the number of rectangular prisms required to make shrinkwrap, l w hr r r are the
length, width and height respectively of each rectangular prism in shrinkwrap. For each grid used to calculate fractal dimension, C is the number of cells that
intersect with the cross-sectioned outline of the configuration, when cut diagonally between two opposite corners, is the length of cell that makes up the grid. For
rugosity measures where diagonals are between two opposite corners of the configuration, Ch is the contour length of diagonal cross section of configuration (cm),Ta
is the linear length of the diagonal (cm), b is the weight of objects (g), and n is the number of objects. See Fig. 1 for more information.

Method Measurement Description of measurement Formula

1) Blender total surface area Total surface area (cm2) Total surface area of the absolute number of large and small
spheres in configuration

+n n(4 (2.5) ) (4 (1.5) )L S2 2

2) Blender top surface area Top surface area (cm2) The surface area of the configuration, limited to what can be
viewed when looking at the top of the configuration from above

+n x n x[( (4 (2.5) )) ] [( (4 (1.5) )) ]L L S S2 2

3) Blender total:top surface
area

Total/top surface area
(unitless)

Ratio of total and top surface area of configuration +
+

nL nS
nL xL nS xS

[ (4 (2.5)2) (4 (1.5)2)]
[( (4 (2.5)2)) ] [( (4 (1.5)2)) ]

4) Blender interstitial
volume

Shrinkwrap volume
(cm3)

The volume of the least number of rectangular objects required
to encase configuration tightly

= l w hr
nr r r r1

Interstitial volume (cm3) The collective volume of gaps and spaces among spheres within
a configuration

+= ( ) ( )l w h n n( ) (2.5) (1.5)r
nr r r r L S1

4
3

3 4
3

3

Expanded interstitial
volume (cm3)

Interstitial volume subtracted from shrinkwrap volume, in
addition to a small amount of space immediately surrounding
the spheres to account for substrate attachment. Standard
measurement of Blender interstitial volume utilized in this paper

+= ( ) ( )l w h n n1.27( ) (2.5) (1.5)r
nr r r r L S1

4
3

3 4
3

3

5) Displacement interstitial
volume

Interstitial volume (cm3) The collective volume of gaps and spaces within the
configuration

+= ( ) ( )l w h n n( ) (2.5) (1.5)r
nr r r r L S1

4
3

3 4
3

3

6) Fractal analysis Fractal dimension
(unitless)

The negative slope of the ratio of the number of cells in a square
grid intersected by the bisected outline of the configuration, and
the side length of one cell in a grid, summed over a set of grids
(cm) (Sugihara and May 1990)

( )1 slope logC
log

7) Substrate rugosity index Substrate rugosity index
(unitless)

Ratio of diagonal contour length and diagonal linear length of
configuration. Lengths are measured in cm (Risk, 1972)

Ch
Ta

8) Bidimensional rugosity
index

Bidimensional rugosity
index (unitless)

Ratio of substrate rugosity index using ratio of both diagonal
lengths of the configuration (in cm) to the total weight and
number of objects. (Gestoso et al., 2013)

Ch xCh Ta xTa
b n

(( 1 2) / ( 1 2))
( / )
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of few but equal numbers of large and small mussels (equating to ‘Mix
1’). The ‘Large’ configuration was included for its relevance to areas
where only large mussels are found. Mix 2 and Mix 3 were variations of
Mix 1 and were included to assess if methods could discriminate dif-
ferences in complexity among superficially similar heterogeneous ag-
gregations.

The second aspect of complexity, packing arrangement, was ad-
dressed in the control configurations by creating several, rigidly defined
packing arrangements within 10 cm×10 cm x 10 cm boxes using
Blender. The control spheres were aggregated in several ways to allow
variability (standard errors) to be calculated for the estimates (mean
values) of the complexity measures, but the variation in packing was
limited by a set of rules: 1) the top layer of spheres needed to be at least
partially in the box; 2) samples were symmetrical around at least one
axis of the box; 3) all samples within each configuration had to be
unique; and 4) spheres had to touch at least one other sphere. Spheres
were packed in either a ‘least-dense’ or a ‘most-dense’ aggregation to
create variation in as many of the complexity measures as possible.
Least-dense samples included spheres that rested on the apex of the
sphere below, whereas the most-dense aggregations were packed so
spheres were as close to each other as possible (Fig. 2). Without vio-
lating any of the rules above, each of the five configurations had up to
15 repetitions of least dense samples and 15 of most dense samples, for
a possible maximum total of 30 samples per configuration (Fig. 2). To
avoid false repetition of complexities during control calculations, equal
sample sizes among different configurations could not be achieved. In
particular, there was only one configuration possible for ‘Small, most
dense’ that followed the four rules listed above. Sample sizes are listed
(per configuration and split between least and most-dense) in Fig. 2.

All eight methods of measuring complexity were applied to the five
sets of sphere configurations. For the four methods that used Blender to
calculate interstitial volume, top and total surface areas (and their
ratio), and for the displacement method, complexity measures could be

calculated directly using the formulae presented in Table 1. Fractal
dimension was particularly laborious to calculate and so, for logistical
reasons, only three samples per configuration were calculated. Bidi-
mensional rugosity index required a mean dry weight of each object in
the sample. Since the virtual spheres in Blender have no weight, the
relative volume of Large to Small spheres (4.63:1) was used to generate
weights. The Small spheres were given a weight of 20 g, which was the
weight of a clay sphere 1.5 cm in radius. The Large spheres were given a
weight of 92.60 g (4.63×20 g).

2.3. Criteria for assessing methods of measuring complexity

Seven criteria were employed to quantify or rank the usefulness of
the different measures of complexity: 1) correlation among methods
dealing with common measures (surface area, volume, fractal or rug-
osity); 2) consistency between control calculations and test measure-
ments; 3) accuracy and 4) precision of test measurements; 5) ability to
discriminate among different configuration samples; 6) ability to dis-
cern complexity among configurations of objects such as mussel sam-
ples from different zones, and 7) practicality (time, cost, difficulty) of
the method.

2.3.1. Correlation among methods
On the premise that methods yielding comparable measures (i.e.,

different measures of surface area, volume, fractal indices or rugosity)
should have outputs that are correlated, Pearson product-moment
correlations between methods were calculated in R, and their sig-
nificance determined. The Holm-Bonferroni correction calculator ver.
1.2 by Gaetano (2013) was utilized to avoid Type 1 errors. The per-
centage of significant correlations for each method was taken as an
index of correspondence among methods. As Fractal analysis was the
only method used to measure fractal dimension, the two diagonal cross-
sections per sample were compared against each (with three samples

Fig. 2. Control configurations (on 10 cm×10 cm
panels shown by grey shading) illustrating examples
of samples packed in the least and most dense ag-
gregations. Top view of least dense example shown
with diagonal axes for cross-sections (x,y). Cross-
sections are presented as outlines that fit onto a
10 cm×10 cm plane, and are examples of what
were used to calculate the contour lengths for rug-
osity measures, and the fractal dimensions for Fractal
analysis. The numbers of samples (n) for least and
most dense aggregations are indicated.
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per cross-section).

2.3.2. Consistency
The methods were each applied to randomized ‘test’ samples of

Large, Mix 1, Mix 2, Mix 3 and Small configurations. To randomize
samples for Fractal analysis and for methods performed in Blender, the
appropriate numbers and sizes of virtual spheres corresponding to each
configuration were tumbled into the same 10 cm×10 cm x 10 cm box
used in the control configuration (Fig. 3). To randomize samples for
methods performed in the real world (Displacement interstitial volume,
Substrate rugosity index and Bidimensional rugosity index), clay
spheres with an aluminium and glass core were created with the correct
radii. The clay spheres were tumbled in a bag and deposited into a
10 cm×10 cm x 10 cm box made of Plexiglas (Fig. 3). All methods, real
and virtual, were performed on 15 test samples. Once again, the fractal
dimensions of the two diagonal cross-sections per sample were com-
pared against each other for Fractal analysis.

Assuming that differences in complexity among configurations
emerging in the controls should be repeated in the tests, Pearson pro-
duct-moment correlations, calculated in R, were calculated between
control and test samples for each method, and the magnitude of the
correlation taken as an index of consistency of each method.

2.3.3. Accuracy
The differences in values generated for complexity of sphere ag-

gregations between control and random test samples for each method
were compared among the different configurations, using univariate
analyses (see 2.4 below). Averaged across the five configurations, mean
(±SE) differences between control and test measures were taken as an
index of accuracy. These measures indicated the percentage divergence
(D) between results, with negative differences reflecting under-esti-
mation of values by the test relative to the control, and positive values
indicating over-estimations. Small values reflected good agreement. As
all other means of assessing methods yielded large values for ‘good’
results, values of divergence were converted to ones of convergence
(D′= 100 – D) to make final comparisons among the various assess-
ments.

2.3.4. Precision
Mean precision of both control and test measurements was assessed

by calculating the coefficients of variation (CV) for each method. Large
CVs reflected a lack of precision in measurements, so CV was converted
to a measure (CV') that increased with precision: CV'= 100 – CV. This
facilitated comparisons among the various assessments in an overall
evaluation of methods.

2.3.5. Discrimination among configurations
It was not possible to test the power of different methods statisti-

cally because of the small number of methods involved. Instead, com-
parisons were made of the capability of each method to distinguish
among configurations in post-hoc tests. For each of the control and test
runs, five configurations were examined, so that ten combinations
could be examined to explore whether each method statistically dis-
tinguished between pairs of configurations. The percentage of cases
(out of 10) that successfully distinguished pairs as being significantly
different was taken as an index of ‘discriminatory power’. This ap-
proach is not a formal assessment of statistical power but does provide
an objective means of ranking the relative capabilities of the various
methods in terms of their ability to discriminate among the complex-
ities of different configurations.

2.3.6. Discernment among zones
Based on the fact that most studies have found a correlation be-

tween complexity and biotic diversity (referenced in the Introduction),
we compared measures of diversity at different shore heights and tested
the extent to which different methods of measuring complexity yielded
correlations between complexity and diversity. In field-based assess-
ments at Marcus Island on the west coast of South Africa, six 10 cm x
10 cm quadrats were randomly placed in areas with 100% cover of the
Mediterranean mussel, Mytilus galloprovincialis, in each of three inter-
tidal zones (Zones 2, 3a and 6; see above for definitions). In previous
surveys of these zones (Sadchatheeswaran et al., 2015, 2018) greater
abundance and species diversity were found in the low shore (Zone 6) –
in contrast to the zones on the high shore (Zones 2 and 3a), which had
statistically comparable lower values of abundance and diversity. Zones
were therefore taken as a proxy for diversity, and the various methods
were examined to see if they 1) had the capability to statistically dis-
cern among the complexities of Zones 2 and 3a versus Zone 6, and 2)
did so in a manner reflecting the increased abundance and diversity in
Zone 6 relative to Zones 2 and 3a.

The contour and linear lengths of each sample were recorded for
both rugosity measures (Rugosity index and Bidimensional rugosity
index). For these methods, a chain of sufficiently small chain links
(2mm) was used to avoid under-estimation of topography height re-
lative to linear dimensions. The quadrats were then stripped, and the
samples returned to the laboratory, where measurements of complexity
were undertaken using the Displacement interstitial volume method.
The mussels were then counted and dried in an oven for 48 h at 60 °C,
opened and cleaned of mussel flesh and epifauna, and weighed to
provide additional variables necessary to calculate the Bidimensional
rugosity index.

Fig. 3. Examples of test samples using clay and virtual spheres. The clay spheres were used to measure Displacement interstitial volume and both rugosity indices,
whereas the virtual sphere samples were used for all other methods.
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The samples were recreated in Blender, using abundance and size
data derived from the sampled mussels. Total surface area, top surface
area, the ratio of total:top surface area, and interstitial volume were
measured in Blender. Finally, the virtual samples were bisected to
create two diagonal cross-sections for Fractal analysis (see 2.1.3
Measuring fractal dimensions). Fractal analysis therefore had 12 samples
per zone, whereas all other methods had six.

The differences among the complexities of mussel samples found in
the three zones were compared for each method using univariate ana-
lyses, and it was assumed that higher values calculated with each
method represented greater complexity. Thus, methods that correctly
revealed that Zone 2 and 3a mussel samples were similar to each other
in complexity (as expected from patterns in the field) but did not dis-
tinguish either of them from Zone 6 mussel samples were scored 1/3 or
33%. Methods that yielded the same outcome for Zone 2 and 3a but
incorrectly indicated that they were significantly more complex than
Zone 6 samples, were scored 2/3 or 67%. Lastly, methods that correctly
rated mussel samples from Zone 2 and 3a as being similar to each other,
and also correctly rated them as less complex than Zone 6 mussel
samples were given a 3/3, or 100%.

2.3.7. Practicality
To determine the relative practicality of methods, the time and cost

required to perform each method were compared, as well as the diffi-
culty of performing each method on the shore or in the laboratory. As
difficulty was a subjective measure, it was determined by the authors
individually and then a collective view was obtained by consensus.
From qualitative measures, the practicality of each method was then
ranked out of 100%, with a score of 100 being most practical.

2.4. Statistical analyses

Univariate analyses were conducted using STATISTICA Version 12
with α set at 0.05. Prior to analyses, normality was assessed with
normal probability plots, and homogeneity of variances was considered
acceptable if the ratio of the largest and smallest variance was ≤4
(Quinn and Keough, 2002). Data that met assumptions of normality
were analysed with a single-factor ANOVA with Tukey post-hoc com-
parisons, whereas for non-normal data, Kruskal-Wallis with multiple
comparisons of mean ranks was used.

3. Results

3.1. Correlations among methods

The measures of complexity generated by each of the eight methods
for the control samples were significantly correlated in only eight of the
possible 36 combinations (Fig. 4). However, methods addressing com-
parable measures (surface area, interstitial volume, fractals or rugosity)
exhibited strong, positive correlations (Fig. 4). Within the cluster of
‘surface area’ measurements, both total and top surface areas were
significantly correlated with the ratio of total:top, the first positively
and the second negatively. Both are logical outcomes anticipated from
their relationships. However, total and top surface area calculations
were not significantly correlated. The two interstitial volumetric mea-
sures (Blender and Displacement) had a strong positive relationship
(r= 0.99). The fractal dimensions of the two cross-sections per sample
were strongly and significantly correlated (r= 0.99), as were the two
rugosity measures (r= 0.80). Curiously, the fractal dimension of one of
the cross-sections per sample was strongly correlated with total surface
area, whereas the other was not. Substrate rugosity index was positively
correlated with Blender top surface area while Bidimensional rugosity
index had a significant correlation with total surface area (Fig. 4).

In short, within different categories of measurement (surface area,
volume, fractals or rugosity) there were strong correlations, but among
these categories, there were few.

3.2. Consistency

For each method, average values of complexity for both control and
test analyses are summarised in Table 2. Of the eight methods, only
three exhibited significant (positive) correlations (p<0.0001 to
p=0.04) between control and test results: Blender total surface area,
Blender total:top surface area and Blender interstitial volume (Table 2,
Fig. 5a, c, d). Although univariate analyses among configurations could
not be conducted for Blender total surface area due to a lack of variance
in the data, it was clearly the most consistent method, with test results
being almost indistinguishable from the control calculations (Fig. 5a).
The Bidimensional rugosity index (Fig. 5i) yielded the fourth greatest
correlation, which was, however, non-significant (p=0.07). Other
methods all had low, non-significant correlations, and the Substrate
rugosity index (Fig. 5h) was unique in having a negative (but also non-
significant) correlation (r=−0.60, p=0.29) between control and test
results (Table 2).

3.3. Accuracy

The most accurate methods were Blender total surface area, Blender
interstitial volume and Fractal analysis (Fig. 6). The two remaining
Blender surface-area measurements were moderately accurate, and the
most inaccurate methods were Displacement interstitial volume and
both rugosity measures (Fig. 6).

3.4. Precision

The most precise methods (those with lowest CVs) were Blender
total surface area, and Fractal analysis (Fig. 7). The moderately precise
methods were the remaining Blender surface area measurements,
Blender interstitial volume and Substrate rugosity index, and the most
imprecise method was Bidimensional rugosity index (Fig. 7).

3.5. Discrimination among configurations

The methods that were best able to statistically discriminate com-
plexity among configurations were Blender total surface area (100%
discrimination among all combinations) and total:top surface area
(80%) (Fig. 5a, c respectively). The moderately capable methods were
Blender top surface area (Fig. 5b), Blender interstitial volume (Fig. 5d),
Displacement interstitial volume (Fig. 5e) and Bidimensional rugosity
index (Fig. 5i). Least capable were Fractal analysis (Fig. 5f and g for the
two cross-sections) and Substrate rugosity index (Fig. 5 h).

3.6. Discernment among zones

All methods indicated that mussel samples from Zones 2 and 3a had
statistically comparable complexities, as predicted a priori (Fig. 8,
Table 3), and were given a score of 1/3 based on this. Blender total:top
surface area (Fig. 8c) and Bidimensional rugosity index (Fig. 8h) ad-
ditionally indicated that Zone 6 was significantly different in com-
plexity from Zones 2 and 3a, raising their scores to 2/3 (67%). Only
Blender interstitial volume upheld the a priori prediction that the
complexity in Zone 6 would be significantly greater than that in Zones 2
and 3a (Fig. 8d), increasing its score to 3/3 (100%).

3.7. Practicality

Table 4 summarises the criteria used to rate the practicality of the
different methods and the scores assigned to them. Integrating time,
cost and difficulty, the most practical method was Substrate rugosity
index, as it took the least amount of time and equipment to perform; it
was scored 100% (Table 4). Although 3D modelling experience is re-
quired for all methods using Blender, the techniques required were
relatively simple to learn, the time required to complete the method
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was minimal, and Blender 2.74 is a free-to-download program, and so
all the Blender methods were given a score of 80%. These methods also
have the added advantage of being retrospective in the sense that they
can be applied to historical information, provided data on community
composition exist. Bidimensional rugosity index was also given a score
of 80%, despite the relatively high cost, due to the ease of accom-
plishing the method. Displacement interstitial volume was given a
slightly lower score (70%) due to the loss of information about sample
packing and increased possibility of human error. Fractal analysis was
given the lowest score (40%) due to the time and cost required for
determining the fractal dimensions of even virtual (and therefore easily
manipulated) samples. In addition, there are multiple methods of de-
termining fractal dimension, which means that the results of different
Fractal analysis methods are often not comparable.

3.8. Summary of merits of alternative methods

Fig. 9 summarises the relative merits of the methods, scored ac-
cording to the seven criteria. Among all methods, Blender interstitial
volume was the most successful. Although Blender total surface area
scored 100% in consistency, precision and discrimination among con-
figurations, and 99% in accuracy, this method did not correlate well
with top surface area and did not discern well among mussel samples
measured in different zones. However, among all surface area methods,
Blender total surface area performed the best, with total:top surface
area performing second best.

Of the seven criteria used to compare the methods, Blender inter-
stitial volume scored over 90% for five criteria, 80% for practicality,
but only a modest 45% for its ability to discriminate among the dif-
ferent configurations of spheres. In combination, its average score of
86% was 24% more successful overall than Displacement interstitial
volume, which only scored over 80% for precision and correlation
among comparable methods.

Fractal analysis scored slightly better than Displacement interstitial
volume, mostly due to its high accuracy and precision. However, pairs

of measurements taken from the same sample did not correlate well,
and the Fractal procedure proved the second least capable of dis-
criminating among sphere configurations or among mussel samples
taken from different zones, and was the least practical method.

Although the Substrate rugosity index and Bidimensional rugosity
index were easy to implement in practice, they were not very successful
at measuring complexity. This was mainly due to the low accuracy of
both methods, low precision of the Bidimensional rugosity index, and
the inability of Substrate rugosity indices to discriminate among dif-
ferent sphere configurations and mussel samples taken from different
zones.

4. Discussion

4.1. Facets of measuring complexity

Despite several studies that compare methods of measuring habitat
complexity (Frost et al., 2005; Kostylev et al., 2005; Wilding et al.,
2010), a lack of generalization exists (Beck, 1998; Gestoso et al., 2013;
Loke et al., 2014). The problem does not seem to be the use of syno-
nyms, like ‘structural complexity’ and ‘surface availability’, but rather
when one word, ‘complexity’, is used to describe multiple facets of
habitat structure (Beck, 1998). This practice impedes comparisons
among studies, masks interesting trends and reduces the capacity to
recognise physical structure as an important environmental factor
(McCoy and Bell, 1991; Warfe et al., 2008). Our paper set out to
identify the most useful facet of complexity by quantitatively demon-
strating which of the methods that measure complexity are most con-
sistent, accurate, precise, correlate well with other methods under
various conditions, and are practical.

There were very few correlations among methods, but strong, sig-
nificant correlations did exist between methods considering comparable
measurements, (i.e. those that respectively measured surface area, vo-
lume, fractal dimension or rugosity). Since methods for comparable
measurements were sensibly correlated, none could be ruled out on

Fig. 4. Scatterplot matrix of control calculations of surface area (top left outline), volume (middle left outline), fractal dimension (middle right outline) and rugosity
indices (bottom right outline) methods (based on all configurations pooled). Pearson product-moment correlations (r) and p-values shown for all correlations, with
significant correlations noted in large font.
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grounds of disagreement among methods. The fact that few correlations
existed among methods that did not share common measures is inter-
esting, as these different types of measurements probably have different
kinds of biological significance. Measures of surface area reflect at-
tachment points on primary or secondary substrate (Crooks, 2002;
Munguia et al., 2011). Measures of interstitial volume indicate space –
for shelter from physical stresses and predators, and for feeding
(Tsuchiya and Nishihara, 1985; Firstater et al., 2011). Rugosity is an
index of ‘roughness’ that might influence small-scale water movements,
influencing nutrient and oxygen transfer and propagule settlement
(Parravicini et al., 2006). Fractals reflect the level of irregularity pre-
sent in nature and organic structures, and this irregularity can lead to
size preferences for individuals occupying the substrate or space
(Sugihara and May 1990; Kostylev et al., 2005). Thus, different mea-
sures reflect various types of physical structures, and therefore are re-
levant to different types of biological responses. Selecting the optimal
measurement will depend in part on what biological question is being
addressed.

4.2. Evaluation of methods

The most accurate and precise method by far was one of the novel
methods examined, Blender total surface area (Fig. 9). Only two papers
have previously attempted to measure the surface area of rocky shores:
one required the use of a proxy equation that calculated surface area
from the squared average profile lengths obtained using a contour
gauge (Kostylev et al., 2005); the other was similar but used triangu-
lation to procure a three-dimensional measure of rugosity for 36 ver-
tices measured per quadrat (Parravicini et al., 2006). Euclidean mea-
surements overall, however, are not popular in the literature as indices
or ratios. This is possibly because irregular objects, which are common
in nature, cannot easily be measured using regular geometric equations.
By using virtual samples and measurement tools available in Blender, it
was feasible and quick to calculate the total and top surface areas of an
aggregation. Furthermore, when this method of calculating the total
surface area was applied to aggregations of spheres, it proved to be
exact, and highlighted the fact that packing of objects in an aggregation
is not a characteristic that can be detected by total surface area. Be-
tween the Blender top and total:top surface area methods, the latter was
the preferred method for calculating complexity of two-dimensional
spaces as it exhibited a strong positive correlation with total surface
area, was precise, practical and was also statistically consistent (Fig. 9).
Total:top surface area did not, however, correlate well with expecta-
tions driven by biodiversity on the rocky shores.

Displacement interstitial volume has been used previously to mea-
sure the three-dimensional complexity of mussel beds in the form of
interstitial volume (i.e., the volume of the gaps between objects within
aggregations) (Tsuchiya and Nishihara, 1985; Van Dover and Trask,
2000). Blender interstitial volume, a novel method to measure inter-
stitial volume within a collection of objects, was introduced in
Sadchatheeswaran et al. (2015). The difference in the two measure-
ments is that interstitial volume is expanded in Blender to include a
small amount of space surrounding the aggregation, to which epifauna
can attach. For all but one of the criteria used to compare methods,
Blender interstitial volume performed as well or better than Displace-
ment interstitial volume. The relatively poor performance of Displace-
ment interstitial volume was unexpected, given that this method in-
volved the direct, real-world measurement of irregular volumetric gaps
using water; it was expected to be at least as accurate and precise as
Blender interstitial volume derived from a virtual state. Yet, unlike
Blender interstitial volume, Displacement interstitial volume involved a
greater number of steps, each of which could have been affected by
human error. Blender was far more capable of measuring the exact
interstitial volume of samples to a high number of significant digits. In
addition, Blender interstitial volume was the only method that yielded
greater complexities of mussel samples in the low shore compared toTa
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the high shore on Marcus Island, and thus correlated with patterns of
biodiversity. However, the results of both Blender and Displacement
interstitial volume under control conditions were highly correlated, and
so researchers working solely in the field may prefer to use the

Displacement method to compare habitable space in highly three-di-
mensional, physically complex ecosystems.

Fractal analysis was very accurate and precise but was not as suc-
cessful as direct measurements of surface area or volume. This, too, was

Fig. 5. Measurements of complexity recorded as scatterplots for control results, overlain with boxplots of test results. The complexities of the five configurations were
compared against each other within each method. Letters differ where complexities were significantly different (p < 0.05) in post-hoc Tukey analyses (ANOVA) or
multiple comparisons of ranks (Kruskal-Wallis). Percentages (top left corner of each graph) show the discrimination scores for the combined test and control
configurations. *Blender total surface area had no variance, and so all configurations were effectively discriminated. See Table 2 for associated data.
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a surprise, as Fractal analysis has been used on numerous occasions to
measure the complexity of rocky shores and mussel aggregations (Beck,
1998; Lawrie and McQuaid, 2001; Kostylev et al., 2005) and is also
commonly used in other fields of marine ecology (McCormick, 1994;
Aronson and Precht, 1995; Brokovich et al., 2006). However, multiple
papers that have used Fractal analysis to measure mussel aggregations
do not agree on the actual fractal dimensions of such aggregations, most
likely due to the variations in methods used to calculate the dimension
(Kostylev et al., 2005). In our study fractal dimensions of the same
sphere or mussel aggregation spanned a range of 0.2, which is a fifth of
the range of fractal dimension (1.0–2.0). This diminished the precision
of the method but boosted its accuracy. Moreover, Fractal analysis was
the most difficult method to use in practise.

Another unexpected result was the poor performance of the
Substrate rugosity index. This method, developed by Risk (1972), is
most likely the oldest method for quantifying complexity. It was by far
the most practical method to use in the field, and is particularly

appropriate when sampling must be non-destructive and is time-lim-
ited, but it substantially underestimated rugosity when compared with
control values. Bidimensional rugosity index, despite taking longer to
perform, had one major advantage over Substrate rugosity index. When
applied to test samples, it had greater powers of discrimination among
configurations of spheres and demonstrated that aggregations made of
many small spheres were more complex than aggregations made of a
few large spheres, whereas the Substrate rugosity index failed to detect
any difference between them. When applied to mussel samples col-
lected in different zones on the shore at Marcus island, Bidimensional
rugosity index also detected significant difference in complexity be-
tween Zone 6 and Zones 2/3a, which the Substrate rugosity index failed
to do, but yielded lower values of complexity for the lowshore (Zone 6),
than for the highshore (Zones 2 and 3a), contrary to the expectation of
higher complexity values in Zone 6, based on patterns of biodiversity.
Therefore, between the two rugosity measures, Bidimensional rugosity
index was the more consistent method, but did not correlate well with
higher indices of species richness and diversity in Zone 6 in comparison
to Zones 2 and 3a.

As noted above, we recognise that different measures of complexity
such as surface area and interstitial volume will be relevant to different
biological and physical processes. Indeed, our measures allow de-
termination of these various aspects of complexity, which can then be
prioritised depending on the context and questions that are being ad-
dressed.

The approach we advocate works most easily with objects that are
rigid, such as mussels, barnacles and corals. It is more difficult to apply
to objects such as seagrasses, kelps or algae that are flexible. Movement
of such objects will alter complexity, which will be very different if, say,
seagrass is flattened by currents or held erect in calm water. However,
this is a problem that is inherent in all methods of measuring com-
plexity, so complexity is intrinsically easier to measure for rigid objects.
It can be resolved by taking measurements of flexible objects in a range
of states and then either expressing the results for specific states or, if
sufficient simulations or measurements or done, providing average re-
sults. The practicalities of doing this will be formidable in methods that
rely on field measurements, but would be easier to achieve in the si-
mulations that are possible with Blender.

Fig. 6. Accuracy of methods, as indicated by mean (+SE) % difference between
control and test results, integrated across all configurations.

Fig. 7. Precision of each method, as indicated by the mean (+SE) coefficient of variation (CV) of control and test results, integrated across all configurations.
Precision is inversely related to CV. *Blender total surface area had zero variance for both control and test results.
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5. Conclusion

Blender total surface area was the best method to measure the
surface area of a sample, even though it did not correlate well with
expectations based on diversity patterns. Bidimensional rugosity index

was also statistically consistent, and therefore the preferred rugosity
measure, although it scored the same as Substrate rugosity index when
averaged across all seven criteria applied to the evaluation of methods.
Bidimensional rugosity index was also the only recommended method
that could be reliably performed on real samples on the shore.

Fig. 8. Boxplots showing spread of complexity values measured by the different methods for mussel aggregations in three zones of Marcus Island. Letters differ where
zones were found to be significantly different from each other in complexity (p<0.05) based on post-hoc Tukey calculations (ANOVA) or multiple comparisons of
ranks (Kruskal-Wallis). Percentages (top left corner of each graph) show discernment scores among the three zones.

Table 3
Mean (±SE) complexity of mussel aggregations as measured by the eight methods applied to three zones on Marcus Island. Main effects of statistical differences
among zones are presented for each method and are bold if there were significant differences. Unless indicated, the measurement was unitless. See Fig. 8 for more
information.

Method Zone 2 Zone 3a Zone 6 Main effects

Blender total surface area (cm2) 261±21.1 277±23.1 200±19.9 ANOVA, F2,12= 1.87, p=0.18
Blender top surface area (cm2) 96.9± 5.77 101±6.67 90.1± 8.65 ANOVA, F2,12= 0.40, p=0.68
Blender total/top surface area 2.67± 0.07 2.67± 0.09 2.21± 0.03 ANOVA, F2,12= 8.72, p=0.0031
Blender interstitial volume (cm3) 84.4± 4.89 94.7± 4.00 135±10.9 ANOVA, F2,12= 7.14, p=0.0067
Displacement interstitial volume (cm3) 189±31.5 163±42.4 157±26.4 ANOVA, F2,12= 0.16, p=0.85
Fractal analysis 1.38± 0.02 1.42± 0.02 1.39± 0.02 ANOVA, F2,12= 0.68, p=0.51
Substrate rugosity index 1.32± 0.11 1.20± 0.04 1.39± 0.05 ANOVA, F2,12= 1.03, p=0.38
Bidimensional rugosity index 3.14± 0.76 2.02± 0.25 0.57± 0.04 K-W2,15= 12.11, p=0.0023
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However, the results of both Blender and Displacement interstitial vo-
lume under control conditions were highly correlated, and so re-
searchers working solely in the field may prefer to use the Displacement
method to compare habitable space in highly three-dimensional, phy-
sically complex ecosystems.

Benthic environments such as intertidal rocky shores are complex,
with various microhabitats influenced by various types of ecosystem
engineers. These range from simple, unilayered beds of barnacles, to
complex, multi-layered towers of some mussel species, and these dif-
ferences in architecture sometimes require retrospective analysis.
Blender interstitial volume scored higher than any of the other methods

when assessed by multiple criteria, was the only method to correspond
well with patterns of biodiversity, and together with other Blender
methods, could be applied retrospectively, so it emerged as the most
versatile and recommended method to measure complexity on rocky
shores.

Animal ethics

Animals were collected under a permit issued by the Department of
Agriculture, Forestry and Fisheries, and conformed to national and in-
stitutional ethics guidelines.

Table 4
Practicality of each method on the shore. Cost is in Euros (€) and does not include the cost required to get to the study area for field methods, the cost of a computer
for virtual methods, or the cost of a drying oven (approx. 618 €). Each sample took 20min to collect, count and measure on the shore. The methods performed in
Blender include the time taken to recreate each sample. The time to complete Bidimensional rugosity index does not include time to dry mussels in an oven (48 h) or
the extra 20min per sample needed to clean the mussel shells.

Method Time (min) Equipment Cost (€) Difficulty Score

Blender methods Blender ver 2.74: 0.00 Pros

• Can obtain Euclidean measures of irregular objects easily

• Possible to perform multiple measurements on one sample very quickly and easily

• Able to select only part of the sample (example top surface) to measure it
independently

• Decreased possibility of human error

• Samples could be saved and measured at leisure (i.e. could be used retroactively)

• Can be applied retrospectively
Cons

• Requires some modelling experience

• Cannot measure actual samples on shore; recreated in virtual environment

80%
Blender total surface area (cm2) 7.17± 0.50 Total: 0.00
Blender top surface area (cm2) 8.17± 0.50 Blender ver 2.74: 0.00 80%

Total: 0.00
Blender total/top surface area

(unitless)
8.17± 0.50 Blender ver 2.74: 0.00

Total: 0.00
80%

Blender interstitial volume (cm3) 8.50± 2.17 Blender ver 2.74: 0.00 80%
Total: 0.00

Displacement interstitial volume (cm3) 2.15± 0.32 paintscraper: 5.85 Pros

• Very easy and requires very little material
Cons

• Destroys packing of sample to make the measurement

• Human error; difficult to be accurate with standard equipment

70%
plastic bag: 0.16
1000ml beaker: 13.00
Total: 19.01

Fractal analysis (unitless) 24.1± 3.00 Blender ver 2.74: 0.00 Pros

• Used by multiple fields in ecology so universally accepted

• Cross-sections can be saved and measured at leisure

• Possible to collect sample and save its packing, or generate virtual samples in 3D-
modelling program

Cons

• Even virtual and automated, method took considerable time

• No standard method to acquire the images to be analysed

• Extremely tedious so even when partially automated, too many chances for human
error

40%
Photoshop CS: 1235.00
Image J: 0.0
Total: 1235.00

Substrate rugosity index (unitless) 2.17± 0.75 Chain: 6.50 Pros

• Very easy and requires the least amount of material

• Can measure real samples on the shore

100%
Ruler: 1.79
Total: 8.29

Bidimensional rugosity index
(unitless)

11.0± 1.50 Chain: 6.50 Pros

• Easy to accomplish

• Can measure real samples on the shore
Cons

• Takes very long (2 days drying in the oven, plus 20min per sample to clean and
weigh mussel shells)

• Requires laboratory equipment, so it cannot be applied solely in the field

80%
Ruler: 1.79
Digital balance: 71.5
Total: 79.8

Fig. 9. Comparison of the success scores (%) of each method
measuring complexity, integrated across configurations, with
100% being the maximum score for each of seven criteria: 1)
mean correlations among like methods multiplied by 100; 2)
consistency (r-values between control and test results) mul-
tiplied by 100; 3) accuracy; 4) precision; 5) discrimination
among configurations; 6) discernment among zones; 7)
practicality. Dotted horizontal lines along with the percen-
tages above the bars indicate mean success rate over all seven
criteria for each method.
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