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Predation-driven biotic resistance fails to restrict

the spread of a sessile rocky shore invader
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ABSTRACT: The invasive barnacle Balanus glandula has progressively spread along the South
African west coast. We used multiple approaches to assess the role of predation by indigenous
whelks in regulating this expansion. B, glandula abundance and distribution were monitored
annually while field observations and laboratory experiments assessed the relative predation
pressure on B. glandula and the native barnacle Nolomegabalanus algicola. In the mid-shore, the
whelks Trochia cingulata and Burnupena lagenaria fed on N. algicola most often despite the alien
B. glandua covering a mean of 86 % of the shore at this site. Lower on the shore, the same feeding
pattern was evident, although N. aigicola was spatially dominant. Feeding experiments revealed
that small (mean = SD shell length: 13.9 = 0.3 mm) and large (18.6 = 0.5 mm) T. cingulata con-
sumed up to 70% more N, algicola than B. glandula, displaying a significant avoidance of the
alien, While small (15.5 % 0.5 mm)} B. lagenaria displayed the same pattern, large individuals (27.7
+ 0.4 mm} consumed equal numbers of the 2 barnacles, The avoidance of B. glandula may be
explained by this species possessing thicker shell and opercular plates than N, algicola, while a
narrow margin of vulnerable soft tissue around the circumference of the opercular plates makes
the native an attractive prey choice. This study demonstrates that predation-driven biotic resist-
ance has not contained the expansion of B. glarndula along the South African coast.
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INTRODUCTION

The spread of alien species depends not only on
the suitability of the abiclic environmeni {Schneider
2008, Sorte et al. 2010) bt also on traits of the
invader {Callaway & Ridenour 2004, Nyberg & Wal-
lenlinus 2005) and characteristics of the recipient
community {Stachowicz et al. 2002}. While measures
of the physical environment are relatively easily
made, species-specific tolerance ranges and the role
of biological influences on the range extension of
marine alien species can be subile. Numerocus theo-
ries have been proposed to explain the interacton
between native biota and invaders (e.g. diversity-
driven biotic resistance: Elton 1958, Stachowicz et al.
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2002; evolution of increased competitive ability:
Blossey & Notzold 1995; invasional meltdown: Sim-
berloff & Von Helle 1999; enemy release: Keane &
Crawley 2002; development of novel weapons: Call-
away & Ridenocur 2004), but while these theories
differ mechanistically, they essentially deseribe the
ability (or inability} of a native community to resist an
invasion (Kimbro et al. 2013).

A recent review of biotic resistance in marine sys-
terms (Kimbre et al. 2013) highlighted that algae are
commonly unable to resist invasions by other produc-
ers through competition unless recipient comrauni-
lies are diverse {e.g. Bando 2006, Cebrian ei al.
2011), while regulation of invasive aigae by nafive
consumers is generally net effective {e.g. Vermeij et
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al. 2009). Netably, most marine studies have consid-
ered invasive consumers, and these invasions appear
more strongly resisted than invasions by producers
{Kimbro et al. 2013). While recent studies have inter-
rogated biotic resistance in aquaculture (Dumont et
al, 2611) and harbour {Rius et al. 2014} environments,
Iittle is understoed of biotic resistance to open coast
invasions by bicta that exert their impact primarily
through the acquisition of nen-food based resources
such as space (but see Zabin & Altieri 2007). Exam-
ples of such species include sessile primary space
occupiers on rocky shores that are often dominant in
their native and/or invasive ranges (e.q. the mussel
Mytilus galloprovincialis: Branch et al. 2008; the reef-
building polychaete Boccardia proboscidea: Jaubet
et al. 2011).

While research on biotic resistance in marine sys-
tems has focused on subiidal systems, we suggest
that rocky intertidal habitatis also offer a nseful model
system in which to test the hypothesis due to 3 in-
herent characteristics. Firstly, predator-prey inter-
actions are easily observed and experimentally
manipulated on the shore (Paine 1994). Secondly, the
organisms involved are easily coliected and main-
tained in the laboratory, enabling controlled lahora-
tory assessments of interactions {Freeman et al
2014). Thirdly, adult populations of intertidal species
are constrained to linear ranges along the coast,
enabling easy monitoring of their spread (Sagarin &
Gaines 2002, Sanford & Swezey 2008}, Importantly,
these characteristics facilitate research in regions
where subtidal studies may be logistically challeng-
ing. This is important if research is to be exiended
into historically understudied regions like Africa.

Balanus glandula is an intertidal barnacle native to
the rocky shores of the westl coast of North America
{Carlion et al. 2011). Over the last 4 decades, this
species has invaded the southwest Atlantic coast of
Argentina (Vallarine & Elias 1997), the northwest
Pacific coast of Japan {Kado 2003) and the southeast
Atlanti¢ coast of South Africa (Simeon-Blecher et al.
2008). While this barnacle was first recognised along
the South African west coast in 2007, photographic
evidence suggests that it was introduced more than
20 yr ago (Laird & Griffiths 2008). By the time this
invasion was recognised, B. glandula was already Lhe
deminant barnacle, accounting for 78.5% of all bar-
nacles (Leird & Griffiths 2008}, While its abundance
was patchy at beth meso- and macro-scales; this bar-
nacle supported up to 28455 ind. m™? and had a
range of 400 km stretching from Elands Bay to Misty
Cliffs on the Cape Peninsula (Laird & Griffiths 2008).
As predatory gastropods are commonly the dominant

predatoss of intertidal barnacles (Barnes 1999), often
regulating their distribution and abundance (Connell
1970, O'Riordan et al. 2010), it calls inio question the
role of native predatory whelks in mediating the
expansive invasion of B. glandula along the South
African coast.

We adopted 3 approaches to assess the role of pre-
dation-linked biotic resislance in regulating the
spread of B. glandula. First, we monitored the abun-
dance and distribution of this aggressive invader to
quantify changes in population status and geo-
graphic range. Second, we undertook field observa-
tions to evaluate the hypothesis that B. glandula
experiences less predation pressure than that of the
most abundant nalive barnacle Nolomegabalanus
algicola. Last, we used laboratory experiments to
assess the hypothesis that native whelks would show
an avoidance of the alien barnacle, To help explain
differences in predation we tested for differences in
structural defences and palatabilily between the 2
barnacles.

MATERIALS AND METHODS
Abundance and range of Balanus glandula

The distribufion and abundance of B. glandula was
monitored annually in the winter months of 2012,
2013 and 2014, Selected sites surveyed by Laird &
Griffiths {2008) were resurveyed (Fig. 1, Table 1) and
new siles were added. The range of B. glandula was
delimited once no individuals had been recorded
along the coast for 30 km. At each site, the abun-
dance of this invasive barnacle was recorded in
0.1 m* quadrats (n = 10) that were randomly placed
both within the mid- and low-shore.

Field observations of feeding patterns

All predation studies were carried out at Blouberg-
strand {Fig. 1). This site was chosen as it supports
large populations of the indigenous whelks Burnu-
pena lagenaria and Trochia cingulafa (previousty
Nucella cingulata), as well as B, glandula and the
indigenous barnacle Notomegabalanus algicola. Al
this site, the percentage cover of each barnacle
species was scored in 15 randomly placed 0.25 m®
quadrats in the mid- and low-shore during 2 sequen-
tial tidal series. Percentage cover was estimated by
dividing the quadrat into 100 squares each repre-
senting 1 % cover. The high-shore was not included,
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Fig. 1. Sampling sites along the west and south coasts of

South Africa and places named in the text. Field observa-

tions were undertaken at Bloubergstrand (BB); site abbrevi-
ations as in Table 1

as it supported only B. glandula. These measure-
ments were made during the evening low tide, and
feeding activity of the 2 whelk species on the 2 bar-
nacles was assessed in each quadrat. Based on obser-
vations of whelks maintained in the laboratory, indi-
viduals were considered to be feeding if they did not
move from their original position for more than 30 s
and were observed to be making small oscillating
movements.

Prey-selection experiments

To complement our field observations and gain a
measure of predation by B. lagenaria and T. cingu-
lata on the 2 barnacle species over an extended
period, we undertook 5 d laboratory feeding experi-
ments. This approach also offered the opportunity to
consider the effect of whelk size on the choice of bar-
nacle prey species. Whelks and barnacles were col-
lected from the mid- and low-shore at Blouberg-
strand. As both barnacle species could be found on
the shells of the mussel Mytilus galloprovincialis,
barnacles were collected by collecting mussels that

Table 1. Sites surveyed during monitoring of Balanus glan-
dula along the South African coast

Site GPS coordinates

s E
LB: Lambert's Bay 32° 05.442 18° 18.023'
EB: Elands Bay 32° 19.076" 18° 18.856"
P: Paternoster 32° 48.084" 17° 55.140°
MI: Marcus Island 337 02.019" 17° 56.127
BB: Bloubergstrand 33°48.135' 18° 27.545'
HB: Hout Bay 34° 02.902' 18° 21.650'
MC: Misty Cliffs 34° 11.025' 18° 21.601
CP: Cape Point 34° 20.126' 18° 25.520'
SF: Seaforth 34° 12.004' 18°27.222'
DB: Dalebrook 34° 07.436' 18° 27.154'
S.I: St. James 34° 06.597' 18° 27.420'

contained more than 50 individual barnacles of
either species. In the laboratory, the mussels were
opened and cleaned of all flesh. The number of bar-
nacles present on a mussel shell was then standard-
ised to 20 individuals of either species. In the field, B.
glandula and N. algicola supported only 1 size class
each and therefore sizes unavoidably differed
between species (B. glandula mean + SD basal diam-
eter of 5.5 + 0.7 mm and N. algicola 4.5 = 0.6 mm). In
order to determine the effect of whelk size on preda-
tion, 2 size classes (based on shell length) of each
whelk species were used, i.e. B. lagenaria large (27.7
+ 0.4 mm) and small (15.5 = 0.5 mm) and T. cingulata
large (19.6 = 0.5 mm) and small (13.9 = 0.3 mm). Ani-
mals were starved for 48 h prior the experiment to
standardise hunger.

Individual 2 1 tanks were set up containing 2 mus-
sel shells: 1 with 20 B. glandula and 1 with 20 N. algi-
cola. Control tanks contained no whelks while treat-
ment tanks had either 1 small or 1 large whelk.
Mussel shells were secured to the bottom of the
tanks. Due to space constraints, only 10 control tanks,
10 tanks containing 1 small whelk each and 10 tanks
containing 1 large whelk could be maintained at any
time. Two such runs were completed for each whelk
species. As t-tests showed no significant differences
between runs for each treatment for each whelk
species (p > 0.05), runs were combined to achieve a
sample size of 20 replicates treatment™! whelk™', All
tanks were supplied with filtered and aerated sea
water maintained at 15°C and were subjecttoa 12 h
light cycle. Dead barnacles were not replaced during
the experiment, as at no stage were all individuals of
one species depleted. The numbers of empty barna-
cle tests were recorded after 5 d as a measure of
predation.
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Comparison of barnacle siructural defences and
palatability

In order to understand how morphological features
may regulate differences in predation on the 2 bar-
nacle species, shell wall plate thickness, opercular
plate thickness, opercular length and cpercular
width were compared hetween 20 B, glandulaand N.
algicola individuals. In addition, wall plates of each
were checked for the presence of external ribbing
and the position of the opercular plates in relation to
the operecular opening.

To assess how palatability may affect prey selec-
tion by B. lagenaria and T. cingulata, 10 whelks of
-aach species were offered 5§ B. glandula and 5 N.
algicola. All barnacles were removed from their
shells prior to being presented to the wheltks. The
numbers of barnacles of each species eaten within
30 min were recorded. Only individuals of the large
size class of each wheik species were used in these
trials. Prior to the experiment, whelks were starved
for 48 h to standardise hunger.

Statistical analyses

Prior to all statistical tests, data were checked for
normality using normal prebability plots and
homoscedasticity of variances using ratios of mazxi-
mum te minimum variances (Zar 2010). Significance
levels for all analyses were set at o0 = 0,05. Uniess
stated otherwise, ell analyses were conducted in
STATISTICA 10,

The abundance of B. glandula was assessed among
sites and years using a generalized least squares
(GLS} model for each intertidal zone (i.e. with site
and year as predictor variables and abundance as the
oufceme variable]. The best model was chosen based
on the lowest value of Akaike's information criterion.
This analysis was done in R. Raw data for the mid-
shore were log lransformed as a result of extreme
variation in abundances among sites.

Field observations of B. lagenaria and T. cingulata
feeding on bharnacles were analysed separately for
the mid- and low-shore. As no -significant effect of
sampling occasion was found for % cover of the 2
barnacle species, the number of each whelk species
present or predating on B, glandula and N. algicola
{t-tests p > 0.05 in all cases), data from the 2 occasions
were combined for all analyses, The % cover of the 2
Irarnacles was compared using a t-lest while the
numbers of each whelk species feeding on B. glan-
dula and N. algicola were compared using a general-

ized linear model (GLM]) with a Poisson error distri-
bution in R.

Earnacle mortality during predation experiments
was compared among whelk species, barnacie spe-
cies and between treatments using a multi-factorial
ANOVA, followed by a Fisher LSD post hoc test. Data
obtained from predation experiments were also nsed
to calculate Ivlev's electivity index (E'}). The purpose
of the index is to characterise the electivity (i.e.
degree of selection) of a prey species by the predator.
The relationship is defined as:

E=rn-p/ri+p) (13

where E is the measure of electivity, calculated with
data obtained after 5 d, r, is the proportion of prey
species I in the diet (i.e, number of prey species i con-
sumed divided by the total number of barnacles con-
sumed), and p; is the proportion of prey species i
available (Ivlev 1961). In this experiment, whelks
were offered equal numbers of each prey species, so
Pi = 0.5, and potential values of E ranged from 0.333
(exclusive diet) to 0 {equal preference for each spe-
cies) to —1 [complete avoidance), with negative val-
ues indicating avoidance of the prey, 0 indicating
random selection and positive values indicating
active selection {Iviev 1861). As selection of one bar-
nacle species was not independent of the other spe-
cies within a tank {Peterson & Renaud 1989, Roa
1992}, E indices were compared using Frisdman's
ANOVA and Kendall's coefficient of concordance.
This was followed by a multiple comparisons test for
nonparametric randomised block analysis ol vari-
ance following Zar (2010},

Morphological features of B. glandula and N. algi-
cola and the numbers of individuals consumed per
whelk species in palatability triels were compared
using ANCOVA to account for the unavoidable dif-
ferences in basal diameter between barnacle species.
Prior to these analyses, the assumptions of normality
of the error terms, homogeneity of variance, similar
range of covariate values and homogeneity of the
slopes and linearity (Quinn & Keough 2002) were
considered.

RESULTS
Abundance and range of Balanus glandula
In'2012, B. glandula had expanded its known range
in a northerly direction by more than 100 km, extend-

ing from Elands Bay tc Lambert's Bay (Fig. 2).
Notably, it had also extended its distribution in a
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Fig, 2. Abundance +SE of Ealanus glandula at 11 sites monitored fram 2012 to
2014, Circles indicate years when the barnacle was present but at densities
bolow 700 ind, m™% The sclid line represents the Cape Peint biogeographic

break. Site abbreviations as in Table 1

were observed at Seaforth every year.
As of 2014, this species occurs from
Lambert's Bay to 5t. James.

The alien barnacle accounted for
100% of barnactes recorded at Elands
Bay, Paternoster, Marcus Island and
Hout Bay in all years but varied in
abundance {Fig. 2). In the mid-shore
where B. glandula was most abundant,
abundance varied with both site
(ANOVA, F= 4914, p = 0.0012) and
year (ANOVA, F = 35.39, p = 0.00006),
with lower densities being recorded in
2013 (GLS model, t = -=5.361643, p =
0.00002). In the low-shore, densities of
Lthis barnacle did not differ significantly
among years but varied among sites
(GLS model, p = 8.06002 in both cases).

Field observations of feeding patterns

in the mid-shore, B. glanduia was
the more dominant of the 2 barnacle
species, covering 86 & 2.4 % (SE) of the
zone compared to less than 2 x 0.9%
covered by Notomegabalanus algicola
(f-test, £=38.1, p = 0.009; Fig. 3a). In this
zone, Burnupena lagenaria and Trochia
cingulata whelks occurred at densities
of 3.9 = 0.87 and 4.7 = 0.71 ind. m™?,
respectively. A high proportion of both
whelk species was observed feeding
(83% of B. lagenaria and 73% of T, ¢in-
gulata), with both species {eeding on
significantly more indigenous N, algi-
cola than on B, glandula (Table 2) de-
spite the low abundance of the former.
Low on the shore, N. algicola was the
dominant barnacle species, covering an
average of 41 = 0.7% of the shore in
comparison to only 3 £ 0.8 % covered by
B. glandula (-test, t = 11.2, p = 0.033).
B, lagenaria was more common in this
zone (7.1 + 0.60 ind. m™?) than in the

southerly direction by more than 50 km and
breached the biogeographic break of Cape Point,
spreading to Dalebrook. Over the next 2 yr, the
northerly range limit of this alien oscillated between
Lambert's Bay and Elands Bay. In 2013, the southerly
limit exiended [rom Dalebrook to St. James where it
remained, although the species was noi consistently
present at Dalebrook. Tt is notable that new recruits

mid-shore, with 88 % of whelks observed feeding. In
contrast, T. cingulata was less abundant than in the
mid-shore (4.1 = 0.82 ind. m~2)}, but the proportion of
feeding whelks increased toc 79%. As in the mid-~
shore, both whelks fed on significantly more N. algi-
cola than on alien barnacles (Table 2}, although B.
lagenaria consumed more barnacles of both species
than did T, cingulata (Fig. 3b).
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Fig. 3. Percentage cover of Balanus glandula and

Notomegabalanus algicola and the mean (+ SE) density of
Burnupena lagenaria and Trochia cingulata whelks feeding
on each of these barnacles in (a) the mid-shore and (b) the
low-shore. The percentage cover of the 2 barnacles differed
significantly in both zones ((-test, p < 0.05 in both cases).
Shared letters indicate no significant differences in the num-
ber of barnacles consumed by the whelks (general linear
model, p > 0.05)

Prey-selection experiments

Laboratory feeding experiments revealed that both
whelk species consumed significantly more N. algi-
cola than B. glandula (Fig. 4, Table 3), although this
pattern was not exhibited by large B. lagenaria
(Fisher LSD, p = 0.055). The significantly lower bar-
nacle mortality in control treatments (Fisher LSD, p <

Table 2. Results of a general linear model analysing the
number of Burnupena lagenaria and Trochia cingulata
whelks feeding on the barnacles Balanus glandula (alien)
and Notomegabalanus algicola (indigenous) in the field

Shore zone Effect df F p
Mid-shore Whelk sp. 1 0.09 0.771
Barnacle sp. 1 316 0.0009
Whelk sp. x Barnaclesp. 1 003 0.849
Low-shore Whelk sp. 1 40,79 0.0008
Barnacle sp. 1 40.80 0.000%
Whelk sp. x Barnaclesp. 1 842 0.004
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c
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Fig. 4. Mean (x SE) mortality of Balanus glandula and

Notomegabalanus algicola barnacles simultaneously

offered to small and large (a) Burnupena lagenaria and

(b) Trochia cingulata whelks after 5 d. Control treatments
had no whelks
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Table 3. Results of a factorial ANOVA analysing the number
of dead Balanus glandula and Notomegabalanus algicola
barnacles at the end of laboratery prey selection expen-
ments, Treatments constitute controls (Le. harnacles with no
whelks) and cxposure to small and large whelks

Whelk Effect df F P

spacies

Burnupena Treatment 2 64,75 0.0001

lagenaria  Barnacle sp. 1 12.56 0.0006
Treatment x Barnacle sp. 2 2.61 0.078

Trochia Treatment 2 4916 0.0001

cingulata  Barnacle sp, 1 17.74 0.0002
Treatment x Barnaclesp. 2 4.23 0.016%9

0.05 for both species) is indicative of mortality in
whelk treatments resulting from predation. Ivlev's
electivity index showed both size classes of B. lage-
naria consuming significantly more N, algicola and
fewer B, glandula than would be expected if diet was
‘proportional to abundance of prey (Fig. 5a&, Table 4).
Small individuals, however, showed a significantly
greater aveidance of B. glandula and preference for
N. algicola (p = 0.032) than did the large whelks. T.
cingulata also demonstrated a preference for feeding
cn the indigenous barnacle while aveiding 8. gian-
dula (Fig. 5b, Table 4}, However, no significant dif-
ference in preference for N. algicola (p = 0.068) or
avoidance of B. glandula (p = 0.081) was cbserved
between small and large individuals of this species.

Comparison of barnacle siructural defences and
palatability

The morpholegical characteristics of B. glandula
and N. algicola show marked differences (Fig. 6).
While both barnacles have 6 wall plates, the ocpercu-
lar plates of the native were more exposed than those
ol B. glandula, and a narrow ring of vulnerable soft

Tahle 4. Results of Friedman's ANOVAs and Kendall's cosf-

ficient of concordance comparing Iviev's eleclivity () be-

tween barnacle species {Balanus glandila and Netomega-

balanus algicola) and among size classes of the 2 indigenous
whelk species

Whelk species ANOVA ¥* p Kendall's
n=20df=3) coelficient of
concordance
Burnupena lagenaria i4.05 0.609 0.22
Trochia cingiilata 14.70 0.006 0.25

0.z, {8)B. lagenaria
M B glandula

M. algicola
0.1 N alg

2=

Electivity Index

Smait Large

oz . (b} T cingulata

01 T

Electivity Index

Small Large

Fig. 5. Ivlev's electivily index (£SE} for {a) Burnupena lage-
naria and {b) Trochia cingulata whelks offered the barnacles
Balanus glandula and Notomegabalanus algicola. Small and
large size class whelks were offered equal guantities of
barnacles, In this case, Ivlev's index theoretically ranges
from 0.333 (exclusive diet) to 0 {egual preference for each
species) to —1 {complete aveidance), Positive values indi-
cale active selection while negative values indicate prey
avoidance

tissue was found around the opercular plates of N.
algicola. External ribbings on wall plates were pres-
ent in the alien but absent in the native barnacle. In
addition, B. glandula had significantly thicker walis
(ANCOVA, F=70.5, p = 0.017} and opercular plates
(ANCOVA, F = 52,5, p = 0.026) and significantly
longer (ANCOVA, F = 68, p = 0.045) and wider oper-
cula (ANCOVA, F=11.0, p = 0.035) than N. algicola,
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Netomegabalanus algicola consumed by Burnupena lage-

naria and Trochia cingulata whelks when simultaneously

offered 5 ol each barnacle species. No significant differ-

ences were detected between the number of each barnacle

species consumed by either whellt (ANCOVA, p > .05 in
both cases}

even when the differences in size were accounted
for,

No significant differences were recorded in the
number of shelled B. glandula and N, algicola con-
sumed by either whelk species (ANCOVA, p > 0.05
in both cases; Fig. 7).

DISCUSSION

While substantial research effort has focused on
the anthropogenic drivers of marine invasions {for
example, see Minchin 2007, Forrest et al. 2009,
Mineur et al. 2012, Seebens et al. 2013), studies
quantifying the regulators and inhibitors of the
spread of these species are less common (Carlsson et
al. 2009, Freestone et al. 2013}. Of those studies that
have considered biotic resistance to marine alien
species, most have focused on resistance to invasive
consumers and have recorded sironger resistance
than studies considering invasive producers (Kimbro
et al. 2013). However, little is understood about
resistance to non-predatory invasive species that
exert their impact through the acqguisition of non-
food based rescurces. We aimed to address this gap
by considering predation-driven biotic resistance to
the intertidal barnacle Balanus glandula along the
South African coast.

This harnacle had a range of 400 km along the
South African west coasi when it was first recognised
in 2007 (Laird & Griffiths 2008}, but has now
extended this by 150 k. Most notably, B. glandula
has spread south and breached the hiogeographic
break of Cape Point, a well established boundary
that delimits the cool temperate Southern Benguela
Ecoregion to the west and the warmer Agulhas
Ecoregion to the east (Sink et al. 2012), 2 regions that
share <20% similarity in faunal composition (Eman-
uel et al. 1992}, It was previously thought unlikely
that B. glandula would spread past Cape Point (Laird
& Griffiths 2008) for 2 reasons. Firstly, the tempera-
tures of its native (Kado 2003} and other invasive
ranges {Elias & Vallarino 2001, Kado 2003, Rico &
Lépez-Gappa 2006) match the cool temperaie west
coast, suggesting that the warmer waters of the south
coast were oulside the thermal range of this species,
Secondly, prevailing currenis move in a westerly
direction (Harris 1978), making larval spread around
the point in an easterly direction unlikely, While the
mechanism of spread remains unclear, B. glanduia
has extended its range east past Cape Point. This
may be explained by recent work that documented in
situ nearshore water temperatures along the South
African coast for the first ime (Smit et al. 2013) and
showed that mean femperatures remain below 18°C
east of Cape Point until Cape Agulhas, although
sumnmer temperatures reach 20°C in some areas, It
thus remains unclear how far this barnacle may
spread along the south coast or whether warmer
pockets along the coast will pose a barrier. The oscil-
lating nature of the invasion front of this species up
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the west coast is often observed in invasive species,
as populations consolidate over time before continn-
ing to spread (Suarez et al. 2006, O’'Connor 2014).
This pattern has been recorded for B. glandula in
Japan {Alam et al. 2013}, where local extinctions
occurred at the imvasion front but declined in fre-
quency after 5 yr when recruitment increased (Alam
et al. 2013). It is expected that B. glandula will con-
tinue to spread north up the Scouth African weslt coast
as there is currently no known barrier to its spread in
that direction.

Unfortunately, gualitative consideration of the
impact of the spread of B. glandula on indigencus
barnacles is not possible, as no systematic historic
meonitoring of rocky shores has taken place in within
the range of this aggressive invader. The only study
that may have shed light on this aspect was under-
taken on Marcus leland (Robinson et al. 2007}, but
there, native barnacles were spatially and temperally
variable even before the invasion of B. glanduia.
Nonetheless, Simon-Blecher et al. {2008) suggested
that the dominance of B. glandula and the concurrent
coast-wide reduction of the native chthamaloid
Chthamalus dentatus were driven by competition
between these barnacles.

The fact that B, glandula has spread so prolifically
raises questions about the role of predation as a reg-
ulator of this species, especially as it is contrelled by
whelk predaters in its native range (Connell 1970).
From our field observations of feeding patterns and
laboratory prey-selection experiments, we accepted
our hypotheses that (1) B, glandula experiences less
predation pressure by native whelks than does the
native barnacle Notomegabalanus algicola and {2)
native whelks show an avoidance of this invader. A
similar avoidance of a novel barnacle prey by preda-
tory whelks was observed in northern California
{USA), where the range expansion of the volcanc
bamacle Tetraclita rubescens was ascribed to recent
warming and low predation pressure in its new
range (Sanford & Swezey 2008}. While small Burnu-
pena lagenaria and all Trochia cingulata whelks
avoided B, glandula in feeding trials, large B. lage-
naria showed no avoidance. Taken together with the
fact that large B. lagenaria are most abundant in the
low-shore {T. B. Robinson pérs. obs.), this suggests
that while predaticn-driven biotic resistance may not
be controlling the range extension of the invasive
barnacle, predation by B. lagenaria may influence its
cownshore distribution, at least in areas where this
whelk is abundant. This finding supports suggeslions
by Laird & Griffiths (2608) that predation may have &
regulatory effect on low-shore B. glandula popula-

tions. This manifestation of biotic resisitance poten-
tially constraining an invasion {i.e, in its vertical
extent) aligns with previous suggestions that biotic
resistance is more likely to limit invasions rather than
repel then (Levine ef al. 2004, Carlsson et al. 2009).
Nonetheless, at the scale of this invasion, the effect of
predation by B, lagenaria is likely to be quite small,
as this whelk occurs at highest densities on sheltered
shores (Blamey & Branch 2009} where B, glandula is
least abundant (Laird & Griffiths 2008). While biotic
resistance to B, glandula has not been assessed in its
other invaded ranges (i.e. Japan and Argentina), it
would be interesting to determine whether predation
plays a regulating role in these regitons.

Low predation pressure on a novel prey may be ex-
plained by various factors, including {1} the absence
of a co-evolutionary history (Dietl 2003); (2} behav-
ioural mechanisms relating to lack of experience with
handling the prey (Wieters & Navarrete 1898); (3) su-
perior defences in comparison to other prey choices
{Palmer 1982); and (4) low palatability {Nelson et al,
2011). It is unlikely that either the absence of co-evo-
lution or handling inexperience explain the observed
avoidance of B, glandula. As this barnacle has been
present for at least 20 yr and its high abundance
makes it the species most often encountered by
whelks in the field, prey naivety should not have in-
fluenced cur findings. However, assessments of mor-
pholegical defences revealed that N. algicola is much
more viulnerable to whelk predation than B. glandula
is. As no drill holes were found in any of the barnacles
used during laboratory experiments, it appears that
whelks attacked through the opercular openings of
the barnacles, or in the case of N. algicola, through
the flesh around the opercular plates. The finding
that B. lagenaria and T. cingulata did not differentiate
ketween the alien and native barnacles when their
shells were removed indicates that palatability does
not differ between the 2 species, Instead, the differ-
ences in structural defences (like exposed soft Hssue
and thinner wall and opercular plates) are likely to
explain the preference for N. algicola and the avoeid-
ance of B. glandula displayed by both whelks.

While the results from this study are reflective of
the situation on the west coast, it is unclear what
biotic resistance B, glandula may lace east of Cape
Point. Although B. lagenaria does occur on the south
coast, T. cingulata, along with many intertidal preda-
tory whelks, is confined to the Southern Beaguela
Ecoregion. Particularly belween Cape Point and
Cape Agulhas, most intertidal whelks are scavengers
and will thus not affect the potential spread of this
invasive barnacle. While large predators such as
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