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Biological invasion, or the translocation of animals, plants 
and pathogens to novel habitats, often with human help, is 
one of the distinguishing characteristics of the Anthropocene 
(Ellis et al. 2012; Capinha et al. 2015). In numerous cases, 
declines in biodiversity are directly linked to the spread of 
highly competitive, generalist invasive species (Ricciardi 
2007; Bellard et al. 2016) and many invasive species impact 
their new ecosystems negatively (Simberloff 2011).

In particular, the role of invasive species in the alteration 
of parasite dynamics in their novel habitats is frequently 
overlooked (Blackburn and Ewen 2017). Conversely, 
introduced hosts could cause the amplification of native 
parasite dynamics, by acting as reservoirs for native 
parasites that can eventually spill back to native hosts, or 
conversely, they can dilute these interactions by acting 
as dead-end hosts for native parasites (Telfer and Bown 
2012). These ripples can be felt several links down the food 
chain, especially in the case of parasites transmitted via 
trophic interactions (Amundsen et al. 2013).

The globally invasive African clawed frog, Xenopus laevis 
(Daudin, 1802) (Anura: Pipidae) is one of the world’s most 

widely distributed amphibian invaders. Its human-mediated 
range expansion was initiated in the 1930s through its use 
as a biological pregnancy assay and a model research 
animal and later with the help of the pet trade (Gurdon and 
Hopwood 2000; Weldon et al. 2007; van Sittert and Measey 
2016). Currently, its invasive range spans four continents, 
with established populations mainly in areas with a 
Mediterranean climate (Lobos and Measey 2002; Measey et 
al. 2012). However, climate and niche modelling have made 
it clear that X. laevis still has many potential environments to 
fill across the globe (Measey et al. 2012; Ihlow et al. 2016; 
van Sittert and Measey 2016; Rödder et al. 2017).

In addition to its status as global invader, X. laevis 
exhibits recurring range expansion within its native range 
(Measey and Davies 2011; Measey et al. 2017). These 
domestic invasions were brought about by its frequent 
translocation for research and training purposes in the past 
(van Sittert and Measey 2016) and continues to the here 
and now through natural dispersal via overland movement 
and artificial waterbodies (Measey 2004; Measey et al. 
2012; Measey 2016; de Villiers and Measey 2017).
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The effect of invasive species on local parasite dynamics is often overlooked. The African Clawed Frog Xenopus 
laevis (Daudin, 1802) (Anura: Pipidae) is a global invader, with established populations on four continents and is a 
domestic exotic in southern Africa. Despite a century of parasitological surveys, the current study reports seven 
previously unrecorded nematode species parasitising X. laevis across South Africa. These are adult Capillaria sp. 
and Falcaustra sp. from the intestine, third stage larvae of Contracaecum sp. encysted in the body cavity, third 
stage larvae of Paraquimperia sp. and Tanqua sp. from the intestine and two different species of second stage 
nematode larvae from the lungs and kidneys, respectively. Morphological descriptions, photomicrographs and 
molecular data of the 18S and 28S rRNA and COI genes are provided to aid future investigations. We propose that 
these nematodes could well be using X. laevis as a definitive, paratenic and intermediate host, probably involving 
native fish, piscivorous birds, semi-aquatic reptiles and invertebrates in their life cycles. All recovered nematodes 
are recorded for the first time herein in association with X. laevis, except for the genus Contracaecum, members of 
which have previously been recorded from invasive X. laevis from California and Chile. The current study illustrates 
that X. laevis is an important parasite reservoir in its native range, with implications for its role in the invasive range. 
The fact that none of these nematodes could be identified to species level underscores the importance of provid-
ing morphological descriptions and molecular data when reporting on parasitological surveys, especially those of 
known invasive species.
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The parasite fauna of X. laevis has received extensive 
attention since the early 1900s, with more than 25 parasitic 
genera, representing all invertebrate parasite groups, 
except acanthocephalans, described in association with 
this host in its native range (Tinsley 1996). Although the 
parasite communities of invasive X. laevis are significantly 
impoverished (Schoeman et al. 2019), at least three of its 
coevolved parasites have been cointroduced across the 
invasive range (Tinsley and Jackson 1998b; Jackson and 
Tinsley 2001a; Kuperman et al. 2004; Rodrigues 2014; 
Schoeman et al. 2019). These are the monogeneans 
Protopolystoma xenopodis Price, 1943 and Gyrdicotylus 
gallieni Vercammen-Grandjean, 1960 and the cestode 
Cephalochlamys namaquensis Cohn, 1906 (see Schoeman 
et al. 2019).

Notably, host-specific parasites with complex life 
cycles are absent from the accompanying parasite 
assembly (Schoeman et al. 2019). Notwithstanding, it is 
specifically the digeneans and nematodes native to the 
invasive range of X. laevis that have been able to form 
novel host-parasite associations with the new invader 
(Kuperman et al. 2004; Rodrigues 2014; Castillo et al. 
2017; Schoeman et al. 2019).

In the case of nematodes, Kuperman et al. (2004) 
reported juvenile stages of Contracaecum Rialet et Henry, 
1912 (Ascaridoidea: Anasakidae) from the body cavity and 
Eustrongylides Jägerskiöld, 1909 (Dioctophymatoidea: 
Dioctophymidae) from the subcutaneous tissue in the 
Californian invasive population of X. laevis. In addition, 
Contracaecum larvae were also recorded at very low 
infection levels encapsulated in the intestinal serosa of 
X. laevis invasive in Chile (Castillo et al. 2017). Both sets 
of authors proposed the native parasite fauna of California 
and Chile to be the source of the infections, because none 
of these parasites have been reported in association with 
X. laevis from southern Africa (Kuperman et al. 2004; 
Castillo et al. 2017).

In turn, in the native range, the Nematoda is the second 
most speciose taxon among the parasites of X. laevis after 
the Digenea (Tinsley 1996). Of these, three species belong 
to the Family Camallanidae (Camallanoidea), namely 
Batrachocamallanus slomei (Southwell et Kirshner, 1937), 
Camallanus kaapstaadi Southwell et Kirshner, 1937 and 
C. xenopodis Jackson et Tinsley, 1995. These species 
are found across Africa in Xenopus spp. (Southwell and 
Kirshner 1937; Kung 1948; Yeh 1960b; Thurston 1970; 
Avery 1971; Tinsley et al. 1979; Jackson and Tinsley 
1995a, 1995b; Svitin et al. 2018) and C. kaapstaadi has 
been found to infect crocodilians through post-cyclic 
parasitism (Junker et al. 2019). Another described 
nematode is Pseudocapillaroides xenopi Moravec et 
Cosgrove, 1982 (Enoplida: Capillariidae), of which all 
the life stages infest the skin of X. laevis (see Cosgrove 
and Jared 1974; Cosgrove and Jared 1977; Moravec and 
Cosgrove 1982; Wade 1982; Cohen et al. 1984; Stephens 
et al. 1987; Brayton 1992; Feldman and Ramirez 2014).

A few reports of unidentified nematodes described in 
association with X. laevis across its native range have 
arisen over the years, ranging from a single specimen of 
probably Rhabdias Stiles et Hasal, 1905 (Rhabditoidea: 
Rhabdiasidae) in the lung (Cosgrove and Jared 1974) 

and two species of quimperiid nematodes (Ascaridoidea: 
Quimperiidae) in the intestine (Thurston 1970), to 
unidentified nematodes encysted in body tissues (Cosgrove 
and Jared 1974). Larval nematodes in the glomerular 
space were also reported (Cosgrove and Jared 1974; 
Brayton 1992). These reports, though rare, suggest that 
X. laevis could act as a paratenic or intermediate host 
for some nematodes in its native range, as it has already 
proven itself to be capable of this in the invasive range.

In light of the pervasive effects of trophically transmitted 
parasites in biological invasions (Dunn et al. 2012; Roy 
and Lawson Handley 2012; Amundsen et al. 2013), it is 
paramount to have a better understanding of the role of 
X. laevis in the parasite dynamics of its native ecosystems. 
To this end, as part of a larger parasitological survey of 
X. laevis across the whole of its native range, the current 
study is the first report of seven nematode species 
parasitising this host in South Africa. Short morphological 
descriptions, supported by photomicrographs and molecular 
data (18S and 28S rRNA and the COI gene sequences), 
as well as distribution information, are provided for future 
reference in the native range and beyond. Furthermore, 
possible avenues of parasite transmission are explored, 
based upon a survey of the literature.

Materials and methods

In total, 181 adult individuals were collected in chicken 
liver baited funnel traps from 28 localities across South 
Africa from March 2017 to April 2019 (see Supplementary 
Table S1 for detailed information on all collection sites). 
The frogs were anaesthetised in 6% ethyl-3-aminobenzoate 
methanesulfonate (MS222) (Sigma-Aldrich Co., St. Louis, 
Missouri, United States) and subsequently euthanised 
through pithing, according to internationally accepted 
standard operating procedures. For the external parasite 
examination, the epidermis, lateral line, eyes, buccal cavity, 
eustachian tubules and nostrils were examined. Thereafter, 
the body was slit open longitudinally and the alimentary 
tract, kidney, excretory bladder, gallbladder with bile ducts, 
liver, lungs, heart and reproductive organs were removed 
and examined separately using a stereomicroscope in 0.6% 
amphibian saline, prepared according to Ringer’s method 
(du Preez and van Wyk 2007), for internal parasites. The 
acquired nematodes were washed in saline, fixed in 70% 
hot ethanol and subsequently stored in 70% ethanol.

Prior to microscopic examination, the nematodes were 
placed in distilled water for about 20 min and then cleared 
in lactophenol for a period of time ranging from 30 min to 
24 h, depending on the size of the respective nematode. 
The morphology of the nematodes was studied and 
photomicrographs taken using ZEISS Axio Z1, Nikon 
AZ100, Nikon E800 and Nikon ECLIPSE Ni compound 
microscopes. Measurements were taken with the aid of 
the software ZEN (blue edition) (Carl Zeiss Microscopy 
GmbH, Jena, Germany) and NIS-Elements Documentation 
version 3.22.09 (Nikon Instruments Inc., Tokyo, Japan). In 
total, two of nine Capillaria sp. Zeder, 1800 females, nine 
of 183 Contracaecum sp. larvae, seven Falcaustra sp. 
Lane, 1915 (three females and four males), two of four 
Paraquimperia sp. Baylis, 1934 larvae, four of nine 
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Tanqua sp. Blanchard, 1904 larvae, 14 of approximately 
1 035 unidentified nematode larvae sp. 1, and eight of 
approximately 150 unidentified nematode larvae sp. 2 
were measured. All measurements in the text are given 
in micrometres, unless stated otherwise, and presented 
as mean values, followed by ranges in parentheses. For 
molecular studies, the middle fragments of specimens 
were used, whereas the taxonomically important anterior 
and posterior parts were reserved for the morphological 
identification of species.

DNA was extracted using the PCRBIO Rapid Extract 
PCR Kit (PCR Biosystems Ltd., London, United Kingdom). 
Cytochrome oxidase c subunit I (COI) amplicons were 
obtained using the primer pair ‘LC01490’ (5′-GGT CAA 
CAA ATC ATA AAG ATA TTG G-3′) and ‘HCO2198’ 
(5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′) 
(Folmer et al. 1994). The thermocycling profile was as 
follows: 3 min denaturation at 94 °C, 20 cycles of 94 °C for 
30 s, 45 °C for 30 s, 72 °C for 1 min and 40 cycles of 94 °C 
for 30 s, 51 °C for 1 min, 72 °C for 1 min for amplification 
and finally 72 °C for 10 min for extension. The 18S rRNA 
was amplified by the primer pair ‘F18ScF1’ (5′-ACC GCC 
CTA GTT CTG ACC GTA AA-3′) and ‘F18ScR1’ (5′-GGT 
TCA AGC CAC TGC GAT TAA AGC-3′), with the following 
thermocycling profile: 5 min denaturation at 95 °C, 40 
cycles of 95 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min 
30 s for amplification, followed by an extension of 7 min at 
72 °C (Lefoulon et al. 2015). The 28S rRNA was amplified 
using the primer pair ‘LSU5’ (5′-TAG GTC GAC CCG CTG 
AAY TTA AGC A-3′) and ‘LSU3’ (5′-TAG AAG CTT CCT 
GAG GGA AAC TTC GG-3′) (Littlewood et al. 1997), with 
the thermocycling profile as follows: one initial step of 
5 min at 95 °C for long denaturation; 35 cycles of 1 min 
at 95 °C for denaturation, 2 min at 48 °C for annealing and 
2 min at 72 °C for elongation and one final step of 10 min 
at 72 °C for terminal elongation (Verneau et al. 2009). For 
purification and sequencing, PCR products were sent to 
a commercial company (Inqaba Biotec, Pretoria, South 
Africa) that used the ExoSAP protocol (New England 
Biolabs Ltd., Massachusetts, United States) for purification. 
Sequencing was performed via BigDye® Terminator version 
3.1 Cycle Sequencing, utilising the corresponding primer 
pairs used for the final PCR reaction, on an ABI3500XL 
analyser (Applied Biosystems™). Contiguous sequences 
were assembled and edited using Geneious version 9.0 
(Saint Joseph, Missouri, United States) and submitted to 
GenBank.

For each nematode species, prevalence, mean infection 
intensity and mean abundance were calculated for the localities 
where the species was present, sensu Bush et al. (1997).

All applicable institutional, national and international 
guidelines for the care and use of animals were followed 
under the North-West University ethics approval number 
NWU-00380-16-A5-01. 

Results

During the course of the current study, seven species of 
nematodes were discovered in association with X. laevis at 
ten localities across South Africa (Figure 1). Some species, 
such as the Contracaecum sp. encysted third stage larvae, 

were quite common across the region, whereas other 
infections were more localised. The unidentified second 
stage larvae from the lungs had the highest abundance 
and infection intensity of all at the three localities where it 
occurred (Table 1).

Nematode descriptions

Capillaria sp.
Site of infection: Stomach, intestine and rectum
Representative DNA sequences: 28S rRNA (MN526255)

Description
Females (Figure 2). Measurements based on two gravid 
specimens. Body elongated, thin at anterior part widening 
posteriorly, 9.4–15.6 mm long, 58–66 μm wide. Anterior 
and posterior ends rounded. Muscular oesophagus 
elongated, evenly widening towards posterior end, 
272–324 μm long. Stichosome almost cylindrical along 
whole length, 2.3–2.7 mm long. Stychocytes wider than 
long, with often indistinct merges. Total oesophagus 
2.7–3.0 mm long. Nerve ring encircling oesophagus at 
level of its anterior half, 107–121 μm from anterior end 
of body. Vulva pre-equatorial, with thick walls, situated 
at 2.9–4.6 mm from anterior end of body, comprising 
29–31% of body length. Vulva with 76–238 eggs, arranged 
in one row near vulva and in three rows posteriorly. Eggs 
41–54 μm (mean 50 μm) long, 20–26 μm (mean 23 μm) 
wide (n = 10). Intestine straight, narrow, rectum short, with 
thick walls. Tail short, rounded, subterminal.

Remarks
Of the capillariid nematodes, only Pseudocapillaroides 
xenopi has been described in association with X. laevis 
imported to Europe from South Africa (Moravec and 
Cosgrove 1982; Wade 1982). This species was described 
by Moravec et Cosgrove 1982 as Pseudocapillaroides 
xenopi. In the same year, Wade described it as 
Capillaria xenopodis. These two names were used 
interchangeably. However, P. xenopi is regarded as 
the generally accepted one (see Feldman and Ramirez 
2014), because the species clearly belongs to a genus 
separate from Capillaria, based upon both phylogenetic 
and morphological evidence. Representatives of 
Pseudocapillaroides Moravec et Cosgrove, 1982 are 
characterised by the eggs containing developed larvae, 
small body size and the subcutaneous site of infection 
(Moravec and Cosgrove 1982; Wade 1982).

Other reports of capillariids from Africa have been 
registered throughout southern Africa from different 
species of clariid and cyprinid fish. However, in most cases, 
these nematodes were recorded without descriptions and 
identified only to genus level (Boomker 1994a; Moyo et al. 
2009). In our material, only female specimens (of which 
two harboured well-developed eggs) were found in the host 
intestines. Based on the general body measurements, the 
morula stage of the eggs and the site of infection, as well 
as the molecular data, we assign our specimens to the 
genus Capillaria. Unfortunately, because of an absence 
of males and a lack of clear molecular data, we could not 
identify them to the species level.
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Contracaecum sp.
Site of infection: Encysted in the body cavity and on the 
outer surfaces of stomach and liver.
Representative DNA sequences: COI (MN526248), 
18S rRNA (MN526250), 28S rRNA (MN526256)

Description
Third stage larva (Figure 3). Measurements based on nine 
specimens. Body comparatively thick, robust, 42.0 mm 
(28.0–49.0 mm) long, 810 μm (550–925 μm) wide. Along 
entire body cuticle, with conspicuous transverse striations. 
Anterior end rounded, bearing small ventral cuticular 
tooth. Excretory pore situated near tooth. Oesophagus 
elongated, almost cylindrical in anterior half, widening 
posteriorly. Oesophagus 3.1 mm (2.8–3.5 mm) long, 
8.0% (6.6–11.0%) of body length; 92 μm (77–116 μm), 
143 μm (106–192 μm) and 180 μm (99–230 μm) wide at 
anterior, midlength and posterior part, respectively. Nerve 
ring encircling oesophagus at level of its anterior end, 
at 492 μm (363–547 μm) from anterior end of body; 16% 
(12–18%) of oesophagus length. Intestine straight, narrow. 
Rectum short, with thick walls. Tail tapering, 186 μm 
(135–247 μm) long.

Remarks
Third stage larvae of Contracaecum have been found 
encapsulated in the body cavity of numerous fish species 
throughout southern Africa: spot-tail robber Brycinus 
imberi, African sharp-tooth catfish Clarias gariepinus and 
African blunt-tooth catfish C. ngamensis, canary kurper 

Chetia flaviventris, redbreast tilapia Coptodon rendalli, 
common carp Cyprinus carpio, papermouth Enteromius 
mattozi, threespot barb E. trimaculatus, African pike 
Hepsetus odoe, tigerfish Hydrocynus vittatus, largescale 
yellowfish Labeobarbus marequensis, bulldog Marcusenius 
macrolepidotus, largemouth bass Micropterus salmoides, 
Mozambique tilapia Oreochromis mossambicus, threespot 
tilapia O. andersonii, greenhead tilapia O. macrochir, Cape 
kurper Sandelia capensis, dusky bream Sargochromis 
codringtonii, butter catfish Schilbe intermedius, Zambezi 
bream Serranochromis robustus, purpleface largemouth 
S. macrocephalus, blackspotted squeaker Synodontis 
nigromaculatus and banded tilapia Tilapia sparrmanii 
(see Whitfield and Heeg 1977; Mashego and Saayman 
1981; Boomker 1982; van As and Basson 1984; Mashego 
1989; Boomker 1994a, 1994b; Barson 2004; Barson and 
Avenant-Oldewage 2006; Barson et al. 2008; Boane 
et al. 2008; Moyo et al. 2009; Madanire-Moyo et al. 
2010; Smit and Luus-Powell 2012; Sara et al. 2014; 
Mbokane et al. 2015; Moravec and van As 2015; Tavakol 
et al. 2015; McHugh et al. 2016; Moravec et al. 2016). 
Nevertheless, only Moravec et al. (2016) provided detailed 
descriptions (including line drawings and SEM images) of 
Contracaecum sp. from the Cape kurper S. capensis from 
South Africa. Of the Contracaecum species known from 
South Africa, only the gene fragments of C. ogmorhini 
Johnston et Mawson, 1941 from the Cape fur seal 
Arctocephalus pusillus are available in GenBank (Nadler et 
al. 2000; Zhu et al. 2001; Shamsi et al. 2009; Jabbar et al. 
2013). Because the morphology of the third stage larvae of 
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Figure 1: Distribution of seven previously undescribed species of nematodes recovered at ten localities across South Africa during the 
parasitological screening of Xenopus laevis. The presence of more than one nematode species in hosts from a single locality (Dullstroom, 
Vanrhynsdorp and Tzaneen), or from two localities in close proximity (in Cape Town), is denoted by the arrangement of the symbols in a 
ring around the central point. All maps utilise the Mercator projection and were created in QGIS 3.4.3 Madeira
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different Contracaecum species is almost indistinguishable 
and our specimens clearly differed from C. ogmorhini 
(KU558726) in the COI alignments (only 582 of 689 bp 
are identical for both species), we could only identify the 
recovered specimens to genus level.

Falcaustra sp.
Site of infection: Intestine and stomach
Sequences for this species could not be obtained.

Description
General (Figure 4). Comparatively short nematodes, 
with maximum width at body midlength. Apical: three 
large anterior labia, with two circles of papillae (six inner 
and six outer), oral opening rounded-triangular shape. 
Oesophagus long, consisting of short anterior pharyngeal 
region, long cylindrical corpus, short, slightly expanded 
isthmus and well-developed posterior bulb. Nerve ring 
encircling oesophagus at level of its anterior quarter. 
Excretory pore at level of oesophageal bulb. Tail tapering, 
with sharpened end in both sexes.

Males. Measurements based on four specimens. 
Body 7.3 mm (mean 5.4–9.3 mm) long, 197 μm (mean 
143–281 μm) wide. Oesophagus 1.3 mm (1.1–1.5 mm) 
long, 19% (16–21%) of body length; 37 μm (31–47 mm), 

62 μm (44–77 μm) and 136 μm (110–159 μm) wide at 
anterior, midlength and posterior level, respectively. 
Nerve ring at 321 μm (294–345 μm) from anterior end, 
24% (22–29%) of oesophagus length. Excretory pore at 
1 038 μm (741–1 193 μm) from anterior end. Posterior 
end of body coiled ventrally. Spicules equal, sharpened 
at tips, 380 μm (318–453 μm) long. Gubernaculum short, 
narrowing towards posterior end, 84 μm (65–102 μm) 
long. Caudal end with papillae: three pairs precloacal, 
one unpaired papilla just anterior to cloaca, six pairs post 
cloacal (three pairs of subventral papillae and one pair of 
lateral papillae anterior to cloaca plus two subventral pairs 
close to tail tip). Phasmids at level of tail midlength. Tail 
tapering, 285 μm (240–321 μm) long.

Females. Measurements based on three specimens. Body 
8.3 mm (6.7–9.7 mm) long, 191 μm (163–222 μm) wide. 
Oesophagus 1.6 mm (1.5–1.9 mm) long, 20% (19–22%) 
of body length; 48 μm (41–57 μm), 68 μm (65–72 μm) 
and 152 μm (142–165 μm) wide at anterior, midlength 
and posterior level, respectively. Nerve ring at 
380 μm (370–390 μm) from anterior end, 23% (21–25%) 
of oesophagus length. Excretory pore at 1 277 μm 
(1 110–1 396 μm) from anterior end. Vulva postequatorial, 
5.5 mm (4.3–6.6 mm) from anterior end, 66% (64–68%) of 
body length. Tail tapering, 403 μm (355–489 μm) long.

Nematode Locality Coordinates
Number of 

hosts 
collected

Intensity Abundance
Prevalence

Capillaria sp. 7-Fontein Farm, Vanrhynsdorp, 
Western Cape

31°44′09.8′′ S, 
18°49′31.7′′ E

7 2 [2] (1–2) 0.4 29%

Loekiesfontein Farm, Wellington, 
Western Cape

33°34′16.9′′ S, 
18°50′24.4′′ E

6 2 [1] (1–4) 0.8 38%

Contracaecum sp. 7-Fontein Farm, Vanrhynsdorp, 
Western Cape

31°44′09.8′′ S, 
18°49′31.7′′ E

7 2 [2] (1–2) 0.4 29%

Bloemendal Wine Estate, Cape 
Town, Western Cape

33°50′21.2′′ S, 
18°36′01.0′′ E

5 3 0.6 20%

Burgundy Estate, Cape Town, 
Western Cape

33°50′07.8′′ S, 
18°33′10.1′′ E

14 5 [5] (4–6) 0.7 14%

Crimson Creek Cherry Farm, 
Dullstroom, Mpumalanga

25°23′53.2′′ S, 
30°02′16.9′′ E

10 3 [2] (1–8) 1.7 50%

Letsitele, Tzaneen, Limpopo 23°47′55.7′′ S, 
30°11’42.5′′ E

10 1 0.1 10%

Falcaustra sp. 7-Fontein Farm, Vanrhynsdorp, 
Western Cape

31°44′09.8′′ S, 
18°49′31.7′′ E

7 2 [2] (1–3) 1.1 57%

Paraquimperia sp. Hermanus, Western Cape 34°22′12.6′′ S, 
19°15′25.4′′ E

10 4 0.4 10%

Tanqua sp. Letsitele, Tzaneen, Limpopo 23°47′55.7′′ S, 
30°11′42.5′′ E

10 5 [5] (1–8) 0.9 20%

Unidentified nematode 
larvae sp. 1

Crimson Creek Cherry Farm, 
Dullstroom, Mpumalanga

25°23′53.2′′ S, 
30°02′16.9′′ E

10 76 [76] (1–150) 15.1 20%

Jacana Estate, White River, 
Mpumalanga

25°20′20.7′′ S, 
31°01′21.2′′ E

8 11 [11] (5–16) 2.6 25%

Potchefstroom, North-West 
Province

26°45′19.7′′ S, 
26°03′02.2′′ E

9 145 [30] (5–720) 112.7 78%

Unidentified nematode 
larvae sp. 2

Placidus Farm, Modimolle, 
Limpopo

24°26′18.1′′ S, 
28°26′12.8′′ E

6 150 25.0 17%

Table 1: Complete locality data and infection parameters, sensu Bush et al. (1997), of the seven nematode species reported for the first time 
from the African clawed frog Xenopus laevis from ten localities in South Africa. Locality names are given as farm name, nearest town and 
province. Values are reported as the mean for a given locality and species, with the median in square brackets and the range in round brackets
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Remarks
The examined specimens were assigned to the 
genus Falcaustra, because of the presence of three 
well-developed labia and a differentiated oesophageal 
bulb, with well-developed valves (Anderson 2000). 
Our specimens differed from most of the other African 
species of Falcaustra described from fish and terrapins 
by the absence of a pseudosucker on the male tail 
(Baker 1983; Moravec and Scholtz 2017). The same 
parameter is described for the three fish-parasitising 
species, namely F. piscicola (von Linstow, 1907), 
F. verbekei Campana-Rouget, 1961 and F. therezieni 
Petter, 1979 and for the two species from amphibians, 
namely F. hinkeli Jackson, 2000 and F. puylaerti Jackson, 
2000 from Xenopus spp. (including X. laevis) (Jackson 
2000). The specimens from our material differ from the 

latter two species in metrical characters, such as size 
of the gubernaculum (65–102 μm in Falcaustra sp. 
vs 44–65 μm and 42 μm in F. hinkeli and F. puylaerti, 
respectively), length of the spicules (318–453 μm in 
Falcaustra sp. vs 151 μm in F. puylaerti) and length of the 
female tail (350–489 μm in Falcaustra sp. vs 560–1 060 μm 
in F. hinkeli) in comparably sized worms. Falcaustra sp. 
also clearly differs from the fish-parasitising species by the 
number of post-cloacal papillae: it has six pairs, whereas 
F. piscicola possesses eight pairs and F. verbekei and 
F. therezieni possess seven pairs (Yorke and Maplestone 
1926; Bursey and Rivera 2009). Despite the clear 
morphological differences, we prefer not to describe a new 
species, but rather to assign the recovered specimens to 
Falcaustra sp., as a result of the limited sample size and 
lack of gravid females.

Figure 2: Adult female of Capillaria sp. from the digestive tract of Xenopus laevis, photomicrographs. (a) general view; (b) anterior end of 
body, lateral view; (c) part of body at vulva region, lateral view; (d) posterior end of body, lateral view. Scale bars: (a): 1 mm; (b-d): 100 µm
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Paraquimperia sp.
Site of infection: Intestine
Representative DNA sequences: COI (MN526249), 
18S rRNA (MN526251), 28S rRNA (MN526257)

Description
Third stage larva (Figure 5). Measurements based on 
two specimens. Body thin, elongated, 4.0–5.7 mm long, 
77–114 μm wide. Oesophagus club-shaped, 416–712 μm 
long, 7–18% of body length; 12–13 , 21–25, 20–27 and 
52–69 μm wide at anterior, anterior dilation, midlength 
and posterior bulb level, respectively. Nerve ring encircling 
oesophagus at anterior half, at 170–211 μm from anterior 
end of body; 30–41% of oesophagus length. Excretory 
pore (found in one specimen) at 436 μm from anterior end 
of body. Genital primordium small, situated at midbody 
region. Tail short, tapering 218–290 μm long.

Remarks
The recovered specimens corresponded to Paraquimperia 
africana (JF803925) in 99% of their 18S rRNA fragments 

(683 of 684 bp are identical for both species) (Moravec 
2007). The genus Paraquimperia currently includes 
only three species, found in the intestines of eels and 
additionally reported from several cyprinid and percid 
fish (Šrámek 1901; Baylis 1934; Mueller 1934; Karve 
1941; Yamaguti 1961; Moravec 1966a, 1966b; Hanek 
and Threlfall 1970; Hanek and Molnar 1974; Ivashkin 
and Khromova 1976; Jackson 1978; Naidu 1983; Gupta 
and Bakshi 1984; Køie 1988; Saraiva and Chubb 1989; 
Nie and Kennedy 1991; Cone et al. 1993; Moravec 1994; 
Marcogliese and Cone 1996; Moravec et al. 2000; Thielin 
et al. 2007; Sasal et al. 2008; Lin et al. 2015). The only 
species described from Africa is P. africana Moravec, 
Boomker et Taraschewski, 2000 (Jackson 1978; Moravec 
et al. 2000). Because 18S rRNA is very conservative, a 
difference of one nucleotide in a comparatively short 
fragment could be considered as interspecific. Therefore, 
until numerous sequences of different genes from different 
species have been obtained, we prefer to assign the 
recovered specimens to Paraquimperia sp.

Figure 3: Third stage larval Contracaecum sp. encysted in Xenopus laevis, photomicrographs. (a) general view; (b) anterior end of body, 
lateral view; (c) posterior end of body, lateral view. Scale bars: (a): 1 mm; (b), (c): 100 µm
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Tanqua sp.
Site: Encysted in the intestine
Representative DNA sequences: 18S rRNA (MN526252), 
28S rRNA (MN526258)

Description
Third stage larva (Figure 6). Measurements based on 
four specimens. Body thin, elongated, with maximum 
width at midlength level. Body 10.0 mm (8.8–10.8 mm) 
long, 292 μm (281–315 μm) wide. Anterior end with two 
minute pseudolabia, not reaching each other. Oesophagus 

elongated, evenly widening towards posterior end, 
2.8 mm (2.6–3.0 mm) long, 28% (27–30%) of body 
length; 41 μm (37–47 μm), 117 μm (79–137 μm), 174 μm 
(153–203 μm) wide at anterior, midlength and posterior 
level, respectively. Nerve ring encircling oesophagus at 
its anterior end, 316 μm (294–338 mm) from anterior end, 
11% (11–11%) of oesophagus length. Excretory pore 
situated at 411 μm (372–443 μm) from anterior end, 4% 
(4–4%) of body length. Tail short, tapering, with rounded 
tip, 180 μm (162–197 μm) long.

Figure 4: Adult Falcaustra sp. from the digestive tract of Xenopus laevis, photomicrographs. (a) anterior end of body, male, apical view; 
(b) male, general view; (c) anterior end of body, male, lateral view; (d) posterior end of body, male, lateral view; (e) posterior end of body, 
female, lateral view; (f) part of body at vulva region, lateral view; (g), (h) posterior end of body, male, ventral view. Scale bars: (a): 50 µm; 
(b): 1 mm; (c-h): 100 µm
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Remarks
Representatives of the genus Tanqua are specific 
parasites of various species of Varanus lizards. Only 
Tanqua tiara (von Linstow, 1879) has previously been 
reported from South Africa from V. albigularis and 
V. ornatus (von Linstow 1879; Leiper 1908; Baylis 1939; 
Hering-Hagenbeck and Boomker 2000). A very close 
relative of T. tiara, possibly a congeneric species, based 
upon Bayesian inference of phylogeny, has previously 
been recorded as encysted third stage larvae from 
the swim bladder of the African longfin eel Anguilla 
mossambica from the Eastern Cape in South Africa 
(Laetsch et al. 2012). The partial 28S rRNA sequence 

(JF805627) of this specimen is identical (702 of 702 bp) 
to the corresponding base pairs of our slightly longer 
28S rRNA sequence (990 bp), but no morphological 
description or taxonomic identification is provided by the 
authors (Laetsch et al. 2012). Moreover, our collected 
specimens differed in less than 1% (one of 681 bp) of their 
18S rRNA fragments from T. tiara (JF934728), reported 
by the same authors from Varanus indicus in Australia 
(Laetsch et al. 2012). Nevertheless, as a result of the 
comparatively short fragment of 18S rRNA available and 
its high level of conservatism, in addition to the fact that we 
only have larval stages, we prefer to assign our specimens 
to Tanqua sp.

Figure 5: Third stage larval Paraquimperia sp. from the digestive tract of Xenopus laevis, photomicrographs. (a) general view; (b) anterior 
end of body, lateral view; (c) posterior end of body, lateral view; d) fragment of body at genital primordium region, lateral view. Scale bars: 
(a): 1 mm; (b-d): 100 µm
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Unidentified nematode larvae sp. 1
Site of infection: Lungs and liver
Representative DNA sequences: 18S rRNA (MN526253)

Description
Second stage larva (Figure 7). Measurements based on 
14 specimens. Minute nematodes, body thin, elongated, 
583 μm (530–619 μm) long, 13 μm (12–14 μm) wide 
at midlength level. Stoma elongated, cylindrical, 15 μm 
(13–18 μm) long. Oesophagus narrow, oesophageal-
intestinal junction poorly visible. Genital primordium not 
found. Tail short, with rounded end, 24 μm (14–32 μm) 
long.

Unidentified nematode larvae sp. 2
Site of infection: kidneys
Representative DNA sequences: 18S rRNA (MN526254)

Description
Second stage larva (Figure 7). Measurements based on 
eight specimens. Minute nematodes, body thin, elongated, 
800 μm (665–921 μm) long, 15 μm (13–17 μm) wide 
at midlength level. Stoma elongated, cylindrical, 9 μm 
(7–14 μm) long. Oesophagus narrow, oesophageal-
intestinal junction poorly visible. Nerve ring at 60 μm 
(45–69 μm) from anterior end. Genital primordium not 
found. Tail short, tapering, with rounded tip.

Figure 6: Third stage larval Tanqua sp. from the digestive tract of Xenopus laevis, photomicrographs. (a) general view; (b) anterior end of 
body, lateral view; (c) posterior end of body, lateral view. Scale bars: (a): 1 mm; (b), (c): 100 µm
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Remarks for unidentified sp. 1 and 2
Two different species of larvae were recovered from the 
lungs and kidneys, respectively. The perceived differences 
in morphological characters (body length, stoma length) 
and the site of infection were also confirmed by the 
molecular data of the 18S rRNA alignment (22 out of 
537 bp are different). Nevertheless, BLAST (Altschul 
et al. 1990) searching places both species closest to 
nematodes from the Family Thelastomatidae and the 
genera Blattophila Cobb, 1920 and Travassosinema (Rao 
1958). Representatives of these taxa are commonly found 
in arthropods (insects and myriapods). Both species were 
found in high numbers in organs other than the digestive 
tract, accordingly post-cyclic or occasional infection is 
rather unlikely. In our opinion, they could well represent 
some primitive species of nematodes using X. laevis as an 
intermediate or paratenic host.

Role of Xenopus laevis in the transmission of 
nematode species
Of the seven species of nematodes reported here, subadult 
and ovigerous females were found for Capillaria sp.; 
adult males and females for Falcaustra sp.; third stage 
larvae for Contracaecum sp., Paraquimperia sp. and 
Tanqua sp.; and second stage larvae of unidentified 
larvae sp. 1 and unidentified larvae sp. 2. Based on the 
available information on the life cycles, sites of infection 
and developmental stages of the retrieved nematodes, 

we propose the role that X. laevis could play in their 
transmission (Figure 8).

Both direct and indirect life cycles have been described 
for fish-parasitising capillariids (Moravec et al. 1987; Køie 
and Nylund 2001). Because subadult and adult stages 
were found in the intestines, we consider X. laevis as a 
definitive host for the recovered Capillaria sp. Third stage 
larvae of Contracaecum sp. were found encysted on the 
surface of the internal organs and in the body cavity, 
similar to previous findings of these nematodes in fish 
species (Moravec et al. 2016). Accordingly, we consider 
X. laevis as an intermediate and possible paratenic host for 
Contracaecum sp. Because all the retrieved Falcaustra sp. 
specimens were adults and members of this genus usually 
make use of one intermediate host during their life cycle 
(Skrjabin et al. 1964), X. laevis could well be the definitive, 
or less likely paratenic, host for these nematodes. 
Third stage larvae of Paraquimperia sp. (known as a 
fish-parasitising genus) were found in the intestines of 
the studied frogs. Because of a lack of information on 
the life cycle of these nematodes, X. laevis could equally 
be considered as either a definitive or paratenic host 
for the recovered Paraquimperia sp. Third stage larvae 
of Tanqua sp. were observed encysted in intestines of 
X. laevis. Because the life cycle of this genus is poorly 
studied, X. laevis could either play a role as an intermediate 
or a paratenic host for the retrieved Tanqua sp. Both of the 
unidentified larval species were found unencapsulated and 

Figure 7: (a) Unidentified second stage nematode larvae sp. 1 from the lungs and liver of Xenopus laevis, photomicrographs. 
(b) Unidentified second stage nematode larvae sp. 2 from the kidneys of Xenopus laevis, photomicrographs. Scale bars: (a), (b): 100 µm
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in high numbers in blood-filled organs (lungs and kidneys). 
Therefore, these species most likely use X. laevis as an 
intermediate host.

Discussion

In total, approximately 1 400 specimens of seven species of 
nematodes from ten localities throughout South Africa were 
found parasitising X. laevis. The most widespread were 
encysted Contracaecum sp. third stage larvae, with a total 
of 183 specimens parasitising between 10 and 50% of the 
hosts at five of the studied localities. The other two species 
that were also recovered as third stage larvae, namely four 
Paraquimperia sp. and nine Tanqua sp. specimens, were 
recovered at just one locality each. Of the adult specimens, 
nine female Capillaria sp. were recovered from hosts at two 
localities in the Western Cape, whereas three females and 
four males of Falcaustra sp. were recovered from only one 
locality in the same area. The first species of unidentified 
second stage larvae was present in very high numbers 
(about a thousand larvae in total) in the lungs of half of the 
hosts at three localities. Conversely, approximately 150 
specimens of the second species of unidentified second 
stage larvae were observed in the kidneys of only one frog.

Of these nematodes, only representatives of the genus 
Contracaecum have previously been reported from 
X. laevis, not in the native range, but in California and Chile 
(Kuperman et al. 2004; Castillo et al. 2017). The other six 
species are recorded from X. laevis for the first time herein, 

although the possibility of associations with nematodes 
in the native range has been suggested by a few earlier 
reports (Thurston 1970; Cosgrove and Jared 1974; Brayton 
1992). Surprisingly, this high number of novel parasite 
associations is reported despite more than 100 years of 
investigations and numerous parasitological surveys of 
X. laevis since the early 1900s (Cohn 1906; Metcalf 1923; 
Southwell and Kirshner 1937; Porter 1938; Sandon 1941; 
Price 1943; Nigrelli and Maraventano 1944; Elkan and 
Murray 1952; Dick 1959; Williams 1959; Vercammen-
Grandjean 1960; Yeh 1960a, 1960b; Beverley-Burton 1963; 
Mettrick 1963; Manter and Pritchard 1964; Pritchard 1964; 
de Puytorac and Grain 1965; Thurston 1967; Dollfus 1968; 
Fischthal and Thomas 1968; Thurston 1970; Avery 1971; 
Macnae et al. 1973; Cosgrove and Jared 1974; Tinsley 
and Sweeting 1974; Tinsley and Wynne Owen 1975, 
1979; Tinsley and Whitear 1980; Moravec and Cosgrove 
1982; Wade 1982; Harris and Tinsley 1987; Ferguson and 
Appleton 1988a, 1988b; Jackson and Tinsley 1988; Kruger 
et al. 1991; King and van As 1992; Jackson and Tinsley 
1995a, 1995b; Tinsley and Jackson 1995; du Preez et al. 
1996; Tinsley 1996; Crous and du Preez 1997; Jackson 
and Tinsley 1997; King and van As 1997; Jackson and 
Tinsley 1998a, 1998b; Tinsley and Jackson 1998a, 1998b; 
King and van As 2000; Jackson and Tinsley 2001a, 2001b; 
Aisien et al. 2004; Bruňanská et al. 2012; Feldman and 
Ramirez 2014; Theunissen et al. 2014; Kruger and du 
Preez 2015; Svitin et al. 2018). We suggest that these 
new host-parasite associations could be a result of the 

 

 

 

 

 

Contracaecum sp. Paraquimperia sp.
 

Tanqua sp.

Contracaecum sp.

Unidentified larval sp. 1 

Contracaecum sp.

Falcaustra sp.

Falcaustra sp.

Capillaria sp.

Unidentified larval sp. 2

Figure 8: Hypothesised trophic transmission in a freshwater ecosystem of the seven nematode parasites recovered in the current study. 
Xenopus laevis (centre) acts as an intermediate or paratenic host for the larval stages of Contracaecum sp., Paraquimperia sp., Tanqua sp. 
and two other unidentified second stage larvae and is a possible definitive host for the adult stages of Capillaria sp. and Falcaustra sp. 
Other hosts include, from the top left corner in a clockwise direction, fish-eating birds, fish, semi-aquatic lizards and aquatic invertebrates. 
Arrow heads point in the direction of the predator
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continuous domestic expansion (Measey and Davies 2011; 
de Villiers and Measey 2017; Measey et al. 2017) and 
deliberate translocation (van Sittert and Measey 2016) of 
X. laevis in its native range, with underrepresentation in 
the literature possibly heightened by the oversight of larval 
stages of nematodes in this frog in past investigations.

Unfortunately, as a result of a lack of molecular data, 
absence of clear morphological descriptions of larval 
stages and poorly studied life cycles of the recovered 
nematodes, we were not able to identify any of the 
collected nematodes to the species level and some not 
even to the family level. Indeed, even those specimens 
that were recovered in their adult stage, could only be 
identified to the genus level. This was true for Capillaria sp. 
that lacked males and Falcaustra sp. that lacked gravid 
females. In the case of the five species recovered as 
second or third stage larvae, it is almost impossible to 
distinguish larval stages of congeneric nematode species 
without applying molecular tools, because of high levels 
of morphological similarity at this stage of development 
(Anderson 2000). Unfortunately, very few species of 
nematodes parasitising ectothermic vertebrates from Africa 
have sequences available in GenBank and none of those 
available clearly correspond to the obtained sequences of 
the nematodes from the current study.

What is more, as a result of a lack of information on life 
cycles of African nematodes at large, we cannot specify the 
exact role of X. laevis in the transmission of the nematode 
species recovered during the current study. Nevertheless, in 
light of the data available on nematode life cycles, distribution, 
sites of infection and preferred host taxa from the region, 
we propose that X. laevis could be a definitive host for two 
species (Capillaria sp. and Falcaustra sp.), a paratenic host 
for three species (Contracaecum sp., Paraquimperia sp. 
and Tanqua sp.) and an intermediate host for four species 
(Contracaecum sp., Tanqua sp. and both species of 
unidentified larvae). These findings highlight the key role 
of X. laevis in the parasite dynamics of the freshwater 
ecosystems it forms part of. In many cases, it seems to act 
as a host for nematodes previously only associated with fish, 
as could be expected of an amphibian with a predominantly 
aquatic ecology (Elephandt et al. 2000). This is illustrated 
by the past records of Capillaria sp. (Boomker 1994a; Moyo 
et al. 2009), Contracaecum sp. (Whitfield and Heeg 1977; 
Mashego and Saayman 1981; Boomker 1982; van As and 
Basson 1984; Mashego 1989; Boomker 1994a, 1994b; 
Barson 2004; Barson and Avenant-Oldewage 2006; Barson 
et al. 2008; Boane et al. 2008; Moyo et al. 2009; Madanire-
Moyo et al. 2010; Smit and Luus-Powell 2012; Sara et al. 
2014; Mbokane et al. 2015; Moravec and van As 2015; 
Tavakol et al. 2015; McHugh et al. 2016; Moravec et al. 
2016) and Paraquimperia sp. (Jackson 1978; Moravec et al. 
2000), which hail from freshwater fish in Africa. Furthermore, 
previously undescribed routes of trophic nematode 
transmission via X. laevis to piscivorous birds, in the case of 
Contracaecum sp. (Whitfield and Heeg 1977; Barson 2004), 
and semi-aquatic varanid lizards, in the case of Tanqua sp. 
(von Linstow 1879; Leiper 1908; Baylis 1939; Hering-
Hagenbeck and Boomker 2000), are suggested.

Clearly, as has been shown for other invasive species 
(Dunn et al. 2012; Roy and Lawson Handley 2012; 

Amundsen et al. 2013), the potential effects of X. laevis on 
freshwater ecosystems go beyond direct interactions. The 
current study demonstrates that X. laevis is a versatile 
parasite reservoir in its native range where it is a known 
domestic exotic, embarking on frequent pioneer and 
expansion events (Measey and Davies 2011; Measey et al. 
2017). Potentially, it alters the parasite dynamics of not only 
nematodes associated with other amphibians, but also those 
of fish, reptile, bird and even invertebrate fauna, ultimately 
modifying trophic interactions at a large scale. Studies 
from the invasive range imply a similar role in the new 
habitats of X. laevis, where it has been shown to form novel 
associations with both larval nematodes and digeneans 
(Kuperman et al. 2004; Rodrigues 2014; Castillo et al. 2017).

Previous authors have warned that we remain ignorant of the 
native ecology of X. laevis to the detriment of its management 
elsewhere (Measey et al. 2012). The current study provides an 
example of how that might play out. Notably, third stage larvae 
of Contracaecum have been reported before from X. laevis in 
the invasive range on two occasions (Kuperman et al. 2004; 
Castillo et al. 2017). Yet, because there had been no records 
of Contracaecum associated with X. laevis in the native range 
before, the records in the invasive range were assumed to 
originate from the native fauna of the invasive regions. Whether 
this claim is true could probably only be ascertained by 
sufficient molecular data and morphological descriptions, both 
of which are lacking for Contracaecum in both the native and 
invasive range.

When investigating the ecology of invasive species, the 
far-reaching effect of parasites should not be underestimated. 
It is specifically trophically transmitted parasites, of which 
all the recovered species are examples, that play the most 
prominent role in the alteration of networks post introduction 
(Amundsen et al. 2013). Introduced hosts could cause 
amplification and dilution effects for native parasite dynamics 
(Telfer and Bown 2012). For example, the arrival of another 
invasive amphibian in Australia, the cane toad, has been 
associated with lowered lungworm burdens in native toads, 
because they act as “dead-ends” for native parasites (Nelson 
et al. 2015; Selechnik et al. 2017).

Regrettably, these effects are not known for X. laevis, an 
invasive amphibian with a much greater global footprint than 
the cane toad. As a starting point to remedy this gap in our 
knowledge, the current study clearly shows the importance 
of the inclusion of molecular data, morphological descriptions 
and qualitative illustrations in parasitological surveys in 
Africa, even when reporting on the presence of larval stages. 
In addition, future investigations of X. laevis in its invasive 
range should not discount the insidious effects of parasites, 
both co-invading and newly associated, when determining 
the impact and subsequent management strategies of this 
globally invasive amphibian.
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