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Abstract. Although theory underlying the invasion paradox, or the change in the
relationship between the richness of alien and indigenous species from negative to positive
with increasing spatial scale, is well developed and much empirical work on the subject has
been undertaken, most of the latter has concerned plants and to a lesser extent marine
invertebrates. Here we therefore examine the extent to which the relationships between
indigenous and alien species richness change from the local metacommunity to the interaction
neighborhood scales, and the influences of abundance, species identity, and environmental
favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of
modeling techniques, including generalized least squares and geographically weighted
regressions to account for spatial autocorrelation or nonstationarity of the data, we show
that the abundance and species richness of both indigenous and alien species at the
metacommunity scale respond strongly to declining environmental favorability, represented
here by altitude. Consequently, alien and indigenous diversity covary positively at this scale.
By contrast, relationships are more complex at the interaction neighborhood scale, with the
relationship among alien species richness and/or density and the density of indigenous species
varying between habitats, being negative in some, but positive in others. Additional analyses
demonstrated a strong influence of species identity, with negative relationships identified at the
interaction neighborhood scale involving alien hypogastrurid springtails, a group known from
elsewhere to have negative effects on indigenous species in areas where they have been
introduced. By contrast, diversity relationships were positive with the other alien species.
These results are consistent with both theory and previous empirical findings for other taxa,
that interactions among indigenous and alien species change substantially with spatial scale
and that environmental favorability may play a key role in explaining the larger scale patterns.
However, they also suggest that the interactions may be affected by the identity of the species
concerned, especially at the interaction neighborhood scale.

Key words: biological invasions; Collembola; density; environmental favorability; invasion paradox;
Macquarie Island, Australia; species identity; species richness; subantarctic.

INTRODUCTION

How biological invasions proceed in a heterogeneous

setting is a question of much significance. Invasions not

only have considerable effects on ecosystem structure

and functioning (Mack et al. 2000, O’Dowd et al. 2003),

but they may also lead to substantial impacts on

individual species (Blackburn et al. 2004, McGeoch et

al. 2010). Moreover, the establishment of alien species

shows no signs of decline, and increasing trade and

globalization suggest that species transfers will continue

(Hulme 2009).

Much progress has been made in understanding the

processes that enable the barriers to invasion to be

crossed (Richardson and Pyšek 2006, Blackburn et al.

2009, van Kleunen et al. 2010). In particular, wide

appreciation now exists of the influence on the invasion

process of spatial and temporal heterogeneity in a

community context (Sax and Gaines 2003, 2008, Davies

et al. 2005, Kumar et al. 2006, Melbourne et al. 2007).

Several theoretical and empirical studies of the processes

by which species (alien or indigenous) establish and

coexist in communities have shown that spatial and

temporal dynamics, and species identity are important,

both in affecting the colonization process and in

modifying the extent to which colonizing species might

have an impact on residents and the resident community

(e.g., Chesson and Warner 1981, Shea and Chesson

2002, Diez et al. 2008, Orrock and Witter 2010, Orrock

et al. 2010). In the case of biological invasions it appears

that spatial heterogeneity may largely be responsible for

the scale dependence of the relationship between

indigenous and alien diversity, and that spatial scale
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may in turn influence the extent to which biotic

resistance and the identity of species in the receiving

community are recognized as major influences on the

invasion process (Davies et al. 2005, Melbourne et al.

2007, Diez et al. 2008).

Recent theoretical reviews and meta-analyses of the

empirical data have suggested that the invasion paradox,

or the change in the relationship between the richness of

alien and indigenous species from negative to positive

with increasing spatial scale, may largely be an outcome

of changes in the heterogeneity of environments (Fridley

et al. 2004, 2007, Herben et al. 2004). Community

dynamics in homogeneous local environments are prone

to be dominated by processes that promote negative

relationships between resident and colonizing species,

whereas at broader scales, habitat heterogeneity and

metacommunity dynamics lead to positive relationships

(Melbourne et al. 2007). The scale dependence of the

indigenous–alien richness relationship may also be

affected by variation in favorability of the environment,

and by environmental heterogeneity and biotic facilita-

tion even at small spatial scales (Davies et al. 2007).

Although it may appear that much data now exist on

the extent to which richness relationships among

indigenous and introduced species vary with spatial

scale, the generality of scaling explanations for the

invasion paradox has not been broadly established. The

majority of work has concerned terrestrial vascular

plants (Herben et al. 2004, Levine et al. 2004) and to a

lesser extent marine invertebrates (Stachowicz et al.

2002). For other taxa, a positive relationship between

indigenous and alien species richness has frequently been

recorded at larger spatial scales (e.g., Chown et al. 2005,

Evans et al. 2005, Borges et al. 2006), but it is not clear

whether this relationship changes at small spatial scales,

nor whether it is influenced by environmental favor-

ability. Indeed, Fridley et al. (2007) argued that

‘‘observational evidence still lags behind advances in

theory.’’

Therefore, here we investigate explicitly the extent to

which the relationship between the diversity of indige-

nous and alien invertebrates varies at site and sample

scales equivalent to the ‘‘interaction neighborhood’’ and

‘‘local metacommunity’’ of Melbourne et al. (2007), and

how the relationships might further be modified by

changing favorability along an altitudinal gradient. We

focus not only on relationships between indigenous and

alien species richness at these spatial scales, but also on

relationships between abundance (measured as density)

among these two groups of species and on relationships

among richness and abundance. Understanding varia-

tion in the abundance of indigenous and alien species

can provide important additional perspectives on the

scale dependence of species invasions (Diez et al. 2008).

Springtails are used as the exemplar group because of

their ubiquity in terrestrial ecosystems (Hopkin 1997)

and significance in soil ecosystem functioning (Wardle et

al. 2004). We worked on an island system (the

subantarctic Macquarie Island) for two reasons. First,

the island’s isolation means that regional metacommu-
nity processes (see Melbourne et al. 2007), which we do

not consider, are likely to proceed at rates much lower
than processes at the other two, smaller scales. Second,

both indigenous and alien springtail species are present
on the island and are relatively well known taxonom-
ically (Greenslade 2006).

MATERIALS AND METHODS

Site description

Macquarie Island (548300 S, 1588570 E) is a small
island (34 3 5.5 km) located 1500 km southeast of

Tasmania, Australia. An ophiolite complex that has
never been attached to another land mass, it has steep

coastal slopes rising to an undulating plateau ranging
between 150 and 300 m above sea level (maximum

height 433 m). The cool, moist, and windy maritime
climate is typically subantarctic. Mean annual temper-
ature range is 3.88C to 6.68C, with a considerable

altitudinal decline in microhabitat temperatures, though
with limited seasonal and diurnal ranges, and annual

precipitation is ;954 mm (Tweedie and Bergstrom 2000,
Pendlebury and Barnes-Keoghan 2007). Between 1994

and 2003 ;312 frost-free days occurred each year at sea
level, declining with increasing altitude to ;185 frost-

free days at 200 m altitude (Loffler 1983; Australian
Bureau of Meteorology, unpublished data).

Tall coastal and slope vegetation occupies ;20% of
the island’s surface and is dominated by the megaherbs

Stilbocarpa polaris and Pleurophyllum hookeri and the
tussock grass Poa foliosa. Short grasses, small herbs, and

sedges dominate the mid-altitude vegetated plateau, and
form the most widespread communities, covering over

60% of the island. Fernbrake is restricted to relatively
small pockets in steep-sided gullies and more sheltered

areas, primarily on the east coast. At higher altitudes
feldmark communities predominate, covering ;45% of

the upland area over 180 m, with the cushion plant
Azorella macquariensis being dominant. Bryophytes
occur in most habitats, being least abundant in tall

tussock grassland and fernbrake and most abundant in
feldmark communities where they often co-dominate

with A. macquariensis (Selkirk et al. 1990, Selkirk and
Adamson 1995, Seppelt 2004). Most of the coastal

terraces, coastal slopes, and mid-altitude ridges are
covered in peat soils of varying depth, with basaltic sand

beaches around the coast and mineral rocky soils at
higher altitudes.

The island has recently gained some prominence
owing to the impacts of rabbits on the terrestrial

vegetation, following the eradication of feral cats
(Bergstrom et al. 2009). Importantly, the sampling

described here was undertaken in 2001/2002, soon after
the eradication of the cats and, more significantly, prior

to the substantial increase in rabbit abundance and
concomitant effects on the vegetation (Bergstrom et al.

2009).
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Sampling

The primary aims of this study are to investigate the
scale dependence of the relationships between indige-

nous and alien diversity (richness and abundance) and
how these relationships might be influenced by environ-

mental favorability (Davies et al. 2007), and perhaps by
other environmental factors. Therefore a range of sites

was sampled across the island including all of the major
vegetation types and a range of altitudes. Increasing

elevation served as a proxy for declining environmental
favorability because temperature, which among the

microclimate variables shows one of the largest consis-
tent changes (declines) with elevation (Tweedie and

Bergstrom 2000), has such a profound effect on
springtail life histories and abundance (Peterson and

Luxton 1982, van Straalen 1994).
Nine widespread, structurally different vegetation

types (hereafter termed habitats) were identified for
sampling based on previous vegetation classifications

(Selkirk et al. 1990). These were: Azorella maquariensis-
dominated open cushion areas (mean altitude 261 m);

Acaena spp.-dominated herbfield (mean altitude 43 m);
Colobanthus muscoides-dominated coastal cushion areas
(mean altitude 13 m); Pleurophyllum hookeri-dominated

herbfield (mean altitude 72 m); Poa foliosa-dominated
tall tussock grassland (mean altitude 52 m); Polystichum

vestitum fernbrake (mean altitude 50 m); short grassland
(dominated by Agrostis magellanica, Festuca contracta,

and Luzula crinita, mean altitude 71 m); Stilbocarpa
polaris-dominated herbfield (mean altitude 43 m) and

mires (mean altitude 150 m).
Five 2 3 2 m sites were randomly located for each

habitat except for Polystichum vestitum fernbrake where
four sites were established. Sites were established at a

range of altitudes and away from human influences
(such as that of the station, huts, and walking tracks).

Due to the nature and occurrence of the habitats being
sampled, 70% of sites were ,100 m in altitude with mire,

Azorella, and short grassland habitats comprising all of
the sites .100 m. Coastal Colobanthus habitats were the

lowest sites, all being ,20 m altitude. Rabbit-grazed and
alien plant-dominated areas were avoided. Sites were
restricted to homogeneous areas where only one habitat

was present. Two random samples were taken from each
site using a 70 mm diameter O’Connor split corer to a

soil depth of 70 mm. To account for temporal variation
(which tends to be small in the region; see Convey 1996,

Barendse and Chown 2001), sampling was repeated four
times throughout the study between October 2001 and

March 2002 at approximately 5–6 week intervals. Thus
32 samples were collected from the four Polystichum

sites and 40 samples were collected from each of the
other habitats. Given the relatively short dispersal

distances characteristic of most springtails (Hopkin
1997), and the relatively fine-scale vegetation heteroge-

neity on Macquarie Island (Selkirk et al. 1990), the site
scale (2 3 2 m quadrat) was considered the local

metacommunity and the individual samples (70 mm

core) the interaction neighborhood. These scales are

consistent with both field observations and manipulative

experiments, which have demonstrated that springtails

occur in well-mixed assemblages over small distances

(i.e., sub-meter distances, such as the sample scale here),

and are also able to disperse and interact with each other

over larger distances (i.e., many meters, as in the site

scale here) (Ponge et al. 2008, Starzomski et al. 2008,

Auclerc et al. 2009). Moreover, site-based structure in

springtail assemblage data from a similar subantarctic

island landscape, sampled in a similar spatial arrange-

ment (Gabriel et al. 2001), suggests that the sites can

appropriately be considered the local metacommunity

scale. Therefore, our choice of distances for the two

scales is consistent with the original descriptions of these

scales by Melbourne et al. (2007).

Invertebrates were extracted from the soil cores into

propylene glycol using a high gradient extractor (HG).

Following Gabriel et al. (2001), the HG was left running

at 258C for the first two days then set at 308C for the

third and fourth days. Samples were transferred to 100%
alcohol by draining off the propylene glycol through a

60-lm mesh. All soil invertebrates were then rinsed off

or removed from the mesh with a fine paintbrush and

stored in 100% alcohol for later analyses. Springtails

were then separated, and identified using Greenslade’s

(2006) key, in conjunction with other keys (e.g.,

Deharveng 1981) in the case of taxonomic uncertainty.

Individuals were identified to the species level in most

cases, but due to ongoing revision of species (Greenslade

2006), four morphospecies could only be identified to

genus. One group (Family Katiannidae) occurred in

comparatively low numbers across all samples, and was

only identified to family level due to taxonomic

uncertainty among some species.

Data analysis

Because the outcome of any analysis of richness is

dependent on sampling adequacy, the latter was

estimated at the site scale, for each vegetation type,

using EstimateS (version 8.2.0; Colwell 2006). Rarefac-

tion curves were calculated using the Mau Tau moment-

based interpolation method. Sampling is considered to

be adequate if the rarefaction curve approaches an

asymptote. Species richness was calculated using the

Jacknife2 estimator (Magurran 2004). Two different

estimates are presented. The first was obtained without

resampling and provides more accurate estimates of

richness, though the generated values are dependent on

the original data, and no variance is provided for

richness estimates (Colwell 2006). A second estimate

was obtained using 500 randomizations and sampling

with replacement. This method is more appropriate for

the comparisons of data sets (Colwell 2006) and was

used to estimate the extent to which observed richness

(used to compare outcomes at the interaction neighbor-

hood and local metacommunity scales) served as a

reasonable proxy for actual richness.
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Local metacommunity scale.—To investigate the

relationship between density (log-transformed) and

habitat type and altitude, and between species richness

and these environmental variables, a range of modeling

techniques was used (implemented in Spatial Analysis in

Macroecology version 3.1; Rangel et al. 2006). It should

be noted that density is used here as a measure of

abundance. Because the sample unit size (soil core) is

consistent across all habitats, no confounding census

area effect is expected (Gaston et al. 1999). Initially,

log10(x þ 1)-transformed density from (1) indigenous

species (DIS) and (2) alien species (DAS) was used as the

response variable in ordinary least squares (OLS)

models containing the predictor variables: vegetation

type (one of the nine vegetation types), altitude (height

above sea level in meters) and a squared altitude term (to

identify any curvilinear relationships). These three

predictor variables resulted in seven possible models,

which were sorted in accordance with corrected Akaike’s

Information Criterion (AICc) values, and AICc weights

were used to choose the best model in each case

(Burnham and Anderson 2002).

To account for spatial autocorrelation the same

predictor variables were then tested in spatial autore-

gressive (SAR) models and geographically weighted

regression (GWR) models. The likely confounding

effects of spatial autocorrelation and the most appro-

priate methods to account for it have been the subject of

much discussion and modeling development recently

(for an introduction see Beale et al. 2007, 2010, Begueria

and Pueyo 2009, Bini et al. 2009). SARs differ from the

OLS models in that they utilize a generalized least

squares (GLS) approach that incorporates spatial

structure directly in model residuals (Beale et al. 2010)

to estimate regression coefficients. Here, the values of

the SAR covariance matrix were modeled using a semi-

variogram function (Banerjee et al. 2004), which has

been shown to be reliable (Begueria and Pueyo 2009).

However, a further complication with spatial analyses

may arise if the spatial relationship between the response

variable and its predictor(s) varies across the entire

region under study. This variation is known as non-

stationarity, and geographically weighted regression

(GWR) models were developed to clarify these complex

spatial structures in data at multiple scales (Fothering-

ham et al. 2002). Although these models may not

generalize well beyond the area of study, their ability to

account for more complex spatial structure make them a

useful tool in clarifying relationships among variables

(e.g., Foody 2004, Bini et al. 2009; see also discussion

between Foody 2005 and Jetz et al. 2005). Here the

geographical weighting was implemented using a Gauss-

ian spatial kernel function with bandwidth selected using

a golden search algorithm to optimize the AICc values

(Rangel et al. 2006). The best model(s) (from OLS,

SAR, and GWR approaches) were selected using the

AICc values and weights (Foody 2005, Jetz et al. 2005).

Approximate likelihood ratio tests, based on the F test

were also used to measure the gain in fitting a GWR

model instead of an OLS model, and thus to estimate the

amount of nonstationarity in the data (Fotheringham et

al. 2002, Bini et al. 2009).

Next, to investigate the relationships between indig-

enous and alien richness and density at this scale, while

accounting for variation owing to altitude and vegeta-

tion type, several models were implemented (again

including OLS, SAR, and GWR approaches). First,

the extent to which indigenous species richness and

density (for the logic thereof see Diez et al. 2008)

influence the density of alien species (DAS) and richness

(ASR) at this scale were investigated. For DAS as the

response variable, the predictor variables included were

altitude, vegetation type, density of indigenous species

(DIS), an interaction term of DIS with vegetation (DIS

3 VEG) (given strong habitat associations identified in

initial analyses, not shown), and indigenous species

richness (ISR). The same set of predictor variables was

used to select the best models with alien species richness

(ASR) as the response variable. Squared terms of all

non-categorical variables were also included in each

model selection process. In total, eight predictor

variables were used for the models, resulting in 255

possible different models.

Interaction neighborhood scale.—To test the hypoth-

esis that relationships between log-transformed density,

richness, and environmental variables change at differ-

ent spatial scales, the same set of response and predictor

variables were tested using log-transformed density data

and species richness data from each core sample (n¼350

cores because two cores contained no springtails).

Again, OLS, SAR, and GWR models were tested and

AICc values and weights used to select the best models in

SAM 3.1 (Rangel et al. 2006).

RESULTS

Sampling and diversity

Rarefaction curves for all of the habitats at the site

scale indicated that sampling had either reached or was

approaching an asymptote (Appendix A). In conse-

quence, sampling was considered adequate for the

modeling undertaken here. While the observed species

richness values (Sobs) were always lower than the

Jacknife2 estimators, they were all well within the

variance of the randomized estimates. Species varied

substantially in their densities among habitats (Appen-

dix B), with the extent of habitat preference apparently

being more pronounced in the indigenous than in the

alien species. Overall, springtail species richness was

highest in tall tussock and Colobanthus habitats, and

lowest in short grassland and Azorella habitats (Appen-

dix B). Tall tussock and Stilbocarpa had the highest

mean density of individual springtails while Azorella had

the lowest, followed by Polystichum habitats. Stilbocar-

pa and Acaena sites had the highest density of alien

species while Azorella sites had few aliens.

July 2011 1439DIVERSITY RELATIONSHIPS IN SPRINGTAILS



Local metacommunity scale

Density of the indigenous species was most strongly

related to altitude, in a curvilinear, declining fashion

(Fig. 1a), with vegetation type being much less

important, though still entering the second best model

(Table 1; Appendix C). The curvilinear decline appears

largely to be a consequence of stable densities up to

;100 m elevation and declines thereafter. For the alien

species, both vegetation type and altitude entered the

best model (Table 1; Appendix D), with a linear decline

in density with increasing elevation (Fig. 1b). In both

cases, the GWR models had much higher AICc weights

FIG. 1. (a, b) Log-transformed springtail (Collembola) density (originally measured as no./m2) vs. altitude (m) of (a) indigenous
and (b) alien species on Macquarie Island, Tasmania, Australia. (c, d) Species richness vs. altitude (m) of (c) indigenous springtails
and (d) alien springtails. (e, f ) Log-transformed density (originally measured as no./m2) of alien vs. indigenous springtails in (e)
mire and (f ) Colobanthus–dominated habitats. Coefficients of determination (R2) and P values are taken from the geographically
weighted regressions.
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than any of the other models, indicating spatial non-

stationarity in the data and the best model explained

.70% of the variation in the data (Appendices C and

D). Monte-Carlo F tests showed that GWR models were

a significant improvement on corresponding OLS

models for both indigenous and alien species densities,

but the improvement was much more significant for

indigenous species density, indicating these data had

more nonstationarity compared with those for alien

species density (Table 1).

Indigenous species richness was most strongly related

to altitude and vegetation with both terms present in the

two best models (Table 1; Appendix E). The decline in

indigenous richness with altitude was best described by a

linear relationship (Fig. 1c). By contrast, the best model

for the alien assemblages contained only the quadratic

altitude term, suggesting that the decline with altitude

was weakly curvilinear in nature (Fig. 1d). Although not

as important as for indigenous species richness, the

vegetation term was present in the second best alien

richness model (Table 1; Appendix F). GWR models

had higher AICc weights than OLS and SAR models,

with the best models explaining over 50% and 60% of the

variation for indigenous and alien species richness,

respectively (Appendices E and F). By contrast with

the density models, the improvement of GWRs on the

OLS models was much better for alien richness (Table

1), suggesting that there is more nonstationarity in these

data compared with indigenous species richness.

When the density and species richness variables were

added to the models at this scale, the two best models for

variation in alien species richness were single term GWR

models, the first with a negative squared altitude term

(AICc weight 0.19, R
2¼ 0.52) and the second indicating

a positive relationship with the density of indigenous

species (AICc weight ¼ 0.16; R2 ¼ 0.40; Table 2;

Appendix G). Thus, where density of the indigenous

species was high, alien species richness was high. By

contrast, vegetation type (and altitude) continued to be

important in the two best models for the density of the

alien species, although the entry of the DIS3 vegetation

type interaction term in the best model indicated that

while in some vegetation types the relationship between

the densities of alien and indigenous species was positive

in others it was negative (Table 3, Fig. 1e, f ). Here, the

two best models had AICc weights differing by only 0.1,

with the second best one excluding the interaction effect,

and together they accounted for .70% of the variation

in alien species density (see also Appendix H).

Interaction neighborhood scale

At the smaller scale, represented by samples, the best

models for alien species richness included a negative

relationship with altitude, positive relationships with

indigenous species richness, and an interaction term

indicating differences in relationships between alien

species richness and the density of indigenous species

in different habitat types (Table 2; Appendix I).

Typically the relationship between alien species richness

and the density of indigenous species was positive,

except in Colobanthus-dominated habitats where it was

negative (Table 3). For the density of alien species the

best models consistently included a curvilinear decline

with altitude, a negative relationship with indigenous

richness, and positive covariation with the DIS 3

vegetation interaction term (Table 2; Appendix J). Here

the negative relationships between the density of alien

species and the density of indigenous species were found

in the Colobanthus-dominated and Stilbocarpa-dominat-

ed habitat types (Table 3). Importantly, at this

interaction neighborhood scale the relationships among

the alien and indigenous species in terms of both

richness and density were more complicated than at

the metacommunity scale. Moreover, at the local

TABLE 1. Model selection summary for the best models based on Akaike Information Criterion weights (wi ) for the density and
species richness of indigenous and alien springtails (Collembola) on Macquarie Island, Tasmania, Australia.

Model (GWR) Variables nVars R2 AICc DAICc wi

Nonstationarity evidence

F df P

Indigenous density

1 (�)ALT2 8.5 0.75 47.69 0 0.78 7.8 8, 34 ,0.0001
2 (�)ALT2, VEG 8.8 0.74 50.84 3.15 0.16 5.4 5, 36 0.0001

Alien density

1 (�)ALT, VEG 8.8 0.72 125.28 0 0.72 4.8 4, 37 0.003
2 (�)ALT 6.12 0.63 128.85 3.57 0.12 4.35 4, 38 0.005

Indigenous richness

1 (�)ALT, VEG 5.2 0.38 194.58 0 0.53 4.7 2, 39 0.015
2 (�)ALT2, VEG 5.1 0.38 196.29 1.71 0.22 4.3 2, 39 0.021

Alien richness

1 (�)ALT2 7.2 0.52 128.58 0 0.66 4.8 5, 37 ,0.002
2 (�)ALT, VEG 6.8 0.48 131.16 2.58 0.18 4.2 4, 37 ,0.007

Notes: The predictor variables included in the models were: vegetation (VEG), altitude (ALT), and altitude squared (ALT2).
GWR is geographically weighted regression; nVars indicates the effective number of variables used in the models. For the 10 best
models, see Appendices C–F. Significant P values are evidence of nonstationarity.

July 2011 1441DIVERSITY RELATIONSHIPS IN SPRINGTAILS



metacommunity scale the effect of environmental

favorability, as represented by altitude, tended to

dominate, with any effects of indigenous diversity

tending to be positive. By contrast at the interaction

neighborhood scale the direction of interactions tended

to be more negative.

Reciprocal influences

Discerning the likely causality of interactions is

problematic in correlational analyses. Indigenous species

might be resisting the colonization of a neighborhood or

metacommunity, or the alien species might have become

invasive and might be responsible for a decline in the

indigenous species (to local extirpation if a species is not

present). To investigate how these alternatives might be

playing out, recognizing that both may be occurring

sequentially or simultaneously in different areas, we re-

ran our full models at both scales, but now with

indigenous species richness or the density of the

indigenous species as the dependent variables (Table 2;

Appendices K–N). However, we split the alien species

into two groups and examined the effects of the density

of these two groups separately. The first group includes

only the hypogastrurid species (Hypogastrura viatica, H.

purpurescens, and Ceratophysella denticulata). The mem-

bers of this family are known to dominate areas where

TABLE 3. Direction of significant covariation, R2, and significance from models between alien or indigenous species density and
the density and richness of alien and indigenous species in nine vegetation types at site (metacommunity) and samples
(interaction neighborhood) scales.

Response
variable

ASR DAS ISR

Site scale Sample scale Site scale Sample scale Site scale Sample scale Site scale Sample scale

Interaction term DIS 3 VEG DIS 3 VEG DIS 3 VEG DIS 3 VEG HD 3 VEG HD 3 VEG OD 3 VEG OD 3 VEG
Acaena N/A (þ)0.61*** (þ)0.6*** (�)0.92* (�)0.32*** N/A (þ)0.29**
Azorella N/A (þ)0.18* (þ)0.18* N/A
Colobanthus N/A (�)0.57*** (�)0.94* (�)0.52*** (�)0.95* (�)0.52*** N/A (þ)0.57***
Mire N/A (þ)0.74* (þ)0.52*** (�)0.28*** N/A
Pleurophyllum N/A (þ)0.97** N/A (þ)0.12*
Polystichum N/A N/A
Short grass N/A (þ)0.15* N/A
Stilbocarpa N/A (�)0.58*** (þ)0.72* N/A
Tall tussock N/A (þ)0.54*** N/A

Notes: All densities were log-transformed. As predictor variables, alien species densities were split by taxa into hypogastrurids
(HD) and other species (OD), and alien species richness (ASR), indigenous species richness (ISR), the density of alien species
(DAS), and the density of indigenous species (DIS). The 10 best overall models in each case are provided in Appendices G, H, I, J,
M, and N. Only significant (P , 0.05) interactions are included. That is, blank cells indicate that the interactions were present, but
not significant. For ASR at the site scale, N/A (not applicable) indicates that there was no DIS3VEG interaction term in the two
best models. For ISR at the site scale, N/A indicates that there was no OD 3 VEG interaction term in the two best models.

* P , 0.05; ** P , 0.01; *** P , 0.001.

TABLE 2. Summary of the two best models for density (log-transformed) and richness of alien and indigenous species at the site
(metacommunity) and sample (interaction neighborhood) scales.

Response
variable

Type of two
best models Predictors from two best models Mean R2

Sum AICc

weights

Nonstationarity evidence

F df P

ASR (Site) GWR/GWR� (�)ALT2, (þ)DIS 0.46 0.34 4.8 5, 37 ,0.002
ASR (Sample) GWR/GWR (�)ALT, (þ)ISR, (þ)ISR2,

(þ)DIS 3 VEG
0.47 0.52 12.9 14, 332 ,0.00001

DAS (Site) GWR/GWR VEG, (�)ALT, (þ)DIS 3 VEG 0.73 0.71 4.9 6, 34 ,0.002
DAS (Sample) GWR/GWR VEG, (þ)ALT, (–)ALT2, (–)ISR2,

(þ)DIS 3 VEG
0.57 0.84 6.4 35, 312 ,0.00001

Reciprocal analyses

ISR (Site) GWR�/OLS (�)ALT, (�)HD2, (þ)HD 3 VEG,
(þ)OD, (�)OD2

0.47 0.52 3.06 1, 37 ,0.09

ISR (Sample) SAR/SAR VEG, (–)ALT, (þ)HD, (–)HD2,
(þ)HD 3 VEG, (þ)OD,
(�)OD 3 VEG, (�)ASR, (þ)ASR2

0.45 0.71

DIS (Site) GWR/GWR VEG, (�)ALT2 0.75 0.85 6.5 7, 34 ,0.0001
DIS (Sample) GWR/GWR VEG, (–)ALT2, (þ)ASR 0.59 0.97 11.5 16, 330 ,0.00001

Notes: For the 10 best models see Appendices G–J. Predictor variables are vegetation (VEG), altitude (ALT), density of
indigenous species (DIS), indigenous species richness (ISR), density of all alien species (DAS), alien species richness (ASR),
hypogastrurid alien density (HD), other alien density (OD). Statistics in the last three columns represent the mean evidence of the
two best models for nonstationarity, indicated by values of P , 0.05. No statistics are given for ISR (sample) because GWRmodels
were not the two best models; hence there was no nonstationarity.

� Even though there was little evidence for nonstationarity (F1,41¼3.2, P , 0.08) in the second-best GWRmodel, it was used due
to higher AICc weights.
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they are present as alien species and to have substantial

impacts on indigenous species, possibly leading to their

exclusion (Convey et al. 1999, Greenslade 2002). By

contrast, the species in the other group (Desoria sp.,

Lepidocyrtus sp.) have not been shown to have such

effects.

These analyses indicated substantial complexity in the

relationships among the indigenous species and the

aliens. At the metacommunity level, the density of

indigenous species largely declined with altitude and was

affected by vegetation type, with no effect of the density

of the hypogastrurid or other species. This pattern was

repeated at the interaction neighborhood scale, though

with some positive covariation with alien species

richness (Table 2; Appendices K and L). However, in

both cases the models including the altitude or altitude

and vegetation predictors only, far outperformed the

other models (AICc weight ¼ 0.70 and 0.96, for the

metacommunity and interaction neighborhood scales,

respectively). By contrast, at the metacommunity scale,

hypogastrurid density had both positive and negative

relationships with indigenous species richness depending

on vegetation type, whereas at the interaction neighbor-

hood scale the relationships were negative in all

vegetation types (Table 3; see also Appendices M and

N). The interaction of indigenous species richness with

the density of the other alien group was either generally

curvilinear (metacommunity scale) or showed positive

relationships within the vegetation types where the

relationships were significant (interaction neighbor-

hood) (Tables 2 and 3).

DISCUSSION

At the larger, local metacommunity scale it is clear

that both indigenous and alien springtail diversity

respond strongly to declining environmental favorabil-

ity, represented here by altitude. At Macquarie Island

temperatures decline rapidly with elevation, with strong

effects on both the vegetation (Selkirk et al. 1990) and

on other invertebrate groups (Davies and Melbourne

1999, Greenslade 2006). The decline in diversity with

elevation and the variation in both density and richness

among vegetation types are typical of springtails

elsewhere in the region (Convey et al. 1999, Gabriel et

al. 2001). Positive relationships between diversity and

measures of environmental favorability have also been

found for springtails elsewhere (Ulrich and Fiera 2009).

That these relationships vary among the indigenous and

alien species has also been found previously in the

subantarctic, with the former tending to show stronger

relationships with the habitats than the latter (Gabriel et

al. 2001).

Given the generally similar responses of springtails

across a range of regions to environmental favorability,

and to high productivity lowland areas, particularly in

the subantarctic (Gabriel et al. 2001), it is unsurprising

that at the metacommunity scale the relationships

among the alien and indigenous species richness and

density were largely positive. In essence, it appears that

these positive relationships are a consequence of similar

responses by the species to differences among the local

metacommunities in their mean environmental condi-

tions, as both theoretical and modeling work has shown

should be the case (Shea and Chesson 2002, Melbourne

et al. 2007). For example, tall tussock grassland (mean

altitude 52 m) supports 18 species at a mean density of

194 330 individuals/m2, whereas in the high elevation,

Azorella-dominated sites (mean altitude 261 m) total

species richness is 13 with mean total density reaching

only 3351 individuals/m2. Although differences in

heterogeneity among metacommunities may also have

played a role in establishing the positive relationship

(Davies et al. 2005), our sampling across the island was

not sufficiently extensive for us to be confident that beta-

diversity (or heterogeneity within sites) also plays a role

in establishing the positive relationship among indige-

nous and alien diversity at this scale. Nonetheless, the

results show that for springtails at this scale, no grounds

exist for rejecting the ‘‘rich get richer’’ hypothesis

(Stohlgren et al. 1999), in keeping with the outcomes

of studies of a wide range of other groups (Herben et al.

2004, Chown et al. 2005, Evans et al. 2005, Borges et al.

2006, Fridley et al. 2007, Stohlgren et al. 2008).

Although theory suggests that competition should

result in a negative relationship among alien and

indigenous species richness at the interaction neighbor-

hood scale (e.g., Shea and Chesson 2002, Davies et al.

2005, Melbourne et al. 2007), matters can also be more

complicated when both richness and abundance are

considered (e.g., Diez et al. 2008). Here we found that at

the smallest scale, alien richness tended to vary

positively with indigenous species richness and with

indigenous species density in most vegetation types, but

in some cases the relationship among alien species

richness and/or density, and the density of indigenous

species was negative. Although some temporal variation

may have been involved in these changing relationships,

we consider the influence minimal given the rather

limited seasonal variation over the summer on Mac-

quarie Island (Pendlebury and Barnes-Keoghan 2007),

and that seasonal effects are typically not pronounced in

the region’s invertebrates over such time scales (see

Convey 1996, Barendse and Chown 2001).

Further exploration of the relationships among the

diversity of the alien and indigenous groups, by means

of the reciprocal analyses, provided additional insight

into possible mechanisms underlying the increasing

complexity of interactions at the smallest spatial scale.

Although the initial analyses revealed some negative

interactions among the density of indigenous and alien

species at the sample scale (specifically in Colobanthus

and Stilbocarpa), when the reciprocal analyses were

undertaken, dividing the alien species into hypogastru-

rids and other taxa, the interaction between indigenous

and alien density was not found. These differences may

be a consequence of the depth stratification of spring-
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tails that is commonly found in the soil (Hopkin 1997).

Some groups, such as the hypogastrurids and the

indigenous Lepidobrya mawsoni and Cryptopygus ant-

arcticus are surface and litter dwellers, while others, such

as Tullbergia bisetosa occur in deeper layers of the soil

(Janion et al. 2010). Thus, while negative interactions

among species inhabiting the same soil layers may be

taking place, other explanations for negative covariation

cannot be excluded. Only more detailed investigations,

involving experimental manipulations, will uncover the

causal nature of the interactions among the individual

species. Nonetheless, the reciprocal analyses did reveal a

negative relationship between indigenous species rich-

ness overall and hypogastrurid density in several

vegetation types, and a positive relationship between

indigenous species richness and the density of the other

alien springtail taxa. This outcome suggests that

although the impacts of the hypogastrurids on the

overall density of the indigenous species might not be

significant, specific impacts occur which reduce species

richness, even when taking all of the other environmen-

tal factors into account. Owing to the depth distribu-

tions of the species concerned, only more detailed work,

perhaps including manipulative experiments will reveal

the causal nature of these interactions. Here, it should be

kept in mind that the high densities of the hypogastru-

rids may be having more than a straightforward direct

effect on species sharing the same soil depth in these

habitats. Complex interactions among components of

the soil fauna and between above- and belowground

components of the same systems have been reported

previously (e.g., Wardle et al. 2004). Whatever the

ultimate nature of the interactions, that they differ

among the hypogastrurids and other alien springtails

suggests that species identity is an important factor for

understanding the impacts of these invasive species, as

has been found for other taxa (e.g., Richardson and

Pyšek 2006, Blackburn et al. 2009, Orrock and Witter

2010).

Overall, our results for springtails support the idea

that the interactions among indigenous and alien species

change substantially with spatial scale, and largely in a

manner consistent both with theory (Byers and Noon-

burg 2003, Melbourne et al. 2007) and with what has

been found for other taxa (Herben et al. 2004, Davies et

al. 2005, Fridley et al. 2007). However, they also suggest

that these interactions may not only be affected by scale

and the differing productivity among habitats, but also,

and especially at the finest scales, by the identity of the

species concerned and by their abundances. Given the

typical complexity of interactions at the local scale

(Lawton 1999) such a finding is not unsurprising.

Perhaps more importantly, it appears that from the

habitat scale upward, generalizations can be made

readily, and in this case that environmental favorability

tends to have the same positive effects on both

indigenous and alien species diversity. What is less clear

is whether this relationship, which also extends to much

broader scales (e.g., Sax and Gaines 2003, 2008), will

remain with ongoing introductions of alien species, and

whether the small-scale negative relationships among

indigenous and alien species will eventually extend to

broader spatial scales, especially in lower productivity or

more disturbed environments (Davies et al. 2007).

Recent (post-2002) and substantial changes in the

Macquarie Island environment, owing to an increase

in invasive rabbit abundance, which has led to

considerable disturbance and loss of indigenous vegeta-

tion (Bergstrom et al. 2009), provide a useful experi-

mental setting for addressing this question.
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APPENDIX A

Rarefaction curve for nine vegetation types on Macquarie Island standardized by sample effort of springtails (Ecological
Archives E092-123-A1).

APPENDIX B

Mean density of each of the springtail species in each vegetation type sampled on Macquarie Island (Ecological Archives E092-
123-A2).

APPENDIX C

Model selection summary for the density of indigenous species at the site scale (metacommunity), with predictor variables of
vegetation (VEG), altitude (ALT), and altitude squared (ALT2) (Ecological Archives E092-123-A3).

APPENDIX D

Model selection summary for the density of alien species at the site scale (metacommunity), with predictor variables of VEG,
ALT, and ALT2 (Ecological Archives E092-123-A4).

APPENDIX E

Model selection summary for indigenous species richness at the site scale (metacommunity), with predictor variables of VEG,
ALT, and ALT2 (Ecological Archives E092-123-A5).

APPENDIX F

Model selection summary for alien species richness at the site scale (metacommunity), with predictor variables of VEG, ALT,
and ALT2 (Ecological Archives E092-123-A6).

APPENDIX G

Model selection summary for alien richness at the site scale (metacommunity), with predictor variables of VEG, ALT, ALT2,
density indigenous species (DIS), DIS2, DIS 3 VEG, indigenous species richness (ISR), and ISR2 (Ecological Archives E092-123-
A7).
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APPENDIX H

Model selection summary for the density of alien species at the site scale (metacommunity), with predictor variables VEG, ALT,
ALT2, DIS, DIS2, DIS 3 VEG, ISR, and ISR2 (Ecological Archives E092-123-A8).

APPENDIX I

Model selection summary for alien richness at the sample scale (interaction neighborhood), with predictor variables VEG, ALT,
ALT2, DIS, DIS2, DIS 3 VEG, ISR, and ISR2 (Ecological Archives E092-123-A9).

APPENDIX J

Model selection summary for density of alien species at the sample scale (interaction neighborhood), with predictor variables
VEG, ALT, ALT2, DIS, DIS2, DIS 3 VEG, ISR, and ISR2 (Ecological Archives E092-123-A10).

APPENDIX K

Model selection summary for density of indigenous species at the site scale (metacommunity), with predictor variables VEG,
ALT, ALT2, alien species richness (ASR), ASR2, hypogastrurid density (HD), HD2, HD 3 VEG, other alien density (OD), OD2,
and OD 3 VEG (Ecological Archives E092-123-A11).

APPENDIX L

Model selection summary for density of indigenous species at the sample scale (interaction neighborhood), with predictor
variables VEG, ALT, ALT2, ASR, ASR2, HD, HD2, HD3VEG, OD, OD2, and OD3VEG (Ecological Archives E092-123-A12).

APPENDIX M

Model selection summary for indigenous species richness at the site scale (metacommunity), with predictor variables VEG, ALT,
ALT2, ASR, ASR2, HD, HD2, HD 3 VEG, OD, OD2, and OD 3 VEG (Ecological Archives E092-123-A13).

APPENDIX N

Model selection summary for indigenous species richness at the sample scale (neighborhood interaction) with predictor variables
VEG, ALT, ALT2, ASR, ASR2, HD, HD2, HD 3 VEG, OD, OD2, and OD 3 VEG (Ecological Archives E092-123-A14).
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