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Invasive species cost the global economy billions of dollars each
year, but ecologists have struggled to predict the risk of an
introduced species naturalizing and invading. Although carefully
designed experiments are needed to fully elucidate what makes
some species invasive, much can be learned from unintentional
experiments involving the introduction of species beyond their
native ranges. Here, we assess invasion risk by linking a physiologi-
cally based species distribution model with data on the invasive
success of 749 Australian acacia and eucalypt tree species that
have, over more than a century, been introduced around the world.
The model correctly predicts 92% of occurrences observed outside
of Australia from an independent dataset. We found that in-
vasiveness is positively associated with the projection of physio-
logical niche volume in geographic space, thereby illustrating that
species tolerant of a broader range of environmental conditions
are more likely to be invasive. Species achieve this broader tol-
erance in different ways, meaning that the traits that define
invasive success are context-specific. Hence, our study reconciles
studies that have failed to identify the traits that define invasive
success with the urgent and pragmatic need to predict inva-
sive success.
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Why some species perform better than others when in-
troduced to novel regions is a question of immense the-

oretical and practical importance. Theoretical ecologists seek to
understand the conditions that allow species to invade commu-
nities and coexist with other taxa, thereby shaping patterns of
biodiversity (1, 2). Applied ecologists need to know which in-
troduced species are most likely to establish, invade, and cause
environmental damage (3). More generally, biological invasions
are grand natural experiments that provide one of ecology’s most
profitable avenues for testing our ability to forecast the distri-
bution of species and diversity (4).
Although theoretical ecologists have made impressive progress

in understanding the mediators of coexistence using invasion
tests (5, 6), applied ecologists bemoan the fact that predicting
the next environmental pest seems as intractable now as decades
ago, when the global consequences of invasions first became
apparent (7). Although many studies have deciphered the attri-
butes of successful invaders (8), others show that invasive or-
ganisms do not differ in consistent ways from native taxa and
that, if laws do determine invasiveness and invasibility, they are,
at best, highly context-specific (9–11). Such uncertainty is per-
haps not surprising, because the study of invasions is, by defini-
tion, complicated by historical factors. For example, increased
propagule pressure and residence time increase invasive success,
together often overwhelming any inherent factors that enhance
or limit invasiveness (12–14). Hence, invasion biology seems
resigned to accepting that a universal definition of invasibility
and invasiveness is unlikely and that case-specific solutions are
all that can be achieved (9). As a consequence, we still lack
a robust, reliable, and universal protocol for screening large
numbers of species for invasiveness. However, existing screen-
ing schemes do not fully make use of the observation that a
match between the target organism’s physiology and the target

environment is the most consistent indicator of invasion success
(9). Also, screening schemes have not taken full advantage of
species distribution modeling (15, 16), a method that allows
broad-scale environmental attributes to be matched to indicators
of species’ physiology (17). Previous applications of species dis-
tribution modeling to invasions have been restricted to correla-
tive models with weak links to physiology and small sets of
species (18–20).
Here, we test the suitability of species distribution models with

clear links to physiology for screening plant species for in-
vasiveness. We use a species distribution model that calibrates
a physiological model of plant growth to distribution data (21).
This process model is derived from a well-established physio-
logical model (22) that captures the fundamental processes that
influence a plant’s physiological performance. The model con-
siders carbon, nitrogen, and biomass pools in the roots and
shoots of plants and how physiological processes of resource
assimilation, allocation, growth, and respiration interact to de-
termine these pools. Each physiological process in the model is
constrained by environmental factors. For example, shoot growth
is limited by temperature, whereas nitrogen uptake is colimited
by temperature, soil moisture, and soil nitrogen levels. The
parameters that describe these environmental constraints are
estimated by inferring the parameter combinations that best
explain the observed distribution of each target species (Fig. S1
shows an overview of the model structure, the environmental
dependencies that it considers, and the parameter estimation
procedure). The process-based structure of the model has the
advantage that it serves to constrain the parameter estimates,
because it defines how seasonality in environmental factors and
colimitation by environmental factors influence plant perfor-
mance (21).
We apply this method to two taxa, where large numbers of closely

related species have been introduced by people outside of their
native continent and the proportions that have been naturalized
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(can survive and reproduce in the introduced environment) (23)
and become invasive (can produce reproductive offspring distant
from site of introduction) (23) are well-known (24). The first group
is 379 Australian Acacia species that have been introduced outside
of Australia (48 species are naturalized and 22 species are invasive).
The second group is the Australian eucalypts (members of the
genera Angophora, Corymbia, and Eucalyptus), where 370 species
have been introduced outside of Australia, of which 8 species are
invasive and another 72 species have become naturalized.

Results and Discussion
The fits of the species distribution model to data from the Aus-
tralian Virtual Herbarium (AVH) characterize the distribution
of the study species in their native Australia well (Materials and
Methods). There are no systematic tendencies to project high
numbers of false positives, and the false-negative rates were low
(Fig. 1 and Fig. S2). We tested whether the model could predict
an independent dataset comprised of all available Global Bio-
diversity and Information Facility (GBIF) distributional records
for the study species outside of Australia (Fig. 1 and Fig. S2).
Overall, 95% of eucalypt GBIF distributional records and 83%
of acacia GBIF distributional records were correctly predicted,
and the models predicted more occurrences correctly than would
be expected by chance (z test, n = 163, P < 0.0001).

The projected potential ranges showed that, although members
of the acacia group had larger potential native ranges than mem-
bers of the eucalypt group (P < 0.0001), the global potential ranges
of these groups were indistinguishable (P = 0.497) (Fig. 2). Al-
though we cannot definitively attribute this finding, it is consistent
with the observation that the environmental space occupied varies
less between genera than between species (25), which is perhaps to
be expected for two large and ecologically successful genera.
We found that invasive and naturalized species did not differ

from introduced species in their potential native range sizes
(P = 0.0853 and P = 0.0637, respectively) (Fig. 2, native range).
Previous work on invasions has sought to relate native range size
to invasiveness (24). The premise is that species with large native
range sizes are more likely to be preadapted to conditions en-
countered in a novel region. Despite the appeal of this argument,
support is not universal (12), and our findings cast additional
doubt on its general validity and usefulness for predicting in-
vasiveness. In contrast, the potential global range sizes did reveal
clear differences, with invasive species having the largest po-
tential range sizes (P < 0.0001), whereas naturalized species had
larger range sizes (P < 0.0372) than introduced species (Fig. 2,
world range). A qualitatively similar but statistically clearer re-
sult was found when analyzing the potential range sizes in a hy-
pothetical world where each environmental zone is equally
common (P < 0.0001 and P = 0.00299) (Fig. 2, resampled range); this
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Fig. 1. Metrics of the range models of the Australian acacia species introduced outside of Australia. Species are grouped by status: invasive, naturalized, and
introduced. Concentric rings (from outer to inner rings) of bar plots (each bar represents a species) report (i) the true-positive, true-negative, false-positive,
and false-negative rates for the modeled range sizes in Australia, (ii) the sample size used for fitting the Australian ranges (darker colors indicate larger
samples), (iii) the Global Biodiversity and Information Facility (GBIF) false-negative and true-positive rates for projections made outside Australia, (iv) the
sample sizes available for the GBIF analyses (darker colors indicate larger samples), and (v) the modal value of each species’ association with other study
acacias (blue, positive associations; red, negative associations). Fig. S2 provides an analogous figure for eucalypt species.
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result implies that invasive species do not have larger potential ranges
because of preferences for more common environmental zones.
Together, these findings suggest that it is not so much the native
range size but the potential global range that is informative of in-
vasive success. The current native geography may thus not provide
the full suite of environments in which a species can persist. The
global stage on which invasions play out, however, offers many more
environment types and therefore, provides a less biased arena for
inferring the range of environmental conditions to which a species is
preadapted.
The estimated model parameters describe dependencies of

physiological rates (growth, respiration, carbon, and nitrogen
uptake) on environmental factors (temperature, soil moisture,
solar radiation, and soil nitrogen). Each dependency is described
by a response function, the parameters of which can be inter-
preted as traits that define the species’ environmental tolerances.
These traits, when interpreted by the model, reveal that invasive
status is clearly associated with projected global range size (Fig.
2). Although valuable, this analysis does not identify if particular
traits allow invasive species to occupy larger ranges.
We, therefore, now turn to the question of whether inva-

siveness is associated with distinct traits or trait syndromes. A
multivariate analysis of the physiological niche parameters used
to project these ranges revealed clusters of species. However,
each cluster included all status groups, rendering this classifica-
tion useless as a tool for screening invasive risk (Fig. S3). Be-
cause the parameters in this classification describe the species’
environmental tolerances, the implication is that it is immaterial
for invasion success whether species achieve large potential
range sizes through, for example, a broad temperature or a broad

moisture tolerance. Indeed, plotting the average niche breadths
of the nine niche dimensions used in the species distribution
model (Fig. 3) revealed that invasive species, on average, did not
have broader niche dimensions. On the contrary, for most niche
dimensions, the average niche breadth decreased with invasive
success; the exception here was that invasive success was asso-
ciated with a capacity to take up soil nitrogen over a broader
range of soil nitrogen conditions (Fig. 3).
Taken together, these results suggest that invasive success reveals

itself only as a high-dimension interaction between plant physiology
and environmental conditions. For example, a higher temperature
tolerance for carbon uptake may result in a dramatic increase in the
potential range size of a species that has a tolerance of dry soils but
only a modest increase in the potential range size of a species that
cannot tolerate dry soils. Furthermore, a unit increase in temper-
ature tolerance may open up a smaller area of geographic range in
a topographically diverse region but a larger geographic area in
a flat region. Our analysis suggests that the most appropriate way
to quantify the outcome of these interactive and context-specific
factors is the global potential range size. This view is further sup-
ported by our finding that there was no clear relationship between
invasive status group and whether a species tended to have positive
or negative range associations with other species (Fig. 1, inner rings
and Fig. S2, inner rings). The implication is that invasive status
group does not represent a syndrome defined by a preference for
a particular environment type.

Conclusion
Our analysis of invasive success clearly shows that invasive spe-
cies have larger potential global ranges than naturalized species,
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Fig. 2. Posterior densities of the potential range sizes of invasive, naturalized, and introduced acacia and eucalypt (Euc) species in their native Australia, the
world, and a resampled world, where each of the world’s environmental zones is equally common. The posterior densities are calculated from the regression
coefficients of a Bayesian regression model.
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which in turn, have larger potential ranges than species that were
introduced but failed to naturalize. The fact that introduced,
naturalized, and invasive species differed in potential range size
supports the proposition (26) that species that invade, naturalize,
and fail to naturalize represent three ecologically distinct groups.
The linkage that we detected between potential range size and
invasiveness is intuitive, because it suggests that species pre-
adapted to a larger range of environmental conditions are more
likely to be successful invaders. This explanation of our findings
is consistent with the theory of fitness homeostasis (27), which
proposes that species that maintain fitness over a broader range
of environments are more likely to be invasive (12). This theory
is supported by studies that show that invasive success is posi-
tively associated with the genotypic and phenotypic diversity of
founder populations (14). Fitness homeostasis is, however, dif-
ficult to measure directly (12). We suggest that our method for
estimating global potential range size may provide a readily in-
ferable proxy for fitness homeostasis.
Our analysis provides a rapid and economical method for

ranking the invasive risk of plant species. It failed to identify
traits that are associated with invasive success, a finding that is
supported by the many studies that have likewise failed to
identify the traits that define invasive success, further supporting
the conclusion that the traits that define invasive success are
context-specific (9). The species distribution modeling approach
that we use here should be applicable to other groups of invasive
plants, including grasses and herbaceous plants. Although the
mechanistic nature of the approach that we use is tailored to
plants and therefore, cannot be applied to animals, analogous
methods could be developed for animals. In this regard, dynamic
energy balance theory models (28) could provide the mechanistic
core—the role that the Thornley transport resistance (TTR)
model adopted in this study—for estimating the physiological
niches of animals from distribution data (29).
Our findings have implications for species distribution mod-

eling, a method routinely criticized for making questionable
assumptions (17, 30). We showed that, despite being an in-
complete descriptor of the factors that define species’ ranges,
our species distribution models, nonetheless, predicted 92% of
the combined occurrences derived from an independent dataset
of 749 species included in this study. Hence, species distribu-
tion models, despite making strong assumptions, are capable of
making useful predictions, supporting a view that species’ ranges

are primarily defined by climate factors and species climate
niches are often conservative (20, 31).

Materials and Methods
Species Distribution Data and Climate Data. We used 379 Acacia and 374
Eucalypt (members of the Angophora, Corymbia, and Eucalyptus genera)
species known to be introduced outside of Australia (24). For the acacias, 47
and 22 of these species are reported as naturalized and invasive, re-
spectively. Our usage of these terms follows definitions provided in ref. 23:
introduced species have been transported by humans across a major geo-
graphical barrier, naturalized species can survive and reproduce in the in-
troduced environment, and invasive species produce reproductive offspring
distant from the sites of introduction. For the eucalypts, 72 species are
reported to be naturalized, and 8 species are reported to be invasive. Our list
differs slightly from the list in ref. 24 because of unavailable data for a mi-
nority of species (Dataset S1 shows the list of species used). For each species,
we extracted occurrence data from the AVH (http://avh.chah.org.au) on
December 3, 2013. For the GBIF records, we extracted data directly from
www.gbif.org/ on December 2 and 3, 2013.

The species distribution model (21) requires data on soil nitrogen (32), soil
water, solar radiation (monthly estimates from ref. 33), and mean, maxi-
mum, and minimum temperatures (monthly estimates from ref. 34). All
variables (except soil nitrogen) are available at 1-km-grid resolution; for soil
nitrogen, the resolution was 0.5°.

Species Distribution Modeling. We use the TTR model (22) as implemented in
the work in ref. 21 to project the distributions of species (Fig. S1). The TTR, as
developed in the work in ref. 22, is an ordinary differential equation model
that considers how plant growth is influenced by carbon uptake, nitrogen
uptake, and the allocation of carbon and nitrogen between roots and
shoots. It explicitly separates the physiological processes of resource uptake
from biomass growth. The implementation described in ref. 21 relates the
uptake and growth processes to environmental forcing variables. Specifi-
cally, the model considers how carbon uptake might be limited by temper-
ature, soil moisture, solar radiation, and shoot nitrogen; nitrogen uptake
might be limited by temperature, soil moisture, and soil nitrogen; and
growth and respiration might be influenced by temperature. The model
runs on a monthly time step, which allows it to explicitly consider how
seasonal fluctuations in the forcing variables interactively influence plant
resource uptake and growth. In this study, we use exactly the same model
version that was used in ref. 21 (ref. 21 has a full description of the model
and its assumptions).

We used all available AVH records for the species distribution data. The
AVH data include only presence observations, but the species distribution
model requires both presence and absence observations. For the AVH
dataset, Australia has beenwell-sampled, and the absence of presence data is
indicative that the species does not occur. A variety of procedures exist for
simulating absence points in such situations, and the resulting absence points
are referred to as pseudoabsence points. Analyses with simulated data
suggest that the method used to generate such pseudoabsences is one of the
smallest sources of error in species distribution modeling (35). We follow
a procedure shown to be less biased than alternative methods (35) to gen-
erate pseudoabsence data: we create a mask of 0.1° surrounding presence
points and then randomly select 10,000 points not in this mask but in Aus-
tralia (including Tasmania).

The model predicts the potential biomass of an individual plant as
a function of the environmental forcing variables at a site. Following the
work in ref. 21, we assume that pi, the probability of a species occurring at
site i, is described by the complementary log–log of the modeled plant
biomass at site i and that the likelihood of observing the presence absence
data (yi) at site i is described by the Bernoulli distribution. To estimate the
parameters, we used the differential evolution optimization algorithm (36)
to find the set of parameters that maximizes this likelihood over all sites. The
algorithm mutates and recombines a population of candidate solutions over
generations. We ran the algorithm for each species using populations of 100
candidate solutions for 500 generations. This procedure was repeated five
times. Each subsequent iteration through the species list used solutions from
the previous iterations to initiate the algorithm. We used the same number
of presence points as absence points for the model fitting (Dataset S1 pro-
vides a list of the number of presence data points used for each species).
Each call to the optimization algorithm used a random subsample of the
absence points.
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Fig. 3. Average normalized niche breadth for the sum of all nine niche axes
in the species distribution model and each individual niche axis separated by
invasive status. The points indicate the means, and the bars span the 95%
credible intervals estimated using a Bayesian regression model.
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Evaluation of the Species Distribution Models. We create a confusion matrix
(a matrix of the number of true positives, true negatives, false positives, and
false negatives) for each species distribution model estimated from the AVH
distribution data. We examined whether the projected global distribution
model matched the GBIF data for the species outside of their native Australia.
Despite the awareness of invasive plants and the fact that our study species
are conspicuous, there were few GBIF records for most study species. A one-
sided binomial test was used to evaluate whether the model predicted more
of the observed distributional records than would be expected by chance for
each species, and a combined probability test of these binomial tests (z test)
was used to summarize the individual tests. Trials were possible for 163
species. All data were used for the statistical testing, but only trials with
n > 15 are plotted in Fig. 1 and Fig. S2.

To avoid projecting distributions into a statistical domain not found in the
native continent, we formally define the domain within which global projec-
tions could be made. We used the environmental data used in the species
distribution models to characterize clusters of environmental conditions (en-
vironmental zones) using discriminant analysis of principle components (DAPC)
(37). We subsequently identified which of these environmental zones does not
occur in Australia. These zones were considered to be beyond the domain of
the training dataset, and such sites were masked in our global projections. This
procedure, in effect, excluded the Boreal and Arctic Tundra regions.

Evaluation of the Physiological Niche of Invasive and Noninvasive Species. We
calculated the niche volume in three ways: projecting species ranges for
Australia, projecting species ranges for the world, and using a resampled
dataset that assumes that the world’s environmental zones are equally
common. This third method allows us to test whether species have broader
ranges because of a preference for more common environment types. To
create a dataset where each environmental zone is equally common, we
created a resampled dataset of the environmental data. The first step in this
resampling procedure is to define the environmental zones. DAPC (37) was
used to classify the environmental data into 100 environmental zones. The
second step is to sample a finite number (1,000 in our case) of locations from
each of 100 environmental zones, which produces an environmental dataset

where each environment zone is equally represented. We then project
whether species would occur in each of the resulting 100 × 1,000 locations.
This resampled dataset retains the covariance structure of the original
environmental data.

A Bayesian linear regression model (38) was used to describe the effects of
group (acacia or eucalypt) and invasive status (invasive, naturalized, or in-
troduced) on potential native, global, and resampled global range sizes. We
plot the posterior estimates of the mean estimated range sizes of these
groups in Fig. 2. The significance of the regression coefficients was tested
using a z test (38).

We calculated Yule’s measure of association between species pairs and
report the mode of each species association measure. Yule’s association is
defined as ðad −bcÞ=ðða+bÞðc+dÞða+ cÞðb+dÞÞ0:5, where a is the number of
plots with both species present, b is the number of plots with only species 1
present, c is the number of plots with only species 2 present, and d is the
number of plots with both species absent.

We use DAPC (37) to identify species that have similar physiological niche
parameters and examine the extent to which invasive, naturalized, and
introduced species are associated with particular clusters in the multivariate
physiological niche space. This multivariate analysis identified three clusters,
and a 3 × 3 (three DAPC clusters × three invasive status groups) contingency
table was constructed (Fig. S3). We additionally calculated the niche
breadth of each species on each of nine niche axes in the species distribu-
tion model (21). A Bayesian linear regression model (38) was used to test
whether average niche breadth was influenced by invasive status (invasive,
naturalized, or introduced); group (acacia or eucalypt) was considered
a random effect in this model (Fig. 3).
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