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ABSTRACT

Aim Investigate the relative abilities of different bioclimatic models and data sets

to project species ranges in novel environments utilizing the natural experiment in

biogeography provided by Australian Acacia species.

Location Australia, South Africa.

Methods We built bioclimatic models for Acacia cyclops and Acacia pycnantha

using two discriminatory correlative models (MaxEnt and Boosted Regression

Trees) and a mechanistic niche model (CLIMEX). We fitted models using two

training data sets: native-range data only (‘restricted’) and all available global data

excluding South Africa (‘full’). We compared the ability of these techniques to

project suitable climate for independent records of the species in South Africa.

In addition, we assessed the global potential distributions of the species to

projected climate change.

Results All model projections assessed against their training data, the South

African data and globally were statistically significant. In South Africa and

globally, the additional information contained in the full data set generally

improved model sensitivity, but at the expense of increased modelled prevalence,

particularly in extrapolation areas for the correlative models. All models projected

some climatically suitable areas in South Africa not currently occupied by the

species. At the global scale, widespread and biologically unrealistic projections by

the correlative models were explained by open-ended response curves, a problem

which was not always addressed by broader background climate space or by the

extra information in the full data set. In contrast, the global projections for

CLIMEX were more conservative. Projections into 2070 indicated a polewards

shift in climate suitability and a decrease in model interpolation area.

Main conclusions Our results highlight the importance of carefully interpreting

model projections in novel climates, particularly for correlative models. Much

work is required to ensure bioclimatic models performed in a robust and

ecologically plausible manner in novel climates. We explore reasons for variations

between models and suggest methods and techniques for future improvements.
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INTRODUCTION

Understanding the potential impacts of novel climates on

native and alien species distributions is critical for conservation

planning and management, but projecting ecological futures is

highly uncertain. Studies that model species ranges can

encounter methodological, conceptual and theoretical difficul-

ties, making interpretation of results problematic for both

current and future environments (Dormann, 2007; Coreau

et al., 2009; Rodda et al., 2011).

Bioclimatic models are commonly used for projecting the

potential range of invasive species for risk assessment and more

generally for species range shifts under the influence of climate

change (Guisan & Zimmermann, 2000; Kriticos & Randall,

2001). These models define the potential limits of species

distributions using various combinations of the species known

range, physiological tolerances, biotic interactions and dis-

persal potential (Elith & Leathwick, 2009; Kearney & Porter,

2009; Soberón & Nakamura, 2009). The models are then

transferred or projected to other regions or times to identify

additional areas suitable for occupation by the species in

question.

The most commonly used bioclimatic models are correla-

tive, linking readily available species distribution records with

spatial environmental data, using either statistical or machine

learning techniques (Elith & Leathwick, 2009). An alternative,

but more time- and data-intensive approach is to link the

ecophysiological responses of species to environmental cova-

riates in mechanistic bioclimatic models (Kriticos & Randall,

2001; Sutherst, 2003; Kearney & Porter, 2009).

Which components of the species niche are represented in

different modelling techniques depends on the framing of the

research question (Venette et al., 2010), the modelling method

and the training data used (Kearney, 2006; Hirzel & Le Lay,

2008; Soberón & Nakamura, 2009). These choices, in turn, can

influence model projections. Novel climates are key areas of

interest for invasion ecology and climate change, as well as for

the management and policy frameworks built on such

knowledge. The three primary determinants of a species range

are climate, biotic interactions and dispersal (Soberón &

Nakamura, 2009). Because biotic and dispersal drivers of

distributions can change rapidly owing to anthropogenic

influences, the goal for bioclimatic models exploring habitat

suitability in novel climates should be to approximate the

Grinnellian fundamental niche (sensu Soberón, 2007). At the

very least, they should be able to characterize the realized

Hutchinsonian niche (sensu Soberón, 2007) underlying the

species’ native range.

Various approaches aim to develop bioclimatic models that

more closely approximate fundamental niches, while recog-

nizing that perfect matches are not possible. Theoretically, the

ability of correlative and mechanistic models to project suitable

novel climate space should be improved by greater model

complexity and the inclusion of more species-relevant data, but

this construct is rarely tested. For example, mechanistic models

are potentially able to get closer to understanding the

determinants of the fundamental niche by considering eco-

physiological processes. Alternatively, it has been suggested that

models of invasive species fitted with pooled data from alien

and native ranges may improve the descriptive performance of

the models relative to models fitted with native-range data only

(Mau-Crimmins et al., 2006; Broennimann & Guisan, 2008;

Sanchez-Fernandez et al., 2011). Current consensus suggests

that correlative model outputs align more closely with species’

realized distributions, while mechanistic models more closely

approximate their fundamental climate niche and therefore

robustly project species ranges into novel climates (Soberón,

2010; Rodda et al., 2011). Yet few studies have rigorously

investigated or tested this proposition (but see Sutherst &

Bourne, 2009; Elith et al., 2010; Kearney et al., 2010).

The expertise and resources required to parameterize

mechanistic models may not be available for many species,

thus limiting their application to high profile questions.

In contrast, correlative models are quick to parameterize, have

minimal requirements and use widely available species distri-

bution records and spatial environmental data. It is therefore

highly likely that they will continue to be used. Concerns about

extrapolation issues (e.g. Sutherst & Bourne, 2009) have

prompted some authors to argue for careful and critical

evaluation of the performance of correlative models in novel

environments to identify and address problems requiring

resolution (Elith et al., 2010; Venette et al., 2010; Rodda et al.,

2011).

Acacia cyclops A.Cunn. ex G.Don and Acacia pycnantha

Benth. (subgenus Phyllodineae, Mimosoideae: Fabaceae; Miller

et al., 2011) are native to Australia and major invasive species

in South Africa, the Iberian Peninsula and California (Turpie

et al., 2003; Gaertner et al., 2009; Le Maitre et al., 2011;

Richardson & Rejmánek, 2011). The life histories of both

species are well characterized, and their native and naturalized

distributions, well documented (see review in Appendix S2 in

Supporting Information). In Australia, both species have

become naturalized outside their historical native distributions

(Maslin & McDonald, 2004). In South Africa, both species had

been introduced by the mid-19th century and widely planted

for land rehabilitation and commercial purposes. This long

invasion history, widespread colonization and well-docu-

mented distributions may be viewed as a ‘natural experiment

in biogeography’ from which much can be learnt about species

range dynamics (Richardson et al., 2011). This makes these

Acacia species useful model systems for comparing the ability

of different approaches to project potential geographic ranges

for species in novel environments. As such, Australian acacias

in South Africa provide a unique opportunity to investigate

tools for invasive species and climate change risk assessment.

In this study, we compare the ability of different modelling

methods to make projections of species potential ranges in

novel environments. Because we cannot test this directly,

beyond qualitative assessments based on theoretical expecta-

tions, we use invasions of novel environments in South Africa as

a proxy for future novel climates. Specifically, we built

bioclimatic models for A. cyclops and A. pycnantha using the
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mechanistic niche model CLIMEX (Sutherst & Maywald, 1985;

Sutherst et al., 2007) and two discriminative correlative mod-

elling techniques MaxEnt (Phillips et al., 2006) and Boosted

Regression Trees (BRT; Ridgeway, 2007; Elith et al., 2008).

We fitted models for the three techniques utilizing two training

data sets: native-range data only (‘restricted’) and all available

global data excluding South African distribution records (‘full’).

We compared the ability of the six techniques (three bioclimatic

models · two training data sets) to project the climate suitability

for observed records of the two species in South Africa. In

addition, we assessed the impacts of climate change on the

potential distributions of the two species in both native and

alien habitats. Our intention is to motivate developments that

improve bioclimatic modelling of novel climates by investi-

gating what differences in the models or training data sets

are responsible for variation in model behaviour. Finally, we

explore how correlative and mechanistic modelling approaches

can complement each other or, together, facilitate the develop-

ment of more robust bioclimatic modelling techniques.

METHODS

Study species and area

Acacia cyclops was introduced at least twice to South Africa

(1845 from Australia, 1895 secondarily from France) for drift-

sand stabilization purposes (Shaughnessy, 1980, 1986; Poyn-

ton, 2009; see discussion in Le Roux et al., 2011). Since

introduction, A. cyclops has spread rapidly and currently

occurs throughout the western and south-western coastal

region of South Africa. In its native range, Acacia cyclops is a

shrub to 4 m ()6 m) high, found along the coast of the south-

west of Western Australia (SWWA) and South Australia and

inland up to 60 km in areas with winter rainfall and mild to

warm and dry summers (Gill, 1985).

Acacia pycnantha is a shrub or tree up to 10 m tall (Maslin &

McDonald, 2004), is the Australian national flora emblem, is

long established in cultivation and was introduced in the 19th

C from its native range in south-eastern Australia to both

SWWA and the Cape Floristic Region (CFR; Boucher &

Stirton, 1978). In Australia, it has extended its native range

since European settlement in both New South Wales (NSW)

and wetter parts of Victoria (Maslin, 2001), and naturalized

alien populations occur in NSW, SWWA and eastern Tasmania

(Maslin, 2001). Its combined native and alien distribution in

Australia extends from regions with Mediterranean to tem-

perate climates. In the CFR, A. pycnantha has been introduced

at least twice, both times from Australia and presumably in low

numbers for dune stabilization, tan bark production and

ornamental purposes (Poynton, 2009). Between 22 and 29

million seeds were subsequently locally sourced in South

African plantations for distribution to the eastern parts of

the country (Stirton, 1978; Poynton, 2009; see discussion in

Le Roux et al., 2011).

We compiled species distribution data from a variety of

sources. For Australia, we sourced location records from

various Australian state and territory herbaria via the Austra-

lian Virtual Herbarium online database (http://www.ersa.

edu.au/avh), the Centre for Invasion Biology, Stellenbosch

University (CÆIÆB) database on introduced species and the

database of Seeding Victoria (A. Pearson and A. Ovington,

unpubl. data.) for A. pycnantha. For South Africa, we obtained

location records from the CÆIÆB database, the South African

Plant Invaders Atlas (AGIS, 2007) and the National Herbarium

Pretoria Computerized Information System (PRECIS; Appen-

dix S1). For other global distribution data, records were

sourced from the GBIF online database (http://data.gbif.org),

from the scientific literature and from scientists involved in

invasive species management (see acknowledgements). Because

of the greater uncertainty associated with these records, relative

to native-range data and our South African records, we spent

longer scrutinizing these data and generally cross-checked

information using more than one source.

Records were scrutinized with the help of expert consulta-

tion (Bruce Maslin, Department of Environment & Conserva-

tion W.A. and Phillip Kodela, Royal Botanic Gardens Sydney,

for Australia; Lesley Henderson, Plant Protection Research

Institute, for South Africa) to remove misidentified, revised,

cultivated or suspected inaccurate or imprecise records

(Table 1). We further scrutinized records in environmental

space relative to model background data using box and whisker

plots for each Bioclim variable (Fig. S1). Records that were

obvious outliers were further investigated and removed if the

location and other evidence indicated that they were growing

in managed environments. We separated naturalized alien

records of the two Acacia taxa within Australia from native-

range records (Figs 1 & 2). In the South African SAPIA and

PRECIS databases, locations were recorded on a 1 min, 5 min

or 0.25� square grid. Where possible, the latter records were

located more accurately using the locality descriptions, and

duplicate records were removed, where possible (see Appendix

Table 1 Distribution record processing for Acacia cyclops and

Acacia pycnantha modelling.

Data set Type Acacia cyclops Acacia pycnantha

Restricted

(R)

Raw 791 1958

Cleaned 202 1338

Regularized 103 497

Full (F) Raw 1139 (791, 167, 181) 2193 (1958, 171, 64)

Cleaned 432 (202, 161, 69) 1500 (1338, 144, 18)

Regularized 172 (103, 29, 40) 563 (497, 51, 15)

South

Africa

Raw 1516 452

Cleaned 590 139

Regularized 234 59

Restricted data set includes only native-range distribution records. Full

data set includes the total of native, alien Australian and alien global

(excluding South Africa) distribution records (listed in that order in

parentheses). Regularized data represent data used in the correlative

models, where only one record is retained per 10’ CliMond climatology

grid cell.

B. L. Webber et al.
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S1 for further methods). The data cleaning reduced the

number of available records considerably (Table 1). For the

correlative models, we further reduced the number of records

to one per 10¢ grid cell (regularized data) to minimize sampling

bias (Table 1; Phillips et al., 2009). For A. cyclops, the

regularized data represented 13% and 15% of the raw data

records, whereas for A. pycnantha, they represented 25% and

26% of the raw data records (in both cases for full and

restricted training data sets, respectively).

Climate data and future projections

Steep climatic gradients in the Western Cape region of South

Africa demanded a finer-scale climatology data set for mod-

elling than the 0.5� data sets previously available to CLIMEX

(Sutherst et al., 2007). We used the CliMond 10¢ gridded

climate data (Kriticos et al., 2011) for all modelling

approaches, ensuring climate data uniformity between models.

The CliMond data set uses updated equations for calculating

humidity values, relative to the CRU 10¢ data (New et al.,

2002), and addresses missing data present in the WorldClim

precipitation layers and change surfaces (Hijmans et al., 2005).

Historical climate (averaging period 1950–2000) was repre-

sented using average minimum monthly temperature (Tmin),

average maximum monthly temperature (Tmax), average

monthly precipitation (Ptotal) and relative humidity at

09:00 h (RH09:00) and 15:00 h (RH15:00). Potential future

climate at 2070 was represented by the same five variables

(a)

(b) (c)

Figure 1 The known global distribution of Acacia cyclops. Distribution record data for native (light yellow circles) and naturalized alien

(dark blue circles) populations are indicated against correlative model backgrounds for restricted (light green shading) and full (light

green plus dark green shading) training data sets globally (a) and in greater detail for Australia (b) and South Africa (c).

Modelling Australian acacias
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using the CSIRO-Mk3.0 (Gordon et al., 2002) global climate

model with the A1B SRES emission scenarios (IPCC, 2000),

available as part of the CliMond data set.

For correlative modelling, we chose five CliMond variables

a priori that best represent the ecological stress factors in the

native ranges of the two study taxa and that are most

equivalent to the stress variables used to parameterize the

CLIMEX models. The five bioclimatic variables were mean

temperature of the warmest quarter (Bio10; cf hot stress),

mean temperature of the coldest quarter (Bio11; cf cold stress),

mean moisture index of the driest quarter (Bio33; cf dry

stress), mean moisture index of the warmest quarter (Bio 34; cf

hot and dry stress) and mean moisture index of the coldest

quarter (Bio 35; cf cold and dry stress). We examined

colinearity among the five variables within the backgrounds

used to train the correlative models for the two Acacia species.

In most cases, correlations between chosen Bioclim variables

were weak ()0.6 < r < 0.6) except for Bio33 and Bio34 (Ac.R

and Ap.R), Bio10 and Bio35 (Ap.R) and Bio30 and Bio34

(Ap.F and Ac.F), which had strong correlations (r < )0.8,

r > 0.8) for some but not all data sets (for abbreviations used,

please see the following paragraph).

Species distribution modelling

We applied three bioclimatic models to A. cyclops (Ac) and

A. pycnantha (Ap): two correlative models (MaxEnt, M;

Boosted Regression Trees, B) and one mechanistic niche model

(a)

(b) (c)

Figure 2 The known global distribution of Acacia pycnantha. Distribution record data for native (light yellow circles) and naturalized alien

(dark blue circles) populations are indicated against correlative model backgrounds for restricted (light green shading) and full (light

green plus dark green shading) training data sets globally (a) and in greater detail for Australia (b) and South Africa (c).

B. L. Webber et al.

982 Diversity and Distributions, 17, 978–1000, ª 2011 Blackwell Publishing Ltd



(CLIMEX, C). We built models for two training data sets:

native-range data only (‘restricted’, R) and all available global

data, excluding South African distribution records (‘full’, F; see

Appendix S2 for detailed record information). For CLIMEX

models, the full data set included biological and ecophysio-

logical information in addition to alien species distribution

records (Appendix S2). All three models were projected

globally using historical (1975H) and modelled future (2070)

climate data, but statistical comparisons among models were

restricted to (1) the species distribution records used for model

construction within the region defined by the correlative

model backgrounds and (2) independent species distribution

records in South Africa.

Correlative species distribution modelling

We used MaxEnt version 3.3.3e (Phillips et al., 2006) and

Boosted Regression Trees version 1.6-3 (Ridgeway, 2007; Elith

et al., 2008) to fit the restricted and full training data sets to

historical climate conditions, and subsequently made spatial

projections globally under historical climate conditions and the

2070 climate change scenario.

MaxEnt relies on a user-defined geographical background

for sampling the climate of a reference set of grid cells for

comparison with the climate of grid cells where the species is

present. The definition of the background data set can

influence significantly the model results (VanDerWal et al.,

2009; Elith et al., 2011). Conceptually, the background should

include the full environmental range of the species including

those areas that are reachable and have been searched (Elith

et al., 2010). One method of choosing a background is to use a

minimum convex polygon drawn around the presence points.

A less arbitrary method is to use regionally based biophysical

classifications, for example, agroclimatic zones in Australia

(Hobbs & McIntyre, 2005) or biomes in southern Africa

(Rutherford, 1997). We required a classification that could be

applied globally. There are several such classifications, from

which we chose the Köppen–Geiger classification because it

classes Earth’s climate into zones based on vegetation, precip-

itation and temperature with class boundaries specifically

chosen to match large-scale vegetation changes (Köppen,

1936). We spatially intersected distribution records for both

Acacia species with Köppen–Geiger climate zones provided

with the CliMond 10¢ historical climate data (Kriticos et al.,

2011). Köppen–Geiger polygons containing one or more

species records were included in the background, and separate

backgrounds were produced for the restricted and full training

data sets (Figs 1 & 2).

For all four model combinations, we used the default

settings in MaxEnt version 3.3.3e with the exception that we

restricted model building to hinge features and used the

additional options of ‘create response curves’ (response curves

were clamped) and ‘perform jack-knife’. We restricted our

models to using hinge features because they ‘allow simpler and

more succinct approximations of the true species response to

the environment’ (Phillips & Dudı́k, 2008, p. 173). Elith et al.

(2010) also found that hinge features produced model

projections more congruent with those from a mechanistic

ecophysiological model for the invasive cane toad in Australia.

Unlike MaxEnt, which uses species presence records and

background area for comparison, BRT models require both

species presence and absence or background records. Using the

same background area as the MaxEnt models for both Acacia

species, we transformed the restricted and full occurrence

records into presence/background grids with each grid cell

within the background area given a ‘1’ where one or more

presence records fell within the cell and ‘0’ otherwise. Presence

to background data counts using the restricted training data set

for A. cyclops were 103:2424 (total 2527), for A. pycnantha,

497:3746 (total 4243), and for the full training data set,

172:6623 (total 6795) and 563:6810 (total 7374), respectively.

The BRT models were fitted using the Generalized Boosted

Regression Models package (GBM version 1.6-3; Ridgeway,

2007) and run in the r-statistics package version 2.10.1

(R Development Core Team 2010) using the customized

R code provided in the Elith et al. (2008) supplementary

material tutorial. To avoid biasing the model with relatively

large ratios of presences to background, the data were weighted

so that the sum of the weighted presences equalled the sum of

the weighted background. The models were initially tested

using the entire background and random 50% and 25%

samples from the background. This was found to have almost

no effect on the model results. We therefore used the entire

background to keep the inputs the same as those for MaxEnt.

The model was run with a bag (training subsample) size of

50% and with the default 10-fold cross-validation. The default

values suggested by Elith et al. (2008) for tree complexity

(smoothness) and the learning rate were applied and then

modified to give varying numbers of trees, so that errors were

minimized and overfitting was avoided. Varying settings for

tree complexity and learning rate were used to obtain about

1000–2000 fitted trees. Increasing the tree complexity allows

the model to better represent interactions between the

variables. However, the model statistics and visual comparisons

of the outputs showed that increasing tree complexity resulted

in poorer fits to the modelled species localities and typically

increased the extent of the projected highly suitable areas

globally. We therefore adopted a tree complexity of 1 through-

out. For A. pycnantha, the final model for the restricted training

data set used a learning rate of 0.01, which resulted in 1600 trees

giving the optimal fit; for the full training data set, the learning

rate was 0.03, which gave 950 trees. For A. cyclops, the learning

rate was 0.002 for the restricted data set, which gave an optimal

fit with 1500 trees; for the model trained with the full data set,

the learning rate was 0.1, which gave 1000 trees.

Interpreting correlative species distribution models

Mapped projections and response functions were visually

assessed for features that might indicate causes for concern.

Additionally, to define where models were extrapolating or

interpolating, multivariate environmental similarity surfaces

Modelling Australian acacias
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(‘MESS’ maps sensu Elith et al., 2010) were calculated by

comparing the models’ reference climates (defined as species

background regions) with the projection region, under histor-

ical and future climate scenarios using MaxEnt version 3.3.3e.

This new feature of MaxEnt calculates a climatic similarity

measure comparable to that in a BIOCLIM model but

extended to differentiate levels of dissimilarity as negative

values (Elith et al., 2010). A threshold of zero for values from

MESS surfaces was used to create mask overlays of negative

values for each model, highlighting areas that represent novel

climate space relative to the range under which the model was

fitted and therefore where the model is extrapolating (MESS))

rather than interpolating (MESS+).

Mechanistic modelling

Mechanistic modelling was performed using CLIMEX version 3

(Sutherst & Maywald, 1985; Sutherst et al., 2007). CLIMEX is a

process-oriented ecophysiological niche model that combines

inferential and deductive modelling approaches to describe the

species response to climatic variables, and to use this model to

estimate its potential geographical distribution. CLIMEX uses a

database of five meteorological variables (Tmin, Tmax, Ptotal,

RH09:00 and RH15:00) to derive weekly and annual indices that

define the species response to temperature and soil moisture.

The potential for population growth is described by a weekly

growth index (GIW), which is integrated to create the annual

growth index (GIA). Weekly stress indices (cold, hot, wet, dry

and, in some cases, their interactions) can be used to define the

ability of a population to survive inclement conditions

(Sutherst et al., 2007). Growth indices accord with the

Sprengel–Liebig law of the minimum and Shelford’s law of

tolerance (Shelford, 1963; van der Ploeg et al., 1999), while

stress indices accord with widely observed patterns of species

population response to stressful conditions.

In CLIMEX, species range boundaries are mostly defined by

climatic stresses (Sutherst, 2003). The models use input values

for the response parameters from multiple sources, for example

geographical distribution records, ecophysiological studies of

growth or survival or phenological observations. For restricted

training data sets, we used the approach of fitting model

parameters to native distribution records, with some consid-

eration of ecophysiological principles such as the soil moisture

index value that corresponds with permanent wilting point, but

no consideration of ancillary knowledge of the species’ ecology.

This is not the standard method for building a CLIMEX model

(Sutherst et al., 2007; Sutherst & Bourne, 2009), but we were

interested in the relative performances of models built with

comparable data sets. For models trained with the full data sets,

we used the recommended approach that utilizes all available

data sources to set response parameters and stresses (Sutherst &

Bourne, 2009). Table S1 lists the parameter values used in this

study for A. cyclops and A. pycnantha based on supporting

evidence detailed in Appendix S2.

CLIMEX growth and stress indices are integrated into a single

annual measure of overall climatic suitability, the ‘Ecoclimatic

Index’ (EI; scaled from 0 to 100). The EI value provides an

overall indication of the modelled climatic suitability of a given

location (Sutherst et al., 2007). Establishment is only possible

when EI > 0. In practice, EI values close to the maximum are

rare as this would imply ideal growth conditions year-round

(Sutherst, 2003). The contributing components of EI can be

examined to better understand a species climatic response for

any given location (Sutherst et al., 2007).

Intermodel comparison and goodness-of-fit

The probabilistic measures of environmental suitability used

by MaxEnt and BRT are not directly comparable with EI

values in CLIMEX. Model comparison and validation was

facilitated by defining a threshold above which model projec-

tions are considered to be suitable for the species (Pearson

et al., 2007). There are many ways of setting thresholds with

correlative model projections (see Liu et al., 2005), and the

choice depends on the model purpose (Lobo et al., 2008). The

lowest presence threshold (LPT) is the lowest output value for

an observed presence record and can be interpreted ecologi-

cally as representing climatic conditions at least as suitable as

those where the species has been recorded (Pearson et al.,

2007). Because LPT minimizes omission errors, it is particu-

larly suitable for invasive species risk analysis, where the

consequences of a false negative generally outweigh those of a

false positive. The LPT can also be identified for both the

correlative models and CLIMEX (Table 2). For CLIMEX, we

manually set the LPT to 1 because of the ecological equivalency

of this EI value to the LPT (Sutherst et al., 2007; in practice, 1

was the projected LPT for 6 of the 8 CLIMEX models). For

each model, we converted suitability indices in each grid cell to

presence (suitable) and absence (unsuitable) values using LPT.

Assessing the goodness-of-fit of models for which we only

have presence data is particularly challenging (Zaniewski et al.,

2002; Elith et al., 2006). The majority of statistical methods for

assessing the goodness-of-fit of species distribution models and

niche models measure the ability of the model to discriminate

between an in-class and an out-class for both model results and

input locations. Where information on habitat unsuitability is

not available, which is usually the case, modellers typically rely

upon pseudo-absences (locations assumed to be unsuitable for

the species being modelled). The statistical methods assess how

well the model is able to discriminate between the known

presences and the assumed absences, often using cross-

validation to test the predictions on a portion of the data set

not included in the fitted model (e.g. AUC, Cohen’s kappa).

More recently, the concept of the model background has been

introduced in an attempt to overcome some of the obvious

problems with using pseudo-absences (Phillips et al., 2006).

Ideally, an invasive species risk model should encompass all

of the test locations. This attribute is known as the model

sensitivity, or the proportion of all test locations correctly

modelled as occurring in climatically suitable areas. Low model

sensitivity increases the likelihood of underestimating an

invasive species risk, so models with very high sensitivity
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should be preferred. However, model sensitivity alone does not

indicate how useful the model is. A model that encompasses

the entire globe would have perfect sensitivity, but be of little

use. The natural complement of sensitivity is specificity, the

proportion of true absences occurring in climatically unsuit-

able areas. A more specific model has fewer commission errors.

In the absence of reliable measures of habitat unsuitability (i.e.

true absence data), we had to use a proxy. Modelled prevalence

is the proportion of the model universe (i.e. the region being

projected to) that is estimated to be climatically suitable, and

provides the basis for identifying useful models.

One method applicable to presence-only data is to test the

model sensitivity score for statistical significance (Anderson

et al., 2002). For small sample sizes (< 1000 records), Fisher’s

exact 1-tailed binomial test can be used to test the probability

(P) that the sensitivity score could be achieved by chance alone

given the modelled prevalence:

P ¼
Xn�k

i¼0

pkþið1� pÞ½n�ðkþiÞ�n!

ðkþ iÞ!½n� ðkþ iÞ�!

where p is modelled prevalence, k is the number of species

location points falling in the modelled suitable range, and n is

the total number of species location points in the sample.

In this test, i is a simple counter that allows the probability to

be summed for the exact case where k points out of n are

correctly allocated as well as all of the more extreme cases (Zar,

1999). For larger sample sizes (> 1000), the V2 test can be

performed. Using these tests, the smaller the modelled

prevalence, the lower the probability that all the presence

points would be included within the suitable area by chance

alone. They are therefore somewhat sensitive to the definition

of the model universe.

For these tests, multiple species records within single grid

cells were regularized (i.e. treated as one record), so that each

grid cell was only counted once in terms of its adjacency to a

known sample point and its modelled climate suitability.

All the species model results were assessed for sensitivity and

modelled prevalence against the relevant distribution records

(DR, Figs 1 & 2; Table 2) and the region of projection (RP;

Table 2).

RESULTS

Model evaluation against training data

All model projections tested against their training distribution

records in their relevant training domain (i.e. the Köppen–

Geiger-derived backgrounds for MaxEnt) were found to be

highly statistically significant using the exact binomial test

(P < 0.0001). Models built with the restricted training data set

all achieved perfect sensitivity; though, modelled prevalence

varied considerably more for the A. cyclops models than for the

A. pycnantha models (Table 2). The additional distribution

data contained in the full data set had a highly variable effect on

the correlative model variables with respect to (1) the climate

space spanned by the distribution records, (2) the amount of

additional climate space spanned by background relative to the

distribution records (the ‘background buffering’) and (3)

variable range shift between the presence records relative to the

variable range of the background (Fig. S1). The additional data

also had no discernable effect on the ability of the models to fit

closed response functions, even for response functions with

considerable background buffering (Figs S2 & S3). All full

training data set models for A. cyclops assessed against their

training domain had near-perfect or perfect sensitivity scores

Table 2 Intermodel comparison and goodness-of-fit measures for Acacia cyclops and Acacia pycnantha bioclimatic models projected with

recent historical climate data (1975H).

Species

Training

data set DR RP

LPT Suitable area (km2 ‡ LPT)

Modelled

prevalence Sensitivity

M B C* M B C M B C M B C

Ac R R R 0.096 0.322 1 235568 177781 650590 0.32 0.24 0.90 1.00 1.00 1.00

Ap R R R 0.029 0.127 1 816605 474415 761173 0.68 0.40 0.64 1.00 1.00 1.00

Ac F F F 0.012 0.128 1 1273056 701842 1351808 0.66 0.36 0.71 0.99 0.99 1.00

Ap F F F 0.034 0.042 1 1510128 1626366 1690224 0.73 0.79 0.81 1.00 1.00 0.98

Ac R RSA RSA 0.096 0.322 1 462065 435665 74271 0.36 0.34 0.06 0.96 0.84 0.46

Ap R RSA RSA 0.029 0.127 1 384072 371158 349954 0.31 0.29 0.28 0.98 0.85 0.97

Ac F RSA RSA 0.012 0.128 1 855603 622472 706062 0.66 0.48 0.55 1.00 0.97 0.94

Ap F RSA RSA 0.034 0.042 1 704487 874855 737655 0.56 0.69 0.57 1.00 1.00 1.00

Ac R All World 0.096 0.322 1 49316931 54687645 1571261 0.27 0.32 0.01 0.92 0.93 0.66

Ap R All World 0.029 0.127 1 44330218 28384190 9020993 0.44 0.25 0.06 0.99 0.95 0.98

Ac F All World 0.012 0.128 1 57802202 64656503 7303886 0.31 0.35 0.04 1.00 0.98 0.96

Ap F All World 0.034 0.042 1 57337283 69195197 8443825 0.55 0.62 0.05 1.00 1.00 0.98

*Manually set. RP, region of projection; DR, distribution record data; LPT, lowest presence threshold; M, MaxEnt; B, Boosted Regression Trees;

C, CLIMEX; Ac, Acacia cyclops; Ap, Acacia pycnantha; R, restricted data set; F, full data set (including background region and test records); RSA, South

Africa within the mainland political boundaries (i.e. excluding Lesotho and Swaziland); All, F + RSA.
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(b)

(c)

(d)

Figure 3 Multivariate environmental

similarity surfaces (MESS) for Acacia

cyclops (Ac) and Acacia pycnantha (Ap).

Native distribution reference climates

(i.e. background training domains) for

restricted (R) and full (F) training data sets

were compared to global climates and

are depicted here for recent historical

climatic conditions (1975H). Blue

indicates positive values (MESS+; i.e.

climatic parameters within the bounds of

the reference set), and red indicates

negative values (MESS); i.e. at least one

climatic parameter has a value outside the

range of the reference set; novel projection

climates).

Figure 4 Model projections for the potential distribution of Acacia cyclops (Ac) based on recent historical climates (1975H). Three models

(MaxEnt, M; BRT, B; and CLIMEX, C) were applied to restricted (R) and full (F) training data sets. Colour scale indicates relative habitat

suitability (MaxEnt, BRT) or climatic suitability as indicated by the CLIMEX Ecoclimatic Index (EI); these two scales are not comparable. The

lower bounds of projected habitat suitability are defined by the lowest presence threshold (LPT) for each scenario (Table 2). Hashed areas define

regions with negative multivariate environmental similarity surface (MESS)) values (i.e. extrapolation into novel climate space).

B. L. Webber et al.

986 Diversity and Distributions, 17, 978–1000, ª 2011 Blackwell Publishing Ltd



(a)

(b)

(c)

Modelling Australian acacias

Diversity and Distributions, 17, 978–1000, ª 2011 Blackwell Publishing Ltd 987



(d)

(e)

(f)

Figure 4 Continued.

B. L. Webber et al.

988 Diversity and Distributions, 17, 978–1000, ª 2011 Blackwell Publishing Ltd



(0.99–1.00). In constructing the full data set models, three

records were purposefully excluded from the CLIMEX suit-

ability projections during parameter-fitting (Appendix S2).

They was the only reason the goodness-of-fit assessment did

not have a perfect sensitivity. The BRT model achieved its high

sensitivity score with a very small modelled prevalence (0.36)

for A. cyclops, compared with the MaxEnt and CLIMEX

models (0.66 and 0.71, respectively). Higher LPT scores for the

BRT models, relative to MaxEnt models, helped by excluding

large areas projected as marginally suitable. When the full data

set models for A. pycnantha were tested against their training

domain, the MaxEnt and BRT models had perfect sensitivity,

while the CLIMEX model achieved a sensitivity score of 0.98.

This latter value occurred because 13 distribution records were

purposefully excluded when all available data were assessed

while constructing the full data set CLIMEX model (see

Appendix S2). Modelled prevalence was similar for all three

models trained with the full data set, representing 73 – 81% of

the Köppen–Geiger-derived background region.

Model evaluation against South African data

All model projections tested against the independent South

African distribution records in South Africa were found to be

highly statistically significant using the exact binomial test

(P < 0.0001). However, the sensitivity and modelled preva-

lence results were variable (Table 2; Figs S4 & S5). For models

built with the restricted data set, MaxEnt achieved high

sensitivity for both species (0.96 for A. cyclops and 0.98 for

A. pycnantha). For the restricted data set, most of the northern

and eastern distribution records in South Africa were in

extrapolation (MESS)) space for the correlative models

(Figs S4 & S5). The BRT model sensitivity results were

moderately poor for both species in South Africa (0.84 for

A. cyclops and 0.85 for A. pycnantha). Despite perfect sensitiv-

ity in the native range, the restricted data set CLIMEX model

for A. cyclops had a very low modelled prevalence in South

Africa (0.06) and a correspondingly low sensitivity (0.46). The

CLIMEX restricted data set model for A. pycnantha had a high

sensitivity in South Africa (0.97). All three models based on the

restricted data set had similar prevalence (0.28 – 0.31; Table 2).

The models for A. cyclops developed using the full training data

set had perfect (MaxEnt) or very good sensitivity (0.97, BRT

and 0.94, CLIMEX). The CLIMEX model indicated that these

excluded localities were excessively dry. In the South African

projections for A. cyclops, the BRT model once again had the

smallest modelled prevalence (0.48) compared with MaxEnt

(0.66) and CLIMEX (0.55). The BRT model projections did

not include records for A. cyclops in the dry interior of the

Western Cape, particularly at high altitudes with low winter

temperatures (Fig. S4d). The omissions in the CLIMEX models

were mainly in the very arid winter rainfall areas of the north-

western part of South Africa (Fig. S4f). All models for

A. pycnantha developed using the full training data sets had

perfect sensitivity in South Africa (Fig. S5), with prevalence

varying between 0.56 (MaxEnt) and 0.69 (BRT; Table 2).

Model evaluation globally under historical climate

All model projections tested globally against all available data

records (i.e. full data set + South African records) were found

to be highly statistically significant using the exact binomial

test (P < 0.0001). For both correlative models, much of the

global projection was into extrapolation (MESS)) space

(Figs 4 & 5). The Bioclim variable with the greatest influence

on model projections (limiting factors sensu Elith et al., 2010)

in the MESS) space was Bio11 for both species (Fig. S8).

Many response functions were open ended (that is, they

maintained a high suitability value beyond the limits of the

training data) resulting in substantial areas of suitable habitat

within novel climates when the models were projected globally

(Figs S2 & S3). In addition, no other variables reduced the

modelled suitability in regions where Bio11 was the dominant

variable. For A. cyclops, sensitivity increased for all models

when the full data set was used over the restricted data set,

particularly for BRT (0.83–0.98) and CLIMEX (0.66–0.96)

models (Table 2). In contrast, the A. pycnantha models had

very high sensitivity for all models and data sets (0.95–1.00).

Prevalence also increased between the restricted and full data

sets for all models and species. However, the biggest difference

was the prevalence between the correlative models and

CLIMEX (Figs 4 & 5; Table 2). The correlative models

projected 27-35% and 25-62% of the global land mass as

suitable, for A. cyclops and A. pycnantha, respectively. Within

regions of projection interpolation for the correlative models

(MESS+ areas; Fig. 3), large areas of projected suitability

without distribution records generally had low climatic suit-

ability values (Figs 4a,b & 5a,b). However, in MESS) areas,

there were substantial areas of implausible medium to high

climatic suitability, particularly in the tropics and subtropics for

A. cyclops (Fig. 4a,b) and conversely in high latitudes for

A. pycnantha (Fig. 5a,b). In contrast, the CLIMEX models

produced more conservative global projections, with 1-6% of

the global land mass climatically suitable (Table 2). These areas

were largely restricted to Köppen–Geiger classes in which both

species are recorded (Figs 4c & 5c).

Model evaluation globally under a future climate

scenario

There was substantial variation among the modelling tech-

niques and between models trained with restricted and full

data sets in the area projected globally as suitable for A. cyclops

and A. pycnantha under a potential future climate (2070).

All models showed a polewards shift in the projected

distributions, and for correlative models, a decrease in

the area of model interpolation (MESS+, Figs 6, 7, S6 & S7).

The polewards shift is to be expected given that projected

climate change will make marginally colder areas more suitable

for species that have evolved in warmer climates. At the same

time, the reduction in MESS+ area indicates that an increasing

proportion of the globe will experience climatic conditions

that fall outside the range in the regions used in developing the
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Figure 5 Model projections for the potential distribution of Acacia pycnantha (Ap) based on recent historical climates (1975H). Three

models (MaxEnt, M; BRT, B; and CLIMEX, C) were applied to restricted (R) and full (F) training data sets. Symbology follows Fig. 4.
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(f)

Figure 5 Continued.
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(c)

Figure 6 Model projections for the potential distribution of Acacia cyclops (Ac) based on future modelled climates (2070). Three models

(MaxEnt, M; BRT, B; and CLIMEX, C) were applied to the full (F) training data set. Symbology follows Fig. 4.
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(c)

Figure 7 Model projections for the potential distribution of Acacia pycnantha (Ap) based on future modelled climates (2070). Three

models (MaxEnt, M; BRT, B and CLIMEX, C) were applied to the full (F) training data set. Symbology follows Fig. 4.
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models. In regions such as South Africa and Australia that

have hard (southern) continental boundaries, this polewards

range shift leads to a contraction in the projected potential

area (Figs 6, 7, S6 & S7).

DISCUSSION

The distribution patterns of Australian acacias provide a

unique opportunity for investigating many practical and

theoretical issues associated with bioclimatic modelling and

its application to novel climates, such as invasive species and

future climate change risk assessments. For example, A. cyclops

and A. pycnantha both have elements of native-range expan-

sion, alien invasions within their native continent, and broad-

scale alien invasions in other continents. Our study found

substantial variation in the projected range limits for A. cyclops

and A. pycnantha among the three modelling techniques and

between models fitted with restricted or full training data sets.

There are obviously many issues that this manuscript could

discuss with respect to bioclimatic modelling, such as data

quality and appropriate statistics for testing models. We have

focussed our discussion on (1) the interpretation of model

projections, (2) explaining differences between models and (3)

how we might best proceed with modelling species ranges in

novel climates.

Model interpretation

All models were statistically significant when tested against their

training data, with independent South African data and globally,

but there was considerable variation among modelling tech-

niques and between models fitted with restricted or full training

data sets in both their sensitivity and modelled prevalence.

Generally, the extra information in full training data sets

encompassed a broader environmental range and increased the

sensitivity of the models. Gains were marginal for both species

using MaxEnt, moderate for both species using BRT and

substantial for A. cyclops and marginal for A. pycnantha using

CLIMEX. It is likely that the CLIMEX projections based on the

restricted data set, particularly for A. cyclops, were too conser-

vative and therefore potentially underestimated suitable climate

space as indicated by the low sensitivity value when projected to

South Africa (Table 2). However, the method used to construct

the restricted data set models goes against recommended

practice for CLIMEX modelling because of the potential value

in the data being withheld from the model (Kriticos & Randall,

2001; Sutherst & Bourne, 2009). As might be expected, the

increases in the sensitivity of the models fitted with full training

data sets were also accompanied by increases in model preva-

lence scores, as they included information from locations

occupying more extreme climatic conditions than the native-

range data set. Interestingly, this additional information had a

different impact on the correlative and mechanistic models.

The CLIMEX modelling technique allows new distribution

records or ecophysiological information to be included in the

model by iterative adjustments to the restricted data set

parameters, with a coincident change in the projection area to

encompass ecoclimatically similar locations. For our acacia

models, the prevalence of the CLIMEX models increased to

encompass the points in the full data set with only moderate

increases in model prevalence elsewhere confined to ecologi-

cally reasonable climates (compare Figs 4c & 4f). In contrast,

the additional information included in the full training data set

sometimes adversely affected the discriminative correlative

models; increased sensitivity came at the expense of propor-

tionally greater increases in modelled prevalence and conse-

quently reduced the statistical significance of the models.

Where the alien distribution data included locations outside of

the climatic range spanned by the native distribution records,

it also included additional areas of model background that

were incompletely invaded (Fig. S1). Therefore, models trained

on the complete data sets used a background sample that

included areas of high climatic suitability that were occupied in

the native range and unoccupied in the exotic range. This

pattern of increasing confusion in correlative models trained

on full vs. restricted range data is apparent in both the changes

in the potential range boundaries and changes in the relative

suitability patterns within the boundaries for the models (e.g.

compare Fig. 4a with 4d, Fig. 4b with 4e). In both of these

correlative model comparisons, the full data set models

classified considerably less area as highly suitable, indicating

that the model’s ability to discriminate relative climate

suitability was reduced. Moreover, the extra information in

the full data sets did not necessarily result in closed Bioclim

variable response curves, even when the variable range of the

background was broad relative to that of the distribution

points (Fig. S1). Taken together, our results indicate that

combining native and alien distribution records in discrimi-

native correlative models does not consistently improve model

projections. If undertaken as a methodological choice, careful

interpretation of the input data and the model results is

imperative.

A significant advantage of testing the models in South Africa

is that we were able to observe how the models performed

against an independent set of high-quality data, where the

ecological implications of prevalence and sensitivity can be

interpreted with reasonable confidence. Of particular interest

to invasion ecologists and biosecurity managers are regions of

projected suitable climates that do not currently have distri-

bution records. In South Africa, the correlative models

projected areas of climatic suitability in interpolation (MESS+)

space beyond the current distribution in the Eastern Cape,

particularly for A. cyclops (Figs S4 & S5). In contrast, the

CLIMEX model projected areas of climatic suitability in the

central provinces west and north of Lesotho (Figs S4f & S5f).

If these projections are plausible, the absence of these two

acacias may be due to factors not included in the models. For

example, regions north and west of Lesotho are known to have

up to 60 nights of frost annually (Schulze, 1965), a range-

limiting climate variable not captured well by climate averages

(Zimmermann et al., 2009). When assessed against high-

quality data, models can be used to generate testable hypoth-
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eses to provide insight into the relative importance of climate,

dispersal and biotic interactions on the present range limits of

these species.

Irrespective of the model performance in South Africa, for

invasive species risk assessments, bioclimatic models ideally

need to be able to perform in a robust manner globally. It was

clear from the mapped model results that model performance

in South Africa was not representative of model performance

globally, indicating performance in South Africa cannot be

usefully generalized elsewhere. This study found substantial

differences in the global projections of range limits for

A. cyclops and A. pycnantha among the three bioclimatic

models (Figs 4 & 5). Both MaxEnt and BRT models projected

implausible areas of high suitability for A. cyclops in the

tropics, subtropics and deserts and for A. pycnantha at very

high latitudes in the Northern Hemisphere. In contrast, the

CLIMEX model projections were more constrained and

restricted to the native range and closely matched climates,

incidentally more closely resembling the MESS+ regions from

the correlative models.

Explaining model differences

The differences in projections between the correlative models

and CLIMEX are influenced, in part, by the respective methods

for fitting species ranges. MaxEnt and BRT models seek to

discriminate between distribution records and the background

using the entire presence data set to fit the response functions.

In contrast, the CLIMEX model fitting process explicitly

focuses attention on the peripheral distribution records and

their relationship with adjacent, apparently climatically unsuit-

able regions. The CLIMEX user’s challenge is to identify

solutions that accord with knowledge across multiple domains.

When a conflict is discovered between the information at hand

and the model, all data and knowledge sources (distribution

records, ecophysiological data, climate data, theoretical pre-

cepts and the relevance of model mechanisms) are scrutinized

to identify plausible, parsimonious explanations. In this way,

we were able to identify and actively exclude distribution

record outliers that were found in apparently climatically

implausible locations, but that were not detected in the

Bioclim variable exploration used for the correlative models

(Fig. S1).

A second influence on model performance is how the

models handle extrapolation. In the global projections, it was

clear that the MaxEnt and BRT models were extrapolating

(MESS)) beyond their training data to project climatic

suitability in parts of the world where it is implausible for

large woody shrubs to grow (e.g. the Sahara desert and

Greenland; Figs 4 & 5). MESS maps also made it very clear that

regions of correlative model extrapolation dominated global

projections in future climate scenarios (Figs 6, 7, S6 & S7). The

three modelling techniques applied here differ considerably in

how they deal with extrapolation (Fig. 8). MaxEnt provides

the user with four options to control response curves: ‘no

extrapolation’, ‘clamping’ (maintaining the suitability value at

the limits of the training data), ‘don’t clamp’ (continuing the

trajectory of the response curve at the limits of the training

data) and ‘fade by clamping’ (reducing the suitability value by

the difference between clamped and don’t clamped output;

Fig. 8a). BRT models produce the equivalent of clamping in

MaxEnt (Fig. 8b). In this study, MaxEnt models used the

clamping option, meaning that open-ended response functions

often maintained high suitability values throughout the

extrapolation space (Figs S2 & S3). These factors account for

much of the implausible model projections clearly evident at

the global scale. CLIMEX models, on the other hand, are fitted

over the entire environmental domain (Fig. 8c). Parameters

that contribute to the growth index (GI) consist of closed

(a)

(b)

(c)

Figure 8 Hypothetical response curves used by MaxEnt, Boos-

ted Regression Trees (BRT) and CLIMEX bioclimatic models. For

the correlative models, the modelled ecological response curve

(dash-dot lines) represents a reduced space relative to the physi-

ological response curve (solid lines; sensu Austin, 1980) that is

more closely approximated by CLIMEX. In extrapolation space,

MaxEnt (a) has four options: ‘don’t extrapolate’ (dark blue

dashed lines), ‘clamp’ (light green dashed lines), ‘don’t clamp’

(dotted red lines) and ‘fade by clamping’ (not illustrated, which

reduces values by the difference between clamped and non-

clamped output). BRT models (b) consistently ‘clamp’ projections

in extrapolation space (dashed blue lines). CLIMEX models

(c) have closed response curves (red dotted lines) based on four

defined values (minimum, optima, maximum; red circles) and use

stress functions (grey shading) to further constrain the range

boundaries beyond the curve minima and maxima.
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curves that are used by the model in a different way to

correlative models (Sutherst et al., 2007). CLIMEX also uses

stress functions to further define unsuitable climate space.

Stress functions largely define the species range, whereas the

annual growth index (GIA) and stresses indices, in combina-

tion, define the climate suitability (EI) within that range.

Critically, these stress functions have the property of explicitly

penalizing conditions that are more extreme than those which

are inferred by the model to be unsuitable.

Improving bioclimatic models for novel climates

If we are to properly understand species invasions and the

effects of anthropogenic climate change, we need to be

confident that our models are capturing key determinants of

the fundamental niche and that projections beyond the

training regions are meaningful and reliable. Our study is

not the first to describe differences among models in the limits

to species distributions (Pearson et al., 2006; Elith & Graham,

2009) or to highlight the problems with using correlative

bioclimatic models for extrapolation (e.g. Hirzel & Le Lay,

2008; Sutherst & Bourne, 2009). Although important advances

have been made in tools that facilitate careful interpretation of

model outputs (Elith et al., 2010, 2011), there are still avenues

for research and development that could improve the ability of

bioclimatic models to handle novel climates. Based on our

experience, we suggest four areas of endeavour: (1) defining

the background for training the MaxEnt models and the

background or sampling area for pseudo-absence points in the

BRT models, (2) adding an ability to create more ecologically

realistic response functions, (3) developing more relevant

variables for bioclimatic modelling and (4) further integrating

mechanistic and correlative model techniques.

The choice of the background (MaxEnt and BRT) or

sampling area for the generation of pseudo-absences (BRT)

remains a matter of judgement and involves many consider-

ations (Elith et al., 2010). If the background is either too

narrowly or too broadly defined, it can compromise model

performance (VanDerWal et al., 2009) and its ability to

accurately capture or project distributions. For example,

increasing the size of the background will increase the

background climate span relative to the climatic span of the

distribution records and reduce the area where models are

extrapolating. However, the reduced area of extrapolation

comes at the expense of discriminating suitable environments

at local scales, and places misleading emphasis on a reduced set

of variables less relevant to the species being modelled

(VanDerWal et al., 2009; Elith et al., 2010). There are no hard

and fast rules for defining backgrounds, yet avoiding extrap-

olation using the whole world as a background would be

clearly inappropriate. Our study is among the first to consider

bioclimatic rules for defining the background (applying the

Köppen–Geiger climate zones), and we demonstrate new tools

for visualizing extrapolation space (MESS) overlays) and the

interplay between the climate space spanned by the distribu-

tion records and the model training domains (Figs S1–S3).

We chose to use Köppen–Geiger zones because of their strong

climatic basis but, even so, we found that there was substantial

variation among the bioclimatic variables in the ranges and

frequency distributions spanned by the distribution records

relative to the training domain (Fig. S1). Our choice of

background deliberately avoided the inclusion of climates well

outside of the range spanned by the distribution records.

However, the training data may have had a truncated

environmental domain because of species ranges abutting

continental boundaries (Figs 1 & 2), and the models fitted

open-ended response functions (Figs S2 & S3), leading to

inappropriate modelled suitability in MESS) areas. Clearly,

more thought needs to be given to defining the background in

terms of how geographic space translates to climate space.

Both our study and others show that extrapolation needs to

be treated with caution in correlative models (e.g. Kriticos &

Randall, 2001; Sutherst & Bourne, 2009; Elith et al., 2010).

Many of the problems arise because of open-ended response

curves. Extrapolating into novel climates with open-ended

response curves in discriminatory correlative models can give

biologically unrealistic projections when the response func-

tions of particular variables are dominating model behaviour.

One solution may be to incorporate options that determine

response function behaviour in an ecologically meaningful

way. Possibly of greater importance for the models of invasive

species is the greater likelihood that in selecting models with

high specificity, the model becomes over-fitted. Any methods

that control response function behaviour should be ecophys-

iologically based (Austin, 1987; Austin & Meyers, 1996).

A further area for research would be to develop more

relevant bioclimatic variables. The 35 Bioclim variables avail-

able in the CliMond data set (Kriticos et al., 2011) are an

expansion on the 19 core variables used for many models up to

this point. However, new variables could be developed that

more closely match critical stress mechanisms for organisms,

such as frost or drought. Alternatively, variables could be

developed based on extreme values rather than means (Zim-

mermann et al., 2009), especially given that most projections

of future climates indicate that the frequencies of events

currently considered extreme will increase (Frei et al., 2006).

The performance of the full data set CLIMEX models in this

study highlights its utility for invasive species risk assessment

and climate change studies. Outside of specific ecophysiolog-

ical studies to populate parameters (e.g. Scott & Yeoh, 1999),

the time and skill required to fit these models is similar to that

of well-constructed correlative models. Nonetheless, efforts to

improve the ability of CLIMEX models to be machine-fitted

should continue while retaining one of the model’s strengths,

namely its ability to confront the user with conflicting evidence

of habitat suitability and provide many of the means to resolve

conflicts. The tools developed by Elith et al. (2010, 2011) allow

for a better understanding of correlative model behaviour,

insightful model critique and improved transparency. This

research group is also exploring methods to incorporate non-

climatic physiological layers into correlative models and move

beyond climate-matching the realized species niche. The

B. L. Webber et al.
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approach taken in this study highlights parallels between

correlative modelling and the established methods of mecha-

nistic models such as CLIMEX, and we recommend further

exploration of the different insights they can provide.

CONCLUSIONS

Modelling species distributions, particularly potential distribu-

tions in novel climates, is fraught with numerous difficulties

that can make projections highly uncertain. The combined

threat of climate change and invasive species to biodiversity and

production systems makes the development of robust

approaches to modelling invasive species all the more impor-

tant from a management perspective (Walther et al., 2009). The

use of new diagnostic tools for interpreting correlative model

projections (Elith et al., 2010), together with an understanding

of the response functions, enabled us to have a much greater

understanding of the strengths and limitations of the methods

used. Our work illustrates the need for a cautious approach

when projecting models into novel climates, for results that are

consistent with all available information on the species and for

ecologically relevant model components (e.g. response curves)

that are open to scrutiny and critique (Venette et al., 2010). In a

practical sense, our findings also indicate that managing the

spread and impacts of both invasive Acacia species appears

justified in current climates and will remain a priority under

projected climate change scenarios. These findings are impor-

tant not only for directing control efforts of these invasive

species in their alien ranges in Australia and elsewhere but also

for guiding the appropriate management of range shifts for

native populations of A. cyclops and A. pycnantha.
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Richardson, D.M. & Rejmánek, M. (2011) Trees and shrubs as

invasive alien species – a global review. Diversity and

Distributions, 17, 788–809.

Richardson, D.M., Carruthers, J., Hui, C., Impson, F.A.C.,

Miller, J.T., Robertson, M.P., Rouget, M., Le Roux, J.J. &

Wilson, J.R.U. (2011) Human-mediated introductions of

Australian acacias – a global experiment in biogeography.

Diversity and Distributions, 17, 771–787.

Ridgeway, G. (2007) Generalized boosted regression models. In

Documentation on the R Package ‘gbm’, version 1.6-3.

Available at: http://r.meteo.uni.wroc.pl/web/packages/gbm/

index.html (last accessed 2 May 2011).

Rodda, G.H., Jarnevich, C.S. & Reed, R.N. (2011) Challenges in

identifying sites climatically matched to the native ranges of

animal invaders. PLoS ONE, 6, 1–18.

Rutherford, M.C. (1997) Categorization of biomes. Vegetation

of southern Africa (ed. by R.M. Cowling, D.M. Richardson

and S.M. Pierce), pp. 91–98, Cambridge University Press,

Cambridge.

Sanchez-Fernandez, D., Lobo, J.M. & Hernandez-Manrique,

O.L. (2011) Species distribution models that do not incor-

porate global data misrepresent potential distributions: a

case study using Iberian diving beetles. Diversity and

Distributions, 17, 163–171.

Schulze, B.R. (1965) Climate of South Africa. Part 8: general

survey. Department of Environment Affairs, Pretoria.

Scott, J.K. & Yeoh, P.B. (1999) Bionomics and the predicted

distribution of the aphid Brachycaudus rumexicolens (Patch).

Bulletin of Entomological Research, 89, 97–106.

Shaughnessy, G.L. (1980) Historical ecology of alien woody

plants in the vicinity of Cape Town, South Africa, PhD Thesis.

University of Cape Town, Cape Town.

Shaughnessy, G.L. (1986) A case study of some woody plant

introductions to the Cape Town area. The ecology and

management of biological invasions in southern Africa (ed. by

I.A.W. Macdonald, F.J. Kruger and A.A. Ferrar), pp. 37–43,

Oxford University Press, Cape Town.

Shelford, V.E. (1963) The ecology of North America. University

of Illinois Press, Urbana, USA.

Soberón, J. (2007) Grinnellian and Eltonian niches and geo-

graphic distributions of species. Ecology Letters, 10, 1115–

1123.

Soberón, J.M. (2010) Niche and area of distribution modeling:

a population ecology perspective. Ecography, 33, 159–

167.

Soberón, J. & Nakamura, M. (2009) Niches and distributional

areas: concepts, methods and assumptions. Proceedings of the

National Academy of Sciences USA, 106, 19644–19650.

Stirton, C.H. (ed.) (1978) Plant invaders, beautiful but dan-

gerous. ABC Press, Cape Town.

Sutherst, R.W. (2003) Prediction of species geographical

ranges. Journal of Biogeography, 30, 805–816.

Sutherst, R.W. & Bourne, A.S. (2009) Modelling non-equilib-

rium distributions of invasive species: a tale of two modelling

paradigms. Biological Invasions, 11, 1231–1237.

Sutherst, R.W. & Maywald, G.F. (1985) A computerised system

for matching climates in ecology. Agriculture, Ecosystems and

Environment, 13, 281–299.

Sutherst, R.W., Maywald, G.F. & Kriticos, D.J. (2007) CLIMEX

Version 3: User’s guide. Hearne Scientific Software Pty

Ltd, Melbourne. Available at: http://www.hearne.com.au/

attachments/ClimexUserGuide3.pdf (accessed 14 September

2010).

Turpie, J.K., Heydenrych, B.J. & Lamberth, S.J. (2003) Eco-

nomic value of terrestrial and marine biodiversity in the

Cape Floristic Region: implications for defining effective and

socially optimal conservation strategies. Biological Conser-

vation, 112, 233–251.

VanDerWal, J., Shoo, L.P., Graham, C. & Williams, S.E. (2009)

Selecting pseudo-absence data for presence-only distribution

modeling: how far should you stray from what you know?

Ecological Modelling, 220, 589–594.

Venette, R.C., Kriticos, D.J., Magarey, R.D., Koch, F.H., Baker,
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