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ABSTRACT

Aim Climate change is expected to drive range shifts among a wide array of
organisms. Non-indigenous species (NIS) provide a unique opportunity to observe
the establishment of range boundaries in a way that cannot be directly seen for
native species. Recent studies have indicated that climate change facilitates biologi-
cal invasions at local scales. However, the generality of these effects is unclear, as
there is a dearth of comparative studies that assess how rapid environmental change
affects species ranges across taxa and biogeographic provinces.

Location The South African coast and other coastlines across the world.

Methods We first studied the distribution of shallow-marine benthic organisms
along the South African coastline and analysed the global distribution of NIS. We
then obtained DNA sequence data from a suite of co-occurring NIS from along the
studied coastline and compared these data with available genetic information from
other regions of the world. Subsequently, we conducted physiological experiments
to assess how thermal tolerance was related to species distribution. Finally, we
analysed ship-based seawater temperature records and compared these with past
changes in the range size and abundance of NIS. These records were used to
estimate shipping intensity and NIS propagule pressure.

Results We found that NIS with a variety of thermal tolerances and distributions
have expanded their ranges and increased in abundance as seawater temperature
regimes have changed. We found little interannual variation in shipping transport
intensity. Most haplotypes of the studied NIS in South Africa were shared with
other regions.

Main conclusions This study provides empirical evidence that NIS, regardless of
their thermal tolerance, range size and genetic variability, are expanding their
ranges and increasing in abundance. This trend is uncorrelated with levels of
human-mediated NIS transport but concurrent with changes in seawater tempera-
ture, which suggests that climate change fosters the spread and abundance of NIS
across multiple spatial scales.
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INTRODUCTION

Species ranges are historically affected by climatic fluctuations

(Roy et al., 2001) that may result in range expansions or con-

tractions, with major changes in species borders and ecotones

(Parmesan et al., 2005). Temperature is one of the most impor-

tant abiotic factors determining the distribution of the world’s

biota (Belanger et al., 2012), as it influences physiological pro-

cesses and species interactions across a wide range of taxa

(Somero, 2012). For example, temperature affects the ability of

propagules and juveniles to disperse and complete development,

and thus may determine the geographic ranges of species (Bonte

et al., 2008) and intraspecific genetic lineages (Teske et al.,

2008). Consequently, temperature and shifts in range bounda-

ries are inextricably linked.

Our perception of species ranges becomes considerably more

complex when non-indigenous species (NIS) are involved, as

they do not share an evolutionary history with the native com-

munity and, once introduced, establish new range limits that

can remain labile for decades (e.g. Crisp & Southward, 1959).

Thus, NIS provide an unparalleled opportunity to observe the

establishment of species ranges in a way that cannot be directly

observed for native species with long-established boundaries

(Sax et al., 2007). Understanding how NIS ranges are deter-

mined, therefore, represents a rich source of knowledge, espe-

cially at a time when human-induced climate change and

disturbances are expected to alter species ranges world-wide

(Walther et al., 2009). However, it is important to be aware that

NIS ranges may (at least initially) be set in ways that are funda-

mentally different from the natural boundaries of native species.

The introduction of NIS is generally attributed to a transient

window of opportunity (Davis et al., 2005). Each new coloniza-

tion event results from the arrival of only a tiny fraction of the

source population (founder event) and that fraction will carry

only a subset of the overall genetic diversity (Sakai et al., 2001).

However, single colonizations are rare and multiple introduc-

tions may be more common (e.g. Kolbe et al., 2004), allowing

introduced populations to escape bottleneck effects. Once a NIS

is naturalized, the next step is the invasive period. This generally

includes a sudden geographic expansion or a series of saltatory

expansions, after which the rate of spread drops and range size

eventually stabilizes within new boundaries (Prentis et al.,

2008).

Climate change is expected to alter temperature regimes and

generate poleward and upward range shifts of native species

globally (Parmesan et al., 2005). The population dynamics and

impacts of NIS will also respond to climate change (Walther

et al., 2009), and recent research suggests that such change will

disproportionately facilitate NIS at local scales (Stachowicz

et al., 2002; Sorte et al., 2010). However, the generality of these

effects is unclear as there is a dearth of comparative studies that

assess how rapid changes in environmental conditions affect

species ranges across taxa and biogeographic provinces.

Here we investigated historical range shifts of multiple

co-occurring NIS across divergent biogeographic coastal regions

to understand the role of environmental filtering, range size,

genetic signatures and climatic variability in shaping and main-

taining species ranges. We began by documenting the distribu-

tion of shallow-marine benthic organisms along a coastline

comprising several biogeographic provinces, and analysed the

global distribution of NIS. We then compared regional and

global genetic signatures of a suite of NIS. Subsequently, we

investigated the effects of temperature on individual perfor-

mance of a subset of species. Finally, we analysed long-term

temperature records for the studied coast and evaluated histori-

cal changes in species ranges and abundance. Specifically, this

research addressed the following questions:

1. Are the studied NIS similar in terms of range size and physio-

logical performance?

2. Is the genetic composition of the studied populations repre-

sentative of the genetic pool of the global species range?

3. Is there evidence that NIS are expanding their ranges and

increasing in abundance? If so, could climate change be respon-

sible for facilitating the success of NIS at regional and global

scales?

We inferred that given that the studied species are most likely

to be adapted to different temperature regimes, their tempera-

ture tolerances would differ. We predicted that comparisons

between regional and global genetic signatures would show

similar composition among different regions within the intro-

duced range as a result of human-mediated transport. We

hypothesized that range expansions of NIS would occur across

ecoregions, and that historical temperature variation would be

consistent with increases in abundance and rates of spread

of NIS.

MATERIALS AND METHODS

Studied taxa

Interest in marine NIS has increased not only because they have

a great ability to displace native species and alter ecosystem

processes, but also because they have economic impacts on

human activities. Shipping and aquaculture activities are the

main vectors for the introduction of marine NIS world-wide

(McQuaid & Arenas, 2009), and consequently these species are

concentrated in harbours, marinas and bays. As the dispersal

capabilities, niche occupation strategies and response to envi-

ronmental factors vary widely among taxa, we chose as our

model system the Class Ascidiacea (Tunicata, Chordata), a

group containing conspicuous members of coastal benthic and

fouling communities world-wide, including key bioengineering

species with disjunct distributions (e.g. Teske et al., 2011).

Ascidians are sessile as adults, and the motile stages (embryonic

and lecithotrophic larval stages) can last from just minutes to a

few days, which allows for short-distance dispersal (Millar,

1971). Therefore, transoceanic dispersal of these species is solely

human mediated.

Study region

The c. 3600 km of the South African coastline contains multiple

biogeographic regions and a broad gradient in thermal condi-
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tions, from tropical waters on the east coast to cool-temperate

waters on the west coast (Emanuel et al., 1992), providing an

ideal system for examining mechanisms shaping species distri-

butions. The region has been a crossroads for several major

transoceanic trading routes (Kaluza et al., 2010) since the 10th

century (Yap & Man, 1996), and has an active though limited

aquaculture industry (Rius et al., 2011).

Surveys

We surveyed all main harbours along the South African coast-

line, plus five recreational marinas and an oyster farm (Fig. 1; see

Table 1 for details). We chose these sites because they cover the

entire coastline and include virtually all the main entry points

for NIS. We considered the three traditional major biogeo-

graphic provinces proposed for South Africa, namely the west,

south and east coasts (Fig. 1) (Stephenson & Stephenson, 1972)

(see details in Appendix S1 in Supporting Information). The

surveys were conducted twice (2007 and 2009) during the

austral winter (details of sampling methodology and species

identification can be found in Appendix S2).

Genetic study

Specimens of the widespread NIS Clavelina lepadiformis, Ciona

intestinalis, Styela plicata and Microcosmus squamiger (see details

about these species in Appendix S3) were collected from the

same sites during the 2009 survey, and in addition we obtained

samples of S. plicata and M. squamiger from Richard’s Bay

harbour (28°47′39″ S, 32°04′45″ E) (Fig. 1, Table S1). Sites

where fewer than five individuals were found were excluded

from the analyses. Samples were collected by hand from harbour

ropes or floating pontoons and fixed in absolute ethanol. In

addition, we obtained samples from other biogeographic

regions including individuals from the Azores and Madeira (see

details in Table S2). To maximize information for other regions

from GenBank, we targeted a section of the mitochondrial

DNA (mtDNA; cytochrome oxidase subunit I, COI). The
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Figure 1 Map of the South African
coastline with the sampled sites
indicated. The distribution of the studied
species found during the field surveys is
indicated with symbols. Site abbreviation
names and details can be found in
Table 1, except for RB, which indicates
Richard’s Bay – for this site we were
unable to conduct a thorough survey but
collected samples of Styela plicata and
Microcosmus squamiger for genetic
analyses (see main text).

Table 1 Sampled sites included in
the present study. The site name
abbreviations (Code), the geographic
position and the characteristics (Type) of
each site are indicated.

Name of the site Code Latitude (S) Longitude (E) Type

Alexander Bay AB 28°46′33″ 16°34′23″ Oyster farm

Saldanha Bay SB 33°00′18″ 17°56′53″ Small harbour

Table Bay TB 33°55′22″ 18°26′36″ Large harbour

Hout Bay HB 34°02′60″ 18°20′53″ Recreational marina

Mossel Bay MB 34°10′42″ 22°08′40″ Small harbour

Knysna KA 34°02′29″ 23°02′48″ Recreational marina

Port Elizabeth PE 33°58′02″ 25°38′07″ Large harbour

Bushman’s River BR 33°40′47″ 26°39′22″ Recreational marina

Port Alfred PA 33°35′38″ 26°53′31″ Recreational marina

East London EL 33°01′22″ 27°53′45″ Small harbour

Durban DU 29°51′49″ 31°01′23″ Large harbour
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smaller effective population size and high mutation rate of

mitochondrial markers make them extremely useful for geo-

graphic genetic studies (Avise, 2009), particularly studies of bio-

logical invasions (e.g. Pineda et al., 2011). In addition, it has

been shown that the mutation rate of mtDNA is conservative

enough to retain information on the origins and range expan-

sion of introduced populations (Rius et al., 2008). Sequences

were obtained using primers described in Table S3 (see general

genetic methods in Appendix S4) and aligned in BioEdit

v.7.0.5.2 (Hall, 1999). We then used DnaSP v.5.10 (Librado &

Rozas, 2009) to determine the number of haplotypes and

standard diversity indices (haplotype and nucleotide diver-

sities), as well as the number of unique haplotypes. We excluded

GenBank COI sequences that did not align with our haplo-

types because they covered a different section of the target gene

or the final alignment was unacceptably short. Parsimony

haplotype networks were generated using the programme

tcs v.1.21 (Clement et al., 2000), which creates an absolute

distance matrix by calculating all possible pairwise compa-

risons among haplotypes, considering a parsimony probability

of 0.95.

Effects of temperature on ontogenetic stages

Temperature may not determine species ranges only through its

effects on adult performance (Gilman, 2006), as other life stages

may be more sensitive (Pineda et al., 2012). Therefore, distribu-

tional ranges can be set by the tolerance levels of sexual and

asexual propagules rather than adult fitness. To test ontogenetic

effects of temperature, we studied the effects of seawater tem-

perature on development of all pre-adult life-history stages. We

selected four different NIS (C. intestinalis, Ascidiella aspersa,

S. plicata and M. squamiger) that have widespread distributions

along the world’s coastlines (see below) and two species (Pyura

stolonifera and Pyura herdmani) that are native but have a sister

species that has been reported as a highly invasive species else-

where (Teske et al., 2011) (see Sampling Sites and Field Meth-

odology in Appendix S5). We conducted laboratory experiments

under a range of temperatures and measured embryonic devel-

opment time, and the success of larval development, larval set-

tlement and settler metamorphosis (for details of methods see

Appendix S6).

Given the nonlinear nature of rate–temperature relation-

ships (Janion et al., 2010) and the fact that most species

embryos did not develop above 20 °C (see Results), we only

statistically analysed the linear portion of the reaction norm,

i.e. from 10 to 20 °C, to evaluate interspecific differences.

Therefore, we implemented a linear model with mean embry-

onic development time as the response variable, and species

and temperature as predictors. Interactions between species

and temperature indicated differences in reaction norm slopes

among species. Given the proportional nature of developmen-

tal success data, a generalized linear model using a binomial

error structure, and a logit link function was used to assess the

effects of species, temperature and their interactions on devel-

opment success. This model was checked for overdispersion

and scaled deviances were obtained when necessary. Species

differences were determined by examining least squares means

and overlap of the Wald 95% confidence limits from the gen-

eralized linear model outputs. The same statistical model type

was used to assess the effects of species and temperature on the

number of successful post-metamorphs at day 3 after fertiliza-

tion (i.e. those that had completed the larval, settlement and

post-metamorphic stages, providing the most complete

measure of success). We also investigated the effects of species,

temperature and day after fertilization (first and third day) on

the proportion of attached settlers and the proportion of float-

ing (detached from the substratum) settlers in relation to the

total number of initial larvae. Finally, we investigated the effects

of species, temperature and day after fertilization on the pro-

portion of larvae that failed to settle. All analyses were done

with sas v.9.1 (SAS Institute, Cary, NC, USA) and Statistica

v.10 (StatSoft, Tulsa, OK, USA).

Seawater temperature data

We obtained sea surface temperature recordings from the South

African Data Centre for Oceanography (SADCO) (see Appendix

S7 and Table S4 for details). We calculated the mean annual

temperature, the mean of summer months (January–March),

winter months (July–September) and the difference between the

annual maximum and minimum temperature recorded each

year. Inter-annual trends were tested using linear regression with

a critical value of 0.05. In addition, these data provide an indi-

rect estimate of shipping intensity through time, which we cal-

culated by measuring the number of temperature recordings per

year. Data were analysed and plotted using R v.2.10.0 (R

Development Core Team, 2011).

Measuring range and abundance shifts of NIS

To understand the recent range shifts of NIS, we combined

biogeographic information from taxonomic studies (references

in Appendix S3) that included extensive surveys along the South

African coast, and our own data. We then plotted the distances

among sites where species were recorded to visualize changes in

species ranges. We considered five NIS: Clavelina lepadiformis,

Ciona intestinalis, A. aspersa, S. plicata and M. squamiger. All are

highly conspicuous and abundant, and are unlikely to have been

unnoticed by a specialist. We excluded for this analysis the

remaining four NIS obtained in the field surveys (see below).

These were two colonial (Diplosoma listerianum, Botryllus

schlosseri) and two solitary NIS (Ascidia sydneiensis and

Asterocarpa humilis). For these the taxonomy is in debate, so

they may contain cryptic species or have been misidentified as

closely related species. In order to compare abundance trends,

we obtained abundance data for all ascidian species from our

field surveys and compared the mean values among status types

(native, cryptogenic and NIS) and sampling years (i.e. 2007 and

2009).

Range shifts across ecoregions

Global Ecology and Biogeography, 23, 76–88, © 2013 John Wiley & Sons Ltd 79



RESULTS

Field surveys

Combining the results from the sampling in 2007 and 2009, we

identified 16 species endemic to South African shores, nine NIS

that are widely distributed around the world (Fig. S1), and nine

species for which the status could not be confirmed and that

were included as cryptogenic (Table S5). NIS were the most

widespread group, followed by the native species and, finally, the

most narrowly distributed group were the cryptogenic species

(Fig. 2). All NIS were found in at least two biogeographic prov-

inces, with C. intestinalis being the most widely distributed

species (Fig. 1). In general, ascidian species richness marginally

increased eastwards (Fig. 2).

Comparing regional and global genetic signatures

We obtained a total of 764 COI sequences (Tables S1 & S2)

with fragment lengths of 546, 786, 639, 655 base pairs (bp)

for Clavelina lepadiformis, Ciona intestinalis, S. plicata and

M. squamiger, respectively. Clavelina lepadiformis showed the

lowest haplotype diversity while M. squamiger was the most

diverse (Fig. S2, Table S1). Haplotype diversity increased east-

wards for C. lepadiformis and Ciona intestinalis (Fig. S2,

Table S1). When we compared the haplotypes generated in our

Figure 2 Distribution and abundance of 34 taxa collected during the field surveys of 2007 (open circles) and 2009 (filled circles). The size
of the circles indicates relative abundances as follows: scarce, common and dominant as small, medium and large circles, respectively (for
details see Appendix S2). Site name abbreviations correspond to those given in Table 1, and are plotted from west to east. Note that
Alexander Bay and Hout Bay were sampled in only one year. The biogeographic provinces (west, south and east coasts) and species status
(cryptogenic, introduced and native) are indicated. Species names: C. e., Corella eumyota; D. g., Didemnum granulatum; D. p., Didemnum
psammathodes; D. sp., Didemnum sp.; H. s., Halocynthia spinosa; R. sp., Rhodosoma sp.; S. c., Styela canopus; S. b., Symplegma brakenhielmi;
T. c., Trididemnum cerebriforme; A. s., Ascidia sydneiensis; A. a., Ascidiella aspersa; B. s., Botryllus schlosseri; C. i., Ciona intestinalis; C. l.,
Clavelina lepadiformis; A. h., Asterocarpa humilis; D. l., Diplosoma listerianum; M. sq., Microcosmus squamiger; S. p., Styela plicata; A. f.,
Aplidium flavolineatum; A. m., Aplidium monile; A. c., Ascidia canaliculata; A. i., Ascidia incrassata; B. g., Botryllus gregalis; B. c., Botryllus
closionis; B. e., Botryllus elegans; B. mae., Botryllus maeandrius; B. mag., Botrylloides magnicoecum; D. e., Didemnum epikelp; M. c., Molgula
conchata; M. sc., Molgula scutata (small form); P. d., Polyandrocarpa durbanensis; P. h., Pyura herdmani; P. s., Pyura stolonifera; S. a., Styela
angularis.
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study with those from GenBank (Table S2), we used a final

alignment of 366, 692, 560 and 561 bp for Clavelina

lepadiformis, Ciona intestinalis, S. plicata and M. squamiger

respectively. The haplotype networks examined the relation-

ships among haplotypes at a global scale and showed two sepa-

rate lineages for each species (Fig. 3). These lineages showed

different levels of genetic divergence. Firstly, topologies connect-

ing haplotypes with a cumulative probability of being correct of

greater than 95% were constrained to divergence levels of less

than 10 and 12 steps for C. intestinalis and M. squamiger, respec-

tively. Since the number of mutational steps between haplotype

pairs did not exceed these values, the two lineages could be

connected (Fig. 3). Secondly, the two lineages of Clavelina

lepadiformis and S. plicata exceeded the maximum number of

steps, eight and ten steps respectively, and therefore the two

lineages could not be connected with 95% probability (Fig. 3).

We obtained a total of 15 haplotypes for C. lepadiformis, 23 for

Ciona intestinalis, 24 for S. plicata and 63 for M. squamiger.

Many haplotypes found in South Africa were also detected else-

where within the introduced range of the species (Fig. 3). For

Clavelina lepadiformis, three South African haplotypes were

shared with other regions around the world (Fig. 3), of which

one had not been sampled before and one was shared with the

Azores (Table S2). For Ciona intestinalis, all individuals collected

in South Africa were Type A (sensu Nydam & Harrison, 2007)

and we found nine South African haplotypes that were unique

and six that were shared with other regions. For S. plicata, South

African haplotypes were found across the two global lineages

that had been formerly reported (Pineda et al., 2011) with one

previously undiscovered South African haplotype found in

each lineage (Fig. 3). Microcosmus squamiger had 15 private

haplotypes from South Africa (eight new from our study) and

nine shared with other regions (Fig. 3). In addition, two clear

lineages were recovered, of which Lineage 1 contained most

haplotypes found in South Africa. The haplotypes obtained

from the Azores and Madeira had been previously recorded in

other regions (Table S2).

Effect of temperature on development, settlement
and metamorphosis

Development rate increased slowly up to 20 °C, with the slopes

of C. intestinalis and A. aspersa (Fig. S3a) being lower than for

the other four species (linear model, species–temperature inter-

action effects, F(6,78) = 296.8, P < 0.001). This difference in slope

was mostly due to the development success and relatively long

development time of these two species at 10 °C. At 25 °C,

C. intestinalis, S. plicata and M. squamiger showed successful

development, while no development occurred for A. aspersa or

either Pyura species (Fig. S3a,b). No species showed larval devel-

opment at 30 °C (Fig. S3b). Temperature, species and their

interaction all had significant effects on larval development

success (generalized linear model; temperature, d.f. = 1, Wald

chi-square = 8.66, P = 0.003; species, d.f. = 6, Wald chi-

square = 45.46, P < 0.001; temperature × species interaction,

d.f. = 5, Wald chi-square = 19.15, P = 0.002). The 95% Wald

confidence limits for each species indicated that the develop-

ment success of A. aspersa and C. intestinalis, and of A. aspersa

and S. plicata were not significantly different from each other,

but estimates for A. aspersa and C. intestinalis were significantly

higher than for P. stolonifera, P. herdmani and M. squamiger

(Table 2).

In the experiment testing the effect of temperature on settle-

ment and metamorphosis, the proportion of successful settlers

(defined here as those that completed metamorphosis or post-

metamorphs) at day 3 was generally highest at higher tempera-

tures (20–25 °C), but the number of total settlers (successful and

non-metamorphosed settlers) showed the lowest numbers for
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Figure 3 Haplotype network of the
species studied (a, Clavelina lepadiformis;
b, Ciona intestinalis; c, Styela plicata;
d, Microcosmus squamiger) indicating
the presence of each haplotype in:
1, South Africa (in black); 2, the rest of
the introduced range (in grey);
3, native or cryptogenic ranges
(in white). The smaller black circles
represent unsampled or extinct
haplotypes. Branch sections delimited by
two circles indicate single mutational
steps, irrespective of their branch length.
Note that Clavelina lepadiformis Lineage
1 is the Atlantic clade and Lineage 2 is
the Mediterranean clade of Turon et al.
(2003); Styela plicata Lineage 1 is group
1 and Lineage 2 is group 2 of Pineda
et al. (2011); Microcosmus squamiger
Lineage 1 is group H1 and Lineage 2 is
group H2 of Rius et al. (2008).
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most species at the highest temperature (30 °C) (Fig. S4).

Pyura stolonifera showed higher settlement success at 20 °C,

while other species (e.g. M. squamiger and S. plicata) performed

better at 25 °C. A noteworthy exception was A. aspersa, which, at

high temperatures (e.g. 25 °C; Fig. S4a) produced settlers

despite poor larval developmental success at these temperatures

(Fig. S3b). Settlement data showed a significant effect of tem-

perature on all variables analysed: successful settlers, floating

settlers and failed larvae (Table 3). When we analysed the effect

of each factor and their interactions for each species separately

(Table S6), most interactions between the factors ‘day’ and ‘tem-

perature’ were significant. Pyura species were the only species for

which temperature did not have consistent major effects. Float-

ing settlers (i.e. settled to the water surface pellicle or settlers that

started metamorphosis while in the water column) and failed

larvae were not considered viable. We found an increase of float-

ing settlers with temperature and time, especially at 30 °C for

day 3, which indicated that temperature stress affected their final

success (Fig. S4c). Lower temperatures resulted in the highest

proportion of failed larvae, although this trend weakened with

time (Fig. S4d). Regarding post-metamorphic stages, we found

that most species achieved metamorphosis at three different

temperatures, while native species did so at only one or two

temperatures (Fig. 4). Ascidiella aspersa and C. intestinalis were

able to complete metamorphosis at 15 °C, and only S. plicata

completed metamorphosis at 30 °C (Fig. 4).

The results of the laboratory experiments and resulting tem-

perature tolerance breadth for all stages are summarized in

Table 4, and broadly show that the eggs and larvae of all species

were able to develop, settle and metamorphose at 20 °C, but only

A. aspersa and C. intestinalis were able to do so at 15 °C, and

C. intestinalis, M. squamiger and S. plicata at 25 °C.

Temperature records

The SADCO records indicated that seawater temperature during

the period 1960 to 2010 has significantly increased in six sites

and remained relatively stable in the remaining five sites

(Fig. S5). Most sites showed significant positive slopes in mean

winter temperatures, with the exception of the northern sites of

Alexander Bay and Durban, which lie on opposite coasts

(Fig. 1). Only four sites showed significant positive regressions

for the summer months (Fig. S5). The magnitude of such

change in mean values ranged from +0.5 to +1.5 °C over the

five-decade period. All sites showed an increasing trend when

annual differences between maximum and minimum tempera-

tures were plotted, although only three sites showed significant

positive slopes (Fig. S6). At these sites increases in temperature

of 2–3 °C were observed during this period.

There was an increase in the frequency of temperature read-

ings in the late 1960s and early 1970s which is likely to reflect an

Table 2 Estimates and Wald 95%
confidence limits from the generalized
linear models testing for the effects of
species on larval development success.
‘Chi-square’ tests whether the estimate is
different from zero, alpha is set at 0.05.
Significance of pairwise comparisons was
determined by non-overlapping Wald
95% confidence intervals.

Species effect Estimate SE DF Chi-square P

Wald 95%

confidence limits

Ascidiella aspersa −0.136 0.273 1 0.25 0.618 −0.672 0.399

Ciona intestinalis 0.561 0.279 1 4.05 0.044 0.015 1.108

Styela plicata −1.229 0.331 1 13.82 < 0.001 −1.877 −0.581

Microcosmus squamiger −3.874 0.961 1 16.23 < 0.001 −5.758 −1.989

Pyura herdmani −2.053 0.228 1 81.35 < 0.001 −2.499 −1.607

Pyura stolonifera −2.155 0.349 1 38.11 < 0.001 −2.840 −1.471

Table 3 Output of generalized linear models reflecting the effects
of species and temperature on (a) overall successful settlers/
metamorphs and (b) settlers including incomplete metamorphs.
Same models were run including the effects of species,
temperature and days on (c) floating settlers and (d) failed larvae.
Models (a) and (b) only include data from day 3 after fertilization
whereas (c) and (d) examine the effect of day of observation.

Effect d.f.

Wald chi-

square P

(a) Proportion of successful

settlers/complete metamorphs

Temperature 1 8.43 < 0.01

Species 6 65.44 < 0.001

Temperature × species 5 4.36 0.50

(b) Proportion of settlers including

incomplete metamorphs

Temperature 1 0.09 0.77

Species 6 71.37 < 0.001

Temperature × species 5 46.88 < 0.001

(c) Proportion of floating settlers

Temperature 1 13.49 < 0.001

Species 6 87.01 < 0.001

Days 1 7.19 0.007

Temperature × species 5 26.55 < 0.001

Species × days 5 22.24 < 0.001

Temperature × days 1 6.09 0.01

Temperature × species × days 5 32.74 < 0.001

(d) Proportion of failed larvae

Temperature 1 82.33 < 0.001

Species 6 126.28 < 0.001

Days 1 23.76 < 0.001

Temperature × days 1 31.16 < 0.001

Temperature × species 5 8.91 0.11

Species × days 5 8.04 0.15

Temperature × species × days 5 15.93 < 0.01

Significant results (P < 0.05) are indicated in bold.
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increase in shipping intensity coinciding with the closure of the

Suez Canal (Fig. S7). Before and after this period the number of

temperature readings remained relatively constant with a

gradual decline towards the early 21st century. This is taken as

indirect evidence that shipping intensity, a known vector of NIS

correlated with propagule pressure, did not increase signifi-

cantly over the studied period.

Changes in species ranges and abundance

We found evidence of range expansion between years for NIS

(Figs 2 & 5). Observed expansions ranged between c. 1000 and

2500 km, with C. intestinalis showing the widest range and the

greatest range expansion. In contrast, the distribution of both

native and cryptogenic species did not vary (Fig. 2), with some

species showing small range contractions and others expanding.

NIS were on average more abundant than native and crypto-

genic species in both 2007 and 2009 (Fig. 6), and increased

significantly in abundance between years (t-test; t = −2.035,

d.f. = 176, P = 0.043).

DISCUSSION

We found that NIS both expanded their ranges and increased in

abundance across diverse biogeographic regions. This trend was

Table 4 Summary results of
experiments testing the success of egg
development (D), larval settlement (S)
and settler metamorphosis (M) 3 days
after fertilization at different
temperatures for the studied species.

Species temperatures 10 15 20 25 30

Developmental stage D / S / M D / S / M D / S / M D / S / M D / S / M

Ciona intestinalis / / / / / / / / / /

Ascidiella aspersa / / / / / / / / / /

Styela plicata / / / / / / / / / /

Microcosmus squamiger / / / / / / / / / /

Pyura herdmani / / / / / / / / / /

Pyura stolonifera / / / / / / / / / /

and indicate success or failure, respectively. Overall failure (indicated in grey) was considered
when larval development could not be achieved or when metamorphosis was not completed.

A. aspersa C. intestinalis M. squamiger P. herdmani P. stolonifera S. plicata

Three days after fertilization
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individuals that successfully completed
metamorphosis (means ± SE) for each
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scale) at day 3 after fertilization.
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independent of species differences in optimal temperature,

range size or genetic variability at both regional and global

scales. In line with this, interannual variation of shipping inten-

sity was unrelated to the expansion of NIS. Although other

factors not included in this analysis (e.g. transport via recrea-

tional boating) cannot be dismissed, the increase in range and

abundance of NIS was synchronized with a trend in seawater

temperature over the last 50 years towards warmer mean tem-

peratures and a wider thermal range. This suggests that the

facilitating effects of climate change on biological invasions

advocated by previous studies at local scales (Stachowicz et al.,

2002; Sorte et al., 2010) also occur at regional and perhaps

global levels.

Integrating genetic patterns across different
spatial scales

Our study revealed two divergent mtDNA lineages in each of the

four species studied, with extensive geographical mixing and

sympatry of widespread genotypes. This indicates multiple sec-

ondary contacts of ancestral lineages at both regional and global

scales (for specific details see Appendix S8). Such processes have

the potential to generate adaptive evolutionary changes in inva-

sive populations (Chun et al., 2009). In addition, these patterns

could be explained by within-species physiological differences

among lineages, and/or limited connectivity among certain har-

bours. However, this requires further investigation using a more

multilocus dataset (e.g. Rius et al., 2012). When we placed the

South African populations within a global context, we found an

intricate distribution of haplotypes. This suggests a scenario of

continuous interchange of propagules due to exchange through

shipping (Kaluza et al., 2010), which has a homogenizing effect

on the genetic composition of introduced populations (e.g.

Pineda et al., 2011). Thus, the genetic composition of the intro-

duced range most likely consists of a mixture of diverging geno-

types from the native range, and the picture is one of a trend

towards global genetic panmixia. The widespread regional and

global distribution of these species indicates their adaptation to

several climatic regions, and our data suggest that individuals

containing certain haplotypes are more widespread and perhaps

more adaptable than other individuals of the same species. The

range shifts observed for the studied NIS were independent of

their global level of genetic diversity (Table S1, Figs 3 & S2).

Effects of temperature on early life-history stages

In the sea the planktonic larval stage has a major influence on

enabling dispersal and population connectivity (McQuaid,

2010). The large diversity of evolutionary strategies in the sea

has resulted in a wide range of propagule forms. This gives rise

to varying degrees of planktonic periods and dispersal capabil-

ities, and can lead to high levels of intraspecific phenotypic

plasticity (but see Ling et al., 2008) due to variable conditions.

Our experimental results indicate that higher-temperature

treatments induced earlier settlement and metamorphosis.

Some species could not complete egg development at higher

temperatures, even though their larvae performed well and

completed metamorphosis at these temperatures, which sug-

gests that initial development stages are more sensitive. In

contrast, cold environments delayed or constrained larvae

settlement and metamorphosis (see also Dybern, 1965;

Thiyagarajan & Qian, 2003).

Our laboratory experiments indicate thermal limitation

during early life-history stages, especially at extreme tempera-

tures (10 and 30 °C). This suggests that coastal regions that

experience such temperatures during reproductive periods will

be unable to support these species. This could explain the

absence of some species on the west coast (e.g. M. squamiger),

where strong upwelling periods can reduce sea surface tempera-

tures to 8–9 °C. However, it is known that some groups of

organisms can shift their phenology and seasonal thermal tol-

erance with changing environmental conditions (Millar, 1971;

Yang & Rudolf, 2009). Thus, such species are able to adapt or

demonstrate plastic responses when facing different thermal

conditions or latitudes. Our physiological results showed that

the optimal temperature for the studied species was between 15

and 20 °C, which is in accordance with previous studies

(Thiyagarajan & Qian, 2003). However, even if development is

assumed to be ideal at such optimal temperatures, suboptimal

conditions may also play an important role in species establish-

ment. For instance, although the embryonic development of

C. intestinalis was improved between 15 and 20 °C (Fig. S3) (see

also Dybern, 1965; Bellas et al., 2003, for performance curves in

other regions), this species was capable of settling and complet-

ing metamorphosis in both warmer (> 20 °C) and colder con-

ditions (Figs 4 & S4). In general, all the studied NIS show

widespread distributions around the world (Fig. S1), suggesting

0.
0

0.
5

1.
0

1.
5

Sampling year

M
e
a
n

 r
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 (

+
S

E
)

2007 2009

NIS
Native
Cryptogenic

Figure 6 Changes in species abundance along the South African
coast between sampled years. We used mean relative abundance of
native, cryptogenic and non-indigenous species (NIS), pooling
data from all sites and species.

M. Rius et al.

Global Ecology and Biogeography, 23, 76–88, © 2013 John Wiley & Sons Ltd84



a broad range of temperature tolerance. The link between

thermal tolerance ranges and geographic success requires careful

interpretation, especially when extrapolating physiological

outcomes to other regions without accounting for microsite

temperature variability (Clusella-Trullas & Chown, 2011) or

ecological interactions with the receiver community.

Thermal tolerance and changes in
temperature regimes

In terrestrial ecosystems, temperature has been used to predict

both extinctions and the spread of species by considering differ-

ent scenarios of climate change driven by anthropogenic effects

(Deutsch et al., 2008). For example, organisms with restricted

thermal tolerance have moved to higher elevations and latitudes

in response to recent climate change (Angert et al., 2011). For

ascidians, temperature exerts a strong influence on reproduc-

tion, development, energy requirements and feeding across all

life-history stages (Millar, 1971; Thiyagarajan & Qian, 2003).

Thus, a slight change in seawater temperature has the potential

to affect species survival significantly through lethal and suble-

thal effects. Warming is believed to have the most deleterious

consequences on organisms that are relatively sensitive to tem-

perature change and are currently living in conditions close to

their optimal temperature or ‘safety margin’ (Deutsch et al.,

2008). This might be even more critical during the most sensi-

tive ontogenetic stages, for which optimal temperature ranges

are narrower (Pineda et al., 2012). Therefore, the biological con-

sequences of rising temperatures depend on the physiological

sensitivity of each organism (Somero, 2012) and, as demon-

strated here, the cumulative effects through multiple life-history

stages. Our results indicate higher thermal tolerances of NIS

during the developmental stages than for native species.

However, this requires further investigation by including a larger

number of phylogenetically dissimilar native species and

broader sampling of conspecifics of different origins to evaluate

the role of local adaptation. Empirical evidence is especially

needed in aquatic environments, as there is a paucity of studies

that analyse the influence of altered environmental conditions

on performance of both native species and NIS in these ecosys-

tems compared with terrestrial ones (Sorte et al., 2013).

Climate change and species invasions

The analysis of ship-based temperature data collected over the

last 50 years revealed a significant positive trend at most sites,

indicating that temperatures are predominantly increasing. This

trend was supported by the annual mean temperature and most

especially by the mean temperature of winter months (Fig. S5).

Analyses of time-series of infrared satellite imagery suggest a

more complex picture, with cooling on the south and south-

west coasts of South Africa, and warming on the east coast

(Rouault et al., 2010). This is supported by minor, but telling,

changes in the distribution of cold-water kelps (Bolton et al.,

2012). In either event, the situation is one of changing condi-

tions. The differences between maximum and minimum tem-

perature revealed a positive trend towards more extreme annual

temperatures at most sites (Fig. S6). In line with this, extreme

climatic events, which are expected to increase in the future,

have recently been identified as potential factors enhancing

species invasions (Diez et al., 2012). This suggests that species

with a wider thermal niche have the potential to benefit from

more extreme conditions in the future. Correspondingly, our

field data show that biogeographic patterns are related to the

thermal-response results obtained during the early life-history

stages of the studied species – the most widespread species had

greater developmental thermal tolerances, while the lowest and

highest experimental temperatures were generally correlated

with the range boundaries of the studied species.

The warming of seawater temperature has been identified as

an important driver of community change (e.g. Sorte et al.,

2010). Warmer seawater temperatures in winter have been

shown to enhance the earlier seasonal arrival of invasive species

at local scales, by inducing earlier recruitment (Stachowicz et al.,

2002). In contrast, resident species might become increasingly

poorly adapted to the local environment, opening colonization

opportunities for NIS. Our study provides empirical evidence of

range expansions of NIS at multiple spatial scales during a

period of change of temperature regimes, which indicates a

trend towards global biotic homogenization.
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