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Summary

1. Generalised dissimilarity modelling (GDM) applies pairwise beta diversity as a measure of species turnover

with the purpose of explaining changes in species composition under changing environments or along environ-

mental gradients. Beta diversity only captures turnover across pairs of sites and, therefore, disproportionately

represents turnover in rare species across communities. By contrast, zeta diversity, the average number of shared

species across multiple sites, captures the full spectrum of rare, intermediate and widespread species as they

contribute differently to compositional turnover.

2. We show how integrating zeta diversity into GDMs (which we term multi-site generalised dissimilarity mod-

elling, MS-GDM), provides a more information rich approach to modelling how communities respond to envi-

ronmental variation and change.We demonstrate the value of including zeta diversity in biodiversity assessment

and modelling using BirdLife Australia Atlas data. Zeta diversity values for different numbers of sites (the order

of zeta) are regressed against environmental differences and distance using two kinds of regressions: shape

constrained additivemodels and a combination of I-splines and generalised linearmodels.

3. ApplyingMS-GDM to different orders of zeta revealed shifts in the importance of environmental variables in

explaining species turnover, varying with the order of zeta and thus with the level of co-occurrence of the species

and, by extension, their commonness and rarity. In particular, precipitation gradients emerged as drivers in the

turnover of rare species, whereas temperature gradients were more important drivers of turnover in widespread

species.

4. Appreciation of the factors that drive compositional turnover across multiple sites is necessary for accommo-

dating the full spectrum of compositional turnover across rare to common species. This extends beyond under-

standing drivers for pairwise beta diversity only.MS-GDMprovides a valuable addition to the toolkit of GDM,

with further potential for survey gap analysis and prediction of species composition in unsampled sites.

Key-words: alpha diversity, beta diversity, compositional turnover, generalised additive models,

generalised dissimilaritymodelling, I-splines, richness, shape constrained additive models

Introduction

Understanding the drivers of patterns in species diversity is

necessary to better protect regional diversity and ecosystem

function, implement sound conservation management actions

and prevent further species loss and assemblage homogenisa-

tion (Socolar et al. 2016). Modelling species richness from

remotely mapped environmental variables is by far the most

widely used approach to quantify the relationships between

biodiversity and its environmental drivers (Ferrier 2002). How-

ever, local species richness, or alpha diversity, although com-

paratively easy to estimate, provides an incomplete picture of

biodiversity and of species richness at regional scales, i.e.

gamma diversity, which is more difficult to assess (Socolar

et al. 2016). To better quantify gamma diversity, it is therefore

crucial to understand the drivers of species turnover, usually

measured as turnover in species composition between pairs of

sites, i.e. beta diversity (Jost 2007; Chao, Chiu&Hsieh 2012).

Generalised dissimilarity modelling (GDM) is an approach

that enables the nonlinear modelling of pairwise beta diversity

from differences in environmental conditions and distance

between sites (Ferrier et al. 2007). In combination with the

modelling of alpha diversity, GDM has been shown to be use-

ful for modelling the species composition of large regions

where exhaustive sampling is impossible, allowing for the inter-

polation of species assemblages across an entire region from

limited sampling data, with potential applications for the man-

agement of such regions (Mokany et al. 2011). The approach*Correspondence author. E-mail: guillaume.latombe@monash.edu
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is also valuable for a wide range of other applications, such as

survey gap analyses (Ferrier 2002; Funk, Richardson&Ferrier

2005; Ashcroft et al. 2010; Rose et al. 2016), climate-change

impact assessment (Ferrier, Harwood&Williams 2010; Prober

et al. 2012), and for visualising spatial patterns in community

composition (Ferrier et al. 2004; Thomassen et al. 2010;

Leit~ao et al. 2015). Rather than computing species turnover

from separate predictions of the distribution of individual spe-

cies (e.g. De’Ath 2012), approaches such as GDM are espe-

cially useful when extensive monitoring of all individual

species has practical limitations, as for highly diverse biological

groups with high turnover and encompassing multiple biotic

interactions (Ferrier et al. 2007).

However, limiting the analysis of spatial compositional turn-

over in biodiversity to measures of alpha and pairwise beta

diversity fails to comprehensively capture information on turn-

over in species assemblages (Hui & McGeoch 2014). When

more than two sites or assemblages are involved in a study, the

average of pairwise beta diversity metrics, such as Jaccard or

Bray–Curtis indices, has been used (Jost, Chao & Chazdon

2011). For turnover across three sites, metrics based on pair-

wise beta diversity do not capture the number of species shared

exclusively by pairs of sites, nor the number of species shared

by all three sites. Multiple-site metrics have therefore been

developed to quantify the heterogeneity in assemblage compo-

sition (Diserud & Ødegaard 2007; Baselga 2013; Ricotta &

Pavoine 2015), but these measures have shortcomings, such as

inference problems due to the averaging of non-independent

pairwise values, and difficulty of interpretation for large num-

ber of assemblages (Hui & McGeoch 2014). Zeta (f) diversity,
which measures the number of species shared by any number

of assemblages or sites, has been proposed inter alia as a means

to overcome these limitations (Hui & McGeoch 2014). As the

number of sites increases (the order of zeta, noted as fi for i dif-
ferent sites in the following), the number of species that they

share necessarily declines. Rare species, shared by a small num-

ber of sites, therefore disproportionately contribute to low

orders of zeta diversity (and to beta diversity), whereas wide-

spread species, shared by a large number of sites, contribute to

higher orders of zeta diversity (note that the characteristic of a

species to be rare or widespread depends on the grain and

extent considered). Zeta diversity is thus a metric that captures

all incidence-based diversity components produced by assem-

blage partitioning, and can be used to generate formulae for a

range of community patterns.

When applied to pairwise beta diversity-based measures of

compositional turnover, GDM predominantly explains the

relationship between environmental variation and turnover

in the rare species composition of a community. To better

understand variation in compositional similarity, under-

standing the drivers of turnover in rare, intermediate and

widespread components of the community is required. Given

the recent acknowledgement that the value of common spe-

cies for ecosystem function may have been underestimated

(Gaston 2010) and that being common is not a straightfor-

ward quality but can be characterised in a multidimensional

fashion (McGeoch & Latombe 2016), disentangling the

turnover of species with different levels of occurrence and

co-occurrence is essential for conservation and for predicting

the impact of land use and climate change on biodiversity.

Here, we extend the concept of GDM to incorporate zeta

diversity, and therefore to understand the importance of

environmental gradients and spatial distance in explaining

the compositional turnover of the whole spectrum of species,

from rare (low occurrence) to widespread (high occurrence).

We therefore expect the relative contribution of each vari-

able to the explained variation in species turnover to vary

with the increase in the order of zeta diversity. This is

because, as the order of zeta increases, we gradually remove

the contribution of rare species to the variation of observed

turnover, and the contribution of different niche characteris-

tics are likely to emerge for rare vs. widespread species. How-

ever, since the variability in species composition over

different sites increases as we consider more sites, we also

expect a decline in the predictive power of multi-site gener-

alised dissimilarity modelling (MS-GDM) for higher orders

of zeta diversity.

Zeta diversity is the number of species in common among

sites, and is a measure of similarity, rather than dissimilarity.

However, its application to GDM is essentially an extension of

GDM’s scope to encompass multi-site measures of turnover.

We therefore call this MS-GDM. We apply MS-GDM to the

distribution of bird species occurrences across Australia. To

explore the importance of different environmental gradients

for turnover, we apply and compare two different techniques

to perform MS-GDM: (i) nonlinear decreasing regression of

environmental differences and distance between sites, intro-

ducing the use of shape constrained additive models (SCAM;

Pya &Wood 2015) for this purpose; and (ii) decreasing gener-

alised linearmodelling of the difference between environmental

variables transformed with I-splines, a class of monotonic

spline functions classically used in GDM (Ferrier et al. 2007).

For a study area as large as Australia, the I-spline-based

MS-GDM is likely to perform better than the SCAM-based

MS-GDM. This is because the rate of change in species com-

position is likely to vary along wide environmental gradients.

Although the bird occurrence dataset is used primarily for

illustrating the methods rather than fully understanding turn-

over in bird species composition in Australia, MS-GDM high-

lights differences between different levels of co-occurrence and

therefore of rarity and commonness, a distinction that has

implications formanaging biodiversity.

Materials andmethods

BIRD OCCURRENCE DATA

We used bird survey data (presence-only) from the BirdLife Australia

Atlas of Australian Birds, from 1998 to 2013 covering all states and ter-

ritories of Australia (Barrett et al. 2003). The dataset comprises 761

species, among which we selected the component consisting of 258 ter-

restrial, resident species (see Appendix S1, Supporting Information for

details). The Australian continent and Tasmania were divided into

25 9 25 km and 100 9 100 km cells to assess the impact of grain on
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the analyses. Each cell was considered as a site in the analyses of zeta

diversity, and was characterised by its xy coordinates and its species

composition. Cells whose observed richness was likely to underestimate

real richness were removed to limit the impact of false absences on the

analyses (Fig. 1; Appendix S1).

ENVIRONMENTAL VARIABLES

Fourteen environmental variables that have previously been shown to

explain bird community structure were considered, including the per-

centage of land use types per unit area and climate-related variables

(Jetz, Wilcove & Dobson 2007), human density (Chown et al. 2003;

Gaston & Evans 2004), and elevation (Rahbek 1997). Although eleva-

tion is not a proximal predictor of species distribution, it is commonly

used as an effective surrogate for other climate variables (Elith&Leath-

wick 2009) and more complex variables, such as food availability

(Remonti, Balestrieri & Prigioni 2009) or vegetation distribution

(Dirnb€ock et al. 2002), that aremore difficult tomeasure directly. Vari-

ables in addition to the ones selected here may explain bird diversity,

such as vegetation structure and food resources (Cody 1981; Ferger

et al. 2014), but we limited this assessment to this subset of variables

that are adequate for the purpose of demonstrating MS-GDM, its

application, and the insights it provides.

Maps with a 25 9 25 km and a 100 9 100 km cell resolution were

computed for all variables (Figs B1–B3, Appendix S2). To account for

collinearity between variables and non-independence between the land

use variables, we computed the correlation matrix between all 14 vari-

ables at the 25 km grain, and removed variables so that Pearson’s cor-

relation values r between the remaining ones were�0�5 < r < 0�5. As a
result, only seven variables were retained: the area of conservation and

natural habitats (Natural) per map cell (expressed as a percentage over

the whole area of the cell), the area of production from irrigated agri-

culture and plantations (Irrigated) per cell, the area of water bodies

(Water; including estuary/coastal water, marsh/wetlands, rivers, lakes

and reservoirs/dams) per cell, as well as human density, mean tempera-

ture, average monthly precipitation and elevation (Table B1,

Appendix S2). The human density was then transformed to compute

its reciprocal, the area-per-person (bounded between 0 and 1), to

reduce the skewness of the distribution (Fig. B2, Appendix S2).

MULTI -S ITE GENERALISED DISSIMILARITY MODELL ING

Generalised dissimilarity modelling is typically used to explain the

value of beta diversity for pairs of sites, measured as any diversity index

bounded by 0 and 1 (such as Bray–Curtis or Jaccard dissimilarity

indices), based on the difference in environmental variables and spatial
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Fig. 1. Maps of the number of surveys (log-scaled) at (a) the 25 km grain and (b) the 100 km grain, and maps of the cells with at least five surveys

andwithin 90%estimatedChao 2 richness at (c) the 25 km grain and (d) the 100 km grain (seeAppendix S1 for details).
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distance between sites, using regression models. In the same way, MS-

GDMextendsGDMto explain the value of zeta diversity for n-number

of sites (or zeta order) based on environmental difference and spatial

distance between them using regression models. As we show in the fol-

lowing, since f2 is a measure of beta diversity, MS-GDM applied to f2
is equivalent to GDM, providing some transformation to keep the zeta

value between 0 and 1. However, applying MS-GDM to higher orders

of zeta provides additional information on the drivers of species turn-

over as we show below.

SCAM-basedMS-GDM

Like GDM, MS-GDM must be able to accommodate two con-

straints with respect to the relationship between zeta diversity and

environmental gradients or distance. First, MS-GDM is based on the

assumption that, if species composition is driven by environmental

and spatial variables, the number of species in common between a

given number of sites necessarily decreases monotonically with the

environmental gradient and spatial distance (Ferrier et al. 2007). In

practice, however, it is possible to observe local increases in zeta

diversity with environmental gradients or spatial distance. For exam-

ple, a strong, spatially periodic environmental gradient can lead to

observed spatial periodicity in species turnover (Nekola & White

1999). Increases in zeta diversity with increasing environmental gradi-

ents or spatial distance are therefore likely to represent unexplained

relationships between the environment and species composition, and

cannot be used to predict species turnover. The regressions between

zeta diversity and environmental gradients or spatial distance must

therefore be forced to have negative coefficients.

Second, similar to measures of beta diversity, such as Jaccard or

Bray–Curtis indices, that are bound by 0 and 1, the number of species

in common between sites (zeta) for a limited spatial extent is necessarily

constrained between zero and the total number of species (Faith, Min-

chin & Belbin 1987; Ferrier et al. 2007). Building on the first constraint

of monotonic decrease in zeta diversity with environmental gradients

and spatial distance (zeta decay sensu Hui & McGeoch 2014), zeta

diversity will decline in a curvilinear fashion to asymptote at a lower

limit of zero (or in some cases a value higher than zero due to a few

widespread species) as environmental gradients and spatial distance

increase.

To accommodate these two constraints, we demonstrate how MS-

GDM can be performed using the recently introduced semi-parametric

SCAM (Pya&Wood 2015), using the package SCAM (Pya 2014) in R (R

Core Team 2013). SCAMs are similar to generalised additive models

(GAM; Hastie & Tibshirani 1990), but use mildly nonlinear extensions

of P-splines to incorporate constraints in the shape of theGAM. In par-

ticular, the SCAM package enables the imposition of a monotonic

decrease on the P-splines, an essential feature for satisfying the two con-

straints described above. Since SCAMs, like GAMs, are semi-para-

metric, they potentially offer more flexibility and accuracy than

generalised linear models (GLMs), and it is worth testing their applica-

tion for MS-GDM, although their outputs can be less straightforward

to interpret and may be more prone to overfitting problems than

GLMs (Hastie &Tibshirani 1990).

A SCAM-basedMS-GDMfor f2 can be expressed as follows:

f2 ¼
X
p

fpðjxp1 � xp2jÞ eqn 1

where p is an environmental variable or the optional spatial location,

xp1 is the value of variable xp at location 1, and fp is a SCAM. For fn,
n > 2, eqn (1) becomes:

fn ¼
X
p

fp gðfjxpi � xpjj; ½i; j� 2 N2; i 6¼ jgÞ� �
eqn 2

where g is a function to combine environmental differences and distance,

N is a subset of n sites from all the sites and g({|xpi � xpj|, [i,j] 2 N2,

i 6¼ j}) is therefore a measure of dispersion of xp. In theory, any mea-

sure of dispersion can be used. The most intuitive measures are the

mean and the maximum difference or distance. As the order of zeta

increases, the measure of dispersion for any set {|xpi � xpj|, [i,j] 2 N2,

i 6¼ j} will converge to the value for the overall distribution of

fjxpi � xpjj; ½i; j� 2 N2
tot; i 6¼ jg, where Ntot is the set of all sites. As a

result, all measures of dispersion will converge to a single value, which

will make the regression of eqn (2) impossible. The convergence rate

will nonetheless differ between the different measures of dispersion.

We tested the impact of using the mean and the maximum functions

on the output of MS-GDM. Since the environmental variables and

the locations have a limited range, the maximum converged faster

than the mean due to the chance of selecting locations on the edges

of the study area increasing with the order of zeta (see Figs B3 and

B4, Appendix S2, for distances at the 100 km grain). This produces

singularity problems during the regression of eqn (2) for high orders

of zeta at the 100 km grain. Since results were similar for both meth-

ods for low orders of zeta, only the results for the mean are pre-

sented here.

The number of species in common between any number of sites

is necessarily bounded by the overall number of species among all

sites S, and fi can be divided by Sn in eqn (2), which results in a

proportion. We therefore used a binomial variance distribution

function with a logit link for the computation of the SCAM in

eqn (2) (Ferrier et al. 2007). Note that different transformations of

zeta diversity can be used (such as dividing by the average richness

or the local richness), which assume different mean–variance rela-

tionships in the data, a common problem in distance-based analy-

ses (Warton, Wright & Wang 2012). Although beyond the scope

of this paper, understanding the effects of different transformations

on the analyses will be important for future developments of MS-

GDM (e.g., Heino et al. 2013).

I-spline-basedMS-GDM

Shape constrained additive models-based MS-GDM assumes that a

specific environmental gradient implies the same compositional dissim-

ilarity, irrespective of the value of the environmental variables. From

this perspective, SCAM is therefore similar to other methods based on

linear models such as variation partitioning with function varpart from

the VEGAN R package (Oksanen et al. 2016) or the DistLM function in

PRIMER/PERMANOVA+ (Clarke & Gorley 2015), but with much

greater flexibility. However, as pointed out by Ferrier et al. (2007), the

rate of compositional turnover may potentially change along an envi-

ronmental gradient. For example, small increases in temperature may

be more detrimental to species near their upper thermal tolerances at a

range edge comparedwith larger temperature changes towards the cen-

tre of their thermal tolerance performance curves (Calosi, Bilton& Spi-

cer 2008). Simply applying a GLM or a SCAM, as described above, to

environmental difference cannot accommodate such gradients when

they occur.

Following Ferrier et al. (2007), to allow for this nonlinearity to struc-

ture the model, the nonlinear functions must apply to the environmen-

tal variables, not to the environmental difference between sites, and we

transformed the environmental data using a linear combination of

I-splines (Ramsay 1988):
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IpðxpÞ ¼
XsI

k¼1
apkIpkðxpÞ eqn 3

where xp is a value of the environmental variable p, Ipk is the kth spline

of the I-spline family composed of sI splines for the variable p, and apk
is a non-negative coefficient, ensuring the monotonic increase in Ip. sI
corresponds to the sum of the order of the spline, and the number of

interior knots, both determined by the user. Here we used the same

default parameters as in GDM, i.e. an order of 2 and 1 knot located at

the median, which generates 3 I-splines per variable p. Allowing more

than one I-spline per environmental variable enables a monotonic yet

potentially flexible fitted function.

Still following Ferrier et al. (2007), the apk were determined by solv-

ing the following equation in a GLM with a log link function and a

binomial variance distribution function. Note that the log link function

is equivalent for similarity measures to the link function recommended

byFerrier et al. (2007) for dissimilaritymeasures.

logðfn=SÞ ¼ �
X
p

XmSI

k¼1

apkg fjIpkðxpiÞ � IpkðxpjÞj; ½i; j� 2 N2; i 6¼ jg� �
eqn 4

whereS is the total richness over the study and is used to rescale the val-

ues between [0,1], as required by the binomial variance distribution

function (but, as for SCAM-based MS-GDM, different transforma-

tions are possible). Forcing negative coefficients was achieved using a

non-positive least-square regression from the NNLS package (Mullen &

van Stokkum 2012) within the iterative re-weighted least-square algo-

rithm implemented in the GLM2 package (Marschner 2014) in R (RCore

Team 2013).

When sites are located along a transect, the spatial location along

the transect can be treated as an environmental variable, and the

I-splines directly applied to the location using eqn (4). This is useful

if the species composition is expected to change in a nonlinear fash-

ion along the transect. However, for two-dimensional coordinates, it

is not possible to directly apply the I-splines to the site locations.

One possibility is to apply the I-spline on the X and Y coordinates

separately and therefore uses two measures of distance in eqn (4).

However, the X and Y coordinates may not be appropriate, as the

species composition may change along many local axes in different

directions over the study area (i.e. being anisotropic). Tensor product

splines (Wood 2006) may accommodate this constraint, but their

combination with I-splines is not straightforward. Following Ferrier

et al. (2007), when spatial distance is included in the MS-GDM, the

I-splines were therefore simply applied directly to the distance Dij,

and eqn (4) becomes:

logðfn=SÞ¼�
X
p

XmSI

k¼1

apkgðfjIpkðxpiÞ� IpkðxpjÞj; ½i; j� 2N2; i 6¼ jgÞ
 !

�
XmSI

k¼1

akgðfIDkðDijÞ; ½i; j� 2N2; i 6¼ jgÞ
 !

eqn 5

Note that the difference of the I-splineswas used in aGLMrather than

a SCAM, because it would not have been possible to retrieve eqn (3)

otherwise, as SCAMs are not distributive (f(x � y) 6¼ f(x) � f(y)), and

the output would not be interpretable.

REGRESSION, S IGNIF ICANCE TESTING AND

EVALUATION

Multi-site generalised dissimilarity modelling was performed for the

two grains (25 9 25 km and 100 9 100 km grains), using the SCAM-

based and the I-spline-based versions for orders of zeta diversity 2, 3, 4,

5, 10, 25, 50 and 100. To assess the impact of site selection on the

results, we also performed the analyses for a smaller extent (see

Appendix S4 for details). Changing the grain and extent only had lim-

ited impact on the results, and only results for the 100 km grain over

Australia are reported here, whereas the outputs of the additional anal-

yses are reported inAppendix S4.

Eight predictors, i.e. the seven environmental variables described

previously as well as distance, were used in the analyses. For the

SCAM-based MS-GDM, the environmental differences and distance

were divided by their maximum value prior to fitting the models so

that the coefficients apk could be directly compared. The original val-

ues were divided by their maximum rather than rescaled between 0

and 1 because, assuming the data covers the whole extent of the

study area and the whole range of environmental values, additional

sites may lead to smaller, but not larger, environmental gradients or

spatial distances between sites. For the I-spline-based MS-GDM,

the I-splines already rescale the environmental values between 0 and

1, so no additional transformation was performed. The perfor-

mances of the two techniques for the different datasets were assessed

by computing Pearson’s r2 between the observed and predicted zeta

values.

To confirm our analyses, we compared MS-GDM for pairs of sites

with a GDM computed with the GDM package (Manion et al. 2016) in

R (RCore Team 2013). For the results generated by the twomethods to

be comparable, we used the ‘normalised’ f2, i.e. dividing the number of

species in common between two sites by the overall number of species

over the same two sites, which is equal to the Jaccard similarity index

(note that, by extension, MS-GDM can be applied to any multi-site

measure of similarity, or even dissimilarity by changing the signs of the

coefficients in the different equations). Accordingly, the GDM was

computed for the Jaccard dissimilarity index, and we confirmed that

the two analyses yielded the same coefficients with opposite signs for

each variable (Appendix S3).

The significance of the different splines (for the SCAM- or the

I-spline-basedMS-GDM) can be assessed using permutation matrices,

following the method described by Ferrier et al. (2007). However, in

practice, the current implementation of MS-GDM is too slow to com-

pute the significance of the variables for all orders of zeta.We therefore

used the implementation from the GDM R package (Manion et al. 2016)

to assess the significance of the variables for f2 (Appendix S3). Incorpo-

ration of Bayesian bootstrap into GDM has also recently been pro-

posed for assessing the uncertainty in GDM parameters and

predictions (Woolley et al. 2016), and is of interest for future develop-

ments ofMS-GDM.

For all MS-GDM analyses except the comparison with the GDM,

50 000 combinations of sites were randomly selected using Monte

Carlo sampling. For the comparison with the GDM, we used all possi-

ble pairs of sites for each of the two grains and extents, to make sure

that the results were comparable between the two analyses. All func-

tions for performing the analyses are included in the R package ZETADIV

(Latombe et al. 2016).

To make sure the analyses captured meaningful relationships

between the environmental variables and zeta diversity, and tomitigate

the inflated Pearson’s r2 values due to non-independence between site

combinations, we also performed the analyses for 70% of the sites, and

evaluated the predictions of zeta values for the different orders with the

observed zeta values over the remaining 30% sites by computing Pear-

son’s r2 between the observed and predicted zeta values. Moreover, to

completely remove the possibility that a site is included in multiple

compositions, we further computed Pearson’s r2 between the observed
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and predicted zeta values with each site belonging only to a single com-

bination (i.e. sampling the sites without replacement), re-arranging the

combinations 300 times, and reported the distribution of the r2 values.

Since the number of such independent combinations decreased as the

order of zeta increases, the computation of Pearson’s r2 between the

observed and predicted zeta values is unreliable for very high orders of

zeta, andwe only performed these analyses for orders 2–10.

Because simple patterns in local richness (alpha diversity) are a useful

basis for interpreting patterns in turnover, we fitted a GAM to f1 (al-
pha) and all environmental variables and spatial coordinates, to obtain

a more complete picture of terrestrial bird species diversity over Aus-

tralia and its relationship with the environment. The function gam in

package MGCV (Wood 2011) in R (R Core Team 2013) was used with

default parameters. The flexibility of GAMs can accommodate nonlin-

ear relationships between richness and environmental variables (Hortal

et al. 2013).We used aGAM instead of a SCAM for f1 because species
richness is expected to be positively correlated with variables such as

temperature (Hawkins et al. 2003), but negatively with the area-

per-person (Chown et al. 2003).

Results

RICHNESS (f 1 ) : GAM

Pearson’s r2 between the observed and predicted species rich-

ness values was 79�24% at the 100 km grain. The spatial coor-

dinates, area of natural habitat per cell, elevation, human

density, mean temperature and precipitation were significant

(P < 0�05), whereas the area of production from irrigated agri-

culture and plantations and the area of water bodies were not

(P > 0�05). Low P-values should nonetheless be interpreted

with caution for GAMs, because smoothing parameter uncer-

tainty is neglected in their computation, and therefore underes-

timates them (Wood 2006). For example, the spline of the area

of natural habitat is relatively flat, meaning that it has little

effect on species richness. By contrast, as expected, the richness

increases with the human density (i.e. decreases with the area-

per-person), temperature and precipitation (Fig. 2).

EXPLAINING TURNOVER FROM ENVIRONMENTAL

GRADIENTS: SCAM-BASED MS-GDM

Performance

The maximum Pearson’s r2 between the observed and pre-

dicted zeta values across all orders of zeta, all datasets, and all

the locations was 41%, and corresponded to order 4 at the

100 km grain (Fig. 3a). The order of magnitude of the vari-

ance explained was similar for the evaluation data and the full

datasets except for the 100 km grain over SE Australia. Com-

pared to the variance computed over the evaluation data, the

variance explained for the full dataset was slightly overesti-

mated for orders >2 (Fig. D4, Appendix S4), which may

explain why the variance explained is higher for orders 3 and 4

than for order 2 (Fig. 3a). The coefficients of the linear models

forced through an intercept of zero between observed (predic-

tor) and estimated (response) zeta values were all below 1 and

higher than 0�8 for orders ≤10 (Fig. 3c). The SCAM-based

MS-GDMs therefore systematically and slightly underesti-

mated species turnover for low orders of zeta. This consistent

bias across zeta orders suggests that one or more additional

environmental variables are important for driving species turn-

over. Decreasing the grain resulted in a loss of explanatory

power (Fig. 3a) and in accuracy (Fig. 3c) of the SCAM-based

MS-GDM. The variance explained and the coefficients were

highest for the 100 km grain over SE Australia. Since this is

the dataset with fewest sites and the distributions of the vari-

ance of the distributions of Pearson’s r2 between the

observed and predicted zeta values for the evaluation dataset

was high, these values suggest overfitting for this dataset,

and the splines generated by the model should be interpreted

with caution.

Relative importance of environmental variables

The splines generated by SCAM represent the relationship

between environmental difference (independent of the raw val-

ues of the environmental variables) or spatial distance, and the

number of species shared for that particular order of zeta

(Fig. 4). The slopes of the splines therefore indicate the impor-

tance of each variable for turnover, whereas a flat spline

(slope = 0)means that the variable does not explain turnover.

Overall, SCAM-based MS-GDM suggests that tempera-

ture, precipitation, the natural habitat area, the area of water

bodies and distance were major drivers of species turnover for

most orders of zeta relative to the other variables (Fig. 4). The

SCAM splines were mostly linear, indicating that turnover in

species composition tended to increase steadily as environmen-

tal conditions changed andwith distance between sites.

As the order of zeta increases, natural habitat area explained

more of the turnover compared to the other variables (Fig. 4).

By contrast, the importance of distance decreased, whereas the

importance of temperature and precipitationwas constant.

ACCOMMODATING ENVIRONMENTAL GRADIENTS:

I -SPL INE-BASED MS-GDM

Performance

Pearson’s r2 between the observed and predicted zeta values

was higher for I-spline-based than for SCAM-based MS-

GDM for all orders of zeta and all datasets. The maximum

Pearson’s r2 between the observed and predicted zeta values

across all orders of zeta, all datasets, and all the locations was

71%, and corresponded to order 4 at the 100 km grain

(Fig. 3b). As in the SCAM-based MS-GDM, Pearson’s r2

between the observed and predicted zeta values was slightly

overestimated for orders >2 with respect to the variance com-

puted over the evaluation data (using 30%of the data), but the

orders ofmagnitudewere similar for the evaluation and the full

datasets except for the 100 km grain over SE Australia

(Fig. D8, Appendix S4). Like with the SCAM-based MS-

GDM, the coefficients of the linear models forced through an

intercept of zero between observed (predictor) and estimated
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(response) zeta values were lower than 1 and >0�8, meaning

that I-spline-based MS-GDMs also systematically but only

slightly underestimated species turnover for low orders of zeta

(Fig. 3d). This suggests the possible contribution of other vari-

ables in addition to those used here for predicting species turn-

over. The coefficients were nonetheless always closer to 1 than

for the SCAM-based MS-GDM, meaning that I-spline-based

MS-GDMwas more accurate. Results also suggest overfitting

for the 100 km grain over SEAustralia.

Overall relative importance of environmental variables

The I-splines of each variable computed by eqn (3) with the

coefficients obtained after fitting eqn (5) provide two useful

pieces of information (Ferrier et al. 2007): (i) the maximum

value of the spline indicates the importance of the variable rela-

tive to others for the same order in explaining zeta diversity,

whereas (ii) the variation in slope indicates how the rate of

compositional turnover changes along an environmental
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splines describing the contribution of environ-

mental variables to describing species richness
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100 km grain over Australia (see Figs D1–D3

in Appendix S4 for other grains and extents).

The rug on the x-axis shows the distribution of

the data. Significance is indicated by an

* (P < 0�05). The model explained 79�24% of

the variation in species richness.
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gradient. For example, a sharper increase at low than at high

precipitation indicates that changes in precipitation are most

important for zeta diversity in dry areas (Fig. 5).

Overall, I-spline-based MS-GDM suggests that precipita-

tion, temperature, natural habitat area, human density, eleva-

tion and distance are major drivers of species turnover for

most orders of zeta (Fig. 5). As expected, the I-splines dis-

played important nonlinearities, indicating that the rate of

compositional turnover changed along environmental gradi-

ents. The I-splines for precipitation and water bodies indicate

that the rate of compositional turnover was high in dry areas.

The rate of compositional turnover was also high near the

extremes of the temperature range in Australia, but low in the

middle of the range (Fig. 5). Changes in species composition

occurred at low rather than high elevation, low human density

(i.e. high area-per-person), large areas of natural habitat and

either low or high distances.

Changes in the importance of variables with the order of zeta

Precipitation was the main driver of species turnover at low

orders of zeta (Fig. 5). As the order increased, the importance

of temperature increased, and temperature became the main

driver of turnover for orders higher than 5 (i.e. the I-splines

had the highest values). The importance of natural habitat area

also increased with the order of zeta, although in a slower fash-

ion, to be as important as precipitation for orders higher than

25. The importance of elevation increased for intermediate

orders of zeta, but decreased for high orders. The presence of

water bodies was unimportant at low orders of zeta, but mod-

erately important for higher orders, especially at order 25.

Discussion

By adapting the concept of GDM to zeta diversity, we show

that the relative importance of the different environmental

variables in explaining bird species turnover across Australia

varies across the orders of zeta. Although MS-GDM does not

solve all the shortcomings associated with the use of beta diver-

sity, such as the averaging of non-independent pairwise values

when characterising environmental differences between sites

(eqns 2 and 4), it demonstrates the importance of using amore

complete representation of compositional turnover than only

pairwise dissimilarity to understand what is driving different

components of biodiversity. Applying MS-GDM to f2, like
GDM, aims to explain variation in species turnover for the

whole community, as species shared by any pair of sites can be

either common (more probable) or rare (less probable). As the

order of zeta increases, MS-GDM explains variation in species

turnover for more widespread species, since, by definition, rare

species are not shared by many sites. Comparing the outputs

of MS-GDM for a range of orders of zeta therefore provides a

more comprehensive picture of species turnover. Comparing

turnover in widespread species (high zeta orders) with turnover

in the whole community has the potential to improve applica-

tions of the traditional GDM, such as the modelling of species

composition. Although, as expected, the performance of MS-

GDM decreased with the order of zeta, the performance
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Fig. 3. Model performance (Pearson’s r2

between the observed and predicted zeta val-

ues) for the relationship between observed

(predictor) and estimated (response) zeta val-

ues with an intercept of zero, computed over

all four datasets for the different orders of zeta

for (a) shape constrained additive models

(SCAM)-based multi-site generalised dissimi-

larity modelling (MS-GDM) and (b) I-splines-

based MS-GDM. Coefficients of a linear

model with an intercept of zero between

observed and predicted zeta values for (c)

SCAM-based MS-GDM and (d) I-splines-

based MS-GDM. Coefficient values lower

than 1 indicate underestimation of the zeta

values by the model. Convergence problems

sometimes prevented computation of the

SCAM for high orders in the SCAM-based

MS-GDM.
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remained satisfactory for a range of orders (Pearson’s r2

between the observed and predicted zeta values >30% and

regression coefficient >0�8 for orders ≤10).
We used two statistical techniques to apply MS-GDM. The

first makes use of the recent GAM under shape constraint, or

SCAM (Pya & Wood 2015). Like GAM, SCAM is a semi-

parametric technique and does not require a specific response

curve to transform the predictor variables (Hastie &Tibshirani

1990). SCAM therefore provides a high degree of flexibility for

inferring the relationship between zeta diversity and environ-

mental gradients and spatial distance. However, SCAM does

not accommodate changes in the rate of compositional turn-

over along an environmental gradient. To do so, following

Ferrier et al. (2007), the environmental variables were trans-

formed using I-splines before applying aGLM. Changes in the

rate of compositional turnover along environmental gradients

are characterised by nonlinear I-splines, and such nonlineari-

ties are more likely to appear for large areas with wide ranges

of environmental values. The areas covered in our analyses are

large for all datasets and the I-splines displayed nonlinearities.

As a result, Pearson’s r2 between the observed and predicted

zeta values was always higher for the I-spline-basedMS-GDM

than for the SCAM-basedMS-GDM, for both the full dataset

and the evaluation data. SCAM-based MS-GDM may pro-

vide better results for smaller study areas, as developed below.

Moreover, since for low orders of zeta, changes in precipita-

tion are especially important for dry areas, i.e. a small range of

values over the whole range of precipitation over Australia,

SCAM-based MS-GDM underestimated the importance of

precipitation for species turnover due to its inability to accom-

modate such nonlinearities (Figs 4 and 5). Using I-splines,

nonetheless increases the number of parameters, and one

should control for the number of knots and the order of the

splines to avoid overfitting (Elith et al. 2006). Here, risks of

overfitting were limited by the fact that we used only three

splines. Low chance of overfittingwas supported by the predic-

tions on the independent dataset. By contrast, for smaller areas

and more restricted environmental gradients, we would expect

more linear I-splines, i.e. constant changes in species composi-

tion along the environmental gradients. In this case, since

SCAM is more versatile than GLM, SCAM-based MS-GDM

may perform better. Other parameters may also influence the

results, such as the number of knots and I-splines, the objective

function used in the SCAM fitting procedure, the selection of

predictors, the transformation of zeta values to rescale them

between 0 and 1, or the way sites are combined to compute the
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Fig. 4. Splines of the shape constrained addi-

tivemodels (SCAM) showing the contribution

of the seven environmental variables and dis-

tance to explaining zeta diversity, for f2–f25, at
the 100 km grain over Australia. The splines

represent changes in compositional turnover

with environmental gradient and spatial dis-

tance. The steeper the slope of decline, the

more species composition changes with the

environment. All predictors are scaled

between 0 and 1 for visualisation (rescaled

range). See Table D4 in Appendix S4 for the

scaling factors of all orders of zeta. The exact

values of the scaling factors depend on the

specific Monte-Carlo sample. Convergence

problems prevented computation of the

SCAM for orders 50 and 100.
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zeta values. Exploring these different aspects of MS-GDM is

of interest, but beyond the scope of this study.

The main difference between MS-GDM for low vs. higher

orders of zeta was the relative importance of temperature and

precipitation for species turnover. Precipitation explainedmost

of the turnover for low orders of zeta (Fig. 5; Figs D9–D11,

Appendix S4), i.e. when all species, from rare to widespread

contribute to the turnover measure. By contrast, temperature

became the main driver of turnover for intermediate and high

orders of zeta, i.e. turnover in widespread species. While this

requires more in depth ecological analysis, a speculative expla-

nation is that, by affecting the availability of food sources such

as seeds, precipitation may limit species distributions (e.g.,

Dunning & Brown 1982), and rare species may as a result be

more critically related to this driver. By contrast, widespread

species may be able to respond to rainfall heterogeneity via a

spatial storage effect (Shoemaker & Melbourne 2016), espe-

cially in areas containing water bodies, as suggested by the fact

that water bodies were more important in explaining high than

low orders of zeta. Wet areas, such as floodplains, have been

shown to serve as drought refugia for birds (Selwood et al.

2015). As a result, distributions of widespread bird species may

bemore related to physiological drivers such as temperature.

As intended, combining MS-GDM with the modelling of

species richness (alpha diversity), provides a more complete

picture of biodiversity (Socolar et al. 2016). Precipitation and
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Fig. 5. I-splines showing the contribution of

the seven environmental variables and dis-

tance to explaining zeta diversity, for f2–f100,
at the 100 km grain over Australia (I-splines

obtained from eqn 3 after fitting eqn 5). All

predictors are scaled between 0 and 1 for visu-

alisation (0, lowest value of predictor; 1, high-

est value of predictor). See Tables D5 and D6

inAppendix S4 for the scaling factors.
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temperature were good predictors of both species richness and

species turnover across several orders of zeta. However, rich-

ness increased linearly with temperature (Fig. 2), whereas

I-spline-based MS-GDM showed that differences in tempera-

ture between warm areas were very important for species turn-

over, especially for low orders of zeta (Fig. 5). Richness also

increased linearly with elevation, although elevation difference

drove turnover only at low elevations. Finally, although the

natural habitat area was only very slightly correlated with spe-

cies richness at the 100 km grain over Australia, the I-splines

suggest that this variable is important for species turnover for

intermediate and high orders of zeta. The nonlinear shape of

the splines also suggests that natural habitat area becomes

increasingly important the greater the amount of natural habi-

tat available.

One application of GDM is the prediction of species com-

position in unsampled sites by combining predictions of spe-

cies richness and compositional dissimilarity between

surveyed and unsurveyed sites estimated with GDM into an

optimisation algorithm called dynamicFOAM (Mokany et al.

2011). Because it uses only beta diversity, this algorithm may

potentially overemphasise the importance of the occurrence

of rare species in estimating species composition. Considering

various orders of zeta by incorporating MS-GDM into this

procedure may therefore improve the overall results, by

improving the prediction of widespread species shared by

multiple assemblages, and have positive impacts on survey

gap analyses.

Conclusion

Here, we introduce MS-GDM, which extends GDM (Ferrier

et al. 2007) to incorporate zeta diversity as a measure of com-

positional similarity that is not limited to pairwise site com-

parison. Using measures of diversity beyond alpha and beta

diversity, MS-GDM provides a more comprehensive descrip-

tion of the correlates of biodiversity. In particular, it captures

the responses of widespread species as distinct from the

response of the whole community, with the latter dispropor-

tionately influenced by the rare component of the community

across site pairs in traditional measures of beta diversity. Two

regression techniques were used for MS-GDM: SCAM and I-

splines. Although I-spline-based MS-GDM explained the

data better than SCAM-based MS-GDM, the opposite may

be true for smaller study areas and environmental gradients,

along which the rate of compositional turnover would remain

constant. Applying MS-GDM to different orders of zeta

revealed temperature as the main predictor of compositional

turnover across multiple sites, i.e. for more widespread bird

species, whereas differences in precipitation were more impor-

tant across site pairs, i.e. for turnover driven by rare or nar-

row range species. Such findings may have implications for

conservation planning, for predicting the impacts of climate

change on biodiversity, and for understanding the conse-

quences of turnover for ecosystem function (Schwartz et al.

2000). MS-GDM provides a useful addition to the biodiver-

sity quantification and estimation toolkit, and may be

valuable for other applications of GDM, such as survey gap

analysis and prediction of species composition in unsampled

sites.
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