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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Machine learning is becoming an increasingly popular concept in the modern world since its most common goal is to 
optimize systems by allowing one to make smarter use of products and services. In the manufacturing industry 
machine learning can lead to cost savings, time savings, increased quality and waste reduction. At the same time, it 
enables systems to be designed for managing human behaviour. This research study used a systematic review to 
investigate the different machine learning algorithms within the sustainable manufacturing context. The study focuses 
specifically on cutting processes.  
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1. Introduction 

Manufacturing has been a fundamental aspect to national development and prosperity. It greatly contributes to an 
individual’s quality of life, a nation’s growth and the power and position of a country. Machine learning and 
networking of cyber-physical technologies are on the rise. In the field of sustainable manufacturing, an increasing 
level of machine learning is used to face the growing production requirements. Smart production systems will integrate 
the virtual and physical worlds on these Internet of Things (IoT) platforms to ensure resource efficiency and optimized 
production. In this research study the applications of machine learning techniques in cutting processes were observed 
to discover machine learning trends in these processes. The different resource efficiency challenges were studied to 
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support the discovery of correlations between machine learning applications and smart, sustainable manufacturing 
problems. 

2. Research methodology 

The systematic review used, enables the growth of a knowledge base consisting of relevant and useful information, 
generates information based on research conducted which are of interest and identifies opportunities for further 
investigation [1]. A systematic review makes use of a pre-specified criteria to collect, evaluate and summarize the 
collected empirical evidence and research to answer a well-defined research question. The focus of this paper was to 
review the different machine learning techniques which have been applied in cutting processes. The literature review 
covers full papers from 2000 to 2017 which are selected according to the criteria provided in Table 1. The modified 
template was created by [2]. 

Table 1. The selection criteria for the literature. 

Criteria Desired Value 

Contextual Criteria  

Industrial sector of the application Manufacturing 

Specific process Cutting process 

Keywords 

 

Machine learning, artificial intelligence, optimization, cutting 
process, cutting tools, design, quality, scheduling, sequencing, 

Bibliographical criteria  

Date of publication January 2000 – December 2017 

  

 
Every paper was further analyzed and the following information about each was extracted: title of the paper, the 

specific cutting process (for example, drilling) and the machine learning algorithm(s) used.  

3. Machine learning techniques  

A variety of machine learning techniques have been applied in the research. The most used methods include neural 
networks, evolutionary algorithms and response surface methodology regression models. Sometimes machine learning 
algorithms are used in combination with dimension reduction methods, to reduce the computational power and time 
required to perform the algorithms without reducing the quality of the output. Dimension reduction methods include 
principal component analysis (PCA), kernel PCA (KPCA), locally linear embedding (LLE), isometric feature mapping 
(ISOMAP), minimum redundancy maximum relevance (MRMR) [3] and singular spectrum analysis (SSA) [4]. 

3.1. Neural Networks 

A neural network (NN) or artificial neural network (ANN) is an arrangement of statistical algorithms which structure 
is based on the biological brain patterns found in human brains. NNs are used to identify and create the non-linear 
relationships between input variables and the output variable(s). A NN consists of an input layer, hidden layer(s) and 
an output layer.  The layers consist of weights and biases and make use of mathematical functions for example tangent 
hyperbolic activation function, linear activation function [5], sigmoid activation function, logistic activation function 
[6] and hyperbolic tangent sigmoid activation function. To develop and apply a neural network, three sequential 
processes occur: training, validation and testing. Various training algorithms exist including the Levenberg–Marquardt 
algorithm, Conjugate Gradient Descent (CGD), and Bayesian Inference (BI) [6]. Different statistical measures are 
used to determine the error of the net, for example Mean Absolute Percentage Error ( MAPE ), mean square error 
(MSE), Regression (R or R2) values [6] and maximum/average relative error. Bayesian regularization can be used 
during the training stage to skip the validation stage [5]. Different NNs are available, including feed-forward NN 
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(FFNN), back-propagation NN (BPNN), etc. The self-organization feature map (SOM) [7] is based on NNs.  

3.2. Evolutionary and swarm intelligence-based algorithms 

These algorithms are population-based heuristic optimization algorithms and they are derived from natural 
biological processes.  These algorithms include genetic algorithm (GA), non-dominated sorting genetic algorithm 
(NSGA), particle swarm optimization (PSO), biogeography based optimization algorithm (BBO), firefly algorithm, 
artificial bee colony (ABC) and Ant Colony Optimization (ACO) [8]. They share common control parameters like 
population size and number of generations, while each has its own set of algorithm-specific parameters. 

The genetic algorithm (GA) is an evolutionary algorithm based on the theory of natural selection. At the start a 
population consisting of chromosomes (feasible solutions) is generated. Three primary genetic operations occur to 
create the next generation or population: reproduction, crossover and mutation [9]. During reproduction parent 
chromosomes are randomly selected to create offspring. Crossover is the process where genetic material is exchanged 
between the two parents by randomly selecting a crossover point and swapping their ‘genes’ to create two offspring 
which are different from the parents.  Single-point or multi-point crossover can occur. During mutation a random 
chromosome and random mutation point on the chromosome is selected [10]. The value of the selected ‘gene’ is then 
altered or in the case of binary ‘genes’ a 1 becomes a 0 and vice versa. The elitist members of the current population, 
the non-dominated chromosomes, are selected and added, together with the offspring (some are mutated), to the next 
population. GA parameters include mutation probabilities, mutation rate, crossover point probabilities, crossover rate 
[11] and elitism number (number of good solutions in current population which are transferred to the next population) 
[10]. 

3.3. Response surface methodology 

Response surface methodology (RSM) creates empirical models which approximates the true functional 
relationship between the response surface (dependent variable(s)) and a set of experimental input parameters 
(independent variables). Various methods are available to help determine the constant terms of a RSM model. The 
Box-Behnken design, which is specifically developed for RSM [12] [13], and design of experiments (DOE), like 
Taguchi, Central Composite Design (CCD) [14] and full factorial design [15], can be used to design experiments in 
such a way that the cause and effect relationship between the input and output parameters can easily be identified with 
minimized number of experiments. ANOVA analysis can be performed next to determine the degree of influence the 
various input parameters have on the output parameter(s) as well as the interactions between the input parameters 
[15]. Grey relational analysis or weighted grey relational analysis [16] can also be used to determine the 
interrelationships between multiple responses by calculating the grey relational coefficients (weight factors) of 
multiple responses in a multi-objective problem and based on that, calculating the grey relational grades which is the 
input of the RSM [17]. Next, RSM is employed. The RSM models can be validated by the ANOVA analysis 
(specifically the R2 and p values), F-ratio test [18] and the maximum deviation between the experimental results and 
the RSM model. 

4. Machine learning applications in cutting processes 

Traditionally process parameters are determined by the operator’s experience, the conservative technological data 
provided by the machining equipment manufacturers and trial-and-error operations. This leads to inconsistent 
machining performance since operator’s experience is limited and subjective while the manufacturer data is based on 
safety-conscious principles and it only includes applications on certain machining materials [19]. Trail-and-error 
operations employ post-process techniques to inspect the quality of the finished product. This methodology includes 
a range of disadvantages: it is costly, time-consuming and it leads to numerous defective and useless products which 
are only discovered once the process has been completed [4]. Machine learning addresses these resource efficiency 
challenges by determining the optimal process parameters given an objective(s). Machine learning also increases 
sustainability since it leads to the permanent availability of uniform, objective cutting process knowledge 
(manufacturers do not have to hire costly consultants repeatedly), it enables manufacturers to optimally benefit from 
their machining equipment without the acquisition of new costly, carbon-footprint related equipment and it reduces 
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the usage of valuable resources including time, money, energy and natural resources. Machine learning also enables 
employee safety as well as product safety, since it can be used proactively to allow one to view the cutting parameters 
before application. Thus, harmful parameters can be identified before the process started.  

Machine learning algorithms have been applied to a variety of cutting processes including cutting, turning, milling, 
drilling, boring, grinding, broaching [20], coroning [19], electric discharge machining (EDM), ultrasonic-assisted 
EDM (US/EDM) [21], wire EDM (WEDM), abrasive water jet machining (AWJM) [8], laser cutting process [11], 
electro- chemical machining (ECM) [11] and focused ion beam (FIB) micro- milling. Table A in Appendix A provides 
a detailed summary of the different cutting processes and the different machine learning algorithms applied in these 
processes, according to the review.  

There are complex interrelationships between cutting parameters, process output, economic factors and 
environmental factors. The cutting parameters directly affect the production efficiency, production cost, quality of the 
product, tool life, processing time, power energy consumption and the carbon emissions [22]. All the machine learning 
applications considered during the systematic review investigated one or combinations of these sustainability-related 
relationships. Fig. 1. (a) illustrates the cutting processes supported by machine learning applications. It is evident that 
turning and milling are the fields in which the most applications have been applied, followed by EDM and drilling. 
Fig. 1. (b). illustrates the different types of machine learning algorithms which have been applied in cutting processes. 
ANNs are the most common application, followed by GA, RSM and PSO. 

 

a b 

Fig. 1. (a). Cutting processes supported with machine learning applications; (b) The different types of machine learning applications applied in 
cutting processes. 

5. Conclusions 

In the manufacturing industry, machine learning can lead to cost savings, time savings, increased quality and waste 
reduction. At the same time, it enables systems to be designed for managing human behavior. From the systematic 
review, the author learned of the different machine learning techniques which have been applied to cutting processes, 
the process of applying machine learning techniques in cutting processes and the machine learning trends in these 
manufacturing processes. 
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environmental factors. The cutting parameters directly affect the production efficiency, production cost, quality of the 
product, tool life, processing time, power energy consumption and the carbon emissions [22]. All the machine learning 
applications considered during the systematic review investigated one or combinations of these sustainability-related 
relationships. Fig. 1. (a) illustrates the cutting processes supported by machine learning applications. It is evident that 
turning and milling are the fields in which the most applications have been applied, followed by EDM and drilling. 
Fig. 1. (b). illustrates the different types of machine learning algorithms which have been applied in cutting processes. 
ANNs are the most common application, followed by GA, RSM and PSO. 

 

a b 

Fig. 1. (a). Cutting processes supported with machine learning applications; (b) The different types of machine learning applications applied in 
cutting processes. 

5. Conclusions 

In the manufacturing industry, machine learning can lead to cost savings, time savings, increased quality and waste 
reduction. At the same time, it enables systems to be designed for managing human behavior. From the systematic 
review, the author learned of the different machine learning techniques which have been applied to cutting processes, 
the process of applying machine learning techniques in cutting processes and the machine learning trends in these 
manufacturing processes. 
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Appendix A. Different cutting processes versus different machine learning algorithms 

An ‘H’ superscript indicates that the study is a hybrid or combination of machine learning algorithms, while an ‘&’ 
superscript indicates that various algorithms were compared in the study.  

     Table A. Different cutting processes versus different machine learning algorithms. 

Machine 
learning 
method 

ANN SVM GA PSO ABC BBO SA HMM Fuzzy ANFIS RSM Other 

AWJM   [8]&, [8]&, [8]&, [8]&, [8]&,      [8]&, 

Boring [23], 
[24]H,  

  [24]H,         

Broaching  [20]           

Coroning        [21]H,     [21]H, 

Drilling [25], 
[6], 
[26], 
[27]H, 
[28]H, 
[29]H,  

 [27]H, 
[29]H, 

     [28]H,   [29]H, 

ECM [30], 
[31]H,  

 [11]&, [11]&,  [11]&,      [11]&, 
[31]H, 

EDM [19]H, 
[5]&, 
[32] 

 [19]H, 
[11]&,  

[11]&,  [11]&,  [5]&,  [33]   [11]&, 

Laser 
cutting 

  [11]&, [11]&,  [11]&,      [11]&, 

Milling  [34]H, 
[35], 
[36], 
[7], 
[12]&, 
[37], 
[13]&, 
[38], 
[39]H, 
[40], 
[41], 
[42], 
[43]H, 

[3], 
[44] 

[11]&, 
[34]H, 
[45]H, 
[22], 
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Appendix A. Different cutting processes versus different machine learning algorithms 

An ‘H’ superscript indicates that the study is a hybrid or combination of machine learning algorithms, while an ‘&’ 
superscript indicates that various algorithms were compared in the study.  

     Table A. Different cutting processes versus different machine learning algorithms. 

Machine 
learning 
method 

ANN SVM GA PSO ABC BBO SA HMM Fuzzy ANFIS RSM Other 

AWJM   [8]&, [8]&, [8]&, [8]&, [8]&,      [8]&, 

Boring [23], 
[24]H,  

  [24]H,         

Broaching  [20]           

Coroning        [21]H,     [21]H, 

Drilling [25], 
[6], 
[26], 
[27]H, 
[28]H, 
[29]H,  

 [27]H, 
[29]H, 

     [28]H,   [29]H, 

ECM [30], 
[31]H,  

 [11]&, [11]&,  [11]&,      [11]&, 
[31]H, 

EDM [19]H, 
[5]&, 
[32] 

 [19]H, 
[11]&,  

[11]&,  [11]&,  [5]&,  [33]   [11]&, 

Laser 
cutting 

  [11]&, [11]&,  [11]&,      [11]&, 

Milling  [34]H, 
[35], 
[36], 
[7], 
[12]&, 
[37], 
[13]&, 
[38], 
[39]H, 
[40], 
[41], 
[42], 
[43]H, 

[3], 
[44] 

[11]&, 
[34]H, 
[45]H, 
[22], 
[46]H,  

[11]&, 
[34]H, 
[47] 

 [11]&,   [48], 
[49],  

[34]H, 
[45]H,  

[12]&, 
[13]&, 
[39]H, 
[16]H, 
[46]H, 
[17]H, 

[50], 
[11]&, 
[51], 
[16]H, 
[52], 
[53]H, 
[43]H, 
[17]H, 

Turning [14]&, 
[54], 
[55]H, 
[56], 
[57]H, 
[58]&, 
[59], 
[60], 
[61]H, 
[62]&,  

[63], 
[64], 
[65], 
[66]&,  

[67]&, 
[68], 
[55]H, 
[57]H, 
[69]H, 
[70] 

[57]H, 
[71]H, 

[72]&,  [61]H, [73]   [69]H,   [14]&, 
[67]&, 
[4], 
[15], 
[71]H, 
[58]&,  

[66]&, 
[62]&, 
[72]&, 

             

 


