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ABSTRACT. Knowledge of lactation curves in dairy cattle is 
essential for understanding the animal production in milk production 
systems. Genomic prediction of lactation curves represents the 

genetic pattern of milk production of the animals in the herd. In this 
context, we made genomic predictions of lactation curves through 
genome-wide selection (GWS) to characterize the genetic pattern of 

lactation traits in Girolando cattle based on parameters estimated by 
nonlinear mixed effects (NLME) models. Data of 1,822 milk control 

records from 226 Girolando animals genotyped for 37,673 single 
nucleotide polymorphisms were analyzed. Nine NLME models were 
compared to identify the equation with the best fit. The lactation 

traits estimated by the best model were submitted to GWS analysis, 
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using the Bayesian LASSO method. Then, based on the genomic 
estimated breeding values (GEBVs) obtained, genomic predictions of 
lactation curves were constructed, and the genetic parameters were 

calculated. Wood's equation showed the best fit among the evaluated 
models. Heritabilities ranged from 0.09 to 0.29 for the seven lactation 
variables (initial production, rates of increase and decline, lactation 

peak, time to peak yield, persistence and total production). The 
correlations among GEBVs ranged from -0.85 to 0.98. The 
concordances between the best animals selected according to the 

selected traits were greater when the correlations between GEBVs for 
these traits were also high. Consequently, the methodology allowed 

us to identify the best nonlinear model and to construct the genetic 
lactation curves of a Girolando cattle population, as well as to assess 
the differences between animals and the association between lactation 

variables. 
 
Key words: Heritability; Bayesian LASSO; Genome-wide selection 

INTRODUCTION 
 

About 80% of the milk produced in Brazil comes from cows that have Holstein and 
Gyr genes in their genetic composition (Daltro et al., 2019; Silva et al., 2015). The 
Girolando breed, predominant in Brasil, was developed beginning in the 1940s by crossing 

Gyr and Holstein (Canaza-Cayo et al., 2015). 
Studies addressing the construction of lactation curves for dairy cattle usually aim 

to identify the lactation behavior of the herds (Bangar and Verma, 2017) and/or to evaluate 

the genetic parameters for the lactation traits under study (Macciotta et al., 2015). These 
approaches are important for characterizing the milk productivity of the herd and for 
assisting the choice of the equation that best describes its behavior. 

Lactation curves can be characterized by nonlinear mixed equations (NLME) 
models. Based on the large amount of this class of models available in literature, their 

comparison becomes extremely important. In this sense, the models fit can be evaluated by 
goodness-of-fit measures, such as Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), residual standard deviation and Root Mean Square Error 

(RMSE), and the equation that best describes the productive behavior of the herd can be 
identified and used to estimate the lactation curve parameters. 

As the differences between the measures used to construct the dairy cattle lactation 

curves usually occur due to genetic influences, methodologies that aim to find the functional 
relationship between phenotypes and DNA information, based on molecular markers, have 

been used (Macciotta et al., 2015; Cardona et al., 2015). Among them, the Genome Wide 
Selection - GWS (Meuwissen et al., 2001) is highlighted, which aims to predict the animal 
genetic merit by building statistical models using information directly from the genome 

through genetic markers. Thus, through the application of statistical methods applied to 
GWS (e.g., the Bayesian LASSO) considering the estimates of the lactation curve 
parameters as dependent variables, the prediction of Genomic Estimated Breeding Values 
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(GEBVs) and the estimation of genetic parameters for the lactation traits, as well as the 
construction of genomic prediction of lactation curves, are allowed. 

 In this context, we aimed to: i) compare nine different NLME models based on 

goodness-of-fit criteria to identify the equation that best fits the lactation data of a 
Girolando dairy cattle population; ii) use the model with the best goodness-of-fit to 
characterize the milk productivity of the herd; and iii) build the genomic prediction of 

lactation curves of the herd through GWS and estimate the heritabilities of the lactation 
variables and the correlations among the GEBVs of the animals for the lactation traits. 

MATERIAL AND METHODS 

Data 
  

The data on milk production and molecular SNP markers were provided by 
EMBRAPA (National Center for Research on Dairy Cattle), located in Juiz de Fora, Minas 
Gerais, Brazil (21º46’55.8’’S, 43º22’10.7’’W). Initially, the available information 

corresponded to 94,263 milk control measures from 11,459 Girolando animals. Aiming to 
work only with individuals that had available molecular information - SNPs (single 
nucleotide polymorphisms) markers, data from 226 genotyped animals, composed of 1,822 

records of milk control of Girolando cattle, were used. The animals were genotyped with an 
Illumina BovineSNP50 BeadChip, containing initially information of 54,609 SNPs markers. 

The filters used in quality control were: mind - 0.05 (maximum per-person missing); geno - 
0.1 (maximum per-SNP missing); maf - 0.5 (minor allele frequency); and me - 0.05 (mendel 
error rate thresholds - per SNP, per family). After the quality control filters, 37,673 markers 

remained to apply the methodologies used in this study. 

Nonlinear mixed models for lactation curves 
 
According to Lindstrom and Bates (1990), the general nonlinear mixed model can 

be represented as follows: 
 

yij  = f ϕi; tij + εij ,                                           (Eq. 1) 
 

wherein yij is the i-th observation of the response variable, represented by milk yield (kg 

day) at time j (in days);  f ϕi; tij  is a pre-specified nonlinear equation (Table 1) that relates 

time to milk yield; ϕi is the vector of parameters, which varies according to the equation; 

and εij  is the error associated to the observation yij. 

In the NLME approach, each parameter of the equations presented in Table 1 is 

decomposed, with fixed and random effects assigned to each of them. Considering, for 
example, Wood's equation (Wood, 1967), the decomposition can be performed as follows: 

 

yij =  μ𝛽1
+ PLi + ξai

2  tij
(μ𝛽2

+PL i+ξbi
2 )

e
− μ𝛽3

+PL i+ξci
2  tij + εij .          (Eq. 2) 

 

It is assumed that β
1i

= μ
𝛽1

+ PLi + ξ
ai
2

, β
2i

= μ
𝛽2

+ PLi + ξ
bi
2

 and β
3i

= μ
𝛽3

+

PLi + ξci
2

, in which μ𝛽1
, μ𝛽2

 and μ𝛽3
 are the averages of fixed effects for each parameter; 

PLi is the effect of the production level of the i-th individual; ξ
ai
2 , ξ

bi
2

 and ξ
ci
2

 are the 
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individual random effects for each parameter of the model; and εij  is the residual effect 

associated with observation yij. For the establishment of the production levels (PL𝑖’s), the 

animals were grouped by a cluster analysis, using the Gower algorithm (Gower, 1971) and 
considering the variables: milking number (3 groups), age (4 groups), genetic grouping (3 

groups) and contemporary groups (139 groups), resulting in a total of four different 
production levels. 
 
 

Table 1. Nonlinear equations proposed to estimate lactation curves 

 

Author (s) Equation 

Brody et al. (1923) yt = β
1

e−β3t 

Sikka (1950) yt = β
1

e(β2t−β3t2) 

Nelder (1966) yt =
t

β
1

+ β
2
t + β

3
t2

 

Wood (1967) yt = β
1
tβ2 e−β3t 

Cobby and Le Du (1978) yt = β
1
− β

2
t − β

1
e−β3t 

Dhanoa (1981) yt = β
1

tβ2β3e−β3t 

Papajcsik and Bodero (1988) yt = β
1
te−β3t 

Rook (1993) yt = β
1

 

 
 1

1 +
β

2

β
3

+ t
 

 
 

e−β4t 

Cappio-Borlino et al. (1995) yt = β
1

tβ2exp (−β3t) 

𝑦𝑡  is the test day (t) milk yield, measured from the beginning of lactation; β1, β2, β3 and β4 are the parameters that define the scale and 

shape of the lactation curve, varying according to the equation. 

 

 Once the function used to fit the curves has been established, important information 
regarding lactation can be extracted: the time to peak yield (tp), which is the time (X axis) 

that the animal takes to reach the maximum point in milk yield; the milk yield at peak 

(Ymax ), that corresponds to the maximum point of the milk yield curve (Y axis); total 
production (TP), which is the absolute milk yield of each individual during the lactation 

period; and persistence (PS), corresponding to the capacity of each individual to keep the 
production level after the peak yield. 

 Considering the Wood's equation (Wood, 1967), these measures are represented by 
(Centoducati et. al., 2012): 

 

tpi =
β 2i

β 3i

 ,                                                          (Eq. 3) 

 

TPi =  β 1it
β 2i e−β 3itdt

305

0
,                                          (Eq. 4) 

 

Ymax .i = β 1i(β 2i β 3i )β 2i e−β 2i ,                                       (Eq. 5) 
 

PSi = − β 2i + 1 ln(β 3i),                                         (Eq. 6) 
 

wherein β 1i , β
 

2i and β 3i are the individual estimates of the parameters of Wood's equation 

(Wood, 1967) presented in Table 1. 
The estimation of the parameters of the nonlinear mixed models was performed 

using the algorithm proposed by Lindstrom and Bates (1990), which consists of alternating 
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between two steps: 1. PNLS (penalized nonlinear least squares) step; and 2. LME (Linear 
Mixed Effects) step. 

Fit comparison 
 
The equations described in Table 1 were compared according to the AIC and BIC 

criteria; the residual standard deviation and the RMSE. Durbin-Watson statistics and test 
were also used to assess the residual autocorrelation in the models. These measures are 
described below. 

The AIC (Akaike,1973) measures the suitability of a model through the Kullback-
Leibler distance (K-L), according to the following equation: 

 

AIC = −2logL ϕ  + 2npar ,                                   (Eq. 7) 
 

wherein L ϕ   is the maximum of likelihood function and npar  is the number of parameters 

considered in the model. 
The BIC, proposed by Schwarz (1978), is defined as the statistic that maximizes the 

probability of identifying the true model among those evaluated and can be defined as: 
 

BIC = −2logL ϕ  + npar log M ,                           (Eq. 8) 
 

wherein L ϕ   is the maximum of likelihood function, npar  is the number of parameters 

considered in the model and  is the total number of observations. According to Pinheiro 
and Bates (2000), under these definitions, the lower the BIC value, the better the model. 
The same interpretation extends to AIC. 

The RMSE functions as a generalized standard deviation (Ghavi Hossein-Zadeh, 
2015) and can be calculated by the following expression: 

 

RMSE =  
SSE

M−npar −1
,                                        (Eq. 9) 

 

wherein SSE is the error sum of squares of the model,  is the number of observations and 

npar  is the number of fixed effect parameters in the model. As this measure is associated 

with the error sum of squares, the best model will be the one with the lowest RMSE. 

The Durbin-Watson statistic (Durbin and Watson, 1971), also evaluated by 
statistical test, aims to identify the presence of autocorrelation between the residuals of the 

specified model. This statistic is given by: 
 

DW =
 (ek−ek−1)2M

k=1

 ek
2M

k=1

,                                     (Eq. 10) 

 

wherein 𝑒𝑘  is the residue of the k-th observation. This measure can vary between 0 and 4, 
and there will be signs of autocorrelation when it is close to 2. The assumption of the test is 
that the errors of the regression model are generated by a first-order autoregressive process, 

i.e.: 
 

ek = ρek + ak ,                                         (Eq. 11) 
 

wherein ak~N(0, σ2) and  is the correlation parameter, complying −1 < ρ < 1, on which 
the test is based. The hypotheses of the Durbin-Watson test are given by 
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H0: ρ = 0
H1: ρ ≠ 0

  

The null hypothesis of the test assumes that the errors are independent, i.e., if it is 

concluded that ρ = 0, the error ek  will be normally distributed with mean 0 and constant 
variance. On the other hand, considering the alternative hypothesis, the conclusion is that ρ 
≠ 0, i.e., there is dependence between residues according to a first-order autoregressive 

structure (Piccardi et al., 2017). 

Genome-Wide Selection 
 
The estimates of the parameters from the best model among those evaluated were 

used as pseudo-phenotypes for calculating the SNP effects using the statistical methods 
applied to GWS. Subsequently, the estimates of SNP effects were used to predict the 
individuals GEBVs. Considering each lactation variable (initial production, rate of increase, 

rate of decline, lactation peak, time to peak yield, persistence and total production) obtained 
in the previous step, the general model of genomic selection associated with the i-th 

individual (i = 1,… , 223) and considering 37,673 SNPs is given by (Meuwissen et al., 

2001): 

y = 1μ + Xβ + e,                                             (Eq. 12) 
 

wherein y is the vector (223 × 1) containing the estimates of the abovementioned variables; 

1 is the vector of ones (223 × 1); μ is the general mean; X is the incidence matrix of markers 

(223 × 37,673); β is the vector of marker effects (37,673 × 1); and e is the vector of errors 
(223 × 1). In our study, the BLASSO method (Bayesian Least Absolute Shrinkage and 

Selection Operator) (DE LOS CAMPOS et al., 2009) was used to estimate marker effects 
and predict the GEBVs. 

Based on the genotypic and phenotypic variances, the heritabilities of the traits were 

estimated, which are calculated as the proportion of the total (phenotypic) variance 
explained by the genotypic variance, i.e.: 

 

hi
2 =

Vgen .i

V fen .i
 ,                                                   (Eq. 13) 

 

wherein Vgen  is the genotypic variance and Vfen  is the phenotypic variance. 

 The GEBVs of the animals for the seven traits of the lactation curve (initial 

production, rate of increase, rate of decline, lactation peak, time to peak yield, persistence, 
and total production) were obtained as follows: 

 

GEBV = Xβ ,                                                  (Eq. 14) 
 

wherein X is the incidence matrix previously described and β  is the estimated vector of 

markers effects. 

Kappa coefficient 
 
The selection of individuals based on the different genomic predictions of the 

lactation parameters was compared using the Kappa coefficient of agreement (Cohen, 
1960). This method assesses, considering the probability of random selection, the agreement 
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between the individuals selected according to the different predictions. The calculation of 
this coefficient can be done as follows: 

 

k =
Pr a −Pr(e)

1−Pr(e)
,                                                (Eq. 15) 

 

wherein the numerator Pr 𝑎 − Pr(𝑒) represents the proportion of observations in which 

the agreement occurred beyond what was randomly expected, and the denominator 1 −
Pr(𝑒) denotes the proportion of observations in which there was no agreement, also 

considering the information at random. This coefficient varies from 0 to 1 and, as the simple 
coefficient of agreement, the agreement increases as it approaches 1. 

Computational methods 
 
All the statistical analyses were performed in R software (R Core Team, 2018). The 

fit of the nonlinear mixed models was performed using the Linstrom and Bates (1990) 
algorithm, implemented in the nlme package (Pinheiro et al., 2017). The cluster analysis to 
obtain the fixed effect factors of the model was performed using the cluster package 

(Maechler et al., 2017). Genomic Selection analysis was carried out in BGLR package (De 
Los Campos and Rodriguez, 2016). In total, 100,000 iterations, burn-in of 20,000 and thin 

of 10 were used. The descriptive measures were obtained using the dplyr package 
(Wickham et al., 2017). 

RESULTS 
 

For the estimation of fixed effects, the individuals were separated into four groups 
of production levels by grouping the variables previously described. The groups and 

descriptive measures are shown in Table 2. 
 

 

Table 2. Means, standard deviations (sd) and amplitude of milk production records according to production 

levels. 

 

Production levels N
(1)

 Average production±sd (kg) Minimum (kg) Maximum (kg) 

1 (n=143) 1,12 14.18±7.00 1.80 47.20 
2 (n=43) 378 18.33±8.87 2.50 53.00 
3 (n=10) 81 19.11±9.55 3.80 48.40 
4 (n=30) 248 23.06±9.04 3.90 48.40 

1: Total number of observations per group. 

 
The fourth group presented the highest average production among all groups (23.06 

kg day), which was formed by 248 observations from 30 animals. The largest group was 

composed of 143 animals (approximately 63% of the sample) and had the lowest average 
production. 

The values of AIC and BIC criteria ranged, respectively, from 10,013.79 to 

12,625.04 and from 10,101.92 to 12,713.16 (Table 3). In general, four models stood out 
regarding the criteria analyzed: Wood (1967), Cobby and Le Du (1978), Nelder (1966) and 

Rook (1993). 
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Wood's model was the most relevant regarding the AIC and BIC criteria (10,013.79 
and 10,101.92, respectively), and also presented low values for the residual standard 

deviation (σ = 2.71) and RMSE (2.42). Considering the residual standard deviation (σ ) and 

the RMSE criteria, the best model was Cobby and Le Du (σ = 2.70; RMSE = 2.36), 

followed by Wood (σ = 2.71; RMSE = 2.42). Other equations, such as Nelder (1966) and 

Rook (1993), also fitted the data well (Table 3). The highest values of AIC and BIC 
corresponded to the models of Brody et al. (1923), Papajcsik and Bodero (1988) and 

Dhanoa (1981). The other results for the goodness-of-fit measures are detailed in Table 3. 
 

 

Table 3. Goodness-of-fit measures of the nine nonlinear models for the genomic prediction of lactation 

curves. 

 

Author (s) AIC
(1) 

BIC
(2) 𝛔 (3) 

RMSE
(4) 

DW
(5) 

Brody et al. (1923) 11,390.06 11,450.64 4.66 4.40 1.05
* 

Sikka (1950) 10,887.88 10,976.00 3.40 3.06 1.61
* 

Nelder (1966) 10,127.15 10,215.27 2.76 2.46 1.92
ns

 
Wood (1967) 10,013.79 10,101.92 2.71 2.42 2.04

ns
 

Cobby and Le Du (1978) 10,198.85 10,286.98 2.70 2.36 2.05
ns

 
Dhanoa (1981) 12,625.04 12,713.16 7.67 7.66 0.35

*
 

Papajcsik and Bodero (1988) 11,782.34 11,842.92 5.17 4.86 1.36
*
 

Rook (1993) 10,100.85 10,216.51 2.81 2.52 2.00
*
 

Cappio-Borlino et al. (1995) 10,637.92 10,726.05 3.66 3.37 1.45
*
 

1: Akaike Information Criterion; 2: Bayesian Information Criterion; 3: Residual Standard Deviation; 4: Root Mean Square Error; 5: 

Durbin-Watson Statistics; *: Significant autocorrelation at the 5% level; ns: Non-significant autocorrelation at the 5% level. 

 

Regarding the presence of residual autocorrelation, the Durbin-Watson statistic 
ranged from 1.05 to 2.05, with values close to 2 for most models. According to the Durbin-

Watson statistical test, Nelder, Wood and Cobby and Le Du models did not show significant 
residual correlations. As the Wood’s model presented the lowest AIC and BIC values, in 

addition to suitable results for the other goodness-of-fit measures, the subsequent analyses 
of the herd lactation traits were based on this model. 

After estimating the parameters of the lactation curve (β 
1
, β 

2
 and β 

3
, corresponding 

to the initial production, rate of increase and rate of decline, respectively) of the 223 

animals by the Wood’s model, these estimates were submitted to statistical analysis applied 
to GWS using the BLASSO method. The descriptive statistics of the GEBVs estimated by 

BLASSO based on the markers effects is shown in Table 4. 
 

 

Table 4. Descriptive statistics of the genomic breeding values of the animals for the lactation traits 

estimated by BLASSO. 

 

Traits Mean SD
(1)

 CV(%)
(2)

 Minimum Maximum 

β 
1
– Initial production (kg day) 0008.56 000.22 02.58 00008.09 00009.21 

β 
2
 – Rate of increase 0000.2358 000.0033 01.39 00000.2283 00000.2485 

β 
3
 – Rate of decline 0000.0054 000.0001 01.61 00000.0052 00000.0057 

Total production (kg/lactation) 4,680.00 515.80 11.02 3,837.00 7,306.00 
Time to peak yield (days) 0067.55 006.25 09.24 0058.59 0107.96 
Lactation peak (kg day) 0018.77 000.91 04.84 0017.21 0023.29 
Persistence 0006.91 000.12 01.78 0006.66 0007.38 

1: Standard deviation; 2: Coefficient of variation. 
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The coefficient of variation for the GEBVs ranged from 1.39% for the rate of 
increase to 11.02% for the total production. The behavior of the genomic prediction of 
lactation curves can be seen in Figures 1 and 2. 

 

 
Figure 1. Genomic prediction of lactation curves for the 5 best (5+) and worst (5-) individuals based on the 

genomic breeding values of the animals for β 1, β 2 and β 3, in addition to the average curve of the herd (223 

individuals). 

 

The initial production, represented by β 1, showed an average of 8.56 kg, with a 

coefficient of variation of only 2.58%, and a range of 8.09 to 9.21 kg. Total production was 

the trait that showed the highest coefficient of variation (11.02%). In addition, there was an 
amplitude of 3,469 kg/lactation between the most and least productive individuals. 
Persistence showed similar results among animals, with a mean and standard deviation of 

6.91 and 0.12, respectively, resulting in a coefficient of variation of 1.78%. Based on the 
estimates, the lactation peak occurs in approximately 67 days, in which the average 
production is 18.77 kg as the maximum point of the lactation curve. Both measures had low 

standard deviations and coefficients of variation (Table 4). The rate of decline (β 3) also 

showed a low standard deviation (0.0001) and a low coefficient of variation (1.61%). 
The lactation curves of the 5 best (5+) and worst (5-) individuals based on the 

genomic breeding values of the animals for the total production, lactation peak, persistence 
and time to peak yield are shown in Figure 2. 
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Figure 2. Lactation curves for the 5 best (5+) and worst (5-) individuals based on genomic breeding values of the 

animals for total production (kg/lactation), lactation peak (kg day), persistence and time to peak yield (days) of 

the herd (223 individuals). 
 

Heritabilities and correlations among GEBVs of the animals for the studied traits 

were estimated from the genotypic and phenotypic variances (Table 5).  Heritabilities 
ranged from 0.09 for the rate of increase to 0.29 for persistence, which was the trait with the 
highest heritability. The genomic heritabilities of the lactation curve parameters obtained by 

the Wood’s model showed similar results, being 0.10 for β 1 and β 2 and 0.09 for β 3. 

Lactation peak showed low heritability compared to most of the other variables (0.12). 
 

 

Table 5. Heritabilities (main diagonal) and correlations among genomic estimated breeding values (upper 
triangular) of the lactation traits. 

 

Variables 𝛃 𝟏
1
 𝛃 𝟐

2
 𝛃 𝟑

3
 TP

4
 Peak

5
 Pers.

6
 tp

7
 

β 
1
 0.10 0.70 -0.04 -0.84 -0.91 -0.25 -0.17 

β 
2
 

 
0.10 -0.20 -0.87 -0.88 -0.54 -0.40 

β 
3
   0  -0.09 -0.37 -0.19 -0.90 -0.85 

TP    -0.27 -0.98 -0.65 -0.54 
Peak     -0.12 -0.51 -0.41 
Pers.      -0.29 -0.95 

tp       -0.22 

1: initial production (kg day); 2: rate of increase; 3: rate of decline; 4: total production (kg/lactation); 5: lactation peak (kg day); 6: 

persistence; 7: time to peak yield (days). 
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The GEBVs of the animals for lactation peak showed a high positive correlation 

with the GEBVs for  β 
1
 (0.91) and β 

2
 (0.88), and the correlation between the GEBVs for 

these two parameters was also high and positive (0.70). The correlation between the GEBVs 
for persistence and time to peak yield was also high (0.95). The GEBVs for rate of decline 

(β 3) showed a high negative correlation with persistence and time to peak yield (Table 5). 

The Kappa coefficients of agreement between the individuals selected according to 
each variable, in addition to the correlations between GEBVs for the evaluated traits are 

shown in Figure 3. 
 

 
Figure 3.  Correlations between genomic estimated breeding values for the lactation traits (upper triangular) and 

Kappa coefficients of agreement of the 10% best animals (lower triangular). The diagonal represents the seven 
lactation traits: initial production (Initial prod.), rates of increase and decrease (Inc’s rate and Dec’s rate, 

respectively), total production (TP), peak of lactation (Peak), persistence (Pers.) and peak time (PT). 

DISCUSSION 
 

Genomic prediction of lactation curves represents the genetic behavior of the milk 
production of the animals in the herd throughout lactation. According to Bangar and Verma 

(2017), the lactation curve cannot be fitted through a linear model, since its trend is not 
linear with time. Therefore, several mathematical models have been applied to explain the 
flow of milk production throughout lactation in dairy cows (Macciotta et al., 2011; Bangar 

and Verma, 2017; Piccardi et al., 2017). 
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The parameters of the lactation curve models are usually estimated as fixed effects, 
i.e., without considering the environmental factors that may also affect individual 
productivity. One way to overcome this issue is to use a two-step procedure. In the first 

step, regression models are fitted to remove environmental effects. In the second step, the 
milk production measures corrected for environmental effects are used to fit nonlinear 
models considering each animal individually. 

An alternative to the two-step procedure is to use the NLME models, which allow 
the insertion of fixed and random effects in the model corresponding to effects of different 
traits and individuals, respectively, in a single fit. In the current study, the NLME model of 

Wood (1967) was the most efficient to fit the Girolando data based on the AIC and BIC 
criteria (10,013.79 and 10,101.92, respectively), which is in agreement with the result of 

Bangar and Verma (2017), who also aimed to compare models based on the same goodness-
of-fit measures using information from Gir cattle. Ferreira et al. (2015) and Piccardi et al. 
(2017) also considered the Wood’s equation as the most efficient to fit, respectively, data 

from Holstein cattle reared in southwest Paraná and to describe the lactation of dairy cows 
in the Santa Fé and Córdoba region, Argentina. Wood's model showed the lowest standard 
deviation in the comparison of models for fitting the lactation of Jersey cattle in the study of 

Cankaya et al. (2011), who also considered this model as the best for describing the 
lactation curve of this breed. In addition, in the present study, Wood’s equation showed an 

absence of residual autocorrelation, which was also verified by Ghavi Hossein-Zadeh 
(2015) for buffalo data, and by Piccardi et al. (2017), who fitted this equation for Holstein 
cattle. The better suitability of the Wood’s equation for different breeds and species justifies 

the wide use of this model, which was highlighted by Ghavi Hossein-Zadeh (2015) and 
Macciotta et al. (2011). Wood's equation using the nonlinear mixed models approach 
allowed the genetic identification of superior individuals according to their respective 

lactation traits without the effect of production levels. 
 In Figures 1 and 2, which show the genomic curves of the best and worst animals in 

the herd, the genomic behavior of the individuals’ milk production can be identified. 

Considering the total production, for example, it can be observed that the animals with 
greater production reached the lactation peak shortly after (approximately 50 days) the 

animals with lower production (approximately 45 days), and the rate of decline was similar 
between the best and worst individuals. This variable was the one that presented the biggest 
graphic differences and the highest coefficient of variation (11.02% - Table 4), which may 

explain the great differences between animals. 

 The heritability estimates for the parameters of Wood’s model (0.10 for β 
1
 and β 

2
 

and 0.09 for β 
3
) were lower than those reported by Yilmaz et al. (2011) and Rekaya et al. 

(2000), which estimates varied from 0.14 to 0.26 for β 1, 0.18 to 0.32 for β 2 and 0.15 to 0.19 

for β 3. In both studies, the Wood’s equation was used to estimate the parameters using 

information from Brown Swiss cattle and crosses of the Holstein and Friesian breeds, 

respectively. On the other hand, the heritabilities from the current study were higher than 
those described by Saghanezhad et al. (2017), who reported heritabilities of 0.017, 0.022 

and 0.06 for β 
1
, β 

2
, and β 

3
, respectively, using data from Holstein cows and the Wood’s 

model. The heritabilities from the current study were similar to the results of Shanks et al. 

(1981), who reported estimates of 0.10 for ln(β 1), using a standardization for the initial 
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production, 0.06 for β 
2
 and 0.14 for β 

3
 in the first lactation, considering data from the 

California Dairy Herd Improvement Association. 
 Persistence and total production (kg/lactation) were the traits that showed the 

highest heritabilities. Canaza-Cayo et al. (2015) estimated heritabilities for nine different 

persistence estimates proposed by different authors, and found results that varied from 0.18 
to 0.33, corroborating with the heritability estimated for persistence in the present study 

(0.29). These authors also analyzed Girolando cattle, which justifies the similar results. On 
the other hand, the heritability estimate of 0.29 for persistence in our study was higher than 
those found by Yilmaz et al. (2011), Muir et al. (2004) and Saghanezhad et al. (2017), who 

used information from Brown Swiss cattle and reported heritabilities ranging from 0.05 to 
0.23. 

The heritability for total production (0.27) was higher than that found by Yilmaz et 

al. (2011) and Pereira et al. (2012), who analyzed data from Swiss and Gir cattle and 
reported results of 0.18 and 0.21, respectively. On the other hand, it was similar to the result 
of Canaza-Cayo et al. (2015), who used the random regression models approach, and it was 

lower than the estimates found by Jakobsen et al. (2002) and Cobuci et al. (2006), who 
reported heritabilities ranging from 0.31 to 0.42 for Holstein cattle from different locations. 

 The lactation peak showed low heritability (0.12) when compared to the studies of 
Shanks et al. (1981), Saghanezhad et al. (2017), Yilmaz et al. (2011), and Muir et al. (2004), 
who reported heritabilities ranging from 0.16 to 0.42 for this trait. Regarding the time to 

peak yield, a higher heritability (0.22) was estimated compared to the abovementioned 
studies, in which heritabilities ranging from 0.013 to 0.13 for the same trait were reported. 

 Tekerli et al. (2000) evaluated the relationships between the lactation traits through 

their phenotypic correlations. Genetic correlations between lactation traits via mixed models 
were estimated by Boujenane and Hilal (2012), El-Awady (2013), and Farhangfar and 

Rowlinson (2007). In our study, the simple correlations between the GEBVs of the animals 
for each trait were used. 

 When a high correlation between the GEBVs for two traits was observed, the 

Kappa coefficient for selecting the best individuals according to these traits was also high 
(Figure 3). This was expected, since a high correlation between two traits indicates that the 
behavior of one trait in relation to the other is similar, also resulting in the similarity 

between the best individuals for the same traits. The high correlations between the GEBVs 

for initial production (β 1) and the rate of increase (β 2) with the lactation peak (0.91 and 

0.88, respectively) indicate that the higher the initial production and rate of increase, the 
later will be the lactation peak. The GEBVs for lactation peak were also strongly correlated 

with the GEBVs for total production (correlation of 0.98), which shows that lactation peak 
is the trait most associated with the total productivity of the animals under study, indicating 

that genetically, individuals who have a high lactation peak tend to be more productive. 
Figure 3 also shows that the Kappa coefficient of agreement between the 

individuals selected according to the lactation peak and the total production was 0.95, which 

is the highest value among the coefficients of agreement evaluated. This result corroborates 
with the high genetic correlation between the same variables found by Boujenane and Hilal 
(2012), El-Awady (2013), Farhangfar and Rowlinson (2007), Muir et al. (2004), 

Saghanezhad et al. (2017) and Rekaya et al. (2000), who reported genetic correlations 
ranging from 0.87 to 0.98. Therefore, we have an indication that these traits show a high 
genetic correlation for different breeds and species. 
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 The GEBVs for initial production (β 
1
) and the rate of increase (β 

2
) were also 

highly correlated with the GEBVS of the animals for total production (0.84 and 0.87, 

respectively), in addition to high Kappa coefficients (0.55 and 0.75, respectively). 
Therefore, individuals who have high rate of increase and initial production tend to have a 
high total production. Similarly, the selection of the best individuals according to these two 

variables and the total production also showed high concordances, which may confirm a 
genetic relationship between them. The same can be concluded for the correlation between 

the GEBVS for the variables  β 1 and β 2 with the GEBVs for lactation peak. The correlation 

between the GEBVs for initial and total production (0.84) estimated in the current study 

was higher than those found by Boujenane and Hilal (2012) and Rekaya et al. (2000), who 
reported correlations of 0.38 and 0.23, respectively, for Holstein-Friesian cattle. 

The GEBVs for persistence of lactation showed moderate correlation with the 
GEBVs for total production and presented correlation close to 1 with the GEBVs for time to 
peak yield, showing that animals that take longer time to reach the maximum production are 

those that present lower persistence of lactation. Using this measure to estimate lactation 
persistence, Boujenane and Hilal (2012) found a genetic correlation of 0.77 and 
Saghanezhad et al. (2017) also found a genomic correlation close to 1 (0.99) between the 

persistence of lactation and the time to peak yield. 

CONCLUSIONS 
 

Among the nine equations compared using the nonlinear mixed models’ approach, 
the Wood’s model showed the best performance, since it was the one that presented the 
lowest AIC and BIC values and did not present residual autocorrelation. Using the estimates 

of Wood's equation parameters as response variables, the application of Genome Wide 
Selection through BLASSO method allowed the construction of the lactation curves of 

Girolando cattle, the breed with the greatest milk production in Brazil. In addition, it 
allowed the visualization of genetic differences among the animals in the herd. Such 
differences showed the variation between genetic measures with no influence of external 

factors, ensured by the fit of nonlinear mixed models. Moreover, this methodology allowed 
accessing the heritabilities and correlations among genomic breeding values of the 
individuals for the selected traits. The identification of the best individuals was carried out 

based on the genomic breeding values for the different traits; analyzing the Kappa 
coefficient of agreement for the individuals selected, a high coefficient was found in the 
comparisons that presented high correlation between genomic breeding values. Finally, the 

application of genomic selection for variables without the influence of environmental 
effects allows a more precise estimation of the correlation between the GEBVs for the 

lactation traits, since environmental effects can considerably influence the estimates and 
selection of animals. 
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