CORE

# A Comprehensive Meta-Analysis On The Effect Of Feeding Spray-Dried Plasma On Broiler Performance 

Krabbe ${ }^{1}$, E.L., C. Marinelli-Martins ${ }^{2}$, J. Campbell ${ }^{3}$, and R. Gonzalez-Esquerra ${ }^{3}$<br>${ }^{1}$ EMBRAPA Swine and Poultry, Concordia 89715-899, Santa Catarina, Brazil<br>${ }^{2}$ AAC\&T Research Consulting LTDA, Curitiba, Parana, Brazil<br>${ }^{3}$ APC, LLC., Ankeny, IA, USA

Spray-dried plasma (SDP) modulates immunity, improves gut health, gut functionality, and performance in chickens (Campbell et al., 2019). A meta-analysis on the effect of cumulative SDP intake (g/bird) on BWG, feed intake, FCR and livability of broilers was performed. Performance was expressed in percentage as the difference between each SDP treatment performance relative to the control (i.e., $\triangle$ BWG = (BWG SDP - BWG Control)/BWG Control * 100). An extensive search of the scientific literature yielded 29 trials with 92 SDP vs Control comparisons. SDP intake was estimated from the SDP levels used in each treatment and its corresponding feed or water intakes. The inverse-variance method for quantitative continuous variables, weighted by the number of replicates per study, was used. Studies were divided into challenge (i.e. by a pathogen, heat stress, or if mortality was $\geq 10 \%$ for any treatment) or non-challenge conditions. The effect of SDP intake from trials feeding SDP in the first feeding phase only (starter only) was assessed. Four data sets were analyzed: overall (all data), challenge, unchallenge, and starter only. The impact of SDP intake was assessed at the end of the first starter phase or at the end of the trial when ended at $\geq$ 32d of age (slaughter age). Overall, feeding SDP improved $\triangle$ BWG, $\Delta$ Intake, $\triangle$ FCR \& $\Delta$ Liv during the starter period ( $\mathrm{P}<0.05$ ). Challenged birds had greater $\Delta \mathrm{BWG}$ ( 6.1 vs $3.6 \%$ ) \& $\Delta$ Intake ( $4.5 \mathrm{vs}-0.2 \%$ ) response vs unchallenged. At slaughter age, SDP improved all parameters. Greater responses were seen in broilers under challenge vs those unchallenged. Feeding SDP in the starter diet only, resulted in similar improvements when compared to overall estimates indicating that most of the value of feeding SDP in broilers is realized when fed in the first few days of life. During the starter phase, feeding 3 g of SDP/bird increased $\Delta$ BWG by 4.0 vs $3.7 \%$; $\Delta$ Intake by 4.9 vs $-0.7 \% ; \Delta$ FCR by 0 vs $-2.0 \& \Delta$ Liv by 0 vs $0.2 \%$ for broilers under challenge vs unchallenged, respectively, as estimated by regression equations. At slaughter age, $\Delta$ BWG by 2.0 vs $2.3 \%$; $\Delta$ Intake by 0.5 vs $0.2 \% ; \Delta$ FCR by -5.2 vs $-2.5 \& \Delta$ Liv by 2.1 vs $1.3 \%$ for challenge vs unchallenged broilers, respectively. The main improvement observed with SDP at slaughter age was $\triangle F C R$, $\Delta B W G \& \Delta L i v$.

Key Words: Meta-analysis, Spray-Dried Plasma, Performance, Livability, Broilers

