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Abstract
Using assessment scores to quantify gains and growth trajectories for individuals and groups 
can provide a valuable lens on learning progress for all students. This paper summarises some 
commonly observed patterns of progress and illustrates these using data from ACER’s Progressive 
Achievement Test (PAT) assessments. While growth trajectory measurement requires scores for the 
same individuals over at least three but preferably more occasions, scores from only two occasions 
are naturally more readily available. The difference between two successive scores is usually 
referred to as gain. Some common approaches and pitfalls when interpreting individual student gain 
data are illustrated. It is concluded that pairs of consecutive scores are best considered as part of 
a longer-term trajectory of learning progress, and that caveated gain information might at best play 
a peripheral role until additional scores are available for individuals. This review is part of a larger 
program of research to inform future reporting developments at ACER.

Introduction
Progress can be quantified using assessment scores as soon as two score points are available 
for the same individual. However, there are well-known technical shortcomings associated with 
quantifying progress based on only two scores (Willett, 1994; McCaffrey et al., 2015). These 
limitations stem from unavoidable causes including natural variation between students’ rates of 
learning progress, and margins of error associated with the assessment scores themselves (Singer 
& Willett, 2003). Failure to account for these factors can result in spurious classifications and 
comparisons of progress for a non-trivial proportion of students. This paper argues that placing 
too much emphasis on individual progress metrics that are based on only two scores is likely to 
be counterproductive in practice. Instead, it is concluded that pairs of consecutive scores are best 
considered as part of a longer-term trajectory of scores along a clear progression of learning. 
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Defining gain and growth
Recommendation 4 of The report of the review to achieve educational excellence in Australian 
schools (Department of Education and Training, 2018) draws attention to the importance of gain and 
growth and invites clarification of the definitions of these terms:

Introduce new reporting arrangements with a focus on both learning attainment and learning 
gain, to provide meaningful information to students and their parents and carers about 
individual achievement and learning growth (p. xiii).

Noting that terminology about learning progress can be varied (Hollingsworth et al., 2019), in this 
section we refer primarily to references that are concerned with quantification of progress using 
assessment scores. Assessment scores in isolation are sometimes called status measures 
(Castellano & Ho, 2013a). Terms like achievement and attainment are also used, as seen in the above 
recommendation. Moving beyond status to consider progress, it is generally accepted that progress 
measures require scores from the same student or students on multiple occasions. These serial 
data are referred to as longitudinal.

Contemporary research and practice on reporting progress using assessment scores reveals that 
many implementations are limited to quantifying progress using scores from only two successive 
occasions (O’Malley et al., 2011). Nese et al. (2013) and Ployhart and MacKenzie (2015) point out that 
this ‘change score’ between two occasions does not properly characterise growth, but instead would 
be more accurately characterised as gain. This seems like a useful distinction given the increased 
complexity of the statistical models that accommodate scores from more than two occasions and 
the more robust inferences about progress they can support (Curran et al., 2010).

The technical superiority of growth measures has at least two contributing factors. First, with the 
additional data points it is possible to average out or statistically account for measurement error 
and other statistical artefacts that plague simpler gain measures. Second, there is the capacity to 
construct and compare trajectories that contain nuanced information about growth by modelling 
change over time as a continuous process (Willett, 1994). Nonetheless, the naturally greater 
availability of gain information relative to growth trajectory information provides strong motivation to 
make use of the former whilst accommodating its limitations.

Preconditions for meaningful progress measurement
For gain or growth modelling that can meaningfully be related to learning in a given domain, the 
assessment should ideally have the following characteristics:

 • all scale scores within a domain within the same assessment program should be on a 
common ‘vertical scale’ with interval properties

 • each assessment already has, as part of its reporting framework, described proficiency levels 
that provide a criterion-referenced interpretation of progress.

If these conditions cannot be met in practice, then there will be limitations on the range of 
methodological options for modelling and interpreting progress in a valid and meaningful way (Patz, 
2007; Protopapas et al., 2016; Sireci et al., 2016).
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What does learning growth typically look like on a scale?
This section summarises what learning growth often looks like when evidenced using assessment 
scale scores. This provides an important basis for contextualising changes in scale scores from one 
occasion to the next, particularly as they relate to making quantitative comparisons between the 
progress of individuals and groups. First though, it is instructive to consider growth against well-
defined scales that measure attributes other than learning.

A well-known example comes from paediatric contexts, where measures such as the height, weight 
and head circumference of infants over time provide key developmental indices (see Figure 1). Much 
as in learning contexts, substantial deviations from typical trajectories can indicate that additional or 
different interventions are required. In these cases, the trajectory of growth following the intervention 
becomes of central interest. Parallels can be drawn with education, though successive measures 
from educational assessments are typically much more variable.

Figure 1 Example of a child’s weight trajectory recorded on a paediatric growth chart

Growth chart template sourced from Kuczmarski et al. (2002, p. 36)



Research Conference 2021 4

For many human attributes, evidence suggests that it is common for more substantial gains to be 
made initially. Growth rates often decelerate or stabilise with increasing amounts of the attribute. 
A brief scan of standardised assessment results and research literature from developmental 
psychology and school education contexts suggests that similar cohort-level patterns are 
commonplace (Australian Curriculum, Assessment and Reporting Authority, 2019; Li-Grining et al., 
2010; Morgan et al., 2009; Williamson, 2018). However, this is not necessarily the case for all domains 
and age groups (Castellano & Ho, 2013a), and it is seldom true of every individual’s growth trajectory.

Also of interest in educational research and evaluation is whether the growth trajectories of different 
groups of students differ. These groups may be categorised by contextual variables (e.g. school 
type), student characteristics (e.g. gender) or initial achievement levels (Singer and Willett, 2003). 
Whether the growth trajectories of different groups converge or diverge is also of key interest 
for detecting the so-called Mathew effect (Merton, 1968). In education this effect manifests as 
achievement gaps between groups that increase over time (Pfost et al., 2014).

Figure 2 shows the average growth trajectories of female students and male students in a large 
sample of longitudinal Grades 1–4 PAT Mathematics data from Term 4 sessions. The grey lines 
in Figure 2 (sometimes referred to as a spaghetti plot) show how varied and volatile the observed 
initial scores and score gains can be for individual students. While it is difficult to visually discern, 
the volatility is greater among students with relatively extreme scores. After applying a three-level 
random intercept mixed-effects regression model using the lme4 (Bates et al., 2015) package in 
R (R Core Team, 2020), the following model parameterisation was well-supported: a quadratic (i.e. 
curvilinear) growth model fitted the data better than a linear growth model (χ2(1, N = 20776) = 753.1, 
p = .00); and, consistent with Figure 2, allowing the slope but not the intercept to differ across female 
and male students yielded the best model among several that were compared.

Figure 2 Individual and average growth trajectories for Years 1–4 PAT Maths for female and male students
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The example in Figure 3 from PAT Reading shows initial convergence in the trajectories of students 
grouped by starting score (above or below the median) followed by more consistent growth rates, 
albeit at different levels. Looking at only the first year of progress, it is natural to conclude that 
the lower achieving group is making rapid progress in their learning and is on track to bridge the 
achievement gap, but there is a catch. The initially pronounced convergence observed here is in part 
a statistical artefact of having selected these groups on the basis of their initial scores. Grouping 
students in this way introduces an upward bias in the low scoring group, and vice versa, by inducing 
what is referred to as regression to the mean (Barnett et al., 2005). This phenomenon can have 
profound implications for interpreting scale score gains and is outlined in more detail in the following 
section.

Figure 3 Reading growth trajectories for students grouped by initial score above and below the sample median
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Interpreting individual student gains
The discussion and patterns reviewed so far suggest the following tendencies:

 • there is considerable variation in initial scores
 • score gains can be volatile, particularly for students with extreme scores
 • score gains sometimes taper off as students progress further up the scale
 • score gains may differ between students grouped by certain characteristics.

The interpretation challenge is to take these observations into account when appraising an individual 
student’s gain from one assessment to the next, and when making comparisons between the gains 
made by different students. The following two factors contribute to the observations just listed and 
have direct implications for interpreting gains:

 • rates of learning (actual progress) vary across individuals and groups
 • scores from all assessments contain measurement error.

These two factors introduce natural variation in the scale scores attained by students over 
consecutive occasions. This results in an imperfect level of correlation between initial scores and 
final scores, and imperfect correlations will always be accompanied by regression to the mean 
(Kahneman, 2011).

If on one measurement occasion random or idiosyncratic variation has a relatively large impact 
on a student’s scale score, it becomes likely that on the second occasion it will contribute less. 
These statistical artefacts, particularly in a learning context characterised by genuine decelerating 
growth, produce the ‘…well‐known negative correlation between prior score and gain …’ (Betebenner 
& Linn, 2009, p. 6). In particular, students with prior scores higher than the population mean will 
systematically tend to show lower gains, and vice versa. Regression to the mean can make natural 
variation in repeated data look like real change.

Figure 4 illustrates this phenomenon by comparing the relationship between gain scores (i.e. final 
score minus initial score) and initial scores under different simulated conditions with the following 
parameters:

 • population size of 10 000 students
 • initial scale scores with a mean of 110 and a standard deviation of 10
 • final scale scores with a mean of 120 and a standard deviation of 10
 • latent or true correlation (‘r’) between initial and final scores of either 1 (i.e. all students gain 

exactly 10 scale scores) or 0.8 (close to that for PAT assessments taken one year apart after 
disattenuating for measurement error)

 • measurement error (‘sem’: standard error of measurement) set at either zero (perfectly precise 
measurement) or between 3.5 and 6.5 following a quadratic error function giving extreme 
scores larger errors (errors are assumed to be uncorrelated).

The blue Loess fit lines in Figure 4 provide a moving average of the gain scores across the initial 
score range. These show that regression to the mean occurs as soon as there is measurement error 
in the assessment or as soon as there is an imperfect level of correlation between initial and final 
status. It is also clear that these two factors have a cumulative impact. Comparisons of score gains 
with the average would be biased between 0–3 scale score points across the middle 95 per cent of 
initial scores in the most realistic scenario (right-hand panel). The direction (positive or negative) 
is determined by whether the initial score was above or below the population mean of 110. Larger 
systematic bias is present as expected for students with more extreme initial scores. Comparing 
gains between students with initial scores either side of this range will be subject to biases 
exceeding half of the average population gain made in one year.
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Figure 4 Four simulated gain scenarios illustrating regression-to-the-mean in absolute gain measures

The simulation here has focused on revealing one unavoidable source of bias that can impact gain 
comparisons between students with different initial scores. Also worth noting is the unavoidable 
variation in gain scores resulting from the presence of realistic levels of measurement error. This 
can be seen clearly by examining the differences between the gain values in the first and second 
panels in Figure 4. The vertical spread of gain scores observed in the second panel but absent in the 
first panel is entirely attributable to measurement error. Depending on factors like the time between 
assessments, and the targeting of the assessments, this variation may be substantial enough to 
mask true gains or to mask biases due to regression to the mean. This is relevant for a non-trivial 
proportion of students, some of whom would attain a negative gain value due to chance alone. 
This matters when the focus is on quantifying, appraising and communicating individual student 
gains. Some researchers have argued that gain measures can be reliable when score distributions 
have certain characteristics (e.g. Rogosa et al., 1982; Williams and Zimmerman, 1996). However, 
we have observed that these characteristics are unlikely to apply to scale scores from high-quality, 
well-targeted assessments taken one year apart. The latter tend to more closely approximate 
distributional and correlational conditions known to be associated with low gain score reliability (e.g. 
Cronbach and Furby, 1970).

Statistical corrections can be made to account for regression to the mean in some situations 
(Rogosa et al., 1982), but this is not always practical or technically feasible. Therefore, in addition 
to expecting some volatility in absolute gain measures, anticipating asymmetries in gain scores 
across the initial score range is critical for ensuring that changes in scores are responded to 
proportionately. This in turn ensures that learners and educators are supported to direct their efforts 
in a targeted way. Being able to avoid incorrect conclusions about student progress, such as that a 
school appears to be doing a better job improving the learning of its lower achieving students than 
its higher achieving students according to gain scores alone, is one example of why these statistical 
considerations matter in practice.

A consequence of these biases is that absolute gains are often perceived as unfair for comparing 
the progress of individuals and groups who differ substantially in their prior achievement. To 
help contextualise whether an observed absolute gain is ‘typical’ or otherwise in the presence 
of these biases, it can be helpful to draw upon normative information. Several norm-referenced 
interpretations are possible, starting with simple comparisons to available cross-sectional scale 
score norms (like in Figure 1) and progressing to conditional metrics that take into account prior 
achievement and possibly contextual variables.
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The use of models that compare progress between students with similar prior scores has emerged 
as a popular way to make these biases less visible through the construction of ostensibly fairer 
comparison groups for each individual student. A simplified version of this approach based on 
calculating absolute gain percentiles for students grouped by similar prior scores is shown in 
Figure 5. The middle 50% of these relative gain percentiles is shaded dark grey. It is worth noting 
that a variety of alternative calculation methods exist, including relative gain or conditional status 
measures (e.g. Castellano & Ho, 2013a, 2013b) and Student Growth Percentiles (SGPs) (Betebenner, 
2011). Here we will use the term relative gain percentile since we adopt a simplified percentile-based 
calculation rather than a conditional regression-based calculation. It can be seen that the different 
levels of absolute gain for Student 1 (18 scale scores) and Student 2 (8 scale scores) both result in 
relative gain percentiles that are close to the middle of their respective relative gain distributions. The 
grouping by prior scores has ameliorated some of the biases that undermine comparisons between 
students who start at markedly different locations on the scale.

Figure 5 Comparison of gains for students with markedly different initial scores

Using recent historical data from the same assessment, it is also possible to show projections of 
typical gain ranges that take prior score into account. Projections like these can be found in some 
reporting systems (Betebenner, 2011). The projection in Figure 6 shows the range of scale scores 
obtained historically by the middle 50 per cent of students who had also started with a scale score 
close to 98 one year prior. This kind of depiction may be useful for stimulating discussion and setting 
expectations about future learning goals and progress.
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Figure 6 Relative gain percentile distribution for recent scores and as a projection

Unfortunately, the metrics that these relative or conditional models produce, if based on only one 
prior score, are volatile (McCaffrey et al., 2015; Sireci et al., 2016). For Student 1 and Student 2 in the 
earlier example, whose relative gains placed them close to the median, they could with non-trivial 
probability be classified as being in the lower or upper relative gain quartile after allowing for a 
realistic perturbation of scale scores by approximately one standard error of measurement (usually 
3 to 4 scale score units). This is illustrated in Figure 7.

Figure 7 Illustration of classification volatility of relative gain percentiles
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This simplified example is emblematic of the non-trivial levels of misclassification that can arise 
when using relative gain or conditional status metrics for individual students. From a measurement 
standpoint, there is little impact on the substantive interpretation of knowledge and skill for scale 
scores that have been perturbed within the bounds of measurement error. Correspondingly, the 
achievement bands would be stable or at most would change by one band near the level boundaries. 
In contrast, it is not unusual for standard errors associated with relative gain or conditional status 
percentiles to be as large as 15 percentile points (Sireci et al., 2016). In this situation, an estimated 
one-in-ten students with an observed relative gain percentile of 50 could be operating in the upper 
or lower conditional gain quartiles. This is consistent with modelling by Betebenner et al. (2016) 
who showed that approximately one-in-six students with an observed conditional percentile of 50 
might in reality be below the 35th percentile progress benchmark used in that context. It follows that 
caution is required when interpreting individual student gain metrics like these and when using them 
to label the gains of individual students as typical or otherwise.

While conditional or relative gain approaches largely overcome comparability biases due 
to regression-to-the-mean and tapering growth trajectories, their apparent accentuation of 
measurement error is an unfortunate shortcoming. This brings into question the reliability of such 
metrics and the inferences made using them. These kinds of metrics are sometimes touted for 
diagnostic purposes, for example to identify students with relatively low gains who may need further 
support (Betebenner et al., 2016). However, even for this laudable purpose, some allowance for 
measurement error ought to be made or many false positives could arise.

The exposition so far on relative gain or conditional status metrics for individual students may seem 
disparaging. Nonetheless, these metrics can be helpful for understanding the range of gain scores 
that are historically ‘typical’ for students with similar prior performance in the given measurement 
context. The following conditions also go some way towards increasing the reliability of conclusions 
based on these metrics and might make reasonable preconditions for their adoption in practice:

 • ensuring assessments are well-targeted for all individual students, for instance through 
adaptive assessment designs

 • incorporating additional prior scores when constructing ‘like groups’ against which to 
compare gains

 • triangulating other evidence about learning progress in the same domain.

These metrics are much less impacted by measurement error and therefore more reliable when 
aggregated across many students. However, even when aggregated, they are not completely free of 
bias and care should be taken in their analysis (Lockwood & Castellano, 2017).

So, what is there to gain?
Gain information is more readily available than robust growth trajectory information, but it is 
inherently volatile and subject to biases that complicate its use. These limitations beg the question 
of just how much weight to give to individual student gain metrics in practice, whether absolute or 
relative, for monitoring and responding to evidence about an individual student’s progress.

Viewing the two consecutive scores as two of many along a longer-term progression of increasing 
knowledge and skill provides more solid footing. This is consistent with the growth mindset 
advocated by Masters (2016). This frame of reference could include described proficiency levels 
or learning progression levels or qualitative achievement standards. Given that each level or band 
occupies a scale score interval usually much larger than a standard error of measurement, these 
criterion-referenced or standards-referenced progressions provide much more stable markers 
of progress.
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The availability of gain information from numerous assessments invites critical reflection. In the 
absence of more robust growth trajectory information, absolute gain measures and their normative 
derivatives might best be incorporated with caveats to augment substantive interpretations of 
individual student progress. Without this additional score information or this stable, longer-term 
frame of reference for learning progress, it seems there is little more to gain.
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