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Department of Special Education and Clinical Sciences 

June 2021 

Title: An Argument-Based Approach to Early Literacy Curriculum-Based Measure 
Validation Within Multi-Tiered Systems of Support in Reading: Does Instructional 
Effectiveness Matter? 
 
 

Early literacy curriculum-based measures (CBMs) are widely used as universal 

screeners within multi-tiered systems of support in reading (MTSS-R) for (1) evaluating 

the overall effectiveness of the reading system and (2) assigning students to supplemental 

and intensive interventions. Evidence supporting CBM validity for these purposes have 

primarily relied on diagnostic accuracy statistics obtained from evaluations of CBMs’ 

discriminative (i.e., sensitivity and specificity) and predictive (i.e., likelihood ratios, 

posttest probabilities) ability across various lag times and instructional contexts. The 

treatment paradox has been identified as a potential source of bias which may 

systematically alter diagnostic accuracy statistics when there is substantial lag time 

between administrations of the screener and outcome measure within medical diagnostic 

accuracy studies, particularly for conditions that lie on a continuum such as reading 

difficulties. However, the impact of the treatment paradox on early literacy screener 

diagnostic accuracy statistics in the context of MTSS-R is unknown.  

The current study examines the degree to which the treatment paradox, in the 

form of reading instruction, alters the diagnostic accuracy of a nonsense word fluency 

screener across different lag times. Concurrent and predictive validity coefficients and 



 

 

 

v 

diagnostic accuracy statistics are examined within the context of a randomized controlled 

trial for meaningful differences across time points, lag times and levels of instructional 

effectiveness across two different outcome measures.  

 



 

 

 

vi 

CURRICULUM VITAE 
 

 
NAME OF AUTHOR:  Marissa Pilger Suhr 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene 
 Williams College, Williamstown, Massachusetts 
 
 
DEGREES AWARDED: 
 
 Doctor of Philosophy, School Psychology, 2021, University of Oregon 
 Master of Science, Special Education, 2019, University of Oregon 
 Bachelor of Arts, Psychology, 2011, Williams College 
 
 
AREAS OF SPECIAL INTEREST: 
 
 Multi-Tiered Systems of Supports in Reading 
 Data-Based Decision-Making 
 Teacher Professional Development and Coaching 
 
 
PROFESSIONAL EXPERIENCE: 
 
 School Psychologist Intern, Springfield Schools, 2020 to present 
  
 Research Assistant, Center on Teaching and Learning, University of Oregon,  
  2019 to present 
 
 Research and Technical Assistance Graduate Employee, Center on Teaching and  
  Learning, University of Oregon, 2018 to 2019 
  
 Research Assistant Graduate Employee, Behavioral Research and Teaching,  
  University of Oregon, 2015 to 2018 
  
 Literacy Tutoring Site Coordinator, Reading Partners, 2013 to 2015 
 
 Project Coordinator, Hinshaw ADHD Lab, University of California Berkeley,  
  2012 
 
 Special Education Instructional Assistant, Raskob Day School, 2011 to 2012 
  



 

 

 

vii 

GRANTS, AWARDS, AND HONORS: 
 
 Dynamic Measurement Group Award, University of Oregon, 2018 
 

Dynamic Measurement Group Award, University of Oregon, 2017 
 
Council for Learning Disabilities 1st Annual Leadership Institute, 2017 
 
Dynamic Measurement Group Award, University of Oregon, 2016 

 
 
PUBLICATIONS: 
 

Pilger Suhr, M., Nese, J. F. T., & Alonzo, J. (2021). Parallel 
Reading and Mathematics Growth for English Learners: Does Timing of  
Reclassification Matter? Journal of School Psychology, 85, 94-112.  

 
Clarke, B. S., Doabler, C. T., Sutherland, M., Suhr, M. P., Kiru, E. W. (in  

press). Intensifying early numeracy interventions. In D. P. Bryant (Ed.), 
Intensifying Mathematics Interventions for Struggling Students, Guilford 
Press. 
 

 Fien, H., Nelson, N. J., Smolkowski, K., Kosty, D., Pilger, M., Baker, S. K.,  
Smith, J. L. M. (2020). A Conceptual Replication Study of the Enhanced  
Core Reading Instruction MTSS-Reading Model. Exceptional Children. 

 Advance online publication. https://doi.org/10.1177/0014402920953763 
 

Shanley, L., Strand Cary, M., Turtura, J., Clarke, B., Sutherland, M., & Pilger, M.  
(2019). Individualized instructional delivery options: Adapting  
technology-based interventions for students with attention difficulties.  
Journal of Special Education Technology, 35(3), 119-132. 

 https://doi.org/10.1177/0162643419852929 
 
 
 
 

 
 



 

 

 

viii 

ACKNOWLEDGMENTS 
 
I wish to thank Dr. Hank Fien for his assistance in the preparation of this 

manuscript, as well as Drs. Gina Biancarosa, Ben Clarke, Nancy Nelson, and Elizabeth 

Budd for their thoughtful insights and ongoing support throughout the dissertation 

process. I thank my colleagues and friends in the School Psychology program who have 

always been there to collaborate, innovate, and commiserate throughout my time at the 

University of Oregon. I thank my family for helping me believe that I could make it 

through a Ph.D. program. And last but not least I thank Julian for his delicious meals, 

superb household management, and listening ear, which have allowed me to get to where 

I am today. The research reported here was supported in part by the Institute of Education 

Sciences, U.S. Department of Education, through Grant R324A090104 to the University 

of Oregon.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

ix 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. INTRODUCTION .................................................................................................... 1 

 The Role of Universal Screening Within MTSS-R ............................................... 2 

 An Argument-Based Approach to Validation of Early Literacy CBMs ................ 4 
 
 Evaluating CBM Test-Score Interpretations .................................................... 6 

 Evaluating CBM Test-Score Uses ................................................................... 7 

Diagnostic Accuracy Overview ................................................................. 8 

Overall Test Accuracy ............................................................................... 10 

Sensitivity and Specificity Rates ............................................................... 11 

Likelihood Ratios ....................................................................................... 13 

Posttest Probabilities .................................................................................. 14 

Evidence of CBM Use for Universal Screening Purposes ............................... 15 

Evidence of Discriminative Ability ........................................................... 16 

Evidence of Predictive Ability  .................................................................. 18 

Lag Time as a Source of Bias in Diagnostic Accuracy Studies ............................. 21 

The Impact of Instructional Effectiveness on Lag Time ................................. 25 

Base Rate of Reading Difficulties  ............................................................. 27 

Statement of the Problem ....................................................................................... 28 

The Current Study .................................................................................................. 30 

Research Questions ................................................................................................ 33 

II. METHOD ................................................................................................................ 35 

Participants  ............................................................................................................ 35 



 

 

 

x 

Chapter Page 
 
 

Instruction Implementation .................................................................................... 37 

Treatment Condition ........................................................................................ 38 

Comparison Condition ..................................................................................... 38 

Measures ................................................................................................................ 39 

DIBELS 6th Edition Nonsense Word Fluency (NWF) ..................................... 39 

DIBELS 6th Edition Oral Reading Fluency (ORF) .......................................... 40 

Stanford Achievement Test Series, 10th Edition (SAT-10) ............................. 40 

Procedures .............................................................................................................. 41 

Analyses ................................................................................................................. 42 

Research Question 1 and 1a: Overall Test Score Interpretations .................... 42 

Research Question 1 and 1a Hypotheses ................................................... 42 

Research Question 2 and 2a: Overall Discriminative Ability .......................... 42 

Research Question 2 and 2a Hypotheses ................................................... 44 

Research Question 3 and 3a: Overall Predictive Ability ................................. 45 

Research Question 3 and 3a Hypotheses ................................................... 45 

Research Question 4: Validity by Instructional Effectiveness ........................ 46 

Research Question 4 Hypotheses ............................................................... 47 

Test Score Interpretations .................................................................... 47 

Test Score Uses: Discriminative Ability .............................................. 47 

Test Score Uses: Predictive Ability ..................................................... 47 

III. RESULTS .............................................................................................................. 48 

Missing Data .......................................................................................................... 48 



 

 

 

xi 

Chapter Page 
 
 

Research Question 1 and 1a: Overall Test Score Interpretations .......................... 50 

Research Question 2 and 2a: Overall Discriminative Ability ................................ 53 

Oral Reading Fluency Discriminative Ability ................................................. 53 

Overall Accuracy ....................................................................................... 53 

Sensitivity, Specificity, and Cut Scores ..................................................... 54 

SAT-10 Discriminative Ability ........................................................................ 57 

Overall Accuracy ....................................................................................... 57 

Sensitivity, Specificity and Cut Scores ...................................................... 58 

Research Question 3 and 3a: Overall Predictive Ability ....................................... 61 

Oral Reading Fluency Predictive Ability ......................................................... 62 

Likelihood Ratios ....................................................................................... 62 

Posttest Probabilities and Base Rates ........................................................ 63 

SAT-10 Predictive Ability ............................................................................... 64 

Likelihood Ratios ....................................................................................... 64 

Posttest Probabilities and Base Rates ........................................................ 67 

Research Question 4: Validity by Instructional Effectiveness .............................. 70 

Test Score Interpretations ................................................................................ 70 

Test Score Uses: Discriminative Ability .......................................................... 73 

Oral Reading Fluency Overall Accuracy ................................................... 73 

Oral Reading Fluency Sensitivity, Specificity, and Cut Scores ................. 76 

SAT-10 Overall Accuracy ......................................................................... 77 

SAT-10 Sensitivity, Specificity, and Cut Scores ....................................... 80 



 

 

 

xii 

Chapter Page 
 

Test Score Uses: Predictive Ability ................................................................. 82 

Oral Reading Fluency Likelihood Ratios .................................................. 82 

Oral Reading Fluency Posttest Probabilities and Base Rates .................... 83 

SAT-10 Likelihood Ratios ......................................................................... 84 

SAT-10 Posttest Probabilities and Base Rates ........................................... 85 

IV. DISCUSSION ........................................................................................................ 87 

The Impact of Lag Time on Overall Test Score Interpretations and Uses ............ 88 

Research Question 1 and 1a: Overall Test Score Interpretations .................... 89 

Research Question 2 and 2a: Overall Discriminative Ability .......................... 90 

Overall Appropriateness for Discriminative Purposes ........................ 90 

Variation in Discriminative Ability Based on Lag Time ..................... 92 

Future Research Directions .................................................................. 93 

Implications for Educators ................................................................... 94 

Research Question 3 and 3a: Overall Predictive Ability ................................. 94 

Overall Appropriateness for Predictive Purposes ................................ 94 

Variation in Predictive Ability Based on Lag Time ............................ 96 

Future Research Directions .................................................................. 99 

Implications for Educators ................................................................... 101 

Instructional Effectiveness and Test Score Interpretations and Uses .................... 103 

Overall Test Score Interpretations and Uses .................................................... 104 

Future Research Directions .............................................................................. 106 

Meaningful Differences Between Conditions ............................................ 107 



 

 

 

xiii 

Chapter Page 
 

Implications for Educators ............................................................................... 111 

Study Limitations ................................................................................................... 115 

Conclusion ............................................................................................................. 117 

APPENDIX: CORRELATIONAL ANALYSIS ASSUMPTIONS ............................ 119 

REFERENCES CITED ................................................................................................ 123 



 

 

 

xiv 

LIST OF FIGURES 
 
Figure Page 
 
 
1. Flow Chart Illustrating Current Study Sample  ..................................................... 37 
 
2. ROC Curve Comparing Concurrently Administered Winter and Spring  
 Nonsense Word Fluency (NWF-CLS) and Oral Reading Fluency (ORF)  ........... 54 
 
3. ROC Curve Comparing Fall, Winter and Spring Nonsense Word Fluency  
 (NWF-CLS) Predicting Spring Oral Reading Fluency (ORF) .............................. 55 
 
4. ROC Curve Comparing Concurrently Administered Fall and Spring Nonsense  
 Word Fluency (NWF-CLS) and SAT-10 ............................................................... 58 
 
5. ROC Curve Comparing Fall, Winter and Spring Nonsense Word Fluency  
 (NWF-CLS) Predicting Spring SAT-10 ................................................................ 59 
 
6. ROC Curve Treatment vs. Comparison Winter Nonsense Word Fluency  
 (NWF-CLS) Predicting Winter Oral Reading Fluency (ORF) Risk Status ........... 74 
 
7. ROC Curve Treatment vs. Comparison Spring Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status ....................... 74 
 
8. ROC Curve Treatment vs. Comparison Fall Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status ....................... 75 
 
9. ROC Curve Treatment vs. Comparison Winter Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status ....................... 75 
 
10. ROC Curve Treatment vs. Comparison Fall Nonsense Word Fluency (NWF- 
 CLS) Predicting Fall SAT-10 Risk Status ............................................................. 78 
 
11. ROC Curve Treatment vs. Comparison Spring Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring SAT-10 Risk Status ......................................................... 78 
 
12. ROC Curve Treatment vs. Comparison Fall Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring SAT-10 Risk Status ......................................................... 79 
 
13. ROC Curve Treatment vs. Comparison Winter Nonsense Word Fluency (NWF- 
 CLS) Predicting Spring SAT-10 Risk Status ......................................................... 79 
 
14. Scatterplots of Standardized Predicted Values of Outcomes Regressed on  
 Screening Measures ............................................................................................... 120 
 



 

 

 

xv 

Figure Page 
 
 
15. Histograms of Standardized Residuals for Screening and Outcome Measures ..... 121 
 
16. Normal P-P Plots of Outcomes Regressed on Screening Measures ...................... 122 
 
 
 
 

 



 

 

 

xvi 

LIST OF TABLES 
 
Table Page 
 
 
1. Descriptive Statistics For Screener and Outcome Measures ................................. 49 
 
2. Overall Correlations Among All Screening and Outcome Measures .................... 52 
 
3. Discriminative Ability for Nonsense Word Fluency (NWF-CLS) Predicting  
 Oral Reading Fluency (ORF) Risk Status .............................................................. 56 
 
4. Discriminative Ability for Nonsense Word Fluency (NWF-CLS) Predicting  
 SAT-10 Risk Status ............................................................................................... 60 
 
5. Predictive Ability for Nonsense Word Fluency (NWF-CLS) Predicting  
 Oral Reading Fluency (ORF) Risk Status .............................................................. 65 
 
6. Predictive Ability for Nonsense Word Fluency (NWF-CLS) Predicting  
 SAT-10 Risk Status  .............................................................................................. 68 
 
7. Treatment Condition Correlations Among All Screening and Outcome  
 Measures ................................................................................................................ 72 
 
8. Control Condition Correlations Among All Screening and Outcome  
 Measures ................................................................................................................ 72 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 1 

I. INTRODUCTION 

 Despite a wealth of reading research (e.g. National Reading Panel, 2000) and 

substantial federal funding and efforts dedicated to improving students’ literacy skills 

over the past several decades (e.g. Reading First, Every Student Succeeds Act), 

approximately two thirds of 4th grade students in the United States continue to perform 

below proficient on the National Assessment of Education Progress (NAEP, 2019). In 

response to persistent concerns regarding students’ reading proficiency, the 2004 

reauthorization of the Individuals with Disabilities in Education Act (IDEA) enacted 

legislation enabling schools to dedicate special education funds to the provision of 

intervention services to students at risk for reading difficulties (IDEA, 2004).  

Since this reauthorization, schools have increasingly begun to use response to 

intervention (RTI) or multi-tiered systems of support in reading (MTSS-R) as 

comprehensive frameworks for seamlessly integrating evidence-based instructional 

strategies to improve students’ reading outcomes (Balu, 2015; Gersten et al., 2009; 

Samuels, 2011). MTSS-R is a tiered service delivery model intended to improve reading 

outcomes for all students within a school by providing increasingly intensive and 

individualized evidence-based instruction to students based on level of need. The 

theoretical foundation of MTSS-R is based on decades of research that highlights the 

need for prevention and early reading intervention to address reading problems in 

kindergarten and first grade before reading trajectories become established and 

increasingly difficult to alter (Juel, 1988; Kame’enui & Carnine, 1998; McCardle et al., 

2001; Scarborough, 1998).  
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The Role of Universal Screening Within MTSS-R 

Universal screening is arguably the cornerstone to an effective MTSS-R model 

(Fuchs et al., 2003; Gersten et al., 2009). Universal screening is a process by which a 

population of students is evaluated to identify the presence or absence of a specific 

condition of interest (Jenkins et al., 2007). In the context of MTSS-R, schools use 

universal screeners to identify the presence or absence of risk for reading difficulties. 

This information can help educators make instructional decisions within their schools that 

accomplish two primary purposes.  

 First, schools may use universal screening scores to evaluate the overall 

effectiveness of their reading system (Deno, 2003; Tindal, 1989; Tindal, 2013). Screeners 

assign a risk status to students (e.g. at risk, some risk, low risk), and based on the 

proportion of students who are classified as at risk versus not at risk, a school may decide 

to focus efforts on improving Tier 1 core instruction versus Tier 2 or 3 supplemental 

intervention. For example, if screening data suggests that 80% of students in a school are 

at some risk for developing reading difficulties, this is an indication that core instruction 

is not meeting students’ needs and that school leadership should problem-solve around 

adjustments to instruction for all students. Conversely, if screening data indicates that 

only 5% of students are demonstrating reading risk, school leadership can prioritize 

intensifying intervention for just a few students. For this purpose, schools rely on 

screeners to accurately differentiate between students who actually are and are not at risk 

for reading difficulties to make systems-level instructional decisions with the goal of 

decreasing the total number of at-risk students. 
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Second, schools may use screening scores to assign individual students who are 

classified as at risk to evidence-based supplemental and intensive intervention (Silva et 

al., 2020). Evidence suggests that these Tier 2 and 3 supports can accelerate the rate of 

learning for at-risk students such that they catch up to their grade-level peers, reducing 

the number of students who go on to develop pervasive reading difficulties (Fuchs et al., 

2012; Gersten et al., 2009; Jenkins et al., 2013; Johnson et al., 2010; Mellard et al., 2009; 

Wanzek, et al., 2016). For this purpose, schools rely on screeners to accurately rule in or 

out whether individual students are likely to develop reading difficulties over time so that 

those students who are most at risk can be provided with supplemental or intensive 

intervention.  

Curriculum-based measures (CBMs) are one of the most widely used tools for 

universal screening within MTSS-R for these two primary screening purposes (Fuchs & 

Vaughn, 2012; Gersten et al., 2009). CBMs are fluency-based measures which assess 

students’ skills in key reading-related areas. CBM measures of oral reading fluency were 

first developed in the 1970s at the University of Minnesota for instructional planning and 

data-based decision making for individual students within special education (Deno, 

1989). In the decades since their inception, CBMs have been adopted for a wider variety 

of purposes and have been expanded to measure a broader range of skills (Espin et al., 

2012; Shinn, 1998). Presently, CBMs are used for everything from universal screening to 

progress monitoring to program evaluation to special education eligibility (Fuchs & 

Vaughn, 2012), with subtests targeting foundational reading skills, including 

phonological awareness, decoding, and reading comprehension. Early literacy CBMs, 

which measure phonological awareness, letter-sound correspondences, and real and 
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nonword reading skills, have grown especially popular as screening tools in kindergarten 

and first grade when measures of oral reading fluency may not be sufficiently sensitive to 

differentiate among student performance (Catts et al., 2009; Gersten et al., 2009; 

Silberglitt & Hintze, 2005).  

An Argument-Based Approach to Validation of Early Literacy CBMs  

Early literacy CBMs have been widely touted by researchers and practitioners 

alike as gold standard screening tools for both evaluating overall school systems’ 

effectiveness as well as predicting individual students’ likelihood of developing future 

reading difficulties (e.g., Gersten et al., 2009) and many states have adopted policies 

requiring schools to collect this universal screening data for all students in grades K-2 

(National Center on Improving Literacy [NCIL], 2020). Given their widespread use, it is 

important to have clear evidence of early literacy CBMs’ validity for these purposes. 

Kane’s argument-based approach to test validation provides a helpful framework 

for obtaining this evidence (Kane, 1992, 2006). The argument-based approach to test 

validation maintains that the primary purpose of all test scores is to support broader 

interpretations about a student based on that student’s observed performance on a test. 

For example, within MTSS-R educators may use a student’s test score not just to describe 

that student’s skills with the behavior sampled on the test (e.g. decoding nonwords), but 

also as a hypothesis about the student’s skills in a broader construct of interest (e.g. 

reading proficiency) or the student’s probability of reading success across a school year.  

Based on these broad interpretations, educators use a given test score or scores to 

inform instructional decisions, with the nature of the interpretation dictating the kind of 

the decisions that are made. For example, if a student’s test score is interpreted as 
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indicating that the student is highly likely to develop reading difficulties, that student may 

be immediately assigned to supplemental or intensive intervention. In contrast, if the 

same test score is interpreted as demonstrating only a slight increased likelihood of 

developing reading difficulties, the team may choose to monitor the student’s progress 

more closely before providing them with supplemental intervention. Thus, interpretations 

made based on test scores have a sizable impact on the types of decisions that are made; 

however, these interpretations are often made subconsciously, without deliberate 

consideration by educators of their influence on instructional decision-making. 

Kane’s argument-based approach to test validation reasons that to 

comprehensively validate a test, the myriad ways in which a test score may be interpreted 

and used in a given context must be explicitly articulated and evaluated. Thus, a test must 

be evaluated not only on whether it reliably assesses a construct of interest, which 

provides evidence of the validity of a test score’s interpretations, but also on how well it 

aids in instructional decision making, providing evidence of the validity of a test score’s 

uses. A comprehensive evaluation of how well a test helps with instructional decision 

making requires an explicit consideration of the social consequences of using the test for 

its various purposes, a concept called consequential validity (Messick, 1975, 1989). 

Depending on the specific inferences made about a student’s test score, the same test may 

result in different decisions made in different settings, and so acceptable evidence of a 

test’s consequential validity may vary depending on the context. To comprehensively 

evaluate early literacy CBMs for the purposes of (a) evaluating the effectiveness of 

reading systems and (b) assigning students to supplemental and intensive instruction 
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within MTSS-R, then, requires an explicit examination of evidence supporting each of 

early literacy CBMs’ proposed interpretations and uses. 

Evaluating CBM Test-Score Interpretations 

Researchers and practitioners intending to evaluate the appropriateness of a 

universal screener for use within their school’s MTSS-R framework should consider the 

proposed interpretations and uses of the screener in that context and determine whether 

the test has empirical evidence supporting these interpretations and uses. Historically, 

evidence for CBM validity as a universal screener was limited to support for these tests’ 

proposed interpretations rather than their proposed uses. This evidence was primarily 

obtained through evaluations of CBMs’ criterion-related validity, with strong screener 

criterion validity providing evidence that the student’s performance on the screener is 

indicative of that student’s reading skills overall. Specifically, studies have examined 

screeners’ concurrent and predictive validity, statistics which provide information about 

the degree to which the screener is related to an established measure of a broader 

construct of interest (e.g., reading proficiency) when the two tests are administered at the 

same time point (i.e., concurrent validity) and at two different time points (i.e., predictive 

validity) (Kilgus et al., 2014).  

A large number of studies over the past several decades have provided this 

evidence for oral reading fluency CBMs’ proposed interpretations within MTSS-R. These 

measures have been found to be strongly related to widely recognized measures of 

reading achievement, with meta-analyses reporting mean correlation coefficients between 

.56 and .73 for the relation between oral reading fluency and both statewide achievement 

tests and standardized norm-referenced assessments (Reschly et al., 2009; Yeo, 2010).  
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Criterion validity of early literacy CBMs such as nonsense word fluency and word 

reading fluency measures suggest that these measures are highly related to measures of 

oral reading fluency, with correlations ranging from .68-.82 for measures of nonsense 

word fluency (e.g., Burke & Hagan-Burke, 2007; Cummings et al., 2011; Fien et al., 

2010; Harn et al., 2008; January & Klingbeil, 2020) and .80-.93 for measures of word 

reading fluency (Fuchs et al., 2004). These measures are also related to broader measures 

of reading achievement, with correlations ranging from .60-.73 for nonsense word 

fluency (e.g., Fien et al., 2008; Fien et al., 2010; January & Klingbeil, 2020), and .66-.79 

for word reading fluency (Fuchs et al., 2004; January & Klingbeil, 2020).  

These criterion-related data provide evidence that early literacy CBM test scores 

are indicative of students’ overall reading skills, a necessary first step in interpreting data. 

However, criterion-related validity is not sufficient for providing evidence for early 

literacy CBMs’ proposed uses within MTSS-R (Burns, 2012). That is, criterion-related 

validity alone does not provide evidence regarding how accurately an early literacy CBM 

discriminates between individuals with and without reading difficulties for the purpose of 

evaluating reading systems or how accurately an early literacy CBM predicts a student’s 

likelihood of future reading difficulties for the purpose of assigning students to 

interventions. To validate early literacy CBMs for these uses, an evaluation of these tests’ 

diagnostic accuracy is also necessary (Jenkins et al., 2007; Kilgus et al., 2014). 

Evaluating CBM Test-Score Uses 

Diagnostic accuracy evaluations have grown increasingly prevalent in the past 

decade for determining the validity of CBMs for predicting reading risk. The general 

framework for evaluating the diagnostic accuracy of screening tools originated in radio 
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signal detection work (Petersen et al., 1954), and has more recently been applied to 

screening tests across the fields of medicine (Pepe, 2003), epidemiology and public 

health (Fleiss, 1981), and psychology (Swets, 1996). A brief overview of key diagnostic 

accuracy statistics is provided below. 

 Diagnostic Accuracy Overview. Broadly, diagnostic accuracy evaluations are 

conducted to determine a test’s accuracy at (1) discriminating between groups of 

individuals with and without a condition and (2) predicting an individual’s membership 

in one of these two groups. The specific group, or population, an individual belongs to is 

determined by the individual’s classification based on some gold standard outcome 

measure which is accepted as an individual’s “true” condition (Deeks, 2001). Diagnostic 

accuracy evaluations determine the degree to which a screener classifies individuals as 

belonging to the population of individuals who have a given condition versus the 

population of individuals who do not have the condition in the same way that a more 

widely accepted test classifies individuals. To conduct a diagnostic accuracy evaluation 

every individual in the sample is administered both the screener and outcome measure 

and a prediction is made about which population each individual belongs to based on 

their screener score.   

 When evaluating the diagnostic accuracy of a screener, a key assumption is that 

the outcome measure accurately classifies individuals into these two populations (those 

that have the condition, and those that do not have the condition) (Smolkowski & 

Cummings, 2015). For conditions which fall on a continuous scale, such as reading 

difficulty, the two populations are determined by test makers or evaluators, who decide 

on a set cut-score on the outcome measure which artificially classifies students into one 
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of two groups: students whose scores fall below the cut-score, and thus have the 

condition (e.g., have reading difficulties), and students whose scores fall above the cut-

score, and so do not have the condition (e.g., do not have reading difficulties). The 

screener is then evaluated for its ability to classify students into the group of students 

with reading difficulties or the group of students without reading difficulties in the same 

way that the outcome measure classifies students, and based on this evaluation test 

evaluators decide on an optimal cut-score on the screener that is indicative of risk for 

reading difficulties; students who fall above the cut-score are considered not at risk, and 

students who fall below the cut-score are considered at risk. 

 Because no screening measure can be one hundred percent accurate at classifying 

every single student, students will fall into one of four categories based on the screener 

cut-score for risk. The category a student is assigned to will depend on their performance 

on the screener (i.e., the observed reading behavior) and their actual level of reading 

difficulty (i.e., true reading skill, as measured by performance on the outcome measure of 

reading achievement). Of all the students who fall below the screener cut-score for risk, a 

proportion of students will truly have reading difficulties (True Positive [TP]), and a 

proportion of students will actually not have reading difficulties (False Positive [FP]). 

Similarly, of the students who fall above the cut-score for risk, a subset of students will 

truly not have reading difficulties (True Negative [TN]) and a group of students will 

actually have reading difficulties (False Negative [FN]).  

 These four categories are inextricably linked and dependent on the predetermined 

screener risk cut-score; as the cut-score for risk increases, the screener will accurately 

classify more students who truly have reading risk but will also inaccurately classify 
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more students as at risk who actually do not have reading difficulties. Similarly, as the 

cut-score for risk decreases, the screener will accurately classify more students who truly 

do not have reading difficulties but will also inaccurately classify more students as not at 

risk when they actually have reading difficulties.  When choosing a cut-score for risk on 

the screening measure, test makers must try to create an optimal balance between these 

four categories and will choose to prioritize different diagnostic accuracy statistics in 

making their ultimate decision. These diagnostic accuracy statistics are described below. 

 Overall Test Accuracy. The accuracy with which a screener classifies students as 

either at risk or not at risk is evaluated through the use of receiver operating characteristic 

(ROC) curves. ROC curves describe the proportion of time a screener accurately 

classifies students as at risk (true positive fraction [TPF]) relative to the proportion of 

time a screener inaccurately classifies students as at risk (false positive fraction [FPF]) 

across all possible screener scores. A screener that does a good job of maximizing the 

TPF while minimizing the FPF will have a higher area under the curve (AUC) value, 

which provides a summary of the overall performance of the screener across all possible 

cut-score or decision thresholds. The AUC can be described as the likelihood that the 

screener will accurately classify a randomly chosen pair of individuals, one from the at-

risk population and one from the not-at-risk population. AUC values range from .00 to 

1.00; AUC values of .00 indicate that a screener would inaccurately classify students 

100% of the time, AUC values of .50 indicate that a screener provides no useful 

information, and would accurately classify individuals 50% of the time, and AUC values 

of 1.0 indicate that a screener would classify individuals with 100% accuracy. Generally, 

screeners with AUC values of .95 and above are considered excellent, screeners with 
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AUC values of .85-.95 are considered very good, screeners with AUC values of .75-.85 

are considered reasonable, and screeners with AUC values below .75 are considered poor 

and should not be used for decision making (Smolkowski & Cummings, 2015; Swets, 

1988). 

 Sensitivity and Specificity Rates. In addition to overall accuracy statistics, ROC 

curves produce a number of valuable statistics for decision making which describe the 

diagnostic accuracy of a screener associated with specific risk cut-scores. The sensitivity 

of a measure signifies the proportion of students who were correctly identified by the 

screener as at risk in relation to the entire population of students who truly have reading 

difficulties. In other words, sensitivity is concerned with only the population of 

individuals with the condition, and the sensitivity value indicates how well a test can 

recognize an individual with the condition. When evaluating reading screeners, 

sensitivity refers to the population of students with reading difficulties and is calculated 

by dividing true positives by the sum of true positives and false negatives. High 

sensitivity rates are important to a reading screener, as they indicate that the screener has 

accurately identified most or all students who truly are at risk for reading difficulties and 

are in need of supplemental supports and has thus minimized the number of students who 

are truly at risk but were not identified. Education researchers generally agree that 

sensitivity rates should be prioritized within MTSS-R, and screeners should have a 

minimum sensitivity value of .80 to .90 to be appropriate for use in these settings 

(Jenkins et al., 2007; Petscher et al., 2011), where the cost of not providing intervention 

services to students who are at risk for reading difficulties is considered more 
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problematic than unnecessarily providing intervention services to students who do not 

need them.  

Specificity refers to the proportion of students who were correctly identified by 

the screener as not at risk in relation to the population of students who truly do not have 

reading difficulties. In other words, specificity is concerned with only the population of 

individuals without the condition, and the specificity value indicates how well the test can 

recognize an individual without the condition. In regard to reading screeners, specificity 

refers to the subgroup of students without reading difficulties and is calculated by 

dividing true negatives by the sum of true negatives and false positives. High specificity 

rates are important to a reading screener, as they indicate that the screener is accurately 

identifying only those students who are at risk for reading difficulties, and not 

misclassifying as at risk students who are on track for reading success. Thus, high 

specificity rates should minimize the likelihood of the school system being overwhelmed 

with providing intervention services to students who are not actually in need of them. 

Minimally acceptable specificity rates have been more widely debated than sensitivity, 

with researchers generally promoting specificity ranging from .70 to .80 and higher (Catts 

et al., 2009; Compton et al., 2010).  

Test makers generally rely on sensitivity and specificity values to set screener cut-

scores for risk, prioritizing either sensitivity, specificity, or a balance of the two in 

deciding on the optimal risk cut-score. Sensitivity and specificity are the most widely 

used diagnostic accuracy statistics for evaluating the accuracy of a screener and setting 

screener risk cut-scores because they are population-based statistics, meaning that they 

are thought to be reasonably robust across settings. In other words, it is generally 
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accepted that sensitivity and specificity rates obtained from a research study will apply 

across diverse school settings. 

Likelihood Ratios. Likelihood ratios indicate how much more likely a specific 

screening result is for individuals who have the condition than for individuals who do not 

have the condition (Choi, 1998). Likelihood ratios take into account both sensitivity and 

specificity in their calculations, allowing for a comparison between the population of 

students with true reading difficulties and the population of students who truly do not 

have reading difficulties. Because likelihood ratios are derived from sensitivity and 

specificity values, they are population-based statistics and not impacted by base rate; 

thus, it is generally accepted that these ratios are applicable to a variety of contexts.  

Likelihood ratios are calculated by dividing the likelihood of a given test result 

for individuals with the condition (e.g., reading difficulties) by the likelihood of that same 

test result for individuals without the condition (e.g., no reading difficulties). Positive 

likelihood ratios indicate how much more likely a positive test result (e.g., classification 

of “at risk”) is for individuals who have the condition (e.g., true reading difficulties) than 

for individual who do not have the condition (e.g., truly no reading difficulties). In 

contrast, negative likelihood ratios indicate how much more likely a negative test result 

(e.g., classification of “not at risk”) is for individuals who have the condition than for 

individuals who do not have the condition (Kent & Hancock, 2016).   

Likelihood ratios near 1 indicate that the screener does not meaningfully change 

the likelihood of having the condition—thus indicating that the screener has little use. 

Likelihood ratios greater than 1 indicate a progressively increased likelihood of the 

condition, while likelihood ratios smaller than 1 indicate a progressively decreased 
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likelihood of the condition. While the field of education has not settled on minimum 

acceptable likelihood ratios, in the medical world likelihood ratios of 2 to 5 are generally 

interpreted as small increases in likelihood of the condition, while likelihood ratios of 5 

to 10 are interpreted as moderate increases, and likelihood ratios above 10 are interpreted 

as large increases in likelihood of the condition. In medicine, positive likelihood ratios of 

10 or higher are generally considered meaningful for ruling in the presence of a condition 

(e.g., cancer). Conversely, likelihood ratios of 0.2 to 0.5 indicate small decreases in 

likelihood of the condition, while likelihood ratios of 0.1 to 0.2 indicate moderate 

decreases, and less than 0.10 indicate large and conclusive decreases in the likelihood of 

the condition. In medicine, negative likelihood ratios of less than .10 are considered 

meaningful for ruling out the presence of the condition (Grimes & Schulz, 2005; McGee, 

2001).  

In education, where CBMs are used to make a variety of decisions, educators 

should consider the stakes of the decision being made when determining an acceptable 

likelihood ratio for their purposes. For example, a likelihood ratio closer to 1 may be 

acceptable for making a decision about whether to assign a student to a brief 

supplemental intervention, while a likelihood ratio much further from 1 would be 

necessary for making decisions about whether a child’s level of risk warrants fast-

tracking to more intensive instructional supports.   

Posttest Probabilities. Likelihood ratios can also be used to calculate the posttest 

probability of having a condition given a specific screening result (VanDerHeyden, 2011, 

2013). In other words, researchers and educators can use likelihood ratios to help 

determine the probability of an individual student actually having reading difficulties if 
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they test positive or negative on the screener in a given setting. Posttest probabilities are 

calculated by multiplying a screener’s likelihood ratio by the prevalence, also known as 

the base rate, of reading difficulties in a given setting; thus, posttest probabilities are 

considered sample-based statistics because they are dependent on the proportion of 

individuals with and without reading difficulties in a specific setting.  

VanDerHeyden (2013) proposed that posttest probabilities of greater than or equal 

to .50 should be used to indicate need for intervention, while posttest probabilities of less 

than or equal to .10 should indicate that intervention or follow-up assessment be 

withheld. Posttest probabilities between .10 and .50 indicate insufficient confidence in a 

student’s probability of reading risk and the need for follow-up assessment or 

intervention to improve this prediction. Additionally, for a screener to be deemed useful 

for instructional decision making, administering the screener should result in a 

meaningfully different probability of reading difficulties above and beyond the known 

base rate of reading difficulties in a setting.  

Evidence of CBM Use for Universal Screening Purposes 

Diagnostic accuracy research in education to date has generally focused on an 

examination of the diagnostic accuracy statistics related to the two primary screening 

purposes described above, aligning with diagnostic accuracy research conducted in 

psychology and medicine (e.g., Deeks & Altman, 2004; Moons & Harrell, 2003; Pepe, 

2003; Swets, 1988). First, studies examine CBM use for accurately differentiating 

between students with and without a given condition (e.g., Smolkowski & Cummings, 

2016), known in medicine as a screener’s discriminative ability (Eusebi, 2013). Second, 

studies examine CBM use for predicting likelihood of reading difficulties in an individual 
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student (e.g., Van Norman et al., 2017; VanDerHeyden et al., 2018), described in 

medicine as the screener’s predictive ability (Eusebi, 2013). An overview of this research 

is described below. 

Evidence of Discriminative Ability. In medicine, a screener’s discriminative 

ability is particularly important for making health policy decisions (Eusebi, 2013). In 

these cases, screeners are expected to provide an accurate estimation of how prevalent a 

condition is in a given population. A screener that is more accurate at differentiating 

between individuals with and without the condition will provide health officials with a 

quick indication of the types of interventions that need to be applied at a population level. 

In education, a screener’s discriminative ability provides educators with an overall sense 

of how their reading system is functioning and alerts them to whether limited school 

resources should be dedicated toward shoring up core versus supplemental or intensive 

supports. A screener with high discriminative ability will also give educators confidence 

that their screener is accurately classifying most students, and that supplemental 

intervention supports are in general being funneled toward the students most in need. 

Sensitivity and specificity values are key for evaluating a screener’s 

discriminative ability, or the screener’s ability to accurately differentiate between 

students with and without reading difficulties. As such, a screener’s discriminative ability 

can be evaluated based on population-based statistics alone, which are not dependent on 

the base rate of reading difficulties in a given sample. Thus, sensitivity and specificity 

values should be generalizable across settings. Because of their generalizability, 

sensitivity and specificity rates are the most widely reported and studied diagnostic 

accuracy indices in evaluations of universal screeners. In a meta-analysis of diagnostic 
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accuracy studies evaluating oral reading fluency screeners, Kilgus et al. (2014) examined 

sensitivity and specificity rates across 34 oral reading fluency diagnostic accuracy studies 

for cut-scores where sensitivity rates were held at or above .80. Across these studies, a 

sensitivity rate of .80 or higher corresponded to a specificity rate of between .71 and .73. 

These findings suggest that across studies, oral reading fluency was able to accurately 

identify approximately 80% of students who actually had reading difficulties and 70% of 

students who did not have reading difficulties. Kilgus et al. (2014) interpreted these rates 

as evidence that oral reading fluency had reasonably accurate discriminative ability 

across studies. Though not reported, it can be inferred that had cut scores been set that 

prioritized a sensitivity rate of .90 or above as recommended by Jenkins et al. (2007), 

there would have been a resulting drop in specificity rates below acceptable values, as 

specificity rates drop with increases in sensitivity. 

Studies examining the diagnostic accuracy of early literacy CBMs of nonsense 

word and real word reading are less prevalent (January & Klingbeil, 2020), and have 

indicated variable discriminative ability. In these studies, when holding sensitivity values 

at or above .90, specificity ranged from inadequate to acceptable (Catts et al., 2009; 

Clemens et al., 2011; Compton et al., 2010; Goffreda et al., 2009; January et al., 2016; 

Johnson et al., 2009; Smolkowski & Cummings, 2016). For example, in a comparison of 

early literacy screening measures, Clemens et al. (2011) reported low to acceptable 

specificity values, ranging from .52-.71, for measures of real word reading and letter 

naming fluency. In contrast, January et al. (2016) found widely acceptable specificity, 

ranging from .72- .88 for first grade students, and .73- .91 for second grade students for 

researcher-developed real and nonsense word reading measures.  
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Smolkowski & Cummings (2016) used different criteria to set cut scores, holding 

sensitivity at or above .80 on a measure of nonsense word fluency. In their study, 

specificity values ranged from .60- .81 across kindergarten through second grade. Thus, 

based on established sensitivity and specificity guidelines, most diagnostic accuracy 

evaluations have found that when cut scores are chosen for early literacy screeners that 

hold sensitivity values to an acceptable criteria for use in schools, their specificity values 

may be inadequate to borderline acceptable (Gersten et al., 2009; Jenkins et al., 2007; 

Johnson et al., 2009).  

Evidence of Predictive Ability. While sensitivity and specificity rates are 

important for evaluating a screener’s discriminative ability, they may not be sufficient for 

evaluating a screener’s predictive ability (Eusebi, 2013). In these cases, screeners are 

expected to accurately estimate how likely an individual is to have a condition based on 

their screening result so that cost-benefit analyses can be made about the appropriateness 

of different treatment options as compared to doing nothing. In education, a screener’s 

predictive ability provides a probability of individual students developing reading 

difficulties given a certain screening result. This information can help educators 

determine whether supplemental or intensive intervention is an appropriate next step for 

the student or whether it is preferable to administer follow up assessments or withhold 

provision of supplementary intervention. A screener with strong predictive ability will 

give educators confidence that they are making appropriate decisions about whether an 

individual student is in need of additional instructional supports. 

Likelihood ratios are most appropriate for evaluating a screener’s predictive 

ability because they provide a comparison between students who will fail and students 
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who will pass the end of year test. Thus, likelihood ratios provide a probability of student 

success or failure on an outcome measure given a specific screener result, an arguably 

more meaningful statistic in schools settings for predictive purposes (VanDerHeyden & 

Burns, 2018). Likelihood ratios have been less frequently reported within diagnostic 

accuracy research, but existing studies provide some evidence for the use of universal 

screeners for predictive purposes in school settings. In their meta-analysis of oral reading 

fluency studies, Kilgus et al. (2014) found positive likelihood ratios of 2.82 to 3.22 on 

average across studies, indicating a small increased likelihood of reading risk for positive 

test results, and negative likelihood ratios of .23 to .34, indicating a small decreased 

likelihood of reading risk for negative test results on average across studies.  

In a more recent study, VanDerHeyden et al. (2018) examined the predictive 

accuracy of three commonly used screening measures in one suburban school district in 

the Midwest. Within a sample of 814 third grade students, the researchers examined how 

well each screening measure predicted likelihood of reading risk on a state accountability 

test at the end of the school year. In their study, an oral reading fluency screener failed to 

meet acceptable decision thresholds set by the National Response to Intervention Center 

for sensitivity (minimum acceptable value of .80). Additionally, the positive likelihood 

ratio for oral reading fluency in their study was 1.82, and the negative likelihood ratio 

was .48, indicating that neither positive nor negative test results on the oral reading 

fluency screener resulted in any meaningful change in the likelihood of reading 

difficulties for students who were administered the test.  

Posttest probabilities are also an important indicator of a screener’s predictive 

ability within school-based contexts because they provide a probability of a student’s 
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likelihood of reading difficulties given a certain screening result that is specific to the 

prevalence of reading difficulties in that school context. In the VanDerHeyden et al. 

(2018) study, which had a sample base rate of reading difficulty of 16%, the 

corresponding positive posttest probability was 26% and negative posttest probability 

was 8% for oral reading fluency. In other words, in a context where 16% of students 

failed the end-of-year test, there was a 26% chance that students who failed the screening 

would also fail the end-of-year test, and there was an 8% chance that students who passed 

the screener would fail the end-of-year test. Thus, based on posttest probability 

recommendations (VanDerHeyden, 2013), the researchers determined that in a setting 

with a reasonably low prevalence rate of reading difficulties, oral reading fluency may do 

a poor job of helping to correctly classify students who fail a screening (e.g., are 

classified as at risk).  

A keyword search of the ERIC electronic database using search terms early 

literacy, CBM, curriculum-based measure, DIBELS, aimsweb, easyCBM, letter nam*, 

nonsense word*, word read*, likelihood ratio, and posttest* yielded no results, indicating 

that no studies have currently examined likelihood ratios and resulting posttest 

probabilities for early literacy CBM measures. However, given that likelihood ratios are 

calculated based on sensitivity and specificity values, and that the sensitivity and 

specificity values of early literacy screeners have been found to be on average poorer 

than oral reading fluency, early literacy CBMs are expected to likely also have poorer 

predictive ability than oral reading fluency. 

In the context of Kane’s argument-based approach to test validation, these studies 

provide evidence that early literacy CBM assessments range from inappropriate to 
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acceptable for discriminative purposes within MTSS-R. These studies also provide mixed 

evidence for oral reading fluency CBMs’ acceptability for predictive purposes within 

MTSS-R, depending on the stakes of the instructional decisions being made (e.g., Kilgus 

et al, 2014; VanDerHeyden & Burns, 2018). However, these studies also point to the 

need for research examining early literacy CBMs’ predictive ability. The variability in 

diagnostic accuracy statistics across these studies indicate the need for a systematic 

examination of specific contextual factors that may predictably alter early literacy CBMs 

interpretations and uses across different school contexts. A thorough examination of the 

extent to which correlational and diagnostic accuracy statistics vary depending on these 

contextual factors may result in a more nuanced understanding of how and when early 

literacy CBMs should be used for discriminative and predictive screening purposes 

within diverse school systems. 

Lag Time as a Source of Bias in Diagnostic Accuracy Studies 

Medical diagnostic accuracy research may elucidate how contextual factors might 

impact universal screener diagnostic accuracy in schools, as many parallels can be drawn 

between screening purposes in these two fields. For instance, in the field of medicine, 

screeners are used to classify individuals as having medical conditions in place of more 

intensive, expensive, and potentially invasive diagnostic tests (e.g. Steiner, 2003; Whiting 

et al., 2013). Similarly, in schools reading screeners are used in place of time intensive 

gold standard outcome measures to classify students as having reading difficulties. 

Additionally, screeners are used across settings for both discriminative and predictive 

purposes. Medical and educational screeners with strong discriminative ability are 

especially useful for making systems-level decisions such as how to allocate limited 
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public health or school-based resources, while screeners with strong predictive ability are 

most helpful for making decisions about individuals, such as what the appropriate course 

of treatment is for an individual with a chronic illness or with reading difficulties. 

One important contrast, however, between medical and educational screeners is 

that medical screening assessments are generally intended to provide clinicians accurate 

information about whether or not an individual or group of individuals has a current 

medical problem. This enables the clinician to make informed decisions about whether or 

not to provide treatment or follow up testing. Diagnostic accuracy studies in the medical 

field are intentionally designed to assess screeners for this purpose. Accordingly, 

screening and outcome tests are administered in close temporal proximity to one another, 

a recommendation provided by two widely recognized assessments of the quality of 

diagnostic accuracy studies (QUADRAS-2; STARD Statement). These sources 

recommend minimizing the length of time between administrations of the screener and 

outcome measure within diagnostic accuracy studies because this “lag time” is 

recognized as one potential source of bias which may systematically alter diagnostic 

accuracy statistics from their “true” accuracy.  

The addition of time between two test administrations may result in any number 

of unaccounted for contextual factors unique to the sample being studied contributing to 

systematic changes in individuals’ condition over time. In these cases, individuals who 

were identified as having the condition by the screener may no longer have the condition 

when the outcome measure is administered, and vice versa. These unaccounted for 

changes may make a screener’s diagnostic accuracy statistics less generalizable across 

settings (Bossuyt et al., 2015; Cohen et al., 2016; Whiting et al., 2004, 2011, 2013).  
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The issue of lag time bias presents a unique challenge when evaluating early 

literacy CBMs for use as screeners within MTSS-R, because the theoretical foundation of 

MTSS-R rests on the need to identify students at risk for developing reading difficulties 

in the future so that these students can be provided with early and effective intervention, 

thereby “ruining” these risk predictions (Baker et al., 2010; Gersten et al., 2009). In other 

words, in the context of MTSS-R, supplemental or intensive intervention is provided to 

students identified as at risk for reading difficulties at the start of the school year so that 

the intervention accelerates their rate of growth to such a degree that they no longer have 

reading difficulties at the end of the school year. Thus, MTSS-R systems rely on 

screeners to accurately predict at the beginning of the year whether or not students are 

expected to fail an end-of-year test of reading proficiency; in these contexts, screeners are 

expected to function as prognostic rather than diagnostic tests. 

By extension, education researchers frequently study reading screener diagnostic 

accuracy in contexts where the screener is administered at the beginning of the school 

year and the outcome measure is administered at the end of the school year (e.g., 

Goffreda et al., 2009; Johnson et al., 2009; Petscher et al., 2011, Smolkowski & 

Cummings, 2016). In fact, education researchers have often been encouraged to include a 

gap between the two test administrations when evaluating universal screeners. For 

example, until their most recent call for academic screening tool evaluations, the National 

Center on Intensive Intervention (NCII) required that screening systems have a lag time 

of at least 3 months between administrations of the screener and outcome measure in 

order to be considered for evaluation (NCII, 2018). Further, though many diagnostic 

accuracy studies have examined diagnostic accuracy statistics across multiple time lags, 
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these statistics have often been discussed interchangeably without a discussion of any 

predictable differences in diagnostic accuracy statistics based on lag time. 

To comprehensively evaluate early literacy CBMs for their two primary screening 

purposes, it is critical to determine whether lag time alters diagnostic accuracy statistics 

to such a degree that they cannot be expected to generalize across diverse school settings. 

One study in the field of education has explicitly evaluated the impact of lag time on 

diagnostic accuracy statistics. In their meta-analysis, Kilgus et al. (2014) considered how 

lag times of 0, 3, 6, 9, and over 12 months altered sensitivity, specificity, and likelihood 

ratio statistics across 34 diagnostic accuracy studies of oral reading fluency. They found 

great variation in lag time between studies, with most studies administering their outcome 

measure concurrently, within three months, or within six months of their screening 

measure. They also found that across the board studies demonstrated relatively stable 

sensitivity and specificity levels ranging from .74 to .83 for sensitivity and .71 and .77 for 

specificity across time lags. Positive and negative likelihood ratios were also fairly stable, 

with positive likelihood ratios ranging from 2.82 to 3.22 and negative likelihood ratios 

ranging from 0.23 and 0.34 across lag times. However, Kilgus et al. (2014) also found a 

slight systematic variation in diagnostic accuracy statistics based on lag time; sensitivity 

rates fell below what the authors identified as an acceptable level (< .80) when lag time 

was 9 months or more. Additionally, the cut score for risk associated with optimal 

sensitivity and specificity values varied greatly across studies. The Kilgus et al. (2014) 

did not report AUC values across studies, so an interpretation of whether overall accuracy 

varied across lag times is unavailable.  
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The Impact of Instructional Effectiveness on Lag Time 

The Kilgus et al. (2014) meta-analysis provides initial evidence that lag time may 

impact diagnostic accuracy statistics to a small degree for an oral reading fluency 

screener and may consistently impact the cut-score associated with optimal sensitivity 

and specificity values. These findings demonstrate that diagnostic accuracy values may 

not necessarily be generalizable across school contexts. At the same time, the Kilgus et 

al. (2014) study did not examine the effect of lag time on the diagnostic accuracy of early 

literacy CBMs, suggesting the need for this research.  

Further, the Kilgus et al. (2014) study failed to examine how key contextual 

factors within MTSS-R may differentially alter the impact of lag time on CBM diagnostic 

accuracy. One such critical factor is the effectiveness of instruction being provided to 

students within diagnostic accuracy studies. A primary goal of educators within MTSS-R 

is to systematically alter screening predictions for students who are identified as at risk 

for reading difficulties by providing these students with effective supplemental and 

intensive instruction. As such, it may be important to examine the extent to which the 

instruction being provided in the time between test administrations may impact a 

screener’s diagnostic accuracy. Depending on how effective instruction is for students 

identified at risk, lag time may cause a screener to appear more or less accurate. For 

example, a screener would be expected to appear less accurate in a school setting where 

instruction successfully alters the risk category of many students who were classified as 

“at risk” on the beginning-of year screener than in a setting where instruction fails to alter 

these students’ risk category. The effect would be expected to grow more pronounced as 

lag time increased. To effectively determine the accuracy of an early literacy screener 
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within MTSS-R then, instructional effectiveness is a key contextual factor that must be 

explicitly examined.     

Researchers in the medical world have begun to consider the extent to which 

treatments may alter diagnostic accuracy statistics. In a systematic review of diagnostic 

accuracy evaluations in medicine, Whiting et al. (2013) describe this “treatment paradox” 

as one potential source of diagnostic accuracy bias. The treatment paradox is defined as 

any instance in which a treatment is initiated for an individual based on screening results 

and the outcome test is administered following the treatment (Whiting et al., 2004). In 

their review, Whiting et al. (2013) found only one meta-review which studied the 

treatment paradox; this meta-review found no systematic differences in diagnostic 

accuracy estimates based on whether treatment was provided. However, many studies 

within the review provided no treatment or failed to report whether treatment was 

provided (Rutjes et al., 2006), suggesting the need for more research to examine the 

potential impact of the treatment paradox on diagnostic accuracy statistics.  

Though an ERIC keyword search using search terms diagnostic accuracy, 

sensitivity, specificity, and instruction* produced no studies examining how the treatment 

paradox, in the guise of instruction, may alter the diagnostic accuracy of screeners in 

education, findings from existing literacy intervention studies suggest a need for this 

research. For example, numerous randomized controlled trials demonstrate that a 

majority of at risk students who are provided with systematic and explicit supplemental 

reading interventions accelerate their rate of learning such that they fully or nearly catch 

up to their classmates who were not at risk and did not receive the intervention. These 

students also improve their skills above and beyond at risk students who have not 
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received the supplemental intervention (Gersten, Newman-Gonchar, et al., 2017; Wanzek 

et al., 2016).  

These findings indicate that when provided with effective supplemental 

intervention, many students who would have otherwise failed an end-of-year reading test 

will instead pass the end-of-year test because their reading skills have improved; this 

effect would be expected to grow stronger with increased time spent in supplemental 

intervention. In these cases, lag time may alter diagnostic accuracy statistics most in 

contexts with highly effective supplemental instruction, where a large proportion of at-

risk students would change reading status. 

Base Rate of Reading Difficulties. Posttest probabilities may be especially 

impacted by differences in supplemental instructional effectiveness because they are 

highly dependent on the base rate of reading difficulties in a setting. It is widely 

acknowledged that screeners with similar sensitivity and specificity values will produce 

different posttest probability values based on the sample base rate of reading difficulties 

(e.g., Petscher et al., 2011; Van Norman et al., 2017; VanDerHeyden et al., 2018). 

Regardless of sensitivity and specificity values, as base rate increases in a sample, 

posttest probabilities for positive screening results increase and posttest probabilities for 

negative screening results decrease.  

 Yet researchers have largely regarded a school’s base rate as static across the 

year, which is problematic given that effective MTSS-R systems have been shown to 

successfully alter the proportion of students at risk for reading difficulties across a school 

year. The impact of shifting base rates may be especially important to consider in early 

elementary school when students’ skills are expected to rapidly develop and change 
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(Speece, 2005). In order to make accurate recommendations about the extent to which 

early literacy CBMs are appropriate for both discriminative and predictive purposes in 

early elementary school, it is critical to explicitly study the extent to which supplemental 

instructional effectiveness differentially alters the base rate of reading difficulties, and 

thus posttest probabilities, in these early grades. 

Statement of the Problem 

 Reading screeners are most often used within the context of MTSS-R to (1) 

evaluate the current effectiveness of a school’s reading system and (2) assign students to 

supplemental instruction to prevent future reading difficulties. For evaluating reading 

systems, educators rely on screeners to accurately discriminate between students with and 

without current reading difficulties and make decisions about whether to dedicate limited 

school resources to core versus supplemental or intensive instruction. For assigning 

students to supplemental instruction, educators use screeners to accurately predict 

students’ likelihood of having future reading difficulties. They then assign students who 

are at risk for reading difficulties to supplemental instruction intended to move these 

students from at risk to proficient readers, thereby ruining their screener predictions so 

that “every struggling reader becomes a false positive” (K. Smolkowski, personal 

communication, April 23, 2020).  

Using an argument-based approach to test validation, a comprehensive screener 

evaluation within MTSS-R should prioritize examining specific diagnostic accuracy 

statistics that align with each of these two purposes. For evaluating current systems 

effectiveness, it is essential to consider a screener’s ability to differentiate between 

proportions of students who do and do not have current reading difficulties. For this 
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purpose, then, it is most important to examine sensitivity and specificity values for a 

screener predicting to an outcome measure administered at the same time point. In 

contrast, for assigning students to supplemental intervention it is necessary to consider a 

screener’s ability to accurately predict an individual student’s likelihood of having 

reading difficulties at the end of the school year. In this case, it is most imperative to 

examine a screener’s likelihood ratios and posttest probabilities when predicting to an 

outcome measure administered at the end of the school year.  

In the field of education to date, diagnostic accuracy studies evaluating early 

literacy CBMs have generally focused on examining sensitivity and specificity values 

alone (e.g., Clemens et al., 2011; Johnson et al., 2009; Smolkowski & Cummings, 2016). 

Further, these studies have reported these sensitivity and specificity values across lag 

times between screeners and outcome measures interchangeably, without consideration of 

whether diagnostic accuracy statistics vary based on the amount of time between the two 

test administrations. Further research is needed to determine the extent to which lag time 

matters when evaluating early literacy CBMs as universal screeners in the context of 

MTSS-R, such that findings from existing screening evaluations can be interpreted for 

educator use in a more nuanced manner.    

Additionally, an argument-based approach to screener test validation calls for the 

need to consider instructional context when evaluating screeners for their intended 

purposes within MTSS-R. Many education researchers who have conducted these 

diagnostic accuracy evaluations have conjectured that instruction may impact diagnostic 

accuracy statistics in some way (e.g., Smolkowski & Cummings, 2016; Petscher et al., 

2011; VanDerHeyden, 2013). However, the potential impact of this “treatment paradox” 
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has not yet been explicitly examined in the field of education and warrants further study. 

Instructional effectiveness may impact both the discriminative and predictive ability of a 

reading screener. In particular, the time interval between the screener and outcome 

measure may differentially alter diagnostic accuracy statistics within a study based on the 

effectiveness of the supplemental instruction being provided to at risk students.  

In the field of education, most diagnostic accuracy studies have typically been 

conducted within diverse instructional contexts, and the quality and content of instruction 

received by students who are classified as at risk and not at risk in these studies is 

typically not reported. Widely varying instructional contexts and study populations make 

it difficult for educators to evaluate the relative benefits of screening tools in their own 

instructional contexts for both discriminating between students who currently do and do 

not have reading difficulties, as well as for predicting the likelihood of an individual 

student demonstrating future reading difficulties. Without reporting on the instruction 

that is being provided within a diagnostic accuracy study, it may be difficult to generalize 

study findings for use in contexts with varying instructional effectiveness, as is typically 

seen in schools implementing MTSS-R. 

The Current Study 

Studying diagnostic accuracy statistics within the context of a randomized 

controlled trial may help to illustrate how an early literacy CBM may have varying test 

score interpretations and uses in different instructional settings with increased lag time 

between administrations of screener and outcome measures. Within this context, a clearer 

comparison of the accuracy of the screening tool can be made between settings in which 

all variables are controlled for apart from the instruction being provided, allowing 
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educators to better estimate how useful the tool will be in their own setting for 

discriminative and predictive purposes. 

Using the context of a randomized controlled trial, the current study aims to 

explore how lag time may result in the treatment paradox, and thus alter a reading 

screener’s test score interpretations and uses for discriminative and predictive purposes 

within MTSS-R settings, based on the relative effectiveness of instruction being provided 

to students. Though experts in the medical field have warned that the introduction of an 

effective treatment may systematically alter diagnostic accuracy values (e.g., Cohen et 

al., 2016), this is the first study in the field of education that uses the context of a 

randomized controlled trial to examine the impact of effective instruction on a reading 

screener’s concurrent and predictive correlations, overall accuracy, sensitivity, 

specificity, likelihood ratios, and posttest probability values. 

The present study examines how lag time and instructional effectiveness may 

impact the evaluation of the DIBELS 6th Edition Nonsense Word Fluency measure for 

two primary uses: (1) for discriminating between students who do and do not have 

reading difficulties for evaluating the current effectiveness of a school’s reading system 

and (2) for predicting an individual student’s likelihood of future reading difficulties. The 

current study conducts a series of correlational and diagnostic accuracy analyses to 

examine the discriminative and predictive ability of Nonsense Word Fluency predicting 

to two different outcome measures. These analyses are conducted in the context of 

schools which were randomly assigned to receive either a highly explicit and systematic 

reading intervention within the context of MTSS or to a business-as-usual MTSS 

comparison group.  



 

 

 

32 

Instructional effectiveness was defined in the current study based on school 

assignment to study condition in the original ECRI study. Original study condition was 

deemed an appropriate proxy for instructional effectiveness in the current study based on 

findings from the original ECRI study which demonstrated strong treatment effects for at 

risk (Tier 2) students in the ECRI treatment group on measures of nonsense word 

fluency, oral reading fluency, and untimed real and nonword reading. Specifically, in the 

original ECRI study, from fall to winter of first grade, Tier 2 students in the treatment 

condition outperformed Tier 2 comparison students to a statistically significant degree on 

measures of letter-sound correspondence (NWF-CLS; g = 0.31) and word blending skills 

(NWF-WRC; g = 0.37), and to a marginally significant degree on a measure of oral 

reading fluency (ORF; g = 0.20). From fall to spring of first grade, Tier 2 students in the 

treatment condition outperformed Tier 2 comparison students to a statistically significant 

degree on timed measures of letter-sound correspondence (NWF-CLS; g = 0.39), word 

blending (NWF-WRC; g = 0.41), and oral reading fluency (ORF; g = 0.25), and on 

untimed measures of real word (WRMT Word ID; g = 0.41) and nonword (WRMT Word 

Attack; g = 0.48) reading. Tier 2 students in the treatment condition also outperformed 

Tier 2 students in the comparison condition on a standardized test of total reading (SAT-

10 Total Reading; g = 0.12), word reading (SAT-10 Word Reading; g = 0.06), and 

sentence reading (SAT-10 Sentence Reading; g = 0.01), though these values were not 

statistically significantly different (Fien et al., 2020). Thus, it can be argued that because 

instruction was more effective overall for Tier 2 students in the original ECRI study, all 

students in the ECRI treatment condition in the current study were in an instructional 

context with “higher instructional effectiveness”, while all students in the comparison 
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condition in the current study were in an instructional context with “lower instructional 

effectiveness”. 

Within this context, an argument-based approach to test validation is used to 

compare Nonsense Word Fluency’s test score interpretations and uses for predictive and 

discriminative purposes across lag times and between schools providing more and less 

effective instruction (e.g. ECRI intervention vs. business-as-usual comparison condition) 

to illustrate how provision of evidence-based intervention between administrations of a 

screener and two different outcome measures may alter Nonsense Word Fluency’s 

diagnostic accuracy for these purposes. 

Research Questions 

 This study aims to address four primary research questions: 

Research Question 1: What is the evidence for an early literacy CBM’s test score 

interpretations within the context of MTSS-R? (i.e., What are the concurrent and 

predictive correlations for scores associated with a measure of decoding skills (NWF-

CLS) relative to a test of oral reading fluency (ORF) and a multiple-choice test of overall 

reading achievement (SAT-10) in first grade?  

• Research Question 1a: Does the evidence for an early literacy CBM’s test score 

interpretations vary based on (1) time of year and (2) lag time between test score 

administrations?  

Research Question 2: What is the evidence for an early literacy CBM’s discriminative 

ability within the context of MTSS-R? (i.e., What are the Area Under the Curve (AUC), 

sensitivity, and specificity values for a measure of decoding skills (NWF-CLS) predicting 
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proportions of students with and without reading difficulties on a test of oral reading 

fluency (ORF) and a multiple-choice test of overall reading achievement (SAT-10)?)  

• Research Question 2a: Does the evidence for an early literacy CBM’s 

discriminative ability meaningfully differ based on (1) time of year and (2) lag 

time between test score administrations?  

Research Question 3: What is the evidence for an early literacy CBM’s predictive ability 

within the context of MTSS-R? (i.e., What are the positive and negative likelihood ratios 

and positive and negative posttest probabilities for a measure of decoding skills (NWF-

CLS) predicting individual students’ likelihood of reading difficulties on a test of oral 

reading fluency (ORF) and a multiple-choice test of overall reading achievement (SAT-

10)?  

• Research Question 3a: Does the evidence for an early literacy CBM’s predictive 

ability meaningfully differ based on (1) time of year and (2) lag time between test 

score administrations?  

Research Question 4: Does the evidence for an early literacy CBM’s test score 

interpretations and discriminative and predictive uses within the context of MTSS-R 

meaningfully differ based on a setting’s instructional effectiveness? (i.e., do 

concurrent/predictive correlations, AUCs, sensitivity and specificity values, positive and 

negative likelihood ratios, and positive and negative posttest probabilities meaningfully 

differ between the ECRI treatment condition and the business-as-usual comparison 

condition?)  
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II. METHOD 

 This study analyzed data from a large-scale cluster randomized controlled trial 

aimed at evaluating the efficacy of first grade Enhanced Core Reading Instruction 

(ECRI), a multitiered reading intervention (Fien et al., 2015; Smith et al., 2016). ECRI 

was developed to improve on educators’ use of explicit and systematic instructional 

principles during reading instruction. In the original ECRI study, 44 schools in 9 districts 

in Oregon and Massachusetts were recruited across two waves and participated in the 

study for two years, for a total of 8,808 1st grade students and their teachers who were 

nested within schools. Schools were eligible to participate in the larger ECRI study if 

they (a) used a published core reading program during a 90-minute Tier 1 reading block 

and (b) provided Tier 2 students with 30 minutes of daily small-group instruction.  

Participants 

  The current study analyzed Tier 1 and Tier 2 student data from the second year of 

ECRI implementation for Wave 2 schools, which were comprised of 20 schools in three 

districts in Oregon and eight schools from three districts in Massachusetts. In the original 

study, fall SAT-10 percentile ranks based on normative criteria from the SAT-10 (2007) 

technical manual were used to assign students to tiers of instruction. Students who scored 

between the 10th and 30th percentile were assigned to receive both Tier 1 instruction and 

Tier 2 intervention, while students above the 30th percentile were assigned to receive Tier 

1 instruction alone.  Due to the original study design, data for all students in Wave 1, for 

all students in Year 1 of Wave 2, and for students assigned to Tier 3 instruction in Year 2 

of Wave 2 were unavailable for the current analyses based on the data collected in the 

original ECRI study. In other words, all Wave 1 students, Wave 2 students who 
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participated in the first year of the randomized controlled trial, and Wave 2 students who 

participated in the second year of the randomized controlled trial but who performed 

below the 10th percentile on fall SAT-10 were not included in analyses. Participants in the 

current study included 1600 first grade students assigned to Tier 1 or Tier 2 who attended 

either a treatment (N = 787) or comparison (N = 813) school in the ECRI study. Figure 1 

illustrates the final sample for the current study, including exclusion criteria based on 

wave, study, or tier of instruction. 

 A total of 1103 students were assigned to Tier 1 instruction and included in study 

analyses (545 in treatment; 558 in comparison). An additional 497 students were assigned 

to Tier 2 intervention and included in study analyses (242 in treatment; 255 in 

comparison). For students included in the current study, 2.9% received special education 

services (2.5% in treatment; 3.0% in comparison) and 11.4% were English Learners 

(15.5% in treatment; 7.4% in comparison). Though race/ethnicity data were unavailable 

for students in the current study, data from the National Center for Educational Statistics 

(NCES, 2011) indicated that for schools participating in the original ECRI study, 

approximately 19.8% of students identified as Hispanic (22.8% in treatment; 16.9% in 

comparison), and 3.9% of students identified as African American (4.8% in treatment; 

3.0% in comparison). Approximately half of students (50.3%) were eligible for free or 

reduced-price lunch (54.5% in treatment; 46.0% in comparison). A total of 99 teachers 

participated in the current study. Teachers reported an average of 14.30 years of teaching 

experience (SD = 10.03); total years of teaching experience was similar between 

treatment (M = 13.52, SD = 9.57 years) and comparison (M = 15.14, SD = 10.45 years) 

conditions.  
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Figure 1 

Flow Chart Illustrating Current Study Sample 

Instruction Implementation 

 In both treatment and comparison conditions, teachers provided daily reading 

instruction using a comprehensive core reading program to all students during a 90-

minute core reading block. Students identified as needing Tier 2 supports were 

administered an additional 30 minutes of daily small group reading instruction.  
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Wave 2 sample 
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Wave 2 Year 2 sample

(n = 2,493)
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Tier 2 (n = 255)

Tier 3 students
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Treatment Condition 

 The ECRI multitiered intervention was designed to increase (1) the quality and 

explicitness of instruction provided in Tiers 1 and 2 through the use of lesson maps that 

prioritized critical content from the core reading program, (2) the specificity of 

instructional materials in Tiers 1 and 2 through the use of explicit teaching routines, and 

(3) the alignment between Tier 1 and 2 instruction. The ECRI intervention includes Tier 

1 enhanced core reading instruction, Tier 2 small group instruction, and initial and 

ongoing professional development and coaching. Additionally, the intervention includes 

the use of data-based decision making to inform instructional changes within and across 

tiers of instruction throughout the school year. Students are initially placed in Tier 2 

small group instruction based on initial skill and regrouped as needed throughout the year 

based on data. Thus, the ECRI intervention emphasizes and reinforces key components of 

high-quality MTSS-R, including screening and progress monitoring, evidence-based 

instruction and intervention, ongoing data-based decision making, and ongoing 

professional development and coaching aimed at increasing teachers’ fidelity of 

implementation. Fidelity of implementation observations in treatment classrooms 

indicated that the mean score for the quality of explicit instruction was 0.89 (SD= 0.17). 

Comparison Condition 

 Teachers in the comparison condition provided core instruction through the use of 

an adopted core reading program. These teachers reported that during the core 

instructional block, they spent an average of 52.5 (SD = 31.0) minutes in whole group 

instruction, 34.5 (SD = 26.3) minutes in small group instruction and 27.9 (SD = 15.6) 

minutes in independent work. Tier 2 instruction in comparison schools varied, with 
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teachers reporting that Tier 2 instruction included a variety of published, standardized 

protocol intervention materials and teacher-developed materials. 62% of teachers in the 

comparison condition also indicated that they received some degree of literacy-related 

professional development and coaching.  Fidelity of implementation observations 

indicated that the mean quality of explicit instruction in comparison classrooms was 0.49 

(SD = 0.25). Thus, data suggest that on average, teachers in ECRI classrooms provided 

higher quality explicit instruction targeting foundational early literacy skills. 

Measures 

DIBELS 6th Edition Nonsense Word Fluency (NWF) 

 DIBELS Nonsense Word Fluency (University of Oregon, 2002) is an 

individually-administered, timed fluency measure of students’ decoding skills. Students 

are asked to read from a list of consonant-vowel and consonant-vowel-consonant 

pseudowords for one minute. Students can either read the words sound-by-sound or as 

whole words. Performance on Nonsense Word Fluency results in two scores: Correct 

Letter Sounds, which provides a measure of letter-sound correspondence and is 

calculated by counting the number of correct individual letter sounds the student 

produces, and Words Recoded Correctly, which provides a measure of word blending 

skills and is calculated by counting the number of words the student reads correctly as a 

whole word. Alternate form reliability for Nonsense Word Fluency ranges from .67 to 

.80. Concurrent validity coefficients range from .35 to .55 when comparing Nonsense 

Word Fluency to the readiness subtests of the Woodcock-Johnson Psycho-Educational 

Test (University of Oregon, 2002). Preliminary analyses indicated similar patterns of 

results for both Nonsense Word Fluency- Correct Letter Sounds and Nonsense Word 
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Fluency- Words Recoded Correctly in the current study, with Nonsense Word Fluency- 

Correct Letter Sounds demonstrating slightly stronger diagnostic accuracy across 

outcome measures and lag times. Therefore, for the purpose of the current study results 

are reported for Nonsense Word Fluency- Correct Letter Sounds scores only and 

Nonsense Word Fluency- Correct Letter Sounds is referred to as Nonsense Word 

Fluency. 

DIBELS 6th Edition Oral Reading Fluency (ORF) 

 DIBELS Oral Reading Fluency (University of Oregon, 2002) is an individually-

administered, timed fluency measure of students’ skill with reading connected text 

accurately and fluently. Students are presented with three short passages and asked to 

read each passage aloud for one minute. The final score produced for each passage is the 

number of words read correctly in one minute. A student’s benchmark score is 

determined by taking the median score from the three passages. Oral Reading Fluency 

demonstrates strong alternate-form and test-retest reliability, with coefficients ranging 

from .89 to .94, and .92 to .97, respectively (University of Oregon, 2002). DIBELS Oral 

Reading Fluency has also demonstrated strong predictive validity with reading 

comprehension measures, with coefficients ranging from .65 to .80 (Roehrig et al., 2008; 

Shapiro et al., 2008).  

Stanford Achievement Test Series, 10th Edition (SAT-10) 

 The SAT-10 (Harcourt Educational Measurement, 2002) is a group-administered, 

standardized test of reading achievement. The SAT-10 is untimed, and students are asked 

to answer a series of multiple-choice questions to assess their skills in a variety of 

foundational skills, including recognizing sounds and letters, word reading, and reading 
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comprehension. For the purpose of the current study, trained data collectors administered 

the appropriate versions of the SAT-10 in the fall and spring of 1st grade to all students. 

In the fall, they administered the Stanford Early School Achievement Test (SESAT) 2, 

which is comprised of the Sounds and Letters, Word Reading, and Sentence Reading 

subtests. In the spring, they administered the Primary 1, which is comprised of the Word 

Study Skills, Word Reading, Sentence Reading, and Reading Comprehension subtests. 

Testing time ranged from 110 to 155 minutes across administrations. According to the 

test manual, the internal consistency reliability coefficient is .94 for the SESAT 2 and .97 

for the Primary 1. Total Reading scores for both the SESAT 2 and Primary 1 are 

correlated with the Otis-Lennon School Ability Test, 8th Edition, Total scores (r = .68 and 

.61, respectively). In the present study, the percentile rank associated with the scale score 

for the total reading domain was used for analysis.  

Procedures 

 DIBELS 6th Edition and SAT-10 data were collected by trained data collectors. 

DIBELS 6th Edition Nonsense Word Fluency was administered to all participating 

students in the fall, winter, and spring of 1st grade. DIBELS 6th Edition Oral Reading 

Fluency was administered to all students in the winter and spring of 1st grade, and SAT-

10 was administered to all students in the fall and spring of 1st grade. Data collectors 

participated in three initial days of data collection training in the fall prior to the start of 

data collection and four additional days of training across the winter and spring. Inter-

rater reliability data was collected for individually administered measures by assessment 

coordinators who shadow scored assessors. Average inter-rater reliability was 92.9% 
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(range = 87-110%) for Nonsense Word Fluency and 97.9% (range = 94-100%) for Oral 

Reading Fluency across the study.  

Analyses 

IBM SPSS Statistics 26 was used for data processing and analysis. Preliminary 

analyses were conducted to inspect the data for out of range values and missing data. A 

preliminary analysis of distributional properties of Nonsense Word Fluency (NWF-CLS), 

Oral Reading Fluency (ORF), and SAT-10 scores at each timepoint was conducted to see 

if they met assumptions and were normally distributed.  

Research Question 1 and 1a: Overall Test Score Interpretations 

To answer Research Question 1 and 1a, Pearson’s r bivariate correlations were 

calculated for the overall sample for each combination of screening (i.e., Nonsense Word 

Fluency) and outcome (i.e., Oral Reading Fluency, SAT-10) measure at each time point 

available (i.e., fall, winter, or spring).  

Research Question 1 and 1a Hypotheses. Regarding Research Question 1, it 

was hypothesized that across time points, Nonsense Word Fluency would be highly 

correlated with Oral Reading Fluency and moderately correlated with the SAT-10. 

Regarding Research Question 1a, it was predicted that for the overall sample, concurrent 

correlations would be similar in the fall, winter, and spring, and that predictive 

correlations would be smaller than concurrent correlations across measures, with 

correlations decreasing with increased lag time between test administrations. 

Research Question 2 and 2a: Overall Discriminative Ability 

To answer Research Question 2 and 2a, classification accuracy was examined for 

the overall sample via a series of Receiver Operator Curve (ROC) analyses using 
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methods described by Smolkowski et al. (2015). ROC curves were generated examining 

the diagnostic accuracy of Nonsense Word Fluency for predicting to the 40th normative 

percentile on the SAT-10 in the fall and spring and on Oral Reading Fluency in the winter 

and spring.  

The 40th percentile was used as the cut-off for identifying students who have 

reading difficulties for two reasons. First, performance at or above the 40th percentile is 

frequently used to classify students who are at low risk on state achievement tests 

(American Institutes for Research, 2007) and for federal reporting (e.g., Reading First). 

Any students who fall below the 40th percentile can be deemed at some risk for reading 

difficulties and in need of supplemental reading supports. Finally, because data were not 

available for students assigned to Tier 3 intervention in the original ECRI study, choosing 

a cut-off that corresponded to a lower percentile rank, such as the 20th or 30th percentile, 

in the current study would have resulted in a proportion of students that was too small to 

provide precise diagnostic accuracy estimates for the Nonsense Word Fluency screener 

predicting to each outcome measure.  

From these ROC curves, the Area Under the Curve (AUC) was examined as an 

overall indicator of classification accuracy. An optimal cut score for risk on Nonsense 

Word Fluency was then identified for each combination of screener and outcome measure 

at each time point and across lag times using a commonly applied decision rule in 

education research which prioritizes identifying a majority of students with failing scores 

on the outcome measures. Specifically, a cut score for risk was selected by identifying the 

cut score that corresponds to the highest possible specificity value when sensitivity was 

.90 or higher, an approach recommended by Jenkins et al. (2007) based on the argument 
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that it is more justifiable to provide supplemental intervention supports to students who 

may not need them than to fail to provide supports to students in need.  

For all analyses, AUC, sensitivity and specificity values included 95% confidence 

bounds. Confidence bounds were calculated using the score method corrected for 

continuity (Newcombe, 1998). AUCs, sensitivity, and specificity values were then 

examined across each time point, lag time and outcome measure for non-overlapping 

confidence bounds. Values with non-overlapping confidence bounds were interpreted at 

meaningfully different.  

Research Question 2 and 2a Hypotheses. Regarding Research Question 2, it 

was hypothesized that across time points and lag times, diagnostic accuracy statistics 

associated with Nonsense Word Fluency’s discriminative ability (i.e., AUC, sensitivity 

and specificity) would be inadequate based on the Jenkins et al. (2007) recommendation 

to hold sensitivity at or above .90. Specifically, it was hypothesized that when sensitivity 

was held at .90 or higher, specificity values would fall between .40-.60, as indicated by 

prior research (Clemens et al., 2011; Johnson et al., 2009).  

Regarding Research Question 2a, it was hypothesized that for both Oral Reading 

Fluency and SAT-10, Nonsense Word Fluency’s discriminative ability would 

meaningfully differ across time lags (i.e., fall to spring, winter to spring, spring to 

spring), contrary to findings by Kilgus et al. (2014). This is because in the current 

sample, many students identified as at risk on fall SAT-10 were provided with daily Tier 

2 instruction, and so it was expected that many of these students would transition to the 

population of students without reading difficulties as the year progressed.  Specifically, it 
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was expected that as lag time increased, and when holding sensitivity values at .90 or 

higher, AUC and specificity values would decrease. 

Research Question 3 and 3a: Overall Predictive Ability 

To answer Research Question 3 and 3a, positive and negative likelihood ratios 

and posttest probabilities for each ROC curve analysis were calculated using a Diagnostic 

Test Calculator (Schwartz, 2021), and 95% confidence bounds were calculated for 

positive and negative likelihood ratios using the score method corrected for continuity 

(Newcombe, 1998). Posttest probabilities were calculated for each ROC curve analysis 

using the base rate of reading difficulties (r) specified by the target outcome measure as 

the pretest probability value (i.e., pre-test risk for reading difficulties). Positive and 

negative likelihood ratios were also examined across each time point, lag time and 

outcome measure for non-overlapping confidence bounds. Non-overlapping confidence 

bounds were interpreted at meaningfully different. 

Research Question 3 and 3a Hypotheses. Regarding Research Question 3, it 

was predicted that diagnostic accuracy statistics associated with Nonsense Word 

Fluency’s predictive ability (i.e., likelihood ratios, posttest probabilities) would show 

small increases or decreases in likelihood of having reading difficulties (e.g. 1.50 to 3.00 

for positive likelihood ratios and .20 - .50 for negative likelihood ratios; posttest 

probabilities slightly greater than .10 for negative test results and slightly less than .50 for 

positive test results), and would generally not be acceptable for decision-making in 

schools given similar prior research on oral reading fluency CBMs (e.g. Kilgus et al., 

2014; VanDerHeyden et al., 2018; Van Norman et al., 2017).  
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Regarding Research Question 3a, it was hypothesized that sample-based statistics 

(i.e., posttest probabilities) but not population-based statistics (i.e., likelihood ratios) 

would meaningfully differ across concurrent administration timepoints (i.e., fall to fall, 

winter to winter, spring to spring).  Specifically, it was predicted that as the year 

progressed, positive posttest probabilities would become increasingly weaker and less 

useful for decision making, while negative posttest probabilities would grow increasingly 

stronger and more useful for decision making. This is because it was expected that as the 

number of students with reading difficulties decreased across the school year due to the 

provision of daily Tier 2 intervention, so would the overall base rate of reading 

difficulties. Likelihood ratios were not expected to meaningfully differ for concurrent 

analyses across timepoints or outcome measures because they are thought to be 

minimally impacted by base rate (e.g., Smolkowski & Cummings, 2015). Finally, both 

likelihood ratios and posttest probabilities were expected to meaningfully decrease with 

increased lag time (i.e., spring to spring vs winter to spring vs fall to spring) due to 

expected decreases in AUC and specificity values as lag time increased. 

Research Question 4: Validity by Instructional Effectiveness  

To answer Research Question 4, concurrent and predictive correlations and 

discriminative and predictive diagnostic accuracy values across time points, lag times, 

and outcome measures were calculated and compared for the treatment (i.e., higher 

instructional effectiveness) and comparison (i.e., lower instructional effectiveness) 

conditions, and examined for meaningful differences. ROC curves were visually 

compared, and AUCs, sensitivity and specificity values, and likelihood ratios were 
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examined for overlap in confidence bounds. Estimates that did not overlap with the 

confidence bounds around other estimates were considered meaningfully different.  

Research Question 4 Hypotheses. 

Test Score Interpretations. It was hypothesized that concurrent correlations 

would be similar across treatment and comparison conditions, while fall and winter 

screening correlation coefficients predicting to spring outcome measures would be 

smaller in the treatment (i.e., higher instructional effectiveness) condition than in the 

comparison (i.e., lower instructional effectiveness) condition.  

Test Score Uses: Discriminative Ability. It was hypothesized that diagnostic 

accuracy statistics associated with Nonsense Word Fluency’s discriminative ability (i.e., 

AUCs, sensitivity and specificity values) would appear less accurate and thus less useful 

for decision making in the higher instructional effectiveness condition than in the lower 

instructional effectiveness condition as the lag time between screener and outcome 

measures increased, while concurrent diagnostic accuracy values (i.e., fall to fall, winter 

to winter, spring to spring) would be comparable to one another.  

Test Score Uses: Predictive Ability. It was hypothesized that for concurrent test 

administrations, posttest probabilities would grow progressively less useful for ruling in 

reading difficulties and more useful for ruling out reading difficulties in the higher 

instructional effectiveness condition than the lower instructional effectiveness condition 

as the year progressed. This was because it was expected that there would be a greater 

decrease in base rate of reading difficulties across the year in the treatment condition due 

to higher instructional effectiveness.  
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III. RESULTS 

Table 1 shows descriptive statistics for all screening and outcome measures at 

each time point. For the overall sample, Tier 1 and 2 students grew an average of 31.50 

points from fall to winter, and 46.97 points from fall to spring on Nonsense Word 

Fluency. Students in the overall sample grew an average of 23.78 points from winter to 

spring on Oral Reading Fluency and dropped an average of 2.82 percentage points from 

fall to spring on SAT-10 Total Reading percentile rank.  

In the ECRI condition, Tier 1 and 2 students grew an average of 33.69 points 

from fall to winter, and 49.53 points from fall to spring on Nonsense Word Fluency. 

These students grew an average of 21.21 points on Oral Reading Fluency from winter to 

spring. The average SAT-10 percentile rank for all Tier 1 and 2 students in the ECRI 

condition dropped 3.92 percentage points from fall to spring, with an average percentile 

rank of 59.00 (SD = 26.35) in the fall and 55.08 (SD = 22.98) in the spring.  

In the comparison condition, Tier 1 and 2 students grew an average of 29.57 

points from fall to winter, and 44.00 points from fall to spring on Nonsense Word 

Fluency. These students grew an average of 23.24 points on Oral Reading Fluency from 

winter to spring. The average SAT-10 percentile rank for students in the comparison 

condition dropped 2.25 percentage points from fall to spring, with an average percentile 

rank of 57.69 (SD = 25.97) in the fall and 55.44 (SD = 23.75) in the spring. 

Missing Data 

Potential differences in reading scores for students with missing data were tested 

using missing at random procedure. Fall data from all students in the current study 

sample were analyzed using a Welch’s t’-test for independent observations to determine
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Table 1 

Descriptive Statistics For Screener and Outcome Measures 

  Fall  Winter  Spring 

  Overall Treatment Comparison  Overall Treatment Comparison  Overall Treatment Comparison 

NWF-CLS M 56.00 57.19 55.12  87.50 90.88 84.69  102.97 106.72 99.12 

 (SD) (30.77) (30.81) (30.09)  (37.42) (34.91) (39.24)  (32.08) (30.30) (33.47) 

 N 1499 726 722  1462 707 754  1499 736 763 

ORF M - - -  63.59 65.89 61.64  87.37 87.10 84.88 

 (SD)  - -  (38.37) (36.80) (39.48)  (35.95) (33.94) (37.04) 

 N     1459 706 752  1495 735 760 

SAT-10  M 58.06 59.00 57.69  - - -  55.24 55.08 55.44 

(SD) (26.14) (26.35) (25.97)  - - -  (23.37) (22.98) (23.75) 

 N 1601 787 813      1523 744 778 

 
Note. ECRI = Enhanced Core Reading Instruction; NWF-CLS = Nonsense Word Fluency- Correct Letter Sounds; ORF = Oral 

Reading Fluency; SAT-10 = Stanford Achievement Test, 10th Edition Total Reading Percentile Rank. 
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whether data were missing at random. There were no significant differences on any of the 

fall reading measures for students with and without missing data; Nonsense Word 

Fluency t’(1497) = 0.62, p = .54, 95% CI [-4.35, 8.33], SAT-10 t’(1599), p = .07, 95% CI 

[-13.95, 0.41]. Similarly, fall data for participating students were analyzed using a 

Welch’s t’-test for independent observations to determine whether there were significant 

differences in reading scores between students in the treatment and comparison 

conditions, and revealed that there were no statistically significant differences between 

conditions; Nonsense Word Fluency t’(1496) = -1.38, p = .17, 955 CI [-5.32, 0.92], SAT-

10 t’(1598) = -1.19, p = .24.  

Research Question 1 and 1a: Overall Test Score Interpretations   

To answer Research Question 1, the relations between each screening and 

outcome measure were examined with Pearson’s correlation analyses for the overall 

sample. Correlation analyses assume linearity, normality, homoscedasticity, and 

independence of errors. Scatterplots, histograms, and P-P plots were examined for the 

relation between each pair of screening and outcome measures at each time point. 

Scatterplots, histograms, and P-P plots are displayed in Figures 14-16 in the Appendix.  

 For all combinations of measures and timepoints, scatterplots presented a 

moderate, positive, linear relationship, suggesting that the assumption of linearity was 

tenable. The scatterplot of standardized predicted values also demonstrated that the data 

met the assumption of linearity. The scatterplot of standardized predicted values 

suggested that the data met the assumption of homoscedasticity for some but not all pairs 

of measures. For both Oral Reading Fluency and SAT-10 at fall, winter, and spring 

timepoints, errors frequently appeared to be heteroscedastic, with variance of residuals 
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decreasing as x-axes increased in many cases. This suggests that the assumption of 

homoscedasticity across all measures may not be tenable. Histograms of the standardized 

residuals for each combination of measures and timepoints indicated that the data had 

approximately normally distributed errors; P-P plots provided further evidence of 

normally distributed errors, demonstrated by points that were close to though not always 

entirely on the line.  

Correlations were examined for all measures at all timepoints for the overall 

sample and are displayed in Table 2. The size of each correlation was interpreted based 

on Cohen (1988)’s benchmarks, suggesting that |r| = .1, .3, and. 5 indicate a small, 

medium, and large correlation, respectively. All correlations were significant (p < .01). 

 Correlations between each combination of measures were moderate to strong. As 

predicted, the concurrent correlation was strong between Oral Reading Fluency and 

Nonsense Word Fluency (r = .73) in the winter, while the concurrent correlation was 

smaller but still strong between SAT-10 and Nonsense Word Fluency (r = .64) in the fall. 

Predictive correlations were smaller than concurrent fall and winter correlations for both 

Oral Reading Fluency and SAT-10. Fall and winter Nonsense Word Fluency were both 

strongly correlated with spring Oral Reading Fluency (r = .69 and .68, respectively), 

while fall and winter Nonsense Word Fluency were both moderately correlated with 

spring SAT-10 (r = .46 and .44, respectively). The concurrent spring to spring correlation 

for Nonsense Word Fluency as compared to Oral Reading Fluency was strong and similar 

to concurrent and predictive correlations (r = .66). Unexpectedly, the concurrent spring to 

spring correlation for Nonsense Word Fluency as compared to SAT-10 was smaller than 



 
 

 52 

Table 2 

Overall Correlations Among All Screening and Outcome Measures 
 

 1 2 3 4 5 6 7 

1. Fall NWF-CLS - .64* .74* .76* .57* .69* .46* 

2. Fall SAT-10  - .56* .77* .48* .68* .67* 

3. Winter NWF-CLS   - .73* .72* .68* .44* 

4. Winter ORF    - .62* .90* .63* 

5. Spring NWF-CLS     - .66* .46* 

6. Spring ORF      - .64* 

7. Spring SAT-10       - 

Note. NWF-CLS = Nonsense Word Fluency- Correct Letter Sounds; ORF = Oral Reading Fluency; SAT-10 = Stanford 

Achievement Test, 10th Edition 

*p < .01.  
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fall and winter concurrent correlations and looked more similar to predictive correlations. 

In the spring, Nonsense Word Fluency was moderately correlated with SAT-10 (r = .46). 

Research Question 2 and 2a: Overall Discriminative Ability 

To answer Research Question 2 and 2a, Receiver Operator Curve (ROC) analyses 

were conducted to examine screeners’ ability to accurately differentiate between 

proportions of students with and without reading difficulties on each outcome measure 

for the overall sample. ROC analyses were conducted for fall, winter, and spring 

Nonsense Word Fluency predicting to winter and spring Oral Reading Fluency and fall 

and spring SAT-10. For each ROC analysis, an optimal cut-score for risk was identified 

which prioritized the highest specificity value possible given a sensitivity value of .90 or 

higher (Jenkins et al., 2007). ROC curves for each analysis are depicted in Figures 2-5, 

and AUC values, cut scores, sensitivity, and specificity values are displayed for each 

ROC curve analysis in Tables 3-4. 

Oral Reading Fluency Discriminative Ability 

Overall Accuracy. AUCs for diagnostic accuracy of Nonsense Word Fluency 

with concurrently administered Oral Reading Fluency in the winter (.88, 95% CI [.86, 

.90]) and spring (.89, 95% CI [.87, .91]) were both very good. Overlapping confidence 

intervals suggest that as hypothesized there was no meaningful difference in Nonsense 

Word Fluency’s accuracy for concurrently classifying students on Oral Reading Fluency 

in the winter or spring.  

Also as expected, non-overlapping confidence bounds around AUC values 

indicated that lag time meaningfully altered the accuracy of Nonsense Word Fluency for
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Figure 2 

ROC Curve Comparing Concurrently Administered Winter and Spring Nonsense Word 

Fluency (NWF-CLS) and Oral Reading Fluency (ORF)  

  

 

classifying students appropriately overall, with AUC values dropping as lag time 

increased. The AUC for fall Nonsense Word Fluency predicting spring Oral Reading 

Fluency was .80, 95% CI [.77, .83], indicating a reasonable screener, while the AUC for 

winter Nonsense Word Fluency predicting spring Oral Reading Fluency was .87, 95% CI 

[.84, .89], indicating a very good screener. These findings indicated that fall Nonsense 

Word Fluency was meaningfully poorer at discriminating between students with and 

without reading difficulties on spring Oral Reading Fluency than both concurrent and 

predictive winter and spring Nonsense Word Fluency administrations.  

Sensitivity, Specificity and Cut Scores. As predicted, specificity for Nonsense 

Word Fluency concurrently predicting Oral Reading Fluency in the winter and spring 

when sensitivity was held to at least .90 was similar and unacceptable across timepoints. 
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Figure 3 

ROC Curve Comparing Fall, Winter and Spring Nonsense Word Fluency (NWF-CLS) Predicting Spring Oral Reading Fluency 

(ORF) 
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Table 3  

Discriminative Ability for Nonsense Word Fluency (NWF-CLS) Predicting Oral Reading Fluency (ORF) Risk Status 

NWF-CLS Winter ORF Spring ORF 
 AUC Cut Score Sens Spec AUC Cut Score Sens Spec 

Overall 

Fall .82 
[79, .84] 28.50 .90 

[.85, .94] 
.41 

[.38, .44] 
.80 

[.77, .83] 28.50 .90 
[85, .94] 

.39 
[.36, .42] 

Winter .88 
[.86, .90] 50.50 .90 

[.84, .94] 
.59 

[.56, .62] 
.87 

[.84, .89] 49.50 .91 
[.86, .95] 

.52 
[.49, .55] 

Spring - - - - .89 
[.87, .91] 65.50 .90 

[.85, .94] 
.59 

[.56, .62] 
Treatment Condition 

Fall .83 
[.79, .87] 28.50 .90 

[.78, .96] 
.45 

[.41, .49] 
.81 

[.77, .85] 28.50 .90 
[.81, .96] 

.42 
[.38, .46] 

Winter .87 
[.84, .91] 52.50 .90 

[.78, .96] 
.57 

[.53, .61] 
.87 

[.84, .90] 52.50 .90 
[.81, .96] 

.49 
[.45, .53] 

Spring - - - - .87 
[.84, .90] 71.50 .90 

[.81, .96] 
.68 

[.64, .71] 
Comparison Condition 

Fall .81 
[.77, .84] 28.50 .90 

[.83, .94] 
.38 

[.34, .42] 
.79 

[.75, .82] 28.50 .90 
[.82, .95] 

.37 
[.33, .41] 

Winter .87 
[.84, .90] 49.50 .90 

[.83, .94] 
.62 

[.58, .66] 
.86 

[.83, .89] 47.50 .90 
[.82, .95] 

.53 
[.49, .57] 

 Spring - - - - .86 
[.83, .89] 61.50 .90 

[.83, .95] 
.54 

[.50, .58] 

Note. Values in brackets indicate the 95% Confidence Interval around each diagnostic accuracy value. AUC = Area Under the 

Curve. Sens = Sensitivity. Spec = Specificity.  
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For both winter and spring Nonsense Word Fluency concurrently classifying students on 

winter and spring Oral Reading Fluency, a sensitivity value of .90, 95% CI [.84, .94] 

corresponded to a specificity value of .59, 95% CI [.56, .62]. Optimal cut scores for risk 

were 50.50 and 65.50 for concurrent winter and spring administrations, respectively. 

 Consistent with study hypotheses, specificity values grew poorer as lag time 

increased. For predicting to spring Oral Reading Fluency, fall Nonsense Word Fluency 

had a sensitivity of .90, 95% CI [.85, .94] that corresponded to a specificity value of .39 

[.36, .42], while winter Nonsense Word had a sensitivity value of .91, 95% CI [.86, .95] 

that corresponded to a specificity of .52, 95% CI [.49, .55]. Non-overlapping confidence 

intervals between all three specificity estimates provide additional evidence that 

increasing lag times between screener and outcome administrations resulted in 

meaningfully poorer Nonsense Word Fluency ability to accurately classify students who 

did not have reading difficulties on Oral Reading Fluency. The optimal cut score for risk 

for winter to spring lag time administration was 49.50, indicating that optimal cut-score 

for risk was one point lower when winter Nonsense Word Fluency was predicting future 

versus current reading difficulties. 

SAT-10 Discriminative Ability 

Overall Accuracy. AUCs for Nonsense Word Fluency predicting concurrently 

administered SAT-10 status in the fall and spring were meaningfully different in the fall 

as compared to the spring; the AUC for fall Nonsense Word Fluency predicting fall SAT-

10 status was .81, 95% CI [.79, .83], indicating it was reasonable for decision making, 

while the AUC for spring Nonsense Word Fluency predicting spring SAT-10 status was 

.74, 95% CI [.71, .77], indicating a poor screener.  
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Figure 4 

ROC Curve Comparing Concurrently Administered Fall and Spring Nonsense Word 

Fluency (NWF-CLS) and SAT-10 

  

 

Across lag times, Nonsense Word Fluency was a poor screener for the purpose of 

predicting risk status on SAT-10. The AUC for both fall and winter Nonsense Word 

Fluency predicting spring SAT-10 was .73, 95% CI [.70, .76], and was not meaningfully 

different from the AUC for concurrently administered spring measures. Only the AUC 

for fall Nonsense Word Fluency predicting fall SAT-10 risk status was meaningfully 

different than all other time points and lag times, indicating that at this timepoint alone, 

Nonsense Word Fluency may be adequate for discriminative purposes. 

Sensitivity, Specificity and Cut Scores. Sensitivity and specificity values were 

similarly poor for Nonsense Word Fluency concurrently predicting SAT-10 risk status; 

these values were not meaningfully different between fall and spring administrations. For 
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Figure 5 

ROC Curve Comparing Fall, Winter and Spring Nonsense Word Fluency (NWF-CLS) Predicting Spring SAT-10 
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Table 4 

Discriminative Ability for Nonsense Word Fluency (NWF-CLS) Predicting SAT-10 Risk Status 

NWF-CLS Fall SAT-10 Spring SAT-10 
 AUC Cut Score Sens Spec AUC Cut Score Sens Spec 

Overall 

Fall .81 
[.79, .83] 31.50 .90 

[.87, .93] 
.39 

[.36, .42] 
.73 

[.70, .76] 28.50 .91 
[.88, .93] 

.26 
[.23, .29] 

Winter - - - - .73 
[.70, .76] 50.50 .90 

[.87, .93] 
.31 

[.28, .34] 
Spring - - - - .74 

[.71, .77] 66.50 .90 
[.87, .93] 

.36 
[.33, .39] 

Treatment Condition 

Fall .83 
[.80, .86] 32.50 .90 

[.85, .93] 
.38 

[.34, .42] 
.75 

[.72, .79] 28.50 .91 
[.86, .94] 

.25 
[.21, .29] 

Winter - - - - .74 
[.70, .78] 55.50 .90 

[.85, .94] 
.36 

[.32, .40] 
Spring - - - - .74 

[.70, .78] 74.50 .90 
[.85, .93] 

.41 
[.37, .45] 

Comparison Condition 

Fall .78 
[.75, .81] 31.50 .90 

[.86, .93] 
.37 

[.33, .41] 
.70 

[.66, .74] 28.50 .90 
[.85, .93] 

.24 
[.20, .28] 

Winter - - - - .72 
[.68, .76] 47.50 .90 

[.85, .93] 
.31 

[.27, .35] 
 Spring - - - - .74 

[.71, .78] 60.50 .90 
[.85, .94] 

.30 
[.26, .34] 

Note. Values in brackets indicate the 95% Confidence Interval around each diagnostic accuracy value. AUC = Area Under the 

Curve. Sens = Sensitivity. Spec = Specificity.  
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fall Nonsense Word Fluency predicting fall SAT-10 status, a sensitivity value of .90, 95% 

CI [.87, .93] corresponded to a specificity of .39, 95% CI [.36, .42]. For spring Nonsense 

Word Fluency predicting spring SAT-10 status, a sensitivity value of .90, 95% CI [.87, 

.93] corresponded to a specificity of .36, 95% CI [.33, .39]. Optimal cut scores for risk 

were 31.50 and 66.50 for concurrent fall and spring administrations, respectively. 

As predicted, increased lag time resulted in increasingly poor specificity values. 

Fall Nonsense Word Fluency had a sensitivity of .91, 95% CI [.88, .93] with a specificity 

of .26, 95% CI [.23, .29], while winter Nonsense Word Fluency had a sensitivity of .90, 

95% CI [.87, .93] with a specificity of .31, 95% CI [.28, .34]. With sensitivity held at .90 

or higher, fall but not winter Nonsense Word Fluency demonstrated meaningfully poorer 

specificity than spring Nonsense Word Fluency for predicting spring SAT-10 risk status. 

This finding indicated that increased lag time resulted in meaningfully poorer Nonsense 

Word Fluency ability to accurately predict SAT-10 status. The optimal cut score for risk 

for fall to spring lag time administration was 28.50, indicating that the optimal cut-score 

for risk was three points lower when fall Nonsense Word Fluency was predicting future 

as compared to current reading difficulties. 

Research Question 3 and 3a: Overall Predictive Ability 

To answer Research Question 3 and 3a, positive and negative likelihood ratios 

and positive and negative posttest probabilities were calculated based on the sensitivity 

and specificity values indicated by the optimal cut-score identified for each ROC curve 

for the overall sample. Thus, these calculations were conducted using ROC curve 

analyses for fall, winter, and spring Nonsense Word Fluency predicting to winter and 

spring Oral Reading Fluency and fall and spring SAT-10. Positive and negative 
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likelihood ratios, positive and negative posttest probabilities, and base rates of reading 

difficulties are displayed for each ROC curve analysis in Tables 5-6. 

Oral Reading Fluency Predictive Ability 

 Likelihood Ratios. As hypothesized, positive likelihood ratios were comparable 

across winter and spring concurrent administrations of Nonsense Word Fluency and Oral 

Reading Fluency. Positive likelihood ratios were 2.20, 95% CI [2.02, 2.38], indicating a 

small increase in likelihood of reading difficulties. Thus, Nonsense Word Fluency in the 

current study appeared borderline reasonable for the purpose of low stakes decision 

making based on predictions about individual students’ likelihood of having current 

reading difficulties given an “at risk” screening result. 

 Positive likelihood ratios grew meaningfully poorer with increased lag times. For 

fall Nonsense Word Fluency predicting spring Oral Reading Fluency, the positive 

likelihood ratio was 1.48, 95% CI [1.38, 1.58], while the positive likelihood ratio for 

winter Nonsense Word Fluency predicting spring Oral Reading Fluency was 1.90, 95% 

CI [1.76, 2.04]. Fall, but not winter, Nonsense Word Fluency demonstrated a 

meaningfully poorer positive likelihood ratio than spring Nonsense Word Fluency for 

predicting spring Oral Reading Fluency risk status. Both fall and winter Nonsense Word 

Fluency likelihood ratios corresponded to a minimal increase in likelihood of having 

reading difficulties with a positive test result. These findings indicated that particularly in 

the fall, Nonsense Word Fluency was not an appropriate tool for determining an 

individual student’s likelihood of having reading difficulties on Oral Reading Fluency in 

the future given an “at risk” screening result within the current study context.  
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Negative likelihood ratios for both winter and spring concurrent administrations 

of Nonsense Word Fluency and Oral Reading Fluency were 0.17, 95% CI [.17, .26], 

indicating a moderate decrease in likelihood of reading difficulties. Similarly, negative 

likelihood ratios were .26, 95% CI [.17, .40] for fall Nonsense Word Fluency and .17, 

95% CI [.11, .28] for winter Nonsense Word Fluency predicting spring Oral Reading 

Fluency risk status, indicating small and moderate decreases in likelihood of reading 

difficulties with a negative test result for fall and winter, respectively. These values were 

not meaningfully different than the negative likelihood ratio for spring Nonsense Word 

Fluency predicting spring Oral Reading Fluency risk status, suggesting that across the 

year, Nonsense Word Fluency was a borderline appropriate tool for making low stakes 

decisions based on individual students’ likelihood of having reading difficulties given a 

“not at risk” screening result. 

 Posttest Probabilities and Base Rates. Contrary to study hypotheses, winter and 

spring posttest probabilities were nearly identical for concurrently administered Nonsense 

Word Fluency and Oral Reading Fluency, with positive posttest probabilities of 23% and 

25% for winter and spring calculations, respectively, and negative posttest probabilities 

of 2% for both winter and spring calculations. These similar statistics may be partially 

attributable to similar base rates of reading difficulties according to Oral Reading Fluency 

in both winter (12%) and spring (13%). Based on recommendations by VanDerHeyden 

(2013), when concurrently administered with Oral Reading Fluency in the winter and 

spring, Nonsense Word Fluency was appropriate for ruling out reading difficulties but 

was insufficient for ruling in reading difficulties for the current sample.  
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 Posttest probabilities were also not substantially different across lag times. 

Positive posttest probabilities were 18% for fall Nonsense Word Fluency and 22% for 

winter Nonsense Word Fluency, while negative posttest probabilities were 4% for fall 

Nonsense Word Fluency and 2% for winter Nonsense Word Fluency, again suggesting 

that across lag times, Nonsense Word Fluency may be adequate for ruling out reading 

difficulties and inadequate for ruling in reading difficulties for students in the current 

sample. 

SAT-10 Predictive Ability 

Likelihood Ratios. Similar to Oral Reading Fluency, positive and negative 

likelihood ratios were not meaningfully different for concurrently administered Nonsense 

Word Fluency and SAT-10 at each time point. Positive likelihood ratios were 1.48, 95% 

CI [1.39, 1.56] and 1.41, 95% CI [1.33, 1.49] for fall and spring, respectively, indicating 

no meaningful change in likelihood of having reading difficulties with a positive test 

result. This finding suggested that Nonsense Word Fluency may not be appropriate for 

predicting an individual student’s likelihood of current reading difficulties on SAT-10 

given an “at risk” screening result.  

 As expected, increased lag time resulted in increasingly poor positive likelihood 

ratios for Nonsense Word Fluency predicting spring SAT-10 risk. Positive likelihood 

ratios were 1.23, 95% CI [1.17, 1.29] and 1.30, 95% CI [1.24, 1.37] for fall and winter, 

respectively, indicating no meaningful increase in likelihood of reading difficulties given 

an “at risk” screening result. Non-overlapping confidence intervals indicated that fall, but 

not winter, Nonsense Word Fluency demonstrated a meaningfully poorer positive 

likelihood ratio than spring Nonsense Word Fluency. Overall, these findings indicated  
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Table 5 

Predictive Ability for Nonsense Word Fluency (NWF-CLS) Predicting Oral Reading Fluency (ORF) Risk Status 

NWF-CLS Winter ORF Spring ORF 
 Pos LR Neg LR PT 

Prob+ 
PT 

Prob- 
Base 
Rate 

Pos LR Neg LR PT 
Prob+ 

PT 
Prob- 

Base 
Rate 

Overall 

Fall 
1.53 

[1.43, 1.63] 
0.24 

[0.16, 0.38] 
17% 3% 12% 

1.48 
[1.38, 1.58] 

0.26 
[0.17, 0.40] 

18% 4% 13% 

Winter 
2.20 

[2.02, 2.38] 
0.17 

[0.11, 0.26] 
23% 2% 12% 

1.90 
[1.76, 2.04] 

0.17 
[0.11, 0.28] 

22% 2% 13% 

Spring - - - - - 
2.20 

[2.03, 2.38] 
0.17 

[0.11, 0.26] 
25% 2% 13% 

Treatment Condition 

Fall 
1.64 

[1.46, 1.83] 
0.22 

[0.10, 0.49] 
12% 2% 8% 

1.55 
[1.40, 1.72] 

0.24 
[0.12, 0.47] 

16% 3% 11% 

Winter 
2.09 

[1.85, 2.37] 
0.18 

[0.08, 0.38] 
15% 2% 8% 

1.76 
[1.58, 1.97] 

0.20 
[0.10, 0.40] 

18% 2% 11% 

Spring - - - - - 
2.81 

[2.46, 3.22] 
0.15 

[0.07, 0.29] 
24% 2% 10% 

Comparison Condition 

Fall 
1.45 

[1.33, 1.58] 
0.26 

[0.15, 0.45] 22% 5% 16% 
1.43 

[1.31, 1.56] 
0.27 

[0.15, 0.48] 20% 5% 15% 

Winter 
2.37 

[2.11, 2.66] 
0.16 

[0.09, 0.28] 31% 3% 16% 
1.91 

[1.72, 2.13] 
0.19 

[0.11, 0.33] 25% 3% 15% 

 Spring - - - - - 
1.96 

[1.76, 2.17] 
0.19 

[0.11, 0.32] 26% 3% 15% 
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Note. Values in brackets indicate a 95% Confidence Interval around each diagnostic accuracy value. Pos LR = Positive 

likelihood ratio. Neg LR = Negative likelihood ratio. PT Prob+ = Posttest probability of true reading difficulty for a positive 

test result. PT Prob- = Posttest probability of true reading difficulty for a negative test result. 
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that across timepoints and lag time, Nonsense Word Fluency was not adequate for ruling 

in reading difficulties on spring SAT-10. 

 Negative likelihood ratios were slightly more useful for decision making. 

Negative likelihood ratios were .26, 95% CI [.19, .34] and .28, 95% CI [.21, .37] for 

concurrent fall and spring administrations, respectively, indicating a small decrease in 

likelihood of currently having reading difficulties with a “not at risk” screening result. 

These values were slightly, though not meaningfully, poorer for lag time administrations. 

Negative likelihood ratios were .35, 95% CI [.25, .48] and .32, 95% CI [.24, .43] for fall 

and winter Nonsense Word Fluency predicting spring SAT-10, respectively, indicating a 

small decrease in likelihood of future reading difficulties with a “not at risk” test result. 

Thus, across the year, Nonsense Word Fluency appeared adequate for making low stakes 

decisions based around ruling out future reading difficulties for certain students given a 

“not at risk” screening result.  

Posttest Probabilities and Base Rates. Base rate of reading difficulties on SAT-

10 for the overall sample were similar across fall (33%) and spring (28%). This resulted 

in an expected small decrease in positive posttest probabilities across the year from 42% 

in the fall to 35% in the spring. At both timepoints an “at risk” screening result on 

Nonsense Word Fluency indicated only a slight increase in likelihood of current reading 

difficulties, and not nearly enough of an increase to meet VanDerHeyden (2013)’s 

threshold for a decision to provide intervention. Unexpectedly, negative posttest 

probabilities remained similar across the year, with negative posttest probabilities of 11% 

in the fall and 10% in the spring. These values indicate that in both the fall and the spring, 

Nonsense Word Fluency did an inadequate job of ruling in current reading difficulties 
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Table 6 

Predictive Ability for Nonsense Word Fluency (NWF-CLS) Predicting SAT-10 Risk Status  

NWF-CLS Fall SAT-10 Spring SAT-10 
 Pos LR Neg LR PT 

Prob+ 
PT 

Prob- 
Base 
Rate 

Pos LR Neg LR PT 
Prob+ 

PT 
Prob- 

Base 
Rate 

Overall 

Fall 
1.48 

[1.39, 1.56] 
0.26 

[0.19, 0.34] 
42% 11% 33% 

1.23 
[1.17, 1.29] 

0.35 
[0.25, 0.48] 

35% 13% 30% 

Winter - - - - - 
1.30 

[1.24, 1.37] 
0.32 

[0.24, 0.43] 
36% 12% 30% 

Spring - - - - - 
1.41 

[1.33, 1.49] 
0.28 

[0.21, 0.37] 
35% 10% 28% 

Treatment Condition 

Fall 
1.48 

[1.39, 1.56] 
0.26 

[0.19, 0.34] 
42% 11% 33% 

1.21 
[1.13, 1.30] 

0.36 
[0.23, 0.57] 

33% 13% 29% 

Winter - - - - - 
1.41 

[1.30, 1.52] 
0.28 

[0.18, 0.43] 
37% 10% 29% 

Spring - - - - - 
1.53 

[1.40, 1.66] 
0.24 

[0.16, 0.37] 
37% 9% 28% 

Comparison Condition 

Fall 
1.48 

[1.39, 1.56] 
0.26 

[0.19, 0.34] 42% 11% 33% 
1.18 

[1.11, 1.26] 
0.42 

[0.27, 0.63] 35% 16% 31% 

Winter - - - - - 
1.30 

[1.21, 1.40] 
0.32 

[0.21, 0.49] 36% 12% 30% 

 Spring - - - - - 
1.29 

[1.20, 1.38] 
0.33 

[0.22, 0.51] 35% 12% 29% 
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Note. Values in brackets indicate a 95% Confidence Interval around each diagnostic accuracy value. Pos LR = Positive 

likelihood ratio. Neg LR = Negative likelihood ratio. PT Prob+ = Posttest probability of true reading difficulty for a positive 

test result. PT Prob- = Posttest probability of true reading difficulty for a negative test result. 
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and did a borderline adequate job of ruling out current reading difficulties in the current 

sample. 

The base rates of reading difficulties for fall and winter Nonsense Word Fluency 

predicting spring SAT-10 risk status was 30%, resulting in positive posttest probabilities

of 35% and 36% and negative posttest probabilities of 13% and 12% for fall and winter, 

respectively. Thus, posttest probabilities were similar for predicting current versus future 

reading difficulties, and in both instances, Nonsense Word Fluency was generally 

inadequate for the purpose of ruling in or ruling out reading difficulties.  

Research Question 4: Validity by Instructional Effectiveness  

To answer Research Question 4, Pearson’s r correlations and Receiver Operator 

Curve (ROC) analyses were examined for each combination of screener and outcome 

measures at each time point and lag time separately for the treatment (i.e., higher 

instructional effectiveness) and comparison (i.e., lower instructional effectiveness) 

conditions. Correlation coefficients for the treatment and comparison condition are 

displayed in Tables 7-8. ROC curves comparing treatment and comparison condition 

analyses are depicted in Figures 6-13. AUC values, optimal cut-scores, sensitivity, and 

specificity for each analysis broken down by treatment (ECRI) and comparison (Control) 

condition are displayed in Tables 3-4. Positive and negative likelihood ratios, posttest 

probabilities and base rates are reported by condition in Tables 5-6.  

Test Score Interpretations 

 Concurrent correlations between Nonsense Word Fluency and both outcome 

measures were similar across conditions. For Nonsense Word Fluency and Oral Reading 

Fluency, concurrent winter correlations were .70 in the treatment condition and .75 in the 
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comparison condition, while concurrent spring correlations were .63 in the treatment 

condition and .68 in the comparison condition. For Nonsense Word Fluency and SAT-10, 

concurrent fall correlations were .64 in the treatment condition, and .63 in the comparison 

condition, while concurrent spring correlations were .46 in the treatment condition and 

.47 in the comparison condition. Thus, regardless of instructional effectiveness condition, 

in the current study concurrent fall correlations indicated strong evidence and concurrent 

spring correlations indicated moderate to strong evidence for Nonsense Word Fluency 

scores as indicative of students’ skills in oral reading fluency and overall reading 

achievement. 

 Predictive correlations between Nonsense Word Fluency and Oral Reading 

Fluency demonstrated only minor differences between conditions across lag times, with 

the treatment condition demonstrating slightly smaller winter to spring correlations. Fall 

to spring correlations were .67 in the treatment condition and .70 in the comparison 

condition, while winter to spring correlations were .64 in the treatment condition and .71 

in the comparison condition. Predictive correlations demonstrated small differences in the 

opposite direction on SAT-10, with slightly weaker values in the comparison condition 

than the treatment condition from fall to spring. Fall to spring correlations were .51 in the 

treatment condition and .43 in the comparison condition. Winter to spring correlations 

were .45 in the treatment condition and .43 in the comparison condition. Regardless, 

across instructional effectiveness conditions and lag times, predictive correlations 

provided evidence that Nonsense Word Fluency was strongly indicative of students’ oral 

reading fluency skills and moderately indicative of students’ overall reading 

achievement.
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Table 7 

Treatment Condition Correlations Among All Screening and Outcome Measures 

 1 2 3 4 5 6 7 
1. Fall NWF-CLS - .64** .74** .76** .56** .67** .51** 
2. Fall SAT-10  - .55** .76** .45** .65** .66** 
3. Winter NWF-CLS   - .70** .69** .64** .45** 
4. Winter ORF    - .60** .89** .65** 
5. Spring NWF-CLS     - .63** .46** 
6. Spring ORF      - .63** 
7. Spring SAT-10       - 
**p < .01. 

Table 8 

Control Condition Correlations Among All Screening and Outcome Measures 

 1 2 3 4 5 6 7 
1. Fall NWF-CLS - .63** .74** .77** .59** .70** .43** 
2. Fall SAT-10  - .57** .77** .50** .71** .69** 
3. Winter NWF-CLS   - .75** .74** .71** .43** 
4. Winter ORF    - .63** .91** .62** 
5. Spring NWF-CLS     - .68** .47** 
6. Spring ORF      - .65** 
7. Spring SAT-10       - 
**p < .01.
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Test Score Uses: Discriminative Ability 

 Oral Reading Fluency Overall Accuracy. AUC values for Nonsense Word 

Fluency predicting Oral Reading Fluency risk status were similar across treatment and 

comparison conditions at all time points and lag times, with overlapping confidence 

intervals. For concurrent winter administration, the AUC value was .87 for both 

conditions, with 95% CI [.84, .91] and 95% CI [.84, .90] for treatment and comparison 

conditions, respectively. For concurrent spring administration, the AUC value was .90, 

95% CI [.87, .93] for the treatment condition and .88, 95% CI [.85, .91] for the 

comparison condition. Thus, as expected, AUC values indicated that regardless of 

instructional context, Nonsense Word Fluency was a very good tool for accurately 

discriminating between students with and without current reading difficulties on Oral 

Reading Fluency. 

Unexpectedly, lag time administrations did not result in meaningfully different 

diagnostic accuracy across instructional contexts. AUC values were .81, 95% CI [.77, 

.85] and .79, 95% CI [.75, .82] for fall Nonsense Word Fluency predicting spring Oral 

Reading Fluency risk status in the treatment and comparison conditions, respectively. 

These values demonstrated that across instructional contexts fall Nonsense Word Fluency 

was a reasonable tool for discriminating between students with and without reading 

difficulties on spring Oral Reading Fluency. AUC values were .87, 95% CI [.84, .90] and 

.86, 95% CI [.83, .89] for winter Nonsense Word Fluency predicting spring Oral Reading 

Fluency risk status in the treatment and comparison conditions, respectively, indicating 

that winter Nonsense Word Fluency was a very good tool for discriminating between 

students with and without reading difficulties on spring Oral Reading Fluency.
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Figure 6 

ROC Curve Comparing Treatment vs. Comparison Condition Winter Nonsense Word 

Fluency (NWF-CLS) Predicting Winter Oral Reading Fluency (ORF) Risk Status 

  

Figure 7 

ROC Curve Comparing Treatment vs. Comparison Condition Spring Nonsense Word 

Fluency (NWF-CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status 
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Figure 8 

ROC Curve Comparing Treatment vs. Comparison Condition Fall Nonsense Word 

Fluency (NWF-CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status 

  

 

Figure 9 

ROC Curve Comparing Treatment vs. Comparison Condition Winter Nonsense Word 

Fluency (NWF-CLS) Predicting Spring Oral Reading Fluency (ORF) Risk Status 
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 Oral Reading Fluency Sensitivity, Specificity and Cut Scores. In most cases, 

optimal cut scores were similar, with sensitivity and specificity values with overlapping 

confidence intervals across instructional contexts. For winter Nonsense Word Fluency 

predicting winter Oral Reading Fluency status, in the treatment condition, the optimal cut 

score was 52.50 with a sensitivity of .90, 95% CI [.78, .96] corresponding to a specificity 

of .57, 95% CI [.53, .61], while in the comparison condition, the optimal cut score was 

49.50 with a sensitivity of .90, 95% CI [.83, .94] corresponding to a specificity of .62, 

95% CI [.58, .66]. Thus, in a setting with stronger instructional effectiveness, students 

could earn a score on winter Nonsense Word Fluency up to 3 points higher than in a 

setting with lower instructional effectiveness and still be identified as at risk for reading 

difficulties on winter Oral Reading Fluency. 

Lag time administrations resulted in meaningful differences in diagnostic 

accuracy between instructional contexts in some, but not all, cases. For fall Nonsense 

Word Fluency predicting spring Oral Reading Fluency status, the optimal cut score for 

risk was 28.50 in both conditions. This corresponded to a sensitivity value of .90, 95% CI 

[.81, .96] and specificity value of .42, 95% CI [.38, .46] in the treatment condition, and a 

sensitivity value of .90, 95% CI [.82, .95] with a specificity value of .37, 95% CI [.33, 

.41] in the comparison condition.  

For winter Nonsense Word Fluency predicting spring Oral Reading Fluency 

status, in the treatment condition the optimal cut score for risk was 52.50 with a 

sensitivity value of .90, 95% CI [.81, .96] corresponding to a specificity value of .49, 

95% CI [.45, .53], while in the comparison condition the optimal cut score for risk was 

47.50 with a sensitivity of .90, 95% CI [.81, .95] corresponding to a specificity value of 
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.53, 95% CI [.49, .57]. Thus, though specificity values did not meaningfully vary, 

students in the higher instructional effectiveness condition who received a winter 

Nonsense Word Fluency score up to five points higher than students in the lower 

instructional effectiveness condition were classified as having reading difficulties on 

spring Oral Reading Fluency. 

Concurrent spring diagnostic accuracy for Nonsense Word Fluency predicting 

Oral Reading Fluency indicated widely varying cut scores for risk and stronger 

specificity in the treatment condition when holding sensitivity to .90. Specifically, in the 

treatment condition, the optimal cut score for risk was 71.50 and corresponded to a 

sensitivity value of .90, 95% CI [.81, .96] and specificity value of .68, 95% CI [.64, .71]. 

In contrast, in the comparison condition, the optimal cut score for risk was 61.50 and 

corresponded to a sensitivity value of .90, 95% CI [.83, .95] and specificity value of .54, 

95% CI [.50, .58]. These findings suggested that in the spring, Nonsense Word Fluency 

was stronger at accurately identifying students who were not at risk in a context with 

stronger instructional effectiveness, and that the cut score that represented the optimal 

balance of sensitivity and specificity varied by ten points based on instructional context. 

Students in the more effective instructional setting needed to receive a Nonsense Word 

Fluency score that was 10 points higher than students in the lower instructional 

effectiveness condition to no longer be classified as having reading difficulties on spring 

Oral Reading Fluency. 

SAT-10 Overall Accuracy. Across timepoints and lag times, AUCs were similar 

with overlapping confidence intervals across conditions. For fall Nonsense Word Fluency 

predicting fall SAT-10, AUC values were .83, 95% CI [.80, .86] and .78, 95% CI [.75,  
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Figure 10 

ROC Curve Comparing Treatment vs. Comparison Condition Fall Nonsense Word 

Fluency (NWF-CLS) Predicting Fall SAT-10 Risk Status 

  

Figure 11 

ROC Curve Comparing Treatment vs. Comparison Condition Spring Nonsense Word 

Fluency (NWF-CLS) Predicting Spring SAT-10 Risk Status 
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Figure 12 

ROC Curve Comparing Treatment vs. Comparison Condition Fall Nonsense Word 

Fluency (NWF-CLS) Predicting Spring SAT-10 Risk Status 

  

Figure 13 

ROC Curve Comparing Treatment vs. Comparison Condition Winter Nonsense Word 

Fluency (NWF-CLS) Predicting Spring SAT-10 Risk Status 
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.81] for treatment and comparison conditions, respectively. For spring Nonsense Word 

Fluency predicting spring SAT-10, AUC values were .74, 95% CI [.70, .78] and .74, 95% 

CI [.71, .78] for treatment and comparison conditions, respectively. Thus, as expected,  

concurrent administrations resulted in similar overall diagnostic accuracy regardless of 

instructional context. 

Unexpectedly, predictive diagnostic accuracy followed a similar pattern. Fall 

Nonsense Word Fluency predicting spring SAT-10 had an AUC of .75, 95% CI [.72, .79] 

and .70, 95% CI [.66, .74] in the treatment and comparison conditions, respectively, 

while winter Nonsense Word Fluency predicting spring SAT-10 had an AUC of .74, 95% 

CI [.70, .78] and .72, 95% CI [.68, .76] in the treatment and comparison conditions, 

respectively. Thus, across timepoints and time lags, Nonsense Word Fluency 

demonstrated similarly poor discriminative ability regardless of instructional 

effectiveness. 

SAT-10 Sensitivity, Specificity and Cut Scores. Cut scores, sensitivity, and 

specificity values were similar for concurrent fall administrations between conditions. 

For fall Nonsense Word Fluency predicting fall SAT-10, the optimal cut score for risk in 

the treatment condition was 32.50, which corresponded to a sensitivity value of .90, 95% 

CI [.85, .93] and a specificity value of .38, 95% CI [.34, .42]. In the comparison 

condition, the optimal cut score for risk was 31.50, which corresponded to a sensitivity 

value of .90, 95% CI [.86, .93] and a specificity value of .37, 95% CI [.33, .41]. Thus, 

optimal cut scores for risk varied by just one point between conditions.   

Similar to the findings for Oral Reading Fluency, sensitivity and specificity values 

for fall and winter Nonsense Word Fluency predicting spring SAT-10 were also 



 

 

 

81 

comparable between conditions, but with more variable cut scores. For an optimal cut 

score of 28.50 across conditions, sensitivity values ranged from .90 to .91 with 

overlapping confidence intervals, and specificity values were .25, 95% CI [.21, .29] and 

.24, 95% CI [.20, .28] in the treatment and comparison conditions, respectively for fall 

Nonsense Word Fluency. Optimal cut scores for risk varied for winter Nonsense Word 

Fluency predicting spring SAT-10, with a cut score of 55.50 with a specificity of .36, 

95% CI [.32, .40] for a sensitivity of .90 in the treatment condition and a cut score of 

47.50 with a specificity of .31, 95% CI [.27, .35] for a sensitivity of .90 in the comparison 

condition. These values demonstrated that regardless of condition, Nonsense Word 

Fluency did a similarly poor job of classifying students who were actually not at risk on 

spring SAT-10 when sensitivity was maximized. At the same time, the optimal cut score 

for risk differed by eight points based on instructional context, indicating that in the 

higher instructional effectiveness condition, a substantially higher score on winter 

Nonsense Word Fluency was needed to be classified as having no reading difficulties on 

spring SAT-10 than in the lower instructional effectiveness condition. 

Similar to Oral Reading Fluency results and contrary to study predictions, 

concurrent spring administrations resulted in widely varying cut scores and specificity 

values that were meaningfully stronger in the treatment condition for predicting SAT-10 

performance. In the treatment condition, the optimal cut score for risk was 74.50, which 

corresponded to a sensitivity value of .90, 95% CI [.85, .93] and a specificity value of 

.41, 95% CI [.37, .45]. In the comparison condition, the optimal cut score for risk was 

60.50, which corresponded to a sensitivity value of .90, 95% CI [.85, .94] and a 

specificity value of .30, 95% CI [.26, .34]. These findings demonstrated that in the spring 
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only, Nonsense Word Fluency did a meaningfully better job of accurately classifying 

students who were not at risk in a more effective instructional context. Additionally, 

optimal cut scores for risk varied widely depending on instructional context, with a spring 

Nonsense Word Fluency score that was 14 points higher being necessary to be classified 

as not at risk on spring SAT-10 in the higher instructional effectiveness condition than in 

the lower instructional effectiveness condition. 

Test Score Uses: Predictive Ability 

 Oral Reading Fluency Likelihood Ratios. Similar to discriminative ability 

findings, positive and negative likelihood ratios were not meaningfully different between 

conditions across concurrent winter and predictive winter and spring administrations. For 

fall Nonsense Word Fluency predicting fall Oral Reading Fluency, positive likelihood 

ratios were 2.09, 95% CI [1.85, 2.37] and 2.37, 95% CI [2.11, 2.66] and negative 

likelihood ratios were 0.18, 95% CI [.08, .38] and 0.16, 95% CI [.09, .28] in the treatment 

and comparison conditions, respectively. For fall Nonsense Word Fluency predicting 

spring Oral Reading Fluency risk status, positive likelihood ratios were 1.55, 95% CI 

[1.40, 1.72] and 1.43, 95% CI [1.31, 1.56] in the treatment and comparison conditions, 

respectively, while negative likelihood ratios were 0.24, 95% CI [0.12, 0.47] and 0.27, 

95% CI [0.15, 0.48] in the treatment and comparison conditions, respectively. For winter 

Nonsense Word Fluency predicting spring Oral Reading Fluency risk status, positive 

likelihood ratios were 1.76, 95% CI [1.58, 1.97] and 1.91, 95% CI [1.72, 2.13] for 

treatment and comparison conditions, respectively, while negative likelihood ratios were 

0.20, 95% CI [0.10, .0.40] and 0.19, 95% CI [0.11, 0.33] for treatment and comparison 

conditions, respectively.  
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Again, concurrent spring administration was the one exception, with meaningfully 

stronger positive likelihood ratios in the treatment condition. Positive likelihood ratios 

were 2.81, 95% CI [2.46, 3.22] and 1.96, 95% CI [1.76, 2.17] in the treatment and 

comparison conditions respectively, suggesting that in the treatment condition, a positive 

test result indicated a small increase in likelihood of reading difficulties while in the 

comparison condition a positive test result did not indicate any meaningful change in 

likelihood of having reading difficulties on Oral Reading Fluency. In contrast, negative 

likelihood ratios were similar across conditions, with values of .15, 95% CI [.07, .29] and 

.19, 95% CI [.11, .32] in the treatment and comparison conditions, respectively. Thus, it 

appeared that only in the case of spring Nonsense Word Fluency predicting the likelihood 

of current reading difficulties on Oral Reading Fluency, Nonsense Word Fluency was 

more useful for ruling in reading difficulties in a more effective instructional condition. 

Oral Reading Fluency Posttest Probabilities and Base Rates. Posttest 

probabilities in the current study were similar between instructional contexts for lag time 

administrations. Based on spring base rates of reading difficulties of 11% and 15% on 

Oral Reading Fluency in the treatment and comparison conditions, respectively, fall 

Nonsense Word Fluency produced positive posttest probabilities of 16% and 20%, and 

negative posttest probabilities of 3% and 5% in the treatment and comparison conditions, 

respectively. Similarly, winter Nonsense Word Fluency produced positive posttest 

probabilities of 18% and 25%, and negative posttest probabilities of 2% and 3% in the 

treatment and comparison conditions, respectively.  

Concurrent administrations demonstrated more varied posttest probabilities 

despite similar population-based diagnostic accuracy statistics (i.e., AUCs, sensitivity, 



 

 

 

84 

specificity, likelihood ratios) between instructional contexts. The base rate of reading 

difficulties as defined by winter Oral Reading Fluency was 8% in the treatment condition 

and 16% in the comparison condition. For winter Nonsense Word Fluency predicting 

winter Oral Reading Fluency, positive posttest probabilities were 15% in the treatment 

condition and 31% in the comparison condition, and negative posttest probabilities were 

2% in the treatment condition and 3% in the comparison condition.  

In contrast, despite meaningfully different specificity values between conditions 

for spring Nonsense Word Fluency concurrently predicting spring Oral Reading Fluency 

outcomes, posttest probabilities were nearly the same. Positive posttest probabilities were 

24% and 26% and negative posttest probabilities were 2% and 3% for treatment and 

comparison conditions, respectively. These findings demonstrate that in certain contexts 

posttest probabilities may vary based on instructional context. They also show that 

overall, Nonsense Word Fluency did an adequate job of ruling out but not ruling in 

current and future reading difficulties on Oral Reading Fluency across instructional 

conditions.  

SAT-10 Likelihood Ratios. In most cases there were no meaningful differences 

in likelihood ratios for Nonsense Word Fluency predicting SAT-10 between treatment 

and comparison conditions. For fall Nonsense Word Fluency predicting fall SAT-10 risk 

status, positive likelihood ratios were 1.45, 95% CI [1.34, 1.57] and 1.43, 95% CI [1.32, 

1.54], while negative likelihood ratios were 0.26, 95% CI [0.18, 0.39] and 0.27, 95% CI 

[0.18, 0.40] for treatment and comparison conditions, respectively in the fall. Thus, as 

expected, there were no meaningful differences in likelihood ratios across conditions in 

the fall. 
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Contrary to study hypotheses, there were also no meaningful differences between 

conditions for fall and winter Nonsense Word Fluency predicting spring SAT-10 risk 

status. Positive likelihood ratios were 1.45, 95% CI [1.34, 1.57] and 1.43, 95% CI [1.32, 

1.54] in the fall, and 1.41, 95% CI [1.30, 1.52] and 1.30, 95% CI [1.21, 1.40] in the 

winter for treatment and comparison conditions, respectively. Negative likelihood ratios 

were 0.36, 95% CI [0.23, 0.57] and 0.42, 95% CI [0.27, 0.63] in the fall and 0.28, 95% CI 

[0.18, 0.43] and 0.32, 95% CI [0.21, 0.49] in the winter, for treatment and comparison 

conditions, respectively.  

Similar to Oral Reading Fluency, spring Nonsense Word Fluency predicting 

spring SAT-10 risk status was the exception. In this case, the positive likelihood ratio was 

meaningfully stronger in the treatment condition, suggesting that in the spring only, 

Nonsense Word Fluency did a better job of ruling in reading difficulties than in the 

comparison condition. Specifically, positive likelihood ratios were 1.53, 95% CI [1.40. 

1.66] in the treatment condition as compared to 1.29, 95% CI [1.20, 1.38] in the 

comparison condition. Negative likelihood ratios were similar with overlapping 

confidence intervals across conditions: negative likelihood ratios were 0.24, 95% CI 

[0.16, 0.37] in the treatment condition and 0.33, 95% CI [0.22, 0.51] in the comparison 

condition.  

SAT-10 Posttest Probabilities and Base Rates. In both conditions, the base rate 

of reading difficulties on fall SAT-10 was 33%. This corresponded to similar posttest 

probabilities across conditions for concurrent administrations, as expected. Positive 

posttest probabilities were 42% and 41%, and negative posttest probabilities were 11% 

and 12% for treatment and comparison conditions, respectively for concurrently 
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administered fall assessments. However, contrary to study hypotheses, posttest 

probabilities also did not substantially differ for concurrent spring administrations based 

on instructional context. For concurrent spring administrations, positive posttest 

probabilities were 37% and 35%, and negative posttest probabilities were 9% and 12% 

across treatment and comparison conditions, respectively.  

Posttest probabilities for lag time administrations similarly did not differ 

substantially across conditions. Positive posttest probabilities for predicting Spring SAT-

10 were 33% and 35% for fall Nonsense Word Fluency and 37% and 36% for winter 

Nonsense Word Fluency in treatment and comparison conditions, respectively. Negative 

posttest probabilities were 13% and 16% for fall Nonsense Word Fluency and 10% and 

12% for winter Nonsense Word Fluency in treatment and comparison conditions, 

respectively. Altogether, these statistics indicated that across concurrent and lag time 

administrations, instructional context did not appear to substantially alter the accuracy of 

Nonsense Word Fluency for ruling in or ruling out reading difficulties in individual 

students. Across contexts, in the current study Nonsense Word Fluency proved 

inadequate for ruling in reading difficulties on SAT-10 and was borderline adequate to 

inadequate for ruling out reading difficulties on SAT-10. 
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IV. DISCUSSION 

 As schools increasingly adopt early literacy CBMs as universal screeners within 

their MTSS-R frameworks, an argument-based approach to test validation is essential to 

determine how accurate these screeners are for (a) evaluating the overall effectiveness of 

a reading system (discriminative ability) and (b) predicting the likelihood of individual 

students having future reading difficulties (predictive ability). It is only through expressly 

evaluating a screener for its intended purpose(s) across instructional contexts that 

education researchers will be able to provide sufficiently nuanced recommendations to 

educators around when a screener is appropriate for making instructional decisions 

related to each of these purposes.  

A crucial consideration in screener diagnostic accuracy within MTSS-R is the 

extent to which lag time between administrations of a screener and outcome measure may 

alter the diagnostic accuracy of early literacy CBMs and thus impact educators’ 

interpretations of CBMs’ use for both discriminative and predictive purposes. Medical 

research suggests that a lag between administrations of screeners and outcome measures 

can result in a “treatment paradox”, in which individuals move from the population of 

individuals with the condition to the population of individuals without the condition due 

to the introduction of a “treatment” based on screening results, thus altering diagnostic 

accuracy estimates. The potential impact of the treatment paradox on screeners’ 

diagnostic accuracy is especially important to study in the context of MTSS-R, where 

screeners are intentionally utilized to assign students to intervention based on screening 

results with the goal of improving these students’ reading skills, so they no longer 

demonstrate reading risk prior to administration of an end-of-year outcome measure. It 
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would be expected that within the context of MTSS-R, the length of time between 

administrations of a reading screener and an end-of-year outcome measure would 

meaningfully alter the diagnostic accuracy of early literacy CBMs for predicting risk 

status on an outcome measure due to the strategic provision of supplemental instruction 

to students at risk.  

Further, it would be expected that the effectiveness of the instruction that students 

receive would differentially alter a screener’s test score interpretations and uses across 

lag times within an MTSS-R context. Specifically, poorer overall diagnostic accuracy 

statistics would be expected in contexts with stronger supplemental instructional 

effectiveness, particularly as there is greater lag time between screener and outcome 

measure administrations. The current study explicitly examined differences in an early 

literacy CBM’s test score interpretations and uses across different lag times between 

administrations of a screener in contexts with varying instructional effectiveness.  

The Impact of Lag Time on Overall Test Score Interpretations and Uses  

 The first major purpose of the current study was to evaluate the extent to which an 

early literacy CBM’s test score interpretations and use for discriminative and predictive 

purposes varied based on the length of time between administrations of a screener on two 

different outcome measures—one proximal measure of oral reading fluency and one 

distal measure of overall reading achievement (SAT-10). As defined by Kane (2013)’s 

argument-based approach to test validation, a thorough test evaluation must include 

evidence for both the test’s interpretations and uses.  
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Research Question 1 and 1a: Overall Test Scores Interpretations 

DIBELS 6th Edition Nonsense Word Fluency was moderately to strongly 

associated with measures of reading fluency and overall reading achievement across time 

points, providing evidence for the screener’s test score interpretations. Concurrent fall 

correlations were strongest across outcome measures, while concurrent spring 

correlations and fall and winter predictive correlations were similar and slightly weaker, 

though still moderate to strong, for Nonsense Word Fluency predicting both Oral 

Reading Fluency and SAT-10. These findings suggest that across students’ first grade 

year, educators can confidently interpret student performance on these tests as being 

indicative of their skills in important reading areas. 

 One surprising finding in the current study was that for SAT-10, spring 

concurrent correlations were most similar to predictive correlations rather than fall 

concurrent correlations. Concurrent correlations are typically expected to be stronger than 

predictive correlations given that measures are administered at approximately the same 

timepoint. Yet the current study demonstrates that this may not always be the case. 

Concurrent spring correlations in the current study may have been weaker than expected 

due to the specific skills assessed on the DIBELS 6th Edition Nonsense Word Fluency 

measure. Follow-up distributional analyses indicate that there was a negative skew for 

spring Nonsense Word Fluency with many students obtaining scores of 120+ Correct 

Letter Sounds. Thus, at the end of first grade, there was a ceiling effect on DIBELS 6th 

Edition Nonsense Word Fluency performance such that the test may not have been 

effective at rank ordering student performance in a similar way to SAT-10. This finding 

was likely due to the fact that DIBELS 6th Edition Nonsense Word Fluency is comprised 
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of only vowel-consonant and consonant-vowel-consonant words, a decoding skill that at 

the end of first grade most students have already mastered. Thus, it may be important to 

utilize a decoding screener that includes higher-level decoding skills, such as long vowel 

sounds and r-controlled vowels, at the end of first grade. Updated versions of screeners 

such as DIBELS 8th Edition include these more advanced sound-spelling patterns. 

Research Question 2 and 2a: Overall Discriminative Ability 

 Overall Appropriateness for Discriminative Purposes. In order to successfully 

evaluate the effectiveness of a current reading system within the context of MTSS-R, 

Nonsense Word Fluency must be able to accurately differentiate between students with 

and without reading difficulties, known as the test’s discriminative ability. Nonsense 

Word Fluency demonstrated varying overall diagnostic accuracy for this purpose, with 

AUCs ranging from .80-.89 for Oral Reading Fluency (reasonable to very good overall 

accuracy) and .73-.81 for SAT-10 (poor to reasonable overall accuracy). Given an 

optimal cut score for risk that prioritized sensitivity of .90 or higher, Nonsense Word 

Fluency demonstrated below adequate specificity, with values ranging from .39-.59 for 

Oral Reading Fluency and .26-.39 for SAT-10.  

These findings suggest that overall, when using an early decoding screener to 

evaluate the effectiveness of a school’s reading system, it may not be feasible to expect 

that the screener will accurately classify most students with and without reading 

difficulties. Prioritizing a sensitivity rate of .90 or higher makes intuitive sense, as 

educators generally would prefer to inadvertently provide supplemental intervention to 

students who do not need it than to withhold intervention from students who are in need. 

However, in many school contexts sufficient resources are not available to provide strong 
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intervention supports to all students who are classified as at risk on a universal screener. 

In these cases, intervention supports are often diluted as schools increase the size of small 

groups, decrease the amount of time individual students spend in intervention groups, or 

allocate staff untrained in literacy instruction to teach intervention groups.  

Educators may instead want to consider identifying a risk cut score that strikes a 

more equitable balance between sensitivity and specificity. For example, a cut score 

could be chosen that maximizes specificity given a sensitivity of .80 or higher, or by 

maximizing the combination of sensitivity and specificity, known as the Youden index 

(Smolkowski & Cummings, 2015). The optimal balance will depend on the instructional 

resources available within a school setting and should help to make systems-level 

instructional decisions that maximally serve students who may be at risk for reading 

difficulties while not overtaxing the system. 

These findings should be considered in light of the fact that data were not 

available for students performing below the 10th percentile on fall SAT-10 in the current 

study. These students represent the population of individuals with the most intensive 

reading need, and it is expected that a majority of these students would remain below the 

40th percentile on outcome measures at the end of the school year despite receiving 

effective reading intervention. The impact of the severity of a condition on diagnostic 

accuracy statistics has been widely documented in medical research, where it has been 

shown that in contexts with many individuals with very severe or very mild cases of a 

condition a screener will demonstrate stronger diagnostic accuracy (Leeflang et al., 

2009). Applied to an educational context, it can be assumed that in a setting with many 

students with very low or very high skills, diagnostic accuracy will improve. Because 
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data were not available for the lowest performing students in the current sample, it would 

be expected that the overall diagnostic accuracy of Nonsense Word Fluency would be 

stronger in a typical school setting. 

Variation in Discriminative Ability Based on Lag Time. At the same time, 

these findings must be considered through the lens of an argument-based approach to test 

validation. For the purpose of evaluating the overall effectiveness of a school’s reading 

system, schools and districts rely on screeners to provide an accurate estimation of the 

current prevalence of reading difficulties in a given classroom, grade level, school, or 

district overall to support with instructional planning and to determine whether 

instructional supports are working as intended. Thus, a strategic evaluation of an early 

literacy screener for this purpose will consider the discriminative ability of a fall, winter, 

and spring screener for predicting risk status on a concurrently administered outcome 

measure as the most appropriate evidence for this test score use.   

Findings from the current study demonstrated that lag time may in fact alter 

diagnostic accuracy statistics associated with a screener’s discriminative ability (i.e., 

AUC, sensitivity, and specificity) for predicting reading difficulties on a measure of oral 

reading fluency and an overall measure of reading achievement. Specifically, as lag time 

increased, Nonsense Word Fluency became increasingly poor at accurately identifying 

students who did not have reading difficulties. In other words, with increased time 

between administrations of Nonsense Word Fluency and each outcome measure, 

specificity rates decreased, with meaningful differences in specificity between fall, 

winter, and spring administrations of Nonsense Word Fluency for predicting spring Oral 
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Reading Fluency and between fall and spring administrations of Nonsense Word Fluency 

for predicting spring SAT-10. 

Findings from the current study suggest that if educators’ intention is to use a 

screener for evaluating the current health of their reading system, using diagnostic 

accuracy statistics derived from lag time administrations may inaccurately represent the 

screener’s appropriateness for this purpose. In the field of education, sensitivity and 

specificity values have been assumed to be reasonably static, and thus generalizable, 

across lag times (Kilgus et al., 2014). The current study demonstrates that this assumption 

may not be true in all instances.  

Future Research Directions. Researchers studying literacy screeners have often 

chosen to evaluate the diagnostic accuracy of a screener administered in the fall for 

discriminating between students with and without reading difficulties at the end of the 

school year. In fact, until recently prominent organizations such as the National Center on 

Intensifying Interventions have required that screener evaluations demonstrate a lag time 

of at least three months between administrations of the screener and outcome measures in 

order to be considered for review (NCII, 2018). However, given that in general the 

purpose of using an early literacy screener for discriminative purposes is to identify 

proportions of students who currently do and do not have reading difficulties, it may not 

be necessary or even prudent to design diagnostic accuracy studies with lag time between 

screener and outcome measure administrations. Future research is needed to compare 

diagnostic accuracy statistics for other commonly used early literacy screening measures 

when administered at varying lag times to determine whether this finding can be 

generalized across screening tools. In the meantime, test developers should explicitly 
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report any lag time that occurred between screener and outcome measure administrations 

along with screener diagnostic accuracy statistics and recommended cut-scores for risk. 

Implications for Educators. When examining the current effectiveness of their 

reading system, educators are likely most interested in understanding a screener’s ability 

to accurately discriminate between students with and without current reading difficulties 

so that decisions can be made about the effectiveness of the instruction and intervention 

practices that are being utilized and how to effectively allocate limited school resources. 

For this purpose, examining concurrent fall, winter or spring sensitivity and specificity 

values is likely most relevant for choosing an appropriate screening tool. The current 

study indicates that it may be reasonable to adopt a screener that targets decoding skills 

such as Nonsense Word Fluency in first grade for making low-stakes systems-level 

decisions, particularly if an equitable balance between sensitivity and specificity values is 

prioritized when choosing a cut score for risk.  

Research Question 3 and 3a: Overall Predictive Ability 

Overall Appropriateness for Predictive Purposes. To appropriately assign 

students to supplemental and intensive intervention within MTSS-R, Nonsense Word 

Fluency must also be able to accurately predict an individual student’s likelihood of 

having reading difficulties, described as the test’s predictive ability. Nonsense Word 

Fluency demonstrated poor to reasonable predictive ability for determining a student’s 

likelihood of having reading difficulties given an “at risk” screening result, with positive 

likelihood ratios ranging from 1.48 to 2.20 for Oral Reading Fluency and 1.23 to 1.48 for 

SAT-10. These values corresponded to positive posttest probabilities ranging from 18% 

to 25% for Oral Reading Fluency and 35% to 42% for SAT-10. These findings suggested 
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that given base rates of reading difficulties ranging from 12% to 13% on Oral Reading 

Fluency and 28% to 33% on SAT-10, Nonsense Word Fluency generally was not 

adequate for ruling in reading difficulties.  

Nonsense Word Fluency demonstrated slightly stronger predictive ability for 

predicting a student’s likelihood of reading difficulties given a “not at risk” screening 

result, with negative likelihood ratios ranging from .17 to .26 for Oral Reading Fluency 

and .26 to .35 for SAT-10. These statistics corresponded to negative posttest probabilities 

ranging from 2% to 4% for Oral Reading Fluency and 10% to 13% for SAT-10, 

indicating that given the relatively low base rates of reading difficulties across outcome 

measures, Nonsense Word Fluency was generally appropriate on Oral Reading Fluency 

and borderline adequate on SAT-10 for ruling out reading difficulties. 

Within MTSS-R, screeners are not intended to make high stakes decisions such as 

diagnosing students with reading disabilities, but rather lower stakes decisions such as 

identifying those students who would most benefit from supplemental reading supports. 

Thus overall, findings from the current study support previous evidence suggesting that 

early literacy screeners administered within MTSS-R may not be sufficiently accurate for 

ruling in reading difficulties (e.g., VanDerHeyden, 2018), but may provide valuable 

information to help rule out reading difficulties for students in 1st grade, particularly on a 

reading fluency outcome measure.  

It is also important to note that in the current study, reading difficulties were 

defined by performance at or below the 40th percentile on each outcome measure. Thus, it 

is likely that Nonsense Word Fluency demonstrated a stronger ability to rule out than rule 

in reading difficulties in the current study because students had to demonstrate fairly 
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strong reading skills to be classified as “not at risk” (i.e., perform as well as or better than 

40% of students nationwide). It would be expected that had reading difficulties been re-

defined as performance at or below the 10th or 20th percentile, which the National Center 

on Intensive Intervention identifies as the appropriate criteria for identifying students in 

need of intensive intervention, Nonsense Word Fluency would demonstrate stronger rule 

in ability (NCII, 2020). Further, given that the lowest performing students were not 

included in current study analyses, it would be expected that Nonsense Word Fluency 

would do a better job of ruling in reading difficulties within a typical school setting 

which is representative of students with intensive reading needs. Future research should 

examine Nonsense Word Fluency’s predictive ability across multiple risk criteria and 

student populations to determine the tool’s appropriateness for both ruling out and in 

reading difficulties. 

Variation in Predictive Ability Based on Lag Time. Similar to findings 

regarding Nonsense Word Fluency’s discriminative ability, the extent to which Nonsense 

Word Fluency was appropriate for predictive purposes varied based on lag time between 

test administrations. Thus, study results suggest that it is vital for researchers and 

practitioners alike to use an argument-based approach to test validation to 

comprehensively consider a screener’s appropriateness for their intended purposes within 

MTSS-R. Across outcome measures, positive likelihood ratios in particular grew 

meaningfully poorer as lag time increased in the current study, suggesting that with 

greater lag time between test administrations, Nonsense Word Fluency screening results 

grew less helpful for ruling in reading difficulties.  
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That increased lag time led to poorer predictive ability has important implications, 

given that educators typically rely on screeners within MTSS-R to accurately predict the 

likelihood of individual students developing reading difficulties in the future. For this 

purpose, fall and winter screenings must provide a reasonably accurate prediction 

regarding whether or not a student will perform poorly on an end-of-year outcome 

measure. This helps educators assign supplemental intervention to all students who would 

end up performing below grade-level expectations without it and to withhold intervention 

from students who do not need it to meet end-of year grade level expectations. Findings 

from the current study suggest that it may not be appropriate to rely alone on an early 

literacy screener administered in the fall or winter to provide a highly accurate likelihood 

of end-of-year reading difficulties for an individual student within the context of MTSS-

R, as in many cases the screener will provide an inaccurate prediction.   

At the same time, meaningful differences in likelihood ratios across lag times did 

not necessarily result in major differences in the probability of an individual student 

having current or future reading difficulties within the current study context. For instance, 

in the current study positive posttest probabilities only varied by up to 7% for both Oral 

Reading Fluency (range = 18% to 25%) and SAT-10 (range = 35% to 42%), while 

negative posttest probabilities were even less variable, varying by no more than 2% 

(range = 2% to 4%) for Oral Reading Fluency and 3% (range = 10% to 13%) for SAT-10 

across time points and lag times. Posttest probabilities did not vary drastically enough to 

warrant different instructional decisions (e.g., provide intervention, provide follow-up 

testing, or withhold intervention) based on probabilities obtained at specific time points 

or lag times, as recommended by VanDerHeyden (2013). Thus, given the relatively low 
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base rates of reading difficulties in the current study, meaningful differences in likelihood 

ratios across lag times were not necessarily large enough to recommend any changes to 

how educators use or interpret posttest probabilities based on time of year.  

It was hypothesized that decreasing base rates of reading difficulties from 

beginning to end of year would result in Nonsense Word Fluency becoming a 

progressively stronger tool for ruling out reading difficulties and a poorer tool for ruling 

in reading difficulties. Instead, neither positive nor negative posttest probabilities 

substantially changed across the year in the current study. This may have been due to the 

fact that base rates of reading difficulties did not vary greatly across the school year as 

defined by either outcome measure. Specifically, base rates moved from 12% in the 

winter to 13% in the spring on Oral Reading Fluency, and from 33% in the fall to 28% in 

the spring on SAT-10. This finding demonstrates that in the context of a randomized 

controlled trial where students who were identified as at risk for reading difficulties were 

assigned to daily Tier 2 intervention, base rates of reading difficulties as defined by 

highly-regarded outcome measures may not change dramatically. Thus, base rates may be 

more static across the school year than had been predicted. 

It should be noted that because data were not available for any students who 

performed below the 10th percentile on fall SAT-10, base rates of reading difficulties 

were not high at any time point in the current study. Study findings must be considered in 

light of this limitation. It is possible that had these most at risk readers been included in 

study analyses, base rates of reading difficulties and thus post-test probabilities would 

have varied more. However, given that students with intensive reading needs are typically 

less likely to make substantial reading progress across a school year (Toste et al., 2014), 
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it is likely that though their inclusion would have resulted in an overall increase in base 

rate of reading difficulties, it would likely not have resulted in any substantial change in 

base rate across the year. 

At the same time, it would be expected that in contexts with higher beginning of 

year base rates of reading difficulties, particularly in contexts with many students who are 

reading slightly to moderately behind their grade level peers, provision of supplemental 

intervention to all at risk students would result in greater base rate shifts across the school 

year. In these cases, posttest probabilities may be more profoundly altered, particularly 

for predicting an individual student’s likelihood of current reading difficulties. Future 

research should consider the extent to which base rates of reading difficulties shift across 

the year in typical school settings, and whether posttest probabilities vary more 

drastically in contexts with widely shifting base rates. 

Future Research Directions. The current study demonstrates that particularly in 

settings with low base rates of reading difficulties, an early literacy screener such as 

Nonsense Word Fluency may not provide enough information to accurately predict an 

individual student’s likelihood of having current or future reading difficulties. Previous 

studies with similar findings have thus concluded that schools with reasonably low base 

rates of reading difficulties may be best off eliminating the use of screeners altogether for 

this predictive purpose, instead using prior year end-of-year statewide assessments to 

identify students in need of supplemental intervention (e.g., VanDerHeyden et al, 2018). 

However, these studies have focused on students in later elementary school when 

statewide assessments are typically mandated, with the argument that the additional time 

spent on an assessment that adds little meaningful information may be counterproductive 
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to students’ reading outcomes. Most students in kindergarten through 2nd grade generally 

are not required to take a statewide assessment, however, so this recommendation may be 

less meaningful to early elementary educators.  

Instead, findings from the current study suggest an urgent need for researchers to 

identify screening approaches that improve on the predictive ability of early literacy 

screeners in kindergarten through second grade. Most existing studies have focused on 

improving screeners’ diagnostic accuracy via a “gated” screening approach, where the 

added benefit of additional reading-related screening or progress monitoring data is 

evaluated following an initial “at risk” screen (Catts et al., 2015; Compton et al, 2012; 

Gilbert et al., 2012). Studies that have examined a gated screener’s impact on predictive 

ability have found some promise in the approach, with gated screening resulting in 

statistically significant decreases in false positive screening results (Van Norman et al., 

2017). However, these studies have all targeted upper elementary students and more 

research is needed on the impact of gated screening approaches on the predictive ability 

of screeners in early elementary. 

Researchers have also come to recognize in recent years that reading disabilities 

such as dyslexia are caused by a complex host of variables, such that it is difficult to 

attribute an individual’s reading difficulties to any one particular deficit (Catts & 

Petscher, 2020). Emerging research further indicates that adding highly correlated 

measures to a screening battery may result in smaller reductions in a screener’s false 

positive rate than adding measures that are less correlated (VanNorman et al., 2018). 

Future studies could examine whether the addition of non-reading related screening 

measures associated with reading disabilities, such as a student’s mindset, behavior, or 
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family history of reading disabilities, may improve screeners’ predictive ability for the 

purpose of identifying students’ future likelihood of reading difficulties within MTSS-R 

(Catts & Petscher, 2020; Greulich et al., 2014). Studies could also consider whether 

calculating posttest probabilities using interval likelihood ratios, which partition 

screening scores into more than two categories of risk, adds meaningful information for 

instructional decision-making for certain groups of students as suggested by emerging 

research (Klingbeil et al., 2019). The current study demonstrates that these more nuanced 

approaches to classifying students may be especially important in contexts such as the 

current study, where students demonstrate moderate, but not substantial risk for reading 

difficulties. Research suggests that screeners may be poorest at classifying this group of 

students (Johnson et al., 2009).  

Implications for Educators. Within MTSS-R, educators typically use screening 

scores to assign students to supplemental reading supports based on their risk for future 

reading difficulties. The current study suggests that in a context with a low base rate of 

reading difficulties, a single early literacy screener targeting students’ decoding skills in 

first grade may not be sufficient to provide a highly accurate prediction of an individual 

student’s likelihood of developing future reading difficulties. For example, in the current 

study, the rate of reading difficulties for students classified as “at-risk” on the screener 

ranged from 17 to 42%, indicating that across lag times the screener inaccurately 

predicted that a student would have reading difficulties over half of the time.  

It is also important for educators and parents to recognize that though a screener 

may classify a student as at-risk and in need of supplemental reading supports, an “at 

risk” screening result does not necessarily indicate that a student is going to have ongoing 
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reading difficulties. Similarly, students who are classified as “at risk” are not all equally 

likely to end up with reading difficulties. This is particularly important to consider in the 

context of the widespread adoption of state dyslexia screening legislation that requires 

schools to screen students for dyslexia risk and to notify parents whose children are 

classified as “at risk” on the dyslexia screener (National Center on Improving Literacy, 

2020).  

Educators are responsible for using screening data to both make instructional 

decisions and share individual students’ screening results with parents. Thus, it is critical 

that educators know how to accurately interpret screening scores such that the 

interpretations and decisions made based on these scores are justifiable. In other words, 

actions taken based on screening scores must demonstrate strong consequential validity. 

The current study suggests that while an early literacy CBM provides some helpful 

information for making low-stakes decisions such as assigning a student to supplemental 

intervention, a screening score alone should not be used for higher-stakes decision 

making.  

Educators should make use of this knowledge as they use screeners to support 

their decision-making processes. For instance, when sharing information about a 

student’s dyslexia risk with parents, it may behoove educators to provide a probability of 

the child’s likelihood of having dyslexia currently versus in the future based on screening 

results, given the historical base rate of reading difficulties at the school. Additionally, it 

may be helpful to consider the potential consequences of providing students with 

supplemental or intensive intervention when deciding on necessary supports for students 

classified as “at risk”. For example, educators should discuss the extent to which 
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supplemental or intensive intervention will limit students’ access to core instruction and 

how frequently student data will be utilized to move students between tiers of instruction 

across the school year. In contexts where strategic or intensive intervention supplants 

core instruction or where students are infrequently moved between tiers of instruction, 

instructional decisions may be considered higher-stakes and additional sources of data 

beyond screening results should be utilized. 

To support with the triangulation of multiple data sources in conjunction with 

screening scores for making instructional decisions about individual students, some 

researchers have suggested the adoption of nomograms (Pendergast et al., 2018). A 

nomogram is a practitioner-friendly tool frequently used in medicine and mental health 

for calculating individuals’ likelihood of having a condition given the known population 

base rate of the condition in individuals with similar characteristics such as race/ethnicity 

and age. In education, a nomogram could allow for more nuanced calculations of a 

student’s pretest probability of reading difficulties based on the integration of multiple 

sources of data such as teacher ratings, lesson mastery or progress data, and family 

history of reading difficulties in addition to early literacy screener scores.        

Instructional Effectiveness and Test Score Interpretations and Uses 

 The second major purpose of the current study was to determine the extent to 

which the effectiveness of instruction being provided to students identified as “at risk” on 

an early literacy screener differentially altered the impact of lag time on the screener’s 

test score interpretations (i.e., concurrent and predictive validity) or uses for 

discriminative (i.e., AUCs, sensitivity and specificity) and predictive (i.e., likelihood 

ratios and posttest probabilities) purposes. In the current study, the impact of instructional 
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effectiveness on test score interpretations and uses was isolated by evaluating an early 

literacy screener in the context of a randomized controlled trial where schools were 

randomly assigned to receive either a multi-tiered reading intervention found to be 

effective for improving the reading skills of students identified as at risk for reading 

difficulties, or business-as-usual core and supplemental reading instruction. Thus, it can 

be assumed that any differences in test score interpretations and uses between conditions 

in the current study were due to the increased effectiveness of the intervention being 

provided rather than some other third variable. If instructional effectiveness differentially 

impacts the degree to which a screener’s test score interpretations and uses are affected 

by lag time, researchers and educators may need to consider not only lag time between 

test administrations, but also the specific instructional supports they are providing when 

using an argument-based approach to evaluating the accuracy of a screening tool for their 

intended purposes within the context of MTSS-R. 

Overall Test Score Interpretations and Uses 

 The impact of instructional effectiveness on Nonsense Word Fluency’s test score 

interpretations or uses for discriminative or predictive purposes when predicting either 

Oral Reading Fluency and SAT-10 risk status varied. In most cases, there were no 

meaningful differences in AUCs, sensitivity or specificity values, or likelihood ratios.  

This finding was not altogether unexpected given that in the current study, overall 

instructional effectiveness did not vary substantially between conditions when taking Tier 

1 and 2 students into account. That is, though at-risk students in the treatment condition 

consistently outperformed their at-risk peers in the comparison condition, effect sizes 

were somewhat small in many cases (g = 0.12 for SAT-10 Total Reading; g = 0.25 for 
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ORF) and not significant for SAT-10 (Fien et al., 2020), and mean reading scores did not 

substantially vary between treatment and comparison conditions for the overall sample of 

Tier 1 and 2 students. Thus, it is possible that meaningful differences in correlations and 

diagnostic accuracy were not observed between treatment and comparison conditions in 

the current study because the effectiveness of instruction students received was not 

different enough to result in substantial changes to these statistics. In both conditions, all 

students received an average of 90 minutes of Tier I instruction using a core reading 

program, while at-risk students received an additional 30 minutes of daily Tier II 

intervention; thus, the amount of reading instruction all students received was aligned 

with recommended MTSS-R practices (Gersten et al., 2009).  

Follow-up descriptive analyses of the data affirm this hypothesis: for the sample 

of Tier 1 and 2 students in the current study, the percent of students who changed risk 

status from beginning to end of year (e.g., moved from the population of students with 

“reading difficulties” to “no reading difficulties” or vice versa) was not substantially 

different across conditions. For example, 66.0% versus 59.8% of students changed from 

“reading difficulties” to “no reading difficulties” status, while 11.4% versus 7.5% of 

students changed from “no reading difficulties” to “reading difficulties” status on Oral 

Reading Fluency from winter to spring for treatment and comparison conditions, 

respectively. Similarly, 45.3% versus 46.3% of students changed from “reading 

difficulties” to “no reading difficulties” status, while 24.7% versus 26.7% of students 

changed from “no reading difficulties” to “reading difficulties” status from fall to spring 

for treatment and comparison conditions, respectively on SAT-10.  
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Future Research Directions. In practice, MTSS-R is implemented with a great 

degree of variability across schools and districts (Berkeley et al., 2020; Gersten, Jayanti, 

et al., 2017). Larger differences in the percentage of students who change reading status 

across the year would be expected among MTSS-R settings with more widely varying 

instructional effectiveness. Thus, the difference in instructional effectiveness between the 

two conditions in the current study may not be sufficiently representative of the actual 

variance in instructional effectiveness demonstrated by schools outside of the context of a 

research study and findings from the current study may not necessarily generalize across 

all instructional contexts.  

Future research could use simulation methodology to systematically examine how 

discriminative and predictive diagnostic accuracy vary across contexts with different 

degrees of instructional effectiveness. Because lag time is expected to impact diagnostic 

accuracy most in contexts with more drastic changes in student rank order across 

administrations of screeners and outcome measures, it would be predicted that diagnostic 

accuracy would look worst in settings in which core instruction is relatively ineffective 

and supplemental intervention is relatively effective. Simulation studies could 

systematically test this hypothesis by evaluating a known screening assessment across 

datasets that mimic these different contexts. Should this hypothesis be borne out, 

researchers may need to consider the impact of instructional context when designing 

screener evaluation studies and report on this contextual information when presenting 

diagnostic accuracy findings.  

It is also important to note that there are multiple ways of defining “instructional 

effectiveness” and that varying definitions may result in different degrees of impact on a 
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screener’s diagnostic accuracy. In the current study, high instructional effectiveness was 

defined by enrollment in the treatment condition, in which an intervention was provided 

that on average improved reading outcomes for at-risk students above and beyond 

business-as-usual Tier II interventions. However instructional effectiveness varied 

somewhat from classroom to classroom within treatment and comparison conditions. 

Quality of explicit instruction data collected in all classrooms in the original ECRI study 

indicated that though the mean quality of explicit instruction score was significantly 

higher in the treatment condition (0.89) than in the comparison condition (0.49), quality 

of explicit instruction scores varied within each condition, with standard deviations of 

0.17 and 0.25 in the treatment and comparison conditions, respectively.  

Future research could examine the extent to which a screener’s diagnostic 

accuracy varies by classroom-level instructional effectiveness. For instance, diagnostic 

accuracy statistics could be compared for classrooms demonstrating high versus moderate 

versus low instructional effectiveness as indicated by implementation fidelity data across 

the school year, regardless of experimental condition. Meaningful differences in screener 

diagnostic accuracy across classrooms may suggest the need for researchers and 

educators alike to place greater import on the impact that teacher instruction has on a 

student’s likelihood of future reading difficulties.  

Meaningful Differences Between Conditions 

In the current study, meaningful differences were observed in optimal cut-scores 

for risk for several timepoints and lag times. Specifically, cut-scores for winter and spring 

Nonsense Word Fluency predicting winter and spring Oral Reading Fluency varied 

between conditions by 3 to 10 correct letter sounds, while cut-scores for winter and 
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spring Nonsense Word Fluency predicting spring SAT-10 varied between conditions by 8 

to 14 correct letter sounds. In other words, across these time points and lag times, 

students in the treatment condition needed to demonstrate stronger performance on 

Nonsense Word Fluency in order to be classified as not at-risk on Oral Reading Fluency 

or SAT-10 than students in the comparison condition. 

Additionally, the optimal cut point for spring Nonsense Word Fluency predicting 

both spring Oral Reading Fluency and spring SAT-10 resulted in meaningfully stronger 

specificity values and likelihood ratios in the treatment condition than the comparison 

condition, though no meaningful differences in AUC values were observed. This 

indicated that Nonsense Word Fluency appeared to be a stronger tool for both 

discriminative and predictive purposes in a context with higher instructional effectiveness 

when predicting concurrent spring risk status. Further, when an optimal cut score was 

chosen that prioritized maintaining sensitivity at or above .90, cut scores varied by 10 or 

more points across conditions, with optimal cut scores of 61.50 and 71.50 for Nonsense 

Word Fluency predicting Oral Reading Fluency in treatment and comparison conditions, 

respectively, and optimal cut scores of 60.50 and 74.50 for Nonsense Word Fluency 

predicting SAT-10 in treatment and comparison conditions, respectively.  

These findings ran counter to two of the current study’s hypotheses: (1) that 

diagnostic accuracy differences between conditions would be greater as lag time 

increased, and (2) that when diagnostic accuracy statistics were meaningfully different 

between conditions, they would appear stronger in the comparison condition. One 

explanation for these counterintuitive findings is that the supplemental intervention 

provided to students in the high instructional effectiveness (ECRI treatment) condition 
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may have placed more of an emphasis on teaching students how to generalize decoding 

skills to reading fluency and reading comprehension skills. For example, within a typical 

Tier 2 supplemental ECRI lesson, students not only receive instruction on sound-spelling 

patterns and word blending, but also gain practice with reading connected decodable 

texts. Thus, students in the current study who responded well to the ECRI Tier 2 

intervention may have simultaneously built skills across foundational areas of decoding, 

reading fluency, and comprehension, resulting in similar rank ordering of student skills 

on both the screener and both outcome measures.  

In contrast, it is possible that students in the comparison condition received 

instruction that was not as strategic about integrating foundational skills, and so 

improvements in decoding skills may not have led to substantial improvements in reading 

fluency and comprehension. If this were the case, Nonsense Word Fluency would do a 

poorer job of classifying students as “not at risk” in the comparison condition because in 

this condition, Nonsense Word Fluency scores would be less closely correlated with Oral 

Reading Fluency and SAT-10 scores for students who had received Tier 2 intervention. 

Information on the specific content taught within Tier 2 intervention in the comparison 

condition was not available, however teachers reported that they used a variety of 

published, standardized protocol intervention materials and teacher-developed materials 

to teach these groups.     

At the same time, despite differences in cut-scores and specificity rates it is 

important to note that ROC curves were visually similar and overall AUCs (as well as 

sensitivity and specificity rates in most cases) were nearly identical for all combinations 

of screeners and outcome measures across conditions. Thus, it is possible that these 
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varying cut-scores and non-overlapping specificity values may not actually have been the 

result of meaningful differences in screener accuracy between conditions, but rather the 

result of a jagged ROC curve due to the small sample size which made specificity values 

look particularly different at the cut score that corresponded to a sensitivity value of .90 

or higher. As ROC analyses are conducted on progressively larger sample sizes, ROC 

curves grow increasingly smooth, and less jagged. Though the sample size for each ROC 

analysis in the current study was between 700 and 800, it was below the ideal sample size 

for a test with specificity rates as low as Nonsense Word Fluency demonstrated in the 

current study for producing highly precise estimates (Malhotra & Indrayan, 2010), and so 

sensitivity and specificity estimates for specific cut scores were less precise than would 

be ideal.  

Researchers and practitioners should be sensitive to the fact that differences in 

sensitivity and specificity rates can occur for measures with similar overall accuracy, 

particularly when ROC analyses are conducted on smaller samples. This may result in 

sensitivity and specificity values that seem less than ideal for certain risk cut scores. It is 

important to look at the entirety of a ROC curve when choosing an ideal cut score based 

on an optimal balance of sensitivity and specificity for a specific screener in a given 

setting (Smolkowski & Cummings, 2015). More diagnostic accuracy research is needed 

to determine whether this finding is replicable in other instructional contexts and with 

other early literacy screeners.   

This finding also has implications for how researchers and educators interpret 

screeners’ diagnostic accuracy given a larger phenomenon which has appeared in recent 

decades across reading intervention studies —a general improvement in standard 
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supplemental reading instructional practices which has resulted in novel supplemental 

reading interventions demonstrating smaller overall effect sizes across time (Bakker et 

al., 2019). As the quality of supplemental reading instruction improves nationwide, it is 

particularly important to consider the instructional environment in which optimal cut 

scores were originally derived for a screening measure when deciding on an appropriate 

screening tool, and how much that context differs from current instructional practices.  

 Implications for Educators. Findings from the current study suggest that small 

differences in instructional effectiveness may meaningfully impact an early literacy 

screener’s test score interpretations and uses for discriminative or predictive purposes, 

most notably the optimal cut-scores for risk. Thus, educators should take caution in 

relying on established cut-scores and diagnostic accuracy statistics of published screeners 

when adopting a tool for their school setting. For example, in the current study cut-scores 

for risk varied substantially from the original DIBELS 6th Edition benchmark cut-scores: 

in the fall, the established DIBELS 6th cut-score was 25 correct letter sounds, or 3.5 to 7.5 

fewer correct letter sounds than the optimal cut-score for treatment and comparison 

conditions in the current study when predicting to either outcome measure. In the winter, 

the established cut-score was 54, while in the spring it was 71 correct letter sounds. At 

both of these timepoints, the established DIBELS 6th Edition cut-scores also varied from 

the optimal cut-scores for risk identified across conditions and outcome measures, from 

as little as a decrease of .5 correct letter sounds for spring Nonsense Word Fluency 

predicting spring Oral Reading Fluency to as much as an increase of 10.5 correct letter 

sounds for spring Nonsense Word Fluency predicting spring SAT-10. Clearly, it may be 

prudent to carefully consider the context in which established cut-scores are derived, 
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including the normative sample, the instructional setting, and the chosen definition of 

reading risk, and to identify screener cut-scores that most closely align with their own 

instructional context and purposes for instructional decision making.  

 At the same time, despite large differences in optimal cut-scores for risk and some 

meaningful differences in specificity between conditions, post-test probabilities remained 

fairly similar across conditions, likely due in part to similar base rates of reading 

difficulties across instructional contexts in most cases. This finding suggests that for the 

purpose of predicting an individual student’s likelihood of reading difficulties, 

differences in a screener’s sensitivity, specificity, and optimal cut score may not 

meaningfully alter post-test probabilities as much as the existing base rate of reading 

difficulties in their context. In other words, educators who are using a screener to predict 

an individual student’s likelihood of developing reading difficulties may find that 

information about the proportion of students in their school who have historically had 

reading difficulties may more meaningfully change an individual’s risk prediction that 

differences in sensitivity, specificity, or cut scores. 

 In fact, this phenomenon was observed in the current study. For example, despite 

meaningful differences in specificity and likelihood ratios across certain time points, lag 

times, and conditions for Nonsense Word Fluency predicting Oral Reading Fluency 

performance, positive post-test probabilities never varied by more than 8% (range = 17% 

to 25%), and negative post-test probabilities never varied by more than 2% (range = 2% 

to 4%) for the overall sample, where base rates of reading difficulties remained between 

12 and 13%. In all cases, differences in post-test probabilities never warranted changes in 

decision making based on VanDerHeyden (2013)’s recommendations.  
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 In contrast, when comparing diagnostic accuracy of Nonsense Word Fluency 

predicting Oral Reading Fluency performance versus SAT-10 performance in cases 

where specificity values and likelihood ratios were comparable but base rate varied 

widely, much larger differences in posttest probabilities were observed. For example, fall 

Nonsense Word Fluency predicting winter Oral Reading Fluency resulted in a specificity 

value of .41, 95% CI [.38, .44] and positive and negative likelihood ratios of 1.53, 95% 

CI [1.43, 1.63] and 0.24, 95% CI [0.16, 0.38], respectively, while fall Nonsense Word 

Fluency predicting fall SAT-10 resulted in a specificity value of .39, 95% CI [.36, .42] 

and positive and negative likelihood ratios of 1.48, 95% CI [1.39, 1.56] and 0.26, 95% CI 

[0.19, 0.34], respectively. Despite similar population-based statistics, positive and 

negative post-test probabilities were substantially different, with positive post-test 

probabilities of 17% and 42% and negative post-test probabilities of 3% and 11% for 

Oral Reading Fluency and SAT-10, respectively. These values corresponded to varying 

base rates of reading difficulties of 12% for Oral Reading Fluency and 33% for SAT-10.  

 In other words, varying base rates of reading difficulties contributed to vastly 

different likelihoods of student reading difficulty which would result in different 

instructional decisions based on VanDerHeyden (2013)’s recommendations. It can be 

inferred that using an early literacy screener with reasonable overall accuracy in a setting 

with low base rates of reading difficulties, as with the example of Oral Reading Fluency, 

will result in “at risk” screenings providing little useful information, whereas “not at risk” 

screenings will be quite useful for ruling out reading difficulties and identifying students 

who will become proficient readers without supplemental intervention. In contrast, the 

same screener used in a setting with a larger base rate of reading difficulties, as in the 
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case with SAT-10, will result in “at risk” screenings that provide more useful information 

for ruling in reading difficulties and identifying students who most likely need 

supplemental intervention to prevent reading difficulties, while a “not at risk” screening 

may not alone provide useful information for decision-making.  

 These findings indicate that educators should consider historical base rates of 

reading difficulties when determining how best to utilize early literacy screeners for 

making decisions about individual students in their setting. For instance, when using a 

screener in a setting with historically low base rates of reading difficulties, educators may 

need to prioritize allocating resources to collecting additional information on students 

who are classified as “at risk”. Depending on the number of students who fall into this 

category, this may include assigning students to short-term supplemental intervention, 

follow-up assessment, or simply monitoring student progress over time.  

 In contrast, when using an early literacy screener in a setting with historically 

high base rates of reading difficulties, it is likely that many students will need evidence-

based supplemental reading supports to ensure end-of-year reading proficiency, including 

some students who have been classified as “not at risk”. In this case, it will be crucial that 

educators continue to closely monitor and provide high quality instructional supports 

even to students who were classified as “not at risk”. Thus, a focus on high quality and 

differentiated core instruction will be essential. For example, in addition to providing 

supplemental or intensive intervention to those students who have been classified as “at 

risk”, educators in this context should prioritize the use of explicit and systematic 

instruction in conjunction with the collection and use of in-program mastery data at Tier 

1. This will enable them to closely monitor the progress of and provide differentiated 
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supports to students who were classified as “not at risk” but who may still be in danger of 

performing below end-of-year grade-level expectations.  

 These findings should be interpreted cautiously given that the degree of 

instructional effectiveness in the current study is likely not representative of many 

school-based contexts. In general, it would be beneficial for educators to consider 

contextual factors such as the effectiveness of instruction in their setting as well as 

historical base rates of reading difficulties when determining how best to utilize early 

literacy screeners for instructional decision making.  

Study Limitations 

 Findings from the current study should be viewed in light of several limitations. 

First, because analyses were conducted using an existing dataset, it was not possible to 

conduct an examination of diagnostic accuracy statistics for certain timepoints. For 

example, an analysis of beginning of year Oral Reading Fluency data may have allowed 

for a better understanding of how shifting base rates of reading difficulties alter screener 

diagnostic accuracy across the year given that Oral Reading Fluency was more proximal 

to the reading instruction being provided. However, these data were not collected in the 

original ECRI study.  

Similarly, the subtests that comprised the SAT-10 Total Reading score differed 

from the beginning to end of year, and so differences in diagnostic accuracy on SAT-10 

may have partially been attributed to differences in the specific reading-related skills that 

were assessed at each time point. However, the subtests that contributed to the Total 

Reading score at each timepoint were specifically developed to be grade-appropriate and 

aligned with state and national standards (Pearson Education, 2018). Thus, though 
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different subtests were used at each time point, it can be assumed that fall and spring 

Total Reading scores were both intended to provide an accurate measure of overall 

reading achievement at their respective timepoints.   

Further, in the original ECRI study, students who fell below the 10th percentile 

were excluded from the analytic sample; thus, screening and outcome data were 

unavailable for those students most at risk for reading difficulties. This restricted sample 

likely made Nonsense Word Fluency appear less accurate for both discriminative and 

predictive purposes than would be the case had these lower performing students been 

included in current study analyses. Thus, findings from the current study should be 

interpreted with this limitation in mind. Nevertheless, differences found in the current 

study across lag times and between instructional conditions would be expected to hold 

even with the addition of highly at-risk students, given the high threshold chosen for 

defining reading risk (i.e., below the 40th percentile). 

Second, overall instructional effectiveness did not vary drastically across 

conditions in the current study for the overall sample including Tier 1 and 2 students, and 

as such meaningful differences in diagnostic accuracy statistics were not as large as 

expected. Larger differences in both a screener’s discriminative and predictive ability 

would be expected in contexts where instructional effectiveness varies more greatly, as is 

commonly the case in school settings. Future studies could systematically vary 

instructional effectiveness at both Tier 1 and 2 to determine whether diagnostic accuracy 

statistics meaningfully change with increased lag time between administrations of 

screener and outcome measures. However, findings from the current study indicate that 

even small differences in overall instructional effectiveness may substantially alter 
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optimal cut-scores for risk and in some cases the discriminative and predictive ability of 

an early literacy screener.  

Third, as previously mentioned, though sample sizes for each ROC analysis in the 

current study were larger than many existing diagnostic accuracy studies (e.g., Hintze et 

al., 2003; Nelson, 2008), a larger sample size was needed to estimate overall diagnostic 

accuracy with absolute precision, and in some cases confidence bounds around estimates 

were quite large. Future research should replicate this study’s approach with a sample 

size in the thousands—for example, in their evaluation of the DIBELS 6th Edition 

measures, Smolkowski and Cummings (2015) were able to estimate confidence intervals 

of +.02 around decision thresholds and +.01 for AUC values with a sample size of 

approximately 4,000 students. 

Conclusion 

The current study demonstrates the importance of using an argument-based 

approach to evaluating early literacy screeners’ test score interpretations and uses for 

both discriminative and predictive purposes. Specifically, researchers and educators alike 

should closely consider their screening purpose(s) when evaluating a screener for use 

within their MTSS-R setting. The current study indicates that educators are likely on 

solid ground when using an early literacy screener to evaluate the current reading skills of 

1st grade students overall, particularly for the purpose of determining whether core 

instruction needs to target reading fluency, and by proxy, basic comprehension skills. 

However, the current study also indicates that educators should take caution when using 

an early literacy screener to predict whether an individual student will have reading 

difficulties, as predictions will likely frequently result in incorrect decisions. Educators 
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should use early literacy screening data in combination with other data sources whenever 

making high stakes decisions about individual students. Finally, the current study 

suggests that the effectiveness of instruction students receive across the school year may 

substantially impact optimal cut-scores for risk and in some cases diagnostic accuracy 

statistics. However, more research is needed to evaluate this finding across contexts with 

more widely varying instructional effectiveness. 
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Figure 14 

Scatterplots of Standardized Predicted Values of Outcomes Regressed on Screening Measures 
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Figure 15 

Histograms of Standardized Residuals for Screening and Outcome Measures 
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Figure 16 

Normal P-P Plots of Outcomes Regressed on Screening Measures 
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