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DISSERTATION ABSTRACT 

David J. Furjanic 

Doctor of Philosophy 

Department of Special Education and Clinical Sciences 

June 2021 

Title: Exploring the Added Value of a Number Line Assessment for  

Kindergarten Mathematics Screening 

 

Despite the importance of mathematical understanding for academic and 

occupational success, students in the United States are not meeting necessary levels of 

mathematics achievement. Multi-tiered systems of support (MTSS) provide a framework 

for schools to allocate resources to best support students. Universal screening, a key 

element of MTSS, employs brief assessments of critical academic skills to identify at-risk 

students. Despite advances in the screening for reading risk, research in mathematics 

screening is lacking. Current early numeracy screeners target number sense with mixed 

results. The mental number line is a potential construct for developing more advanced 

screening measures. The mental number line is a key developmental construct around 

which students organize their thinking and draw upon when working with elementary 

mathematics topics. The current study will explore the promise of using a number line 

assessment as part of a mathematics screening battery to identify students at risk. 
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I. INTRODUCTION 

The State of Mathematics Achievement in the United States 

Calls to improve mathematics achievement for our nation’s students have been 

spurred by consistent and long-standing patterns of low achievement by students in the 

United States (National Mathematics Advisory Panel, 2008; National Research Council, 

2001). The 2019 National Assessment for Educational Progress (NAEP) found that less 

than half of fourth grade students were proficient in mathematics. NAEP proficiency 

levels have remained relatively stable over the past decade and a half, demonstrating a 

protracted concern. Of even greater concern, average scores for historically 

disadvantaged students (such as students eligible for free/reduced lunch, attending urban 

schools, or identified with disabilities) had statistically significant drops from previous 

years (National Center for Education Statistics, 2015; National Center for Education 

Statistics, 2005-2019; OECD, 2012). Comparisons to international peers further illustrate 

the depth of the problem. Students in the United States are ranked in the lower half of 

students worldwide, with performance gaps increasing as students advance across grades 

(Olson, Martin, & Mullis, 2008). United States students will be hindered competing in 

both international and domestic job markets without secure mathematics skills as high-

demand professions, including those in science, technology, engineering, mathematics 

(STEM), increasingly rely upon a strong mathematical foundation (National Science 

Board, 2015). 

Mathematics difficulties reverberate beyond schooling and affect basic functional 

tasks for adults. Over half of adults cannot calculate a 10% tip for a meal and even more 

cannot calculate miles per gallon on a trip (Phillips, 2007). While a secure foundation in 
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mathematics can afford opportunities, an insecure foundation in mathematics has 

educational, occupational, and functional life implications for our students (National 

Mathematics Advisory Panel, 2008).  

American adults who struggle with mathematics are, by and large, products of the 

American school systems (Mcclure et al., 2017; Watts, Duncan, Siegler, & Davis-Kean, 

2014). Numerical knowledge at age 7, or typically first grade, predicts socioeconomic 

status at age 42 even when controlling for IQ, reading achievement, and familial SES 

(Ritchie & Bates, 2013). Students enter school exhibiting individual differences and these 

differences compound over time resulting in expanding achievement gaps over time 

(Bodovski & Farkas, 2007; Jordan, Kaplan, & Hanich, 2002; Judge & Watson, 2011; 

Schulte & Stevens, 2015; Wei, Lenz, & Blackorby, 2013). Utilizing a large national 

dataset, the Early Childhood Longitudinal Study – Kindergarten Cohort (ECLS-K), 

Morgan and colleagues (2009) found that kindergarten students who entered and 

subsequently exited in the lowest 10th percentile in mathematics had a 70% chance of still 

being in the bottom 10th percentile in fifth grade. Given the cumulative nature of 

mathematics understanding, early foundational gaps in knowledge limit the acquisition of 

more advanced content (Duncan et al., 2007; Hiebert & Wearne, 1996; Judge & Watson, 

2011). 

The importance of serving at-risk students early is underscored by the fact that 

preventing academic difficulties saves significant time and resources compared to 

remediation approaches (Fletcher & Vaughn, 2009; Torgesen, 2000, 2002; Torgesen et 

al., 2001; Vaughn & Wanzek, 2014; Vaughn et al., 2011; Walker et al., 1996). Morgan 

and colleague’s (2009) study found that of those students who entered kindergarten 
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below the 10th percentile but exited kindergarten above the 10th percentile, only 30% 

were in the bottom 10th percentile in fifth grade. This phenomenon demonstrates the 

potential of early intervention during this time period to alter and promote favorable 

learning trajectories. The promise of early intervention has been codified within the 

reauthorization of IDEA (Individuals with Disabilities Education Act, 2004). Aligned 

with calls by the field (Gersten et al., 2009), IDEA (2004) emphasizes the prevention of 

protracted learning difficulties through early identification and intervention (Gersten et 

al., 2009).  

Addressing Mathematics Needs Via Screening for Risk 

Educators and schools can promote favorable trajectories for students. One 

avenue for promoting students’ success is universally screening all students to identify 

who is most at risk for academic difficulties. Universal screening involves administering 

a brief assessment to all students in a school, typically at three timepoints throughout the 

year. Screening data is used to guide decisions on which individual students are at-risk 

and also to systematically gauge the health of the system as a whole (Albers & Kettler, 

2014; Shinn, 2006; Simmons et al., 2000).  

Screeners have the potential to supply schools with critical information for 

serving their students. Screening is a key feature in Multi-Tiered Systems of Support 

(MTSS) or Response to Intervention (RTI) frameworks. However, schools across the 

country utilize screening to varying degrees. Despite over 70% of schools reporting using 

an MTSS/RTI framework to support reading development, only 35% reported using this 

framework for mathematics (Balu et al., 2015). Successful MTSS implementation 

requires substantial resources, tools, training, and commitment on the part of a school or 
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district (Fletcher & Vaughn, 2009; D. Fuchs & Fuchs, 2017). Critical to a successful 

MTSS framework are the measures around which universal and targeted decisions are 

made (Balu et al., 2015; D. Fuchs & Fuchs, 2017). 

Early Mathematics Screening 

The value in a screener hinges upon its ability to assess important constructs in a 

given content area. Early numeracy screeners most commonly assess aspects of number 

sense (Gersten et al., 2012). Number sense, while its definition varies across the field, is 

best described as a series of interrelated early mathematical competencies that serve as a 

foundation for the acquisition of more advanced concepts (Feigenson, Libertus, & 

Halberda, 2013; Griffin, Case, & Siegler, 1994; Jordan, Glutting, & Ramineni, 2010; 

Jordan, Kaplan, Olah, & Locuniak, 2006; Jordan, Kaplan, Ramineni, & Locuniak, 2009; 

Siegler & Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 2011; Starr, Libertus, 

& Brannon, 2013). 

Number sense screeners are created with the developmental progression of 

number sense in mind. Young children exhibit the precursors to number sense prior to 

formal schooling. The development of number sense begins perceptually before children 

can visualize or cognitively represent and manipulate numbers. Initially, children need to 

engage with tangible quantities (such as balls, dots, or patterns). As they develop, they 

can visualize quantities and patterns with imagined objects. Once school-aged, children 

extend their ability to reason with numbers to greater quantities and transition from 

informal to formal number sense. This transition is, in part, aided by the introduction of 

and continued engagement with symbolic numbers. Students with well-developed 

number sense can fluently and accurately reason with, manipulate, and problem-solve 
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with numbers and quantities in a base-ten system (Berch, 2005; Case et al., 1996; 

Gersten, Jordan, & Flojo, 2005).  

Number sense screeners are intentionally created to capture students’ proficiency 

at various points in mathematical development. Furthermore, number sense is an 

amalgamation of interrelated skills and the developmental progressions of these skills 

look different. Among the interrelated skills invoked in number sense are counting, 

magnitude comparison, number operations, and symbolic numerical understanding (Case, 

1998; Clements, Sarama, & DiBiase, 2003; Cross, Woods, & Schweingruber, 2009). 

The Components of Number Sense 

 Counting. Counting is an essential foundation to developing number sense 

(Hudson & Miller, 2005). As young as infancy, children exhibit the first signs of number 

sense through numerosity, or the beginning stages of understanding quantity (Gallistel & 

Gelman, 1992). Infants can perceptually subitize, or recognize small quantities without 

systematically counting (Clements, 1999; Starkey & Cooper, 1980; Wynn, Bloom, & 

Chiang, 2002), which includes the ability to discriminate that an array of 4 items is 

different than an array of 2 (Starkey, Spelke, & Gelman, 1990). By eighteen months, they 

exhibit greater understanding in being able to identify that the array of 4 is greater than 

the array of 2 (Cooper Jr, 1984). 

Between the ages of two and three, children begin to learn the number words from 

one to ten. As children start to grapple with these numbers words and counting in 

parallel, they learn to associate each word with an object (Baroody, 2002; Wagner & 

Walters, 1982). In counting to a number, the child associates meaning to each item in the 

sequence as they touch each object once with an accompanying word (Cross et al., 2009; 
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Mix, Huttenlocher, & Levine, 2002). This skill of associating each object once and only 

once with a number while counting is called one-to-one correspondence. One-to-one 

correspondence sets the foundation for children to then learn cardinality, or the 

understanding that the last word said in the sequence holds meaning for the collection. In 

counting a group of five objects, “five” as the final word represents the set as a whole 

(Clements et al., 2003). Counting, as an aspect of number sense, manifests first as an 

ability to recognize items in a set and then gradually develops into an ability to attach 

specific meaning to quantities. As their list of known number words and numerals grows, 

children extend to greater quantities their ability to count using one-to-one 

correspondence in a fixed order and with cardinality (Clements et al., 2003; Cross et al., 

2009). 

Number Knowledge. Number knowledge, another skill invoked in number sense, 

first manifests when children begin to compare sets of objects. Before they understand 

numerical quantities, children often rely upon perceptual clues to decide which set is 

greater, such as which set is spaced farther apart (Cross et al., 2009). The well-known 

example of this behavior is children’s lack of understanding conservation. Imagine 

showing a child two sets of teddy bear counters each containing four teddy bears. The 

child may agree the two sets are equivalent if they look similar. Now imagine if one of 

the sets were adjusted so that its four teddy bears are spread out in a long line. A child 

who doesn’t understand conservation would likely assert that the long line of teddy bears 

is now greater than its twin because of the child’s reliance upon perceptual clues.  

Once children become familiar with number words, they tend to rely upon these 

to make their judgments. A four year old, for example, would count each set of items and 
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decide which is greater based on which number word was “farther” down the list or 

number line (Clements et al., 2003; Cross et al., 2009). Children in formal schooling 

increasingly extend their ability to reference their number word list to make judgements 

about magnitudes. Children in kindergarten leverage their budding knowledge of 

magnitude to conceptually subitize, or understand how larger quantities are composed of 

groups of smaller, more familiar quantities (Cross et al., 2009; Griffin, 2004; Jordan, 

Glutting, & Ramineni, 2010; Jordan et al., 2009). 

By age 6, children integrate their knowledge of counting and magnitudes into a 

mental number line (Siegler & Booth, 2004). Referred to as a “central conceptual 

structure,” children’s construction of the mental number line is theorized to enable 

children to access the quantitative world in a way they could not previously (Griffin, 

2002). 

Number Operations. The beginnings of children’s ability to engage in number 

operations is also evident before school-aged years. Children as young as two exhibit 

preverbal mathematical numeration. They can recognize basic number operations of 

adding or taking away one object. For example, a toddler observing two balls being 

placed into a box and one being removed would expect one to remain (Wynn, 1992). 

Similarly, young children can recognize which set is greater when one item is added to 

only one of two equivalent groups. It is not until the age of five, however, that children 

can judge magnitudes for collections that did not begin equivalently (Clements et al., 

2003; Cooper Jr, 1984). As children simultaneously develop their ability to count, they 

rely upon this skill to manipulate numbers. To add three to a set of four, children may 

initially count each set and then count the two sets together. Children advance into being 
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able to count to four and directly continue counting three more times to reach seven. As 

children understand that the two addends are subsumed within the total, they can start 

counting at one of the quantities, such as four, and count on to the total, seven, from there 

(Clements et al., 2003).  

Symbolic Number Understanding. Symbolic number understanding, such as 

recognizing the numeral “2” represents a set of two items, is also crucial to number sense. 

To secure this skill, students must be able to recognize the form of the numeral, produce 

the form accurately, and attach the correct meaning to the form. For example, a young 

child with secure number sense would be able to recognize a printed 6, reproduce the 

numeral, and understand that it represents a set of six items (Clements et al., 2003).  

Screening for Number Sense 

Number sense is comprised of key early numeracy skills that enable children to 

engage with more advanced mathematics (Gersten et al., 2005; Jordan et al., 2009). Due 

to the importance of early trajectories, early numeracy researchers have focused measure 

development on assessing components of this foundational construct. In a review of 

screeners, Gersten et al. (2012) make clear the prominence of number sense measures as 

a means to predict risk in mathematics. Researchers have leveraged observable tasks such 

as magnitude comparison or strategic counting in order to measure the construct of 

number sense (Chard et al., 2005; Conoyer, Foegen, & Lembke, 2016; Gersten et al., 

2012; Lembke & Foegen, 2009; Mazzocco, 2005; Seethaler & Fuchs, 2010). 

For example, VanDerHeyden et al. (2001) administered a set of three one-minute 

group-administered measures tapping into early components of number sense. 

Kindergarten students (n = 107) counted circles and wrote the numeral of the total, 
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counted circles and selected the number of circles from a set, and drew a number of 

circles corresponding to a numeral. Using a smaller sample of students, the researchers 

explored validity of the measures in relation to retention at the end of the year. They 

found that the scores correctly predicted retention in 71.4% (or 5/7) of cases and 

promotion in 94.4% (or 17/18) of cases. Concurrent validity correlations ranged from .44 

to .61. 

The Number Knowledge Test (NKT; Okamoto & Case, 1996) was explored by 

Baker et al. (2002) and Gersten, Jordan and Flojo (2005) with a sample of more than 200 

kindergarten students. The NKT is a 10-15 minute individually administered assessment 

of a student’s procedural and conceptual knowledge of whole numbers. The NKT 

assesses components of number sense through increasingly complex counting, magnitude 

comparison, and number operation tasks. The researchers found that the NKT exhibited 

strong predictive validity to end-of-first grade outcomes on the SAT-9 Total Mathematics 

(r = .73). 

Clarke and Shinn (2004) and Clarke, Baker, Smolkowski, and Chard (2008) 

assessed three components of number sense – number identification, quantity 

discrimination, and missing number – with kindergarten (n = 52) and first grade students 

(n = 111; with 1-10 and 1-20 target numbers, respectively). In the first task, students 

identified given numerals. With similar stimuli, students chose the greater quantity in a 

pair given two numerals for quantity discrimination. For missing number, students 

identified the number missing from a sequence of three consecutive units with the 

missing number in the first, middle, or last position (e.g. __, 4, 5 or 6, __, 8).  Predictive 

validities were strong across both studies, ranging from .62 to .64 with standard 
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achievement tests (Woodcock-Johnson Applied Problems subtest and the Stanford Early 

School Achievement Test, respectively).  

In a 4-year longitudinal study, Mazzocco and Thompson (2005) followed 226 

students from kindergarten to third grade to determine the best assessment or battery to 

predict mathematics difficulty. Measures included mathematics achievement, formal and 

informal mathematics ability, visual-spatial reasoning, and rapid automatized naming 

assessments. Four items within the battery best predicted mathematics difficulty (here 

defined as performance below the 10th percentile on a third-grade comprehensive 

mathematics measure). The items that best predicted math difficulty (reading numerals, 

number constancy, magnitude judgments, and mental addition of one-digit numbers) 

were all mathematics items and associated with components of number sense. Most 

importantly, these four items correctly classified 84% of third-grade students at-risk 

based upon their performance in kindergarten.  

Seethaler and Fuchs (Seethaler & Fuchs, 2010) also explored screeners that 

assessed different components of number sense. The researchers administered a 

magnitude comparison measure and a multiple proficiency measure, Number Sense, to 

196 kindergarten students in the fall and spring. At the end of first grade, they 

administered The Early Math Diagnostic Assessment and the KeyMath-Revised. 

Predictive validity of the fall screeners to the spring outcome measures ranged from .52 

to .72. Classification accuracy was relatively high across both methods, ranging from .67 

to .86. 

Hampton et al. (2012) administered six measures tapping into number sense 

(counting, number identification, missing number, quantity discrimination, next number, 
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and number facts) to kindergarten (n = 71) and first grade (n = 75) students weekly. The 

researchers found small to large predictive validities from fall to spring (ranging from .26 

to .52) with the Broad Math Score of the Woodcock-Johnson Battery of Achievement-III 

(J. Cohen, 1992).  

Across these seminal screening studies and others (L. S. Fuchs et al., 1994; Lee & 

Lembke, 2016; Lembke & Foegen, 2009), researchers have leveraged the construct of 

number sense to develop early numeracy screeners and to examine the relationship 

between current and future achievement in mathematics. Despite earnest efforts, research 

on early numeracy screeners has not produced optimal screening measures. Gersten et 

al.’s (2012) review found the median predictive validities for kindergarten students on 

magnitude comparison and strategic counting measures were “moderate” at .50 and .48, 

respectively (Gersten et al., 2012). 

The Field’s Approach to Screening 

In search of refining screening practices, researchers have explored various 

structural approaches. Most mathematics screeners adopt a curriculum-sampling 

approach. Sampling from the curriculum tends to provide more information about 

specific domains within a grade rather than general mathematics proficiency (Foegen, 

Jiban, & Deno, 2007). Pulling from curricular objectives is useful for instructional 

decision-making and progress monitoring throughout a year but less so for screening in 

the fall (Vanderheyden, Codding, & Martin, 2017). Drawing upon skills which students 

have not yet been taught often invokes a floor effect, where a tool is unable to 

discriminate students along a spectrum because too many students scored within a narrow 
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band close to the bottom. A floor effect hinders the tool’s ability to detect which students 

are at risk and/or whether a systemic problem exists (Vanderheyden et al., 2017).  

An alternative to a single curriculum-sampled tool is a net of screeners that span 

multiple domains. This approach, in part necessitated by the nonlinear development of 

mathematics skills, tends to be more predictive of math performance than single-skill 

screeners (Gersten et al., 2012; Seethaler & Fuchs, 2010). For example, VanDerHeyden, 

Codding, and Martin (2017) found that a combined screening net of multi-skill 

computation, single skill computation, and concepts/applications tasks had high 

diagnostic accuracy for fourth and fifth grade students.  

An elaborate net of multiple screening measures may more accurately determine 

students at risk, but each additional measure included in a screening battery costs 

significant amounts of instructional and personnel time. Educators must weigh the 

relative benefits of each measure in their screening battery against the value of the 

information it provides. Rather than comprehensively sampling across every mathematics 

domain for a given grade, established batteries of selected measures could be 

supplemented or replaced with an assessment of a central concept that integrates multiple 

skills. 

The Promise of the Number Line 

The mental number line is theorized to be a central concept around which students 

organize their mathematical thinking (Case et al., 1996; Laski & Siegler, 2007; Schneider 

et al., 2018; Siegler, 2016; Siegler et al., 2011). As children first grapple with numbers, 

they begin to place these quantities along a mental number line. The number words they 

learn take shape in a linear fashion as they understand each successive number is one 
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greater than that before it (Clements et al., 2003). As they encounter larger quantities, 

their mental number line expands outwards to accommodate. At this stage, the number 

line may be more aptly called a number path, as students understand numbers only as 

integers, or whole numbers to jump to with each successive increment (Cross et al., 

2009). As they work with fractions and decimals, their mental number line grows 

interstitially, becoming more detailed between quantities (Siegler, 2016) and as their 

understanding of rational numbers continues to expand the mental number line morphs 

from a series of connected, discrete integers to a continuous spectrum of potentially-

infinite quantities. 

Students draw upon this mental number line for various mathematical tasks 

(Schneider et al., 2018; Siegler & Lortie-Forgues, 2014; Siegler et al., 2011). When 

comparing magnitudes, for example, locating 11 and 14 on one’s mental number line can 

enable a student to understand which has a greater magnitude (Siegler, 2016). Similarly, a 

student may tap into their mental number line to solve an addition problem such as “4 + 

2” by referencing “4” on their mental number line and counting up two integers. Students 

may also draw upon this mental number line when estimating values, ordering numbers, 

judging proportions, or performing calculations (Dehaene, 2001; Schneider, Grabner, & 

Paetsch, 2009).  

The body of evidence supporting the mental number line has been primarily 

provided by cognitive and developmental researchers. When comparing magnitudes, 

participants are quicker to discriminate between numbers that are farther apart, dubbed 

the distance effect (Schneider et al., 2009). Latency in comparing numbers of similar 

magnitude supports the holistic view of processing numerals, that numbers are judged as 
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whole magnitudes (Dehaene, Dupoux, & Mehler, 1990; Moyer & Landauer, 1967). This 

contrasts with the symbolic view which supposes that numbers are processed by each 

digit place. To elaborate, the symbolic view posits that the ones-digit should have no 

effect on reaction time when comparing numerals with different tens-digits. In an 

example of comparing “12” and “23,” the symbolic view asserts only the tens-digit is 

necessary and processed to judge magnitudes. Evidence, however, supports that 

responses are not uniform across decades and that numerals are considered as a holistic 

unit. In other words, the symbolic view supposes that response times when comparing 

“12” versus “23” and “19”  versus “23” should be similar because the tens-digits are the 

same in both sets. Instead, evidence shows that respondents would be faster in comparing 

the first set due to the greater distance between the numbers. Respondents are thought to 

reference the two numbers against their mental number line and come to a judgment more 

quickly when the numbers are farther apart. 

In young children, their mental number line more closely resembles a logarithmic, 

rather than linear, relationship (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; 

Siegler & Opfer, 2003; Siegler, Thompson, & Opfer, 2009). Young children’s responses 

to placing numerals on a number line demonstrate a linear relationship for small 

quantities with which children are highly familiar, such as numbers 0-10. Placing 

numbers outside of this familiar range results in a logarithmic pattern with greater 

numbers (such as 29, 42, and 56, for example) being placed relatively close together on 

the right end of the number line. It is not until middle elementary when students transition 

to a more accurate wholly-linear mental number line (Siegler et al., 2009). This 

phenomenon would affect children’s behaviors in responding to a number line task. 
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Another behavioral indicator of the mental number line is the spatial–numerical 

association of response codes (SNARC) effect. The SNARC effect is observed through 

decreased latency in physical responses that are aligned to the orientation of the mental 

number line (Schneider et al., 2009). The mental number line is oriented with smaller 

quantities on the left and growing to larger quantities on the right. In alignment with this 

orientation, participants are quicker to respond when presented with lower quantities on 

the left and higher quantities on the right (Dehaene, Bossini, & Giraux, 1993; Dehaene et 

al., 1990; Wood, Willmes, Nuerk, & Fischer, 2008). 

The mental number line also exhibits a strong relationship with overall 

mathematics competence (Barth & Paladino, 2011; Boyer, Levine, & Huttenlocher, 2008; 

Friso-van den Bos et al., 2015; Siegler, 2016). Siegler and Booth (2004), for example, 

found individual differences in accuracy of number line estimations correlated strongly (r  

= -.60 to -.76) with math achievement test scores on the Stanford Achievement Test 

(SAT– 9) for first and second graders. Booth and Siegler (2006) extended this work with 

kindergarten through fourth grade students, again finding a strong correlation between 

number line estimation and comprehensive math achievement test scores (ranging from r 

= .54 to .84). Performance on the NLT is associated with performance on magnitude 

comparison tasks, understanding of fractions, and overall mathematics achievement, even 

after controlling for compounding variables like working memory or fact fluency (Booth 

& Siegler, 2006; Geary, 2011; Hansen, 2015; Hansen, Jordan, & Rodrigues, 2017; Jordan 

et al., 2013; Schneider et al., 2018; Siegler et al., 2011). Students improve on the NLT 

across broad age and mathematical proficiency ranges, suggesting its utility across time 

(Siegler & Booth, 2004; Siegler & Opfer, 2003).  
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Performance on the NLT being associated with general mathematics performance 

suggests the potential utility of the NLT as a screening measure. Schneider et al.’s (2018) 

meta-analysis examined the NLT’s ability to predict general mathematical competence 

across 41 studies with 263 effect sizes and 10,576 participants. Schneider et al. (2018) 

found that the average correlation (from a sample of 263 studies) between the NLT and 

general mathematical competence measures was r = .443 across studies. In the same 

meta-analysis, magnitude comparison tasks – a common task in current screening 

batteries – had an average correlation of r = .274 with general mathematical competence. 

Similar results were found (r = .438 and .278, respectively) when examining only early 

elementary students (aged 6-9), as well as across other age ranges, task stimuli, and 

methodological variations. Most importantly, a correlation of r = .443 suggests that 

19.6% (r2) of the variance in students’ general mathematical performance is explained by 

performance on the NLT. Including the NLT within an established screening battery may 

aid the decisions schools make in predicting risk and serving students. 

Despite the potential of the NLT as an educational tool, the number line has been 

primarily assessed by cognitive and developmental researchers. Prior studies on the 

number line have typically assessed this construct via the number line estimation task 

(NLT; Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010; Geary, Hoard, Nugent, & 

Byrd-Craven, 2008; Laski & Siegler, 2007; R. Siegler & Booth, 2004; R. S. Siegler & 

Opfer, 2003). During typical procedures for the NLT, students are presented with a blank 

number line and asked to place target numerals along the line. The value of the endpoints 

(e.g. 0 and 20 or 0 and 100), the presence of one or both endpoints, and anchor numbers 

(e.g. 10, 25, 50) vary across manifestations of the task (Schneider et al., 2018). Student 
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performance is often calculated one of three ways: (1) by summing the absolute distance 

of the student’s responses from the correct placements, (2) by percentage of correct trials 

where a correct response is within a range around the correct placement, or (3) by 

calculating the correlation of student responses to correct placements (Schneider et al., 

2018).  

How students approach the NLT may also provide useful information. Descriptive 

analyses of the NLT suggest successful performance requires the integration of various 

mathematics domains. Participants must be able to, at the very least, identify the target 

numeral, understand the scope of the number line, and accurately estimate the numeral’s 

place along the line. Respondents also attack stimuli differently, relying upon anchors, 

rounding, fractions, counting, proportional reasoning, or other strategies to produce 

accurate responses (Ashcraft & Moore, 2012; Peeters, Degrande, Ebersbach, Verschaffel, 

& Luwel, 2016; Siegler, 2016; Siegler & Opfer, 2003). Whereas one student may 

partition the line into salient anchors (25, 50, and 75), another may round the target 

stimuli to a more familiar number (12 to 10). A third may transform the stimuli’s 

placement into a more familiar proportion (71/100 to 3/4), while a fourth may find a 

familiar unit and iterate along the line to estimate the target. These examples underscore 

how the NLT requires the simultaneous application of various mathematical skills 

(Siegler, 2016). 

In light of its promise for educational purposes, emerging research has explored 

the NLT as a screening tool (Clarke, Strand Cary, Shanley, & Sutherland, 2018). Clarke 

et al. (Clarke et al., 2018) administered an early numeracy screener (Assessing Student 

Proficiency of Early Number Sense; ASPENS) and two versions of the NLT (0-20 and 0-
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100) to exiting students in kindergarten (n = 46) and first grade (n = 60) as part of a five-

week summer school program. They found that the NLT explained 13% additional 

variance above and beyond the typical screening battery for first grade students. The NLT 

explained 7% additional variance for kindergarten students, although this was not 

statistically significant. Due to the sample being drawn from a summer school program 

serving lower-performing students, the general population of kindergarten and first grade 

students was not represented. Additionally, the limited time between pre- and post-

assessment limits the ability of these results to generalize to fall screening processes in 

schools. 

Sutherland and colleagues (2020) expanded on the prior study in drawing upon a 

broader sample (n = 117) of kindergarten students in control classrooms from a larger 

study, representing a general population. Additionally, measures were administered in the 

fall and spring, approximating typical screening and outcome processes. Due to time 

constraints, administration of the number line measure ended after five minutes. The 

number line assessment (0-100) performed similarly to the typical mathematics screener 

(ASPENS; r = .60 and r = .62, respectively). Independently, the ASPENS explained 49% 

of students’ spring mathematics performance while the NLT explained 35%. 

Additionally, the ASPENS exhibited an Area Under the Curve (AUC) value of .94 

compared to the .80 of the NLT. When considered in combination, however, the NLT 

uniquely explained 7% of the variance in spring mathematics performance above and 

beyond the ASPENS. Across studies, the NLT results indicate potential value as a 

supplement to, but not necessarily a wholesale replacement of, established mathematics 

screening batteries.  
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In both of the preceding studies, the NLT was adapted from Laski et al.’s (2013) 

version of 26 items. No screening study to date has investigated whether a form of less 

items, allowing for greater efficiency, could provide comparable predictive value. The 

goal for practice is to increase or preserve the diagnostic accuracy of a screener while 

optimizing its efficiency. Some evidence suggests that reducing the number of items on 

selected measures may be an alternative. For example, Purpura and colleagues (2015) 

found comparable information was garnered between their original 143-item screening 

battery and the shortened form of 24 items. Similarly, Rodrigues and colleagues (2019) 

reduced their screening net by 38-39 items and up to an estimated 29 minutes of 

administration time while increasing predictive power. By removing items that do not 

contribute to the overall prediction power of the measures, comparable information can 

be captured in less time. 

The mental number line is a central conceptual structure that children form as 

they grow acquainted with quantities and that develops as children do to eventually 

accommodate more advanced numbers (Siegler et al., 2011). As a measure that assesses a 

central construct across years of mathematics, the NLT provides numerous conceptual 

arguments for exploration as a screener. 

State of the Problem: The Current Study 

Despite the importance of mathematics for academic and occupational success, 

students in the United States are not mastering critical content. Universal screening 

presents an opportunity for schools to wisely leverage resources and identify students 

most in need of additional support. Early mathematics research is lacking consensus on 

best practices in screening. The mental number line offers promise as a screener to 
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accurately and efficiently identify students at risk. As part of a larger study, 226 students 

were administered the NLT in the fall along with an established early numeracy screener, 

a short outcome measure, and a comprehensive outcome measure. Analyses explored the 

predictive properties of a short form four-item NLT. The NLT was compared to an 

established screener for the extent to which it added value in predicting performance on 

the spring mathematics outcome measures. Lastly, the items within the NLT were 

explored for differences in utility. 

Research Questions 

1. To what extent does the Number Line Task (NLT) predict math performance in 

an educational context? 

A. What are the associations among the NLT and other measures of early 

numeracy? 

B. To what extent does the NLT add value above and beyond a typical 

mathematics screener (the ASPENS)? 

C. What are the classification accuracy statistics of the NLT compared to an 

established math screener (ASPENS)? 

2. Within the NLT, which items explain the most variance? Do items differ in their 

utility for decision-making? 
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II. METHOD 

This study analyzed data from a larger randomized controlled trial examining the 

efficacy of the federally-funded ROOTS kindergarten mathematics intervention program 

(Clarke, Doabler, Fien, Baker, & Smolkowski, 2012). ROOTS is a 50-lesson intervention 

program that focuses on improving student understanding of whole number concepts and 

associated skills.  

Math achievement data were collected at the individual level for students. 

Random assignment and instructional delivery took place at the classroom level. 

Blocking on school and teacher experience with the core curriculum (one year or none), 

classrooms were randomly assigned to treatment and control conditions. Assessments 

were administered in the fall and spring of kindergarten. 

Participants 

Participants were drawn from the first cohort of the parent study (Clarke et al., 

2012). Participants were 226 kindergarten students from 14 classrooms during the 2012-

2013 schoolyear. The classrooms were nested within 7 schools within 3 districts. From 

the 785 students of the parent study, the final sample for analysis (n = 226) removed 

cases with partial or complete missing data (n = 559) for all measures (fall NLT, fall 

ASPENS, fall NSB, spring ASPENS, spring NSB, and spring SESAT). 

Welch independent two-sample t-tests were conducted to determine if student fall 

mathematics scores differed for included students as compared to excluded students with 

available fall data. There were no significant differences on any of the fall mathematics 

measures; NLT t(42.91) = 1.61, p = .21. ASPENS, t(45.38) = 0.22, p = 0.64, and NSB, 

t(45.36) = .01, p = 0.91. 
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Similarly, Welch independent two-sample t-tests were conducted to determine if 

student’s fall mathematics scores differed for students assigned to intervention as 

compared to students assigned to the control condition. There were no significant 

differences on any of the fall mathematics measures; NLT t(61.95) = .55, p = .46. 

ASPENS, t(64.39) = 0.05, p = 0.82, and NSB, t(84.59) = .25, p = 0.62. 

Participating school districts were all in suburban and rural areas of western 

Oregon. Schools targeted for recruitment across the three districts were primarily those 

that received Title 1 funding. Of the 226 students in the sample: 129 (57.1%) were 

female; 150 (66.4%) were 5-years-old, 76 (33.6%) were 6-years-old, 196 students 

(86.7%) were White, 7 students (3.1%) were American Indian or Alaskan Native, 7 

students (3.1%) were Black or African American, 30 students (13.3%) identified as 

Hispanic and/or Latino, and five or fewer students identified as Asian, Native 

Hawaiian/Pacific Islander, or more than one race; 15 students (6.6%) were English 

learners; and 15 students (6.6%) received special education services. 

Procedures 

Students were individually administered all measures by trained staff with 

extensive experience in collecting data for educational research. Interrater reliability of 

all administrators was at least .90 before collecting data with students. Administrators 

attended follow-up trainings prior to data collection sessions to prevent drift from 

standardization.  

Student assessment protocols were processed using Teleform, a form processing 

application. Tests of Teleform scoring procedures of assessment protocols from previous 
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research projects reveal high reliability values (i.e., .99) relative to assessor-scored 

protocols (.95). 

Measures 

Four of the parent study’s mathematics measures were chosen to investigate the 

research questions in this sub-study: the 0-100 NLT, ASPENS, NSB, and SESAT.  

Number Line Estimation Task (NLT) 

Administrators folded a paper in half lengthwise and handed the paper and a red 

pencil to the student. Administrators said, "This is a number line. If this is 0 and this is 

100 (administrator points to each endpoint while talking), where would 34 be? Use the 

pencil, and mark on the number line where 34 would be." Each page displayed two 

number lines but was folded so that the student would only see one number line at a time. 

The administrator then displayed a new number line and prompted the student for next 

item, asking, “where would [x] be?” Items were 34, 12, 89, and 57. 

Responses were scored as the absolute distance of the students’ responses from 

the correct responses. The first mark a student places on the number line was used for 

scoring. A transparency was laid over the student’s response form and the administrator 

counted the spaces between the student’s response and the target number. For example, a 

student was told to locate 34 and marked the number line where 42 resides. This student 

received a score of 8. Summed scores closest to zero indicate better performance. The 

four stimuli were chosen semi-randomly, sampling across the range of 0 to 100. 
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Assessing Student Proficiency of Number Sense (ASPENS; Clarke, Gersten, Dimino, & 

Rolfhus, 2011) 

The ASPENS is a series of three one-minute curriculum-based measures of 

numeral identification, comparing quantities, and strategic counting. The ASPENS is 

utilized in the present study as a proxy for a typical mathematics screening battery due to 

including magnitude comparison and strategic counting tasks. Test-retest reliabilities of 

kindergarten ASPENS measures are in the moderate to high range (.74 to .85). Predictive 

validity from fall to spring scores on the TerraNova 3 is reported as ranging from .45 to 

.52. 

Number Sense Brief (NSB; Jordan, Glutting, & Ramineni, 2008) 

The NSB is an individually administered measure with 33 items drawing upon 

varied early numeracy skills, such as counting knowledge and principles, number 

recognition, number comparisons, nonverbal calculation, story problems, and number 

combinations. The NSB has a coefficient alpha of .84. The NSB serves as a short 

outcome measure for determining general student mathematics performance. 

The Stanford Early School Achievement Test – Tenth Edition (SESAT; Harcourt 

Educational Measurement, 2002) 

The Stanford Early School Achievement Test – Tenth Edition (SESAT) is a 

group-administered standardized, norm-referenced achievement test with two multiple-

choice mathematics subtests, Problem Solving and Procedures. The SESAT has adequate 

validity (r = .67) and reliability (r = .93). The SESAT serves as a longer, comprehensive 

outcome measure for determining general student mathematics performance. 
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Analyses 

Prior to analyses for the study’s research questions, univariate descriptive 

statistics for each measure at each timepoint were calculated and assumptions of fitness 

for linear regression (linearity, independence of errors, multivariate normality, and 

homoscedasticity) were tested (Pedhazur & Kerlinger, 1982).  

To address research question 1A, Pearson’s r bivariate correlations were 

estimated among the NLT, established early numeracy screener (ASPENS), and outcome 

measures (NSB and SESAT). 

To address research question 1B, six linear regression models were conducted. 

Table 1 displays the conducted models. In the first model, the spring NSB scores were 

regressed on the fall NLT scores. In the second model, spring NSB scores were regressed 

on the fall ASPENS scores. In the third, the spring NSB scores were regressed on both 

predictors, fall NLT and ASPENS scores. This procedure was repeated for the remaining 

three models by regressing the second outcome measure, the spring SESAT scores, on 

the same set of predictors. Including the intervention condition in the combined models 

only slightly increased predictiveness (by R2 = .01 and .02 for the spring NSB and spring 

SESAT, respectively). For the sake of parsimony, intervention condition was excluded 

from the models. The R2 value given by each model estimates the variance explained by 

the predictors in the outcome measures. Semi-partial correlations were estimated for the 

final model for each outcome measure. Semi-partial correlations parse out shared 

variance to better understand what each independent variable uniquely contributes to the 

model. 
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Table 1 

 

Linear Regression Models Conducted for Research Question 1 

 

Model Number Predictor(s) Outcome 

1A Fall NLT Spring NSB 

1B Fall ASPENS Spring NSB 

1C Fall NLT + Fall ASPENS Spring NSB 

2A Fall NLT Spring SESAT 

2B Fall ASPENS Spring SESAT 

2C Fall NLT + Fall ASPENS Spring SESAT 

To address research question 1C, receiver operating characteristic (ROC) analyses 

assessed the diagnostic accuracy of the NLT and the ASPENS. ROC analyses evaluate a 

measure’s classification performance to a dichotomous outcome variable of “risk.” A cut 

score of 20 on the NSB was used to qualify “risk” with those scoring above 20 deemed 

“not at risk.” A cut score of 20 aligns with previous research supporting its utility for 

diagnostic accuracy in the spring of kindergarten (Jordan, Glutting, Ramineni, & 

Watkins, 2010). Additionally, a score of 20 corresponds to the 23rd percentile in this 

sample, which holds clinical significance and approximates a threshold schools may use 

to assign intervention. For this reason as well, performance below the 25th percentile on 

the SESAT in this sample was deemed as “at risk.” 

When evaluating a ROC curve, the area under the curve (AUC) estimates how 

well a measure accurately classifies subjects. Values close to 1 suggest a measure is 

highly sensitive and specific (or accurately parses out individuals who are truly “at risk” 

or truly “not at risk”). Values close to .5, in contrast, denote the measure performs little 

better than chance. Confidence intervals and statistically significant differences for the 

AUC values were computed using 2,000 stratified bootstrap replicates.  
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To address the second research question, analyses mirrored the procedure of the 

first research question. Pearson’s r bivariate correlations were estimated among the 

individual NLT items and the ASPENS, NSB and SESAT at all available timepoints. 

Next, each outcome measure (the spring NSB or spring SESAT) was regressed on the 

individual fall NLT item scores and the fall ASPENS scores. As with research question 

1B, the R2 value and semi-partial correlations were collected. Lastly, AUC values were 

conducted for the NLT Items to examine classification accuracy.  

It was hypothesized that Item 4 (with a stimulus of 57) would be associated with 

greater overall mathematical competence in kindergarten. Basis from this hypothesis 

drew from Rodrigues, Jordan and Hansen (2019) who found that “simpler” items such as 

the midpoint (1/2) on a 0-1 fraction number line were the most predictive items. 

Similarly, it was hypothesized that a stimulus of 57 would require students to 

demonstrate foundational skills in a) identifying the two-digit numeral correctly and b) 

dissecting the line approximately in half. Exhibiting these developing mathematical 

competencies may be associated with greater overall mathematical competence in 

kindergarten. 

Type I error rate for all analyses was set at 5% (.05) as is standard in educational 

sciences. All analyses were conducted in R (R Development Core Team, 2011), with the 

following packages: cowplot (Wilke, 2019); ggplot2 (Wickham, 2016); ggResidpanel 

(Goode & Rey, 2019); ggROC (Wu, 2013); haven (Wickham & Miller, 2019); here 

(Müller, 2017); Hmisc (Harrell Jr, 2020); lmSupport (Curtin, 2018); pROC (Robin et al., 

2011); rio (Chan, Chan, Leeper, & Becker, 2018); and tidyverse (Wickham et al., 2019). 
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III. RESULTS 

Univariate descriptive statistics are displayed in Table 2. Students gained, on 

average, about 44 points (77.5%) from fall to spring of kindergarten on the ASPENS 

measure. Students also gained, on average, on the NSB measure by about 5.6 points 

(31.9%). 

Table 2 

 

Descriptive Statistics of Early Numeracy Measures 

 

Measure Mean SD Median Skewness Kurtosis 

Fall NLT 112.27 39.40 112.50 0.22 -0.45 

Fall ASPENS 56.73 39.66 48.85 0.64 -0.21 

Fall NSB 17.58 5.29 17.00 -0.02 -0.46 

Spring 

ASPENS 
100.65 41.24 98.80 -0.07 -0.28 

Spring NSB 23.17 4.81 24.00 -0.61 -0.17 

Spring SESAT 28.11 6.72 29.00 -0.77 0.00 

Assumptions of fitness for linear regression were tested. First, the variables were 

examined for normality. Distributions of the study measures are displayed in Figure 1. 

The fall NLT scores approximate a normal distribution (Shapiro-Wilk normality test p = 

.07). The fall NLT scores have a slight positive skew (0.22) and less kurtosis than 

expected (-0.45). However, graphical representation suggests that the distribution of fall 

NLT scores may be bimodal. The fall ASPENS scores fail the Shapiro-Wilk normality 

test (p < .001). The fall ASPENS scores have moderate positive skew with approximately 

normal kurtosis (-0.21). The spring ASPENS scores, however, do approximate a normal 

distribution (Shapiro-Wilk normality test p = .63), with minimal skew (-0.07) and 

expected kurtosis (-0.17). 
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The fall NSB scores approximate a normal distribution (Shapiro-Wilk normality 

test p = .11), with minimal skew (-0.02) and less kurtosis than expected (-0.46). In 

contrast, the spring NSB scores fail the Shapiro-Wilk normality test (p < .001). The 

spring NSB scores demonstrate moderate negative skew (-0.61) and approximately 

normal kurtosis (-0.17). The spring SESAT scores fail the Shapiro-Wilk normality test (p 

< .001). The spring SESAT scores demonstrate moderate negative skew (-0.77) and 

expected kurtosis (0.00). 

Figure 1 

 

Distributions of the Early Numeracy Measures 

 

 

Note. Axes’ scales vary by measure. 

Normal quantile plots were examined to determine multivariate normality. 

Quantile plots are displayed in Figures 2 and 3. The linear trend displayed by the 

theoretical quantities plotted against the sample quantities predicting to the NSB suggests 

multivariate normality. The tails of the model predicting to the SESAT (Figure 3) deviate 

from a linear trend. These deviations suggest the multivariate distribution predicting to 

the SESAT is negatively skewed.  
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Figure 2 

Normal Quantile Plot of Spring NSB Scores Regressed on Fall NLT and Fall ASPENS 

Scores 

 

Figure 3 

Normal Quantile Plot of Spring SESAT Scores Regressed on Fall NLT and Fall ASPENS 

Scores 

 

Next, linearity of the predictor models was examined. The spring outcome 

measures (NSB and SESAT) were each regressed on the fall predictor measures (NLT 
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and ASPENS). Linear regressions are displayed in Figure 4. In all models, a linear trend 

appears to best explain the relationship between the predictors and the outcomes. The 

assumption of linearity is tenable.  

Figure 4 

Simple Linear Regressions of the Outcomes Regressed on the Predictor Measures 

 

The assumption of independence of errors was examined next. Residuals of the 

outcomes regressed on the predictors are plotted in Figures 5 and 6. Residuals for the 

NLT appear randomly distributed, suggesting the absence of a relationship between the 

errors and the outcome variables. Residuals for the ASPENS predicting to each outcome 

appear to be somewhat overestimated at the extreme values and underestimated at the 

central values. 
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Figure 5 

Residual Plots of the Spring NSB Scores Regressed on the Fall NLT scores and Fall 

ASPENS scores 

 

Figure 6 

Residual Plots of the Spring SESAT Scores Regressed on the Fall NLT scores and Fall 

ASPENS Scores 

 

Lastly, the assumption of homoscedasticity was examined. Further examination of 

the residual plots shows that, for the fall NLT as a predictor, errors appear homogenously 
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distributed across the values of the x-axes. The assumption of homoscedasticity is tenable 

for the spring NSB and spring SESAT regressed on the fall NLT. The residuals of the fall 

ASPENS as a predictor do not appear homogenously distributed across the values of the 

x-axes. The variance of the residuals tend to decrease going across the x-axes. The 

assumption of homoscedasticity for the fall ASPENS is not tenable. 

Research Question 1 

Research Question 1A: Association Among Early Numeracy Measures 

Correlations among all measures at all available timepoints were conducted. 

Descriptors of the strength of correlations are based on Cohen (1992) who defines small, 

medium and large correlations as r = |.20|, |.30|, and |.50|, respectively. Correlations for 

all measures are reported in Table 3. Correlations for the study measures only (Fall NLT, 

Fall ASPENS, Spring NSB, and Spring SESAT) are displayed graphically in Figure 7. 

Associations with the NLT are expected to be negative as larger scores indicate greater 

error (response distance from the target numbers).  

Except for the relations of the fall NLT with the spring ASPENS and fall NLT 

with the spring SESAT, all correlations are significant (p < .01). The relationship 

between the NLT and the ASPENS in the fall is small (r = -.26) and weak in the spring (r 

= -.13, p = .058). The relationship between the NLT and the NSB is small in the fall (r = -

.24). In the spring, the NLT’s relationships with the NSB (r = -.19) and the SESAT (r = -

.17, p < .05) are weak. The ASPENS in the fall is strongly correlated with the NSB in the 

fall (r = .68). The ASPENS remains strongly associated with the NSB in the spring (r = 

.67) and with the other outcome measure administered in the spring, the SESAT (r = .64). 

The outcome measures demonstrate strong relationships among each other at all 
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timepoints (r = .66 to .73), echoing prior evidence of validity (Harcourt Educational 

Measurement, 2002; Jordan et al., 2008). 

Table 3 

 

Correlations Among All Measures Administered Fall 2012 and Spring 2013 

 

 1 2 3 4 5 6 

1. Fall NLT - -.26** -.24** -.13 -.19** -.17* 

2. Fall ASPENS  - .68** .70** .59** .59** 

3. Fall NSB   - .57** .72** .66** 

4. Spring ASPENS    - .67** .64** 

5. Spring NSB     - .73** 

6. Spring SESAT      - 

*p < .05. **p < .01. 

Figure 7 

 

Correlations Among Study Measures Administered Fall 2012 and Spring 2013 

 

 
Research Question 1B: Explained Variance 

Results of the outcome measures regressed on the predictor measures are reported 

and summarized. In the first model, the spring NSB scores were regressed on the fall 
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NLT scores. In the second model, spring NSB scores were regressed on the fall ASPENS 

scores. In the third, the spring NSB scores were regressed on both predictors, fall NLT 

and ASPENS scores. This procedure was repeated for the remaining three models by 

regressing the second outcome measure, the spring SESAT scores, on the same set of 

predictors. Regression results are reported in Tables 4 and 5.  

Fall performance on the NLT explained 3% of the variance in scores on the spring 

NSB scores, as well as for spring SESAT scores. Students’ performance on the fall 

ASPENS explained 35% of the variance in scores on the spring NSB, and likewise for the 

spring SESAT scores. Models that included both predictors (fall NLT and fall ASPENS 

scores) did not show an increase in explained variance in the outcomes over the models 

that included only the ASPENS. In addition, the fall NLT scores were no longer a 

statistically significant predictor in the combined models (p = .48 predicting to the spring 

NSB, p = .83 predicting to the spring SESAT). 

In the combined model for predicting the spring NSB (Model 3), for every 1-point 

increase in the NLT, there is no expected increase in spring NSB score (p = .48). For 

every 1-point increase on the fall ASPENS, there is an expected .07 increase in score on 

the spring NSB (p < .001). This model accounts for approximately 35% of the variance in 

scores on the spring NSB, F(2, 223) = 59.52, p < .001. 

In the combined model for predicting the spring SESAT (Model 6), for every 1-

point increase in the NLT, there is no expected increase in spring SESAT score (p = .83). 

For every 1-point increase on the fall ASPENS, there is an expected .10 increase in score 

on the spring SESAT (p < .001). This model accounts for approximately 35% of the 

variance in scores on the spring SESAT, F(2, 223) = 59.54, p < .001.  
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Semi-partial correlations explain the extent to which each predictor adds unique 

variance in explaining the outcome, net of the shared variance among predictors. Semi-

partial correlations are reported in Table 6. In the combined models (Models 3 and 6), the 

NLT adds negligible explained variance (R2 <.01) in the outcome measures beyond the 

ASPENS. 

Table 6 

 

Unique Variance Explained in the Outcome Measures (Semi-partial Correlations) 

  

Spring NSB  Spring SESAT 

Fall NLT <.01  <.01 

Fall ASPENS .31*  .32* 

*p < .01. 

Research Question 1C: Classification Accuracy 

ROC analyses explored the predictors’ abilities to correctly classify students at 

risk. The ROC curves predicting to the spring NSB and spring SESAT are displayed in 

Figures 8 and 9. AUC values are reported in Table 7. 

The AUC of the fall NLT to the spring NSB was .59 (95% CI from .49 to .68) and 

to the spring SESAT was .58 (95% CI from .49 to .66). The AUC of the fall ASPENS to 

the spring NSB was .86 (95% CI from .80 to .92) and to the spring SESAT was .83 (95% 

CI from .76 to .89). For both outcome measures, the fall ASPENS greatly outperformed 

the NLT in accurately classifying students. These differences are statistically significant 

for both predicting to both measures (p < .001). 
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Table 4 

 

Regression Results Predicting Spring NSB Performance (N = 226)  
 

Model 1 
 

Model 2 
 

Model 3 

Parameter b SE T p b SE t p 
 

b SE t p 

Intercept, 𝑏1 25.80 0.95 27.08 <.001 
 

19.12 0.45 42.18 <.001 
 

19.73 0.98 20.11 <.001 

Fall NLT, 𝑏2 -0.02 0.01 -2.92 <.01 
      

0.00 0.01 -0.70 .48 

Fall ASPENS, 𝑏3 
     

0.07 0.01 10.90 <.001 
 

0.07 0.01 10.32 <.001 

Note. Model 1 R2 = .03, F = 7.95, p = .01. Model 2 R2 = .35, F = 111.80, p < .001. Model 3 R2 = .35, F = 59.52, p < .001.   

  

Table 5 

 

Regression Results Predicting Spring SESAT Performance (N = 226)  
 

Model 4 
 

Model 5 
 

Model 6 

Parameter b SE T p 
 

b SE t p 
 

b SE t p 

Intercept, 𝑏1 31.29 1.34 23.42 <.001 
 

22.44 0.63 35.52 <.001 
 

22.70 1.37 16.58 <.001 

Fall NLT, 𝑏2 -0.03 0.01 -2.52 .01 
      

0.00 0.01 -0.21 .83 

Fall ASPENS, 𝑏3 
     

0.10 0.01 10.93 <.001 
 

0.10 0.01 10.47 <.001 

Note. Model 1 R2 = .03, F = 6.36, p = .01. Model 2 R2 = .35, F = 119.60, p < .001. Model 3 R2 = .35, F = 59.54, p < .001.   
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Figure 8 

ROC Curve Comparing Fall NLT and Fall ASPENS to the Spring NSB 

  

Figure 9 

ROC Curve Comparing Fall NLT and Fall ASPENS to the Spring SESAT 
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Table 7 

AUC for the Fall Screening Measures to the Spring Outcome Measures 

 Spring NSB 

(23rd Percentile) 
 

Spring SESAT 

(25th Percentile) 

 AUC CI  AUC CI 

Fall NLT .59 .49-.68  .59 .51-.67 

Fall ASPENS .86 .80-.92  .83 .78-.89 

Following the ROC analyses, sensitivity and specificity were examined. 

Classification accuracy statistics and cut scores are reported in Table 8. Two approaches 

were used. The first approach maximized both sensitivity and specificity. The cut score 

with the sum of sensitivity and specificity closest to 2.0 was selected for each predictor to 

each outcome. When risk was classified as below the 23rd percentile in this sample on the 

NSB, the fall NLT had a sensitivity of .68 and a specificity of .49 (cut score = 105.50) 

whereas the fall ASPENS had a sensitivity of .72 and a specificity of .89 (cut score = 

23.35). While the measures correctly identified students “at risk” to a similar extent (4% 

difference in favor of the ASPENS), the ASPENS correctly identified 40% more “not at 

risk” students.  

When risk was classified as below the 25th percentile in this sample on the 

SESAT, the fall NLT had a sensitivity of .53 and a specificity of .66 (cut score = 122.50) 

whereas the fall ASPENS had a sensitivity of .58 and a specificity of .95 (cut score = 

24.25). Again, the ASPENS correctly identified slightly more “at risk” students than the 

NLT (5%), and substantially more “not at risk” students (29%). 

Because the implications for false negatives are greater than for false positives for 

students, schools often prioritize sensitivity over specificity. Thus, the next approach 

examined cut scores and specificities where sensitivity was closest to .90 (L. S. Fuchs et 
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al., 2007; Seethaler & Fuchs, 2010). When risk was classified as below the 23rd percentile 

on the NSB, the fall NLT had a specificity of .16 (sensitivity = .89, cut score = 71.00) 

whereas the fall ASPENS had a specificity of .60 (sensitivity = .89, cut score = 49.25). 

When the measures correctly identified 89% of truly “at risk” students, the ASPENS 

correctly identified 44% more “not at risk” students. When risk was classified as below 

the 25th percentile on the SESAT, the fall NLT had a specificity of .12 (sensitivity = .91, 

cut score = 67.00) whereas the fall ASPENS had a specificity of .48 (sensitivity = .90, cut 

score = 69.55). When the measures correctly identified close to 90% of truly “at risk” 

students, the ASPENS outperformed the NLT in correctly identifying “not at risk” 

students by 36%. 

Table 8 

Classification Accuracy and Cut Scores for Fall Screeners Maximizing Sensitivity and 

Specificity and with Sensitivity Closest to .90 

Fall NLT  Fall ASPENS 

Cut Score Sens Spec  Cut Score Sens Spec 

Spring NSB 

105.50 .68 .49  23.35 .72 .89 

71.00 .89 .16  49.25 .89 .60 

Spring SESAT 

122.50 .53 .66  24.25 .58 .95 

67.00 .91 .12  69.55 .90 .48 

Note. Sens = Sensitivity, Spec = Specificity 

Research Question 2: Item-Level Analyses 

 Analyses were repeated with the individual NLT items to explore which stimuli 

best predict future achievement. Descriptive statistics of the NLT Items and the outcome 

measures are displayed in Table 9.  



41 

 

Means for the NLT Items were examined as a one-way, repeated measures 

analysis of variance. The independent variable was the NLT Item with four levels (Items 

1 to 4) and the dependent variable was the received score. The Mauchly Sphericity test 

was not significant, indicating that the assumption of sphericity is tenable, χ2(5) = .29. 

The main effect of NLT Item on score was significant, F(3, 900) = 6.58, p < .001. Post-

hoc tests using a Bonferroni correction reveal that the mean score of Item 2 is 

significantly greater than Items 1 and 4 (p < .01). Other pairwise comparisons are not 

significant. 

Table 9 

 

Descriptive Statistics of the NLT Items and Outcome Measures 

 

Measure Mean SD Median Skewness Kurtosis 

Fall NLT Item 1: 34 25.09a 18.87 22.00 0.66 -0.75 

Fall NLT Item 2: 12 31.69b 19.80 29.00 0.42 -0.81 

Fall NLT Item 3: 89 30.01ab 20.58 32.50 0.23 -1.04 

Fall NLT Item 4: 57 25.47a 17.81 23.00 0.26 -1.36 

Spring NSB 23.17 4.81 24.00 -0.61 -0.17 

Spring SESAT 28.11 6.72 29.00 -0.77 0.00 

Note. Superscripts denote significantly different group means, p < .05. 

Next, assumptions of fitness for statistical analyses were tested. The distribution 

of the NLT item scores are displayed Figure 10. The distributions of the NLT Items do 

not approximate normality. The distributions of NLT Items 1 and 2 are moderately 

negatively skewed. The distribution of Item 3 appears to be bimodal. All four item 

distributions have significantly more kurtosis than expected.  
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Figure 10 

Distribution of the Individual NLT Items 

 

Next, linearity of the predictor models was examined. The spring outcome 

measures (NSB and SESAT) were each regressed on the NLT item scores and fall 

ASPENS scores. Residuals of the regressions are displayed in Figures 11 and 12. A linear 

trend is apparent in both models and thus the assumption of linearity is tenable in both 

models. 

The assumption of independence of errors was tested next. Residuals for the NLT 

items appear randomly distributed, suggesting the absence of a relationship between the 

errors and the outcome variables. The assumption of homoscedasticity was considered 

next. In both models, the variance appears homogenously distribution across values of x. 

The assumptions of independence of errors and homoscedasticity are tenable. 
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Figure 11 

Residuals of the Spring NSB Regressed on the Fall NLT Item Scores and Fall ASPENS 

Scores 

 
Figure 12 

Residuals of the Spring SESAT Regressed on the Fall NLT Item Scores and Fall ASPENS 

Scores 

 

Next, correlations among the items of the NLT and other early numeracy 

measures were conducted. Conducted correlations are displayed in Table 10. Items 1, 2, 

and 4 of the NLT are unrelated to all other items and measures (r < .20). In the fall, Item  
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Table 10 

Correlations Among the NLT Items and Early Numeracy Measures 

 1 2 3 4 5 6 7 8 9 

1. Fall NLT Item 1: 34 - .05 -.01 .01 -.05 -.14* -.04 -.08 -.02 

2. Fall NLT Item 2: 12  - -.05 .03 -.14* -.12 -.10 -.09 -.04 

3. Fall NLT Item 3: 89   - .06 -.28** -.21** -.16* -.23** -.22** 

4. Fall NLT Item 4: 57    - -.05 -.03 .06 .03 -.03 

5. Fall ASPENS     - .68** .70** .59** .59** 

6. Fall NSB      - .57** .72** .66** 

7. Spring ASPENS       - .67** .64** 

8. Spring NSB        - .73** 

9. Spring SESAT         - 

*p < .05. **p < .01. 
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3 of the NLT has a small relationship with the ASPENS (r = -.28) and the NSB (r 

= -.21). This relationship continues into the spring with the NSB (r = -.23) but is no 

longer present with the ASPENS (r = -.16). Item 3 also has a small relationship with the 

spring SESAT (r = -.22). Relations among measures besides the individual NLT Items 

are discussed in Research Question 1A. 

The scores of the spring outcome measures were regressed on the fall NLT Items 

scores and fall ASPENS scores. Results are reported in Tables 11 and 12. Models 

including the fall ASPENS as the sole predictor are repeated from earlier for the sake of 

comparison. In the first model (Model 7), the spring NSB scores were regressed on the 

four individual fall NLT scores. In the third (Model 8), the spring NSB scores were 

regressed on the fall NLT Items and the fall ASPENS scores. This procedure was 

repeated for the remaining two models by regressing the second outcome measure, the 

spring SESAT scores. 

Fall performance on the NLT Items explained 7% of the variance in scores on the 

spring NSB scores, with Item 3 being the only statistically significant predictor. Model 8, 

including NLT Item scores and ASPENS scores, explained 1% more variance (R2 = .36) 

in the spring NSB over the ASPENS alone, F(5, 220) = 24.62, p < .001. In addition, the 

NLT Item 3 scores were no longer a statistically significant predictor in this combined 

model (p = .16). 

Fall performance on the NLT Items explained 5% of the variance in scores on the 

spring SESAT scores, with Item 3 being the only statistically significant predictor. Model 

10, including NLT Item scores and ASPENS scores, did not explain more variance (R2 = 

.35) in the spring SESAT over the ASPENS alone, F(5, 220) = 24.01, p < .001. In  
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Table 11 

Regression Results Predicting Spring NSB Performance (N = 226) 

 
Model 7 

 
Model 2 

 
Model 8 

Parameter b SE T p 
 

b SE t p 
 

b SE t p 

Intercept, 𝑏1 25.81 0.94 27.40 <.001 
 

19.12 0.45 42.18 <.001 
 

19.86 0.99 20.06 <.001 

Fall NLT Item 1, 𝑏2 -0.02 0.02 -1.16 .25 
      

-0.01 0.01 -0.96 .34 

Fall NLT Item 2, 𝑏2 -0.03 0.02 -1.61 .11       0.00 0.01 -0.29 .77 

Fall NLT Item 3, 𝑏2 -0.06 0.02 -3.76 <.001       -0.02 0.01 -1.42 .16 

Fall NLT Item 4, 𝑏2 0.01 0.02 0.80 .42       0.02 0.01 1.21 .23 

Fall ASPENS, 𝑏3 
     

0.07 0.01 10.90 <.001 
 

0.07 0.01 9.88 <.001 

Note. Model 1 R2 = .07, F = 4.43, p < .001. Model 2 R2 = .35, F = 111.80, p < .001. Model 3 R2 = .36, F = 24.62, p < .001. 
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Table 12  

Regression Results Predicting Spring SESAT Performance (N = 226) 

 
Model 7 

 
Model 2 

 
Model 8 

Parameter b SE T p 
 

b SE t p 
 

b SE t p 

Intercept, 𝑏1 31.29 1.33 23.55 <.001 
 

22.44 0.63 35.52 <.001 
 

22.78 1.37 16.58 <.001 

Fall NLT Item 1, 𝑏2 -0.01 0.02 -0.35 .73 
      

0.00 0.02 0.01 .99 

Fall NLT Item 2, 𝑏2 -0.02 0.02 -0.82 .41       0.01 0.02 0.67 .50 

Fall NLT Item 3, 𝑏2 -0.07 0.02 -3.45 <.001       -0.02 0.02 -1.05 .30 

Fall NLT Item 4, 𝑏2 -0.01 0.02 -0.28 .78       0.00 0.02 -0.09 .93 

Fall ASPENS, 𝑏3 
     

0.10 0.01 10.93 <.001 
 

0.10 0.01 10.08 <.001 

Note. Model 1 R2 = .05, F = 3.18, p = .01. Model 2 R2 = .35, F = 119.60, p < .001. Model 3 R2 = .35, F = 24.01, p < .001.   
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addition, the NLT Item 3 scores were no longer a statistically significant predictor in this 

combined model (p = .30). 

Semi-partial correlations explain the extent to which each predictor adds unique 

variance in explaining the outcome. Semi-partial correlations of the NLT Items and Fall 

ASPENS are reported in Table 13. In the combined models, the NLT Item scores add 

negligible explained variance (.01 or less in all cases) in the outcome measures beyond 

the fall ASPENS scores.  

Finally, ROC analyses explored the NLT Items’ abilities to correctly classify 

students at risk. AUC values are reported in Table 14. The NLT Items performed as well 

as or marginally better than chance in predicting student risk on the spring NSB (AUC = 

.50 to .58). Similarly, Items 1, 2, and 4 performed as well as or marginally better than 

chance in predicting student risk on the spring SESAT (AUC = .49 to .54). Item 3 of the 

NLT identified student risk on the SESAT better than chance (AUC = .64). 

Table 13 

 

Unique Variance Explained in the Outcome Measures (Semi-partial Correlations) 

  

Spring NSB Spring SESAT 

Fall NLT Item 1: 34 <.01 <.01 

Fall NLT Item 2: 12 <.01 <.01 

Fall NLT Item 3: 89 .01 <.01 

Fall NLT Item 4: 57 <.01 <.01 

Fall ASPENS .28* .30* 

*p < .01. 
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Table 14 

 

AUC for the Individual NLT Items to the Spring Outcome Measures 

  
Spring NSB  

(23rd Percentile) 

 Spring SESAT (25th 

Percentile) 

 AUC CI  AUC CI 

NLT Item 1: 34 .55 .46-.64  .49 .41-.57 

NLT Item 2: 12 .58 .49-.67  .54 .46-.62 

NLT Item 3: 89 .57 .47-.67  .64 .57-.72 

NLT Item 4: 57 .50 .41-.59  .52 .44-.59 
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IV. DISCUSSION 

In the discussion, I frame the current study, offer my summarization and 

interpretation of the results and note limitations. Based on results and limitations of the 

current study, I suggest next steps and directions for future research. 

Mathematics instruction in the United States consistently underserves our nation’s 

students, as evidenced by stagnant and unsatisfactory achievement (Center for Education 

Statistics, 2019). Universal screening is one mechanism for delivering critical content to 

the students most in need (Albers & Kettler, 2014; Shinn, 2006). However, the evidence 

base for early mathematics screeners is limited, thus complicating the task for schools to 

make accurate, useful screening decisions (Gersten et al., 2012). Due to how it integrates 

several key mathematical concepts, the mental number line offers promise for serving as 

a standalone screener or supplementing existing screening batteries (Schneider et al., 

2018). The research base of the number line and its relation to mathematical development 

and competence derives primarily from a developmental and cognitive lens. Only two 

prior studies have leveraged the number line task as a screener for identifying educational 

risk (Clarke et al., 2018; Sutherland et al., 2020). 

This work extended the exploration of the number line assessment as a screener. 

Due to the breadth and cumulative depth of mathematical curricula, numeracy screening 

benefits from assessing a range of skills (Gersten et al., 2012; Seethaler & Fuchs, 2010; 

Vanderheyden et al., 2017). This prompted my investigation of a number line assessment 

in conjunction with an established, but not maximal, multi-skill math screener. As part of 

a larger study, 226 kindergarten students were administered the NLT in the fall. In the 

fall and spring, students were also administered an established screening battery 
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(ASPENS) and a short outcome measure (NSB). A comprehensive outcome measure 

(SESAT) was administered in the spring only. Analyses explored the predictive 

properties of a short form four-item NLT as compared to an established screening 

measure. The items within the NLT were also explored for variations in decision-making 

utility. Particular attention was paid to practical considerations: added value and 

efficiency. 

Summary and Interpretation of Results 

The mean performance of the students in this sample does not appear to be 

significantly different than prior research. Number line research often reports student 

performance as mean absolute error or percent absolute error (Schneider et al., 2018). 

This study used summed absolute error (M = 112.27), which, averaged over four trials, 

gives a mean absolute error of 28.07. This mean is relatively similar to that found in the 

cognitive research (24% and 24%; Booth & Siegler, 2006; Siegler & Booth, 2004) and in 

the number line screening research (29.30 and 33.30; Clarke et al., 2018; Sutherland et 

al., 2020) with similar-aged students. The rest of the results should be interpreted in this 

context. 

Research Question 1A: Association Among Early Numeracy Measures 

First, relations among the early numeracy measures at various timepoints was 

examined. Amongst the ASPENS, NSB and SESAT at both time points, the NLT had 

small concurrent relations with the ASPENS and NSB in the fall (r2 = -.26 and -.24, 

respectively). Other concurrent or predictive relations were insignificant and/or negligible 

(r2 = -.13 to -.19). No evidence exists that the NLT possesses predictive validity to spring 

NSB or SESAT performance. In comparison, the ASPENS has a strong and significant 
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concurrent association with the NSB in the fall (r2 = .68), as well as strong and 

significant predictive associations with the spring NSB and SESAT (r2 = .59 for both). 

The large correlations among the fall ASPENS and other numeracy measures support 

their tapping into similar mathematics constructs. 

The small or weak associations of the NLT with other measures should not be 

wholly unexpected. Cognitive researchers have found that the NLT demonstrates a 

moderate association with general mathematical competence in elementary-aged 

children. Schneider et al. (2018) found that age moderated the NLT’s association with 

general mathematical competence. For early elementary students (aged 6-9), they found 

an average correlation of .442 between whole-number number line estimation and 

mathematical competence. Prior to age 6, which likely applies to many children in the fall 

of kindergarten, number line estimation demonstrates an average correlation of .296 with 

general mathematical competencies. In the current study, with 66.4% of the sample under 

six years of age, the NLT demonstrated a comparable concurrent association with the 

ASPENS (r2 = -.26). 

Notably, the reviewed studies in Schneider et al.’s (2018) meta-analysis with 

participants under age 6 primarily completed number lines ranging from 0-10 and 0-20. 

Furthermore, results from a study by Muldoon et al. (2011) suggest that the association of 

number line estimation and math competence is dependent on the scale used in the task. 

Muldoon et al. compared 0-10, 0-20 and 0-100 number lines with Scottish and Chinese 5-

year-olds and found that the Scottish children performed best on the 0-10 and 0-20 

number lines. In addition, the 0-20 performance had the highest associations with other 

mathematical measures. Thus, low associations found in the current study may be due to 
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the range (0-100) of the number line task used. This range was originally selected due to 

the mixed ranges used in prior research and due to its alignment with the numbers that 

kindergarten students encounter throughout the year. 

Research Question 1B: Explained Variance 

When considered as part of a battery with an established mathematics screener, 

the NLT did not add meaningful value. When either outcome measure (spring NSB or 

spring SESAT scores) was regressed on the two predictors (fall NLT and fall ASPENS 

scores), fall ASPENS performance was the only significant predictor of future 

performance (R2 = .31 to .34). The NLT explained negligible and insignificant variance in 

the outcomes (R2 <.01). In a prior study, Clarke and colleagues (Clarke et al., 2018) also 

did not find statistically significant incremental validity with either a 0-20 or 0-100 

number line above the ASPENS. In a conceptual replication, Sutherland and colleagues 

(2020) found a 0-100 number line contributed 7% incremental validity above the 

ASPENS. While 7% added value holds marginal clinical significance, the literature base 

establishing the association between number line estimation performance with general 

mathematical competence and the mixed results of these screening studies suggest that 

task design should be explored further. 

Research Question 1C: Classification Accuracy 

In terms of their abilities to distinguish between students truly at risk or not at 

risk, the ASPENS (AUC = .83 to .86) again outperformed the NLT by a large margin 

(AUC = .59 for both measures). The ASPENS meets the minimum acceptable value (.75) 

to be effective for determining risk status (Cummings & Smolkowski, 2015). Most 

importantly, the 95% confidence interval for the NLT’s true AUC value includes or is 
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very close to .50. In other words, it is very likely that this form of the NLT performs no 

better than chance in identifying students. 

Examining the specificity and sensitivity of various cut scores on these measures 

enriches these conclusions. When maximizing overall classification power, the NLT and 

ASPENS are similarly able to identify truly “at risk” students. This is true for both the 

NSB (at a cut score at the 23rd percentile) and the SESAT (at a cut score at the 25th 

percentile). However, the ASPENS is substantially more specific than the NLT, correctly 

identifying 29-40% more “not at risk” students. 

Schools, however, do not regard false positives and negatives equally. False 

positives are students who show up as “at risk” on a screener but who would be 

sufficiently served by their existing classroom supports. These students may be removed 

from the general education setting for a short, intensified intervention session multiple 

days a week. Resources may be spread too thin if too many students are identified as “at 

risk.” Conversely, false negatives are students who do not show up as “at risk” on a 

screener but will be underserved by their environment and at risk for academic failure 

without the introduction of intensified supports. We also know that prevention and early 

intervention is cost- and time-effective. False negatives risk needing remediation, the 

more costly alternative to prevention. 

Thus, the NLT and ASPENS were examined for their abilities to classify students 

while substantially reducing false negatives. Both measures are capable of catching over 

90% over of the students truly “at risk”. In doing so, however, the NLT correctly 

identified only 12-16% of the students “not at risk.” The ASPENS, meanwhile, correctly 

identified 48-60% of the students “not at risk.” Schools that would utilize the NLT for 
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their classification decisions would either miss many students who truly need supports or 

would find themselves providing intensified intervention to a large swath of students who 

wouldn’t have been at risk receiving their existing classroom instruction.  

Research Question 2: Item-Level Analyses 

Looking at individual item performance on the NLT provides a lens to 

understanding the measure’s overall performance and potential item-level contributions. 

Performance on each NLT item is unexpectedly unrelated to performance on any other 

item. In addition, only Item 3 of the NLT is associated with the criterion math measures. 

This lack of internal consistency and concurrent or predictive validity suggests this 

number line task is not measuring related mathematical skills as expected.  

In addition, the NLT items considered individually provide no evidence for 

incremental validity above the ASPENS in explaining the outcome measures. 

Interestingly, models that only include the NLT Items explain more variance in the 

outcomes than the full-scale NLT scores. For example, regressing the spring NSB scores 

on the individual NLT item scores explains more variance than regressing the spring 

NSB scores on the full-scale (or sum of the items) NLT scores (R2 = .07 and .03, 

respectively). A similar result is seen with the spring SESAT scores (R2 = .05 and .02, 

respectively). Additionally, the unique variance explained by the ASPENS is lower in 

models with the NLT Items (R2 = .28 and .30) than with the full-scale NLT (R2 = .31 and 

.32). These findings suggest that certain items of the NLT, compared to their peers, are 

more related to other math measures. 

A hypothesis for the NLT Items, that Item 4 (target numeral 57) may be more 

informative than the others, was rejected. Rodrigues, Jordan, and Hansen (2019) found 
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that the “simpler” items, such as 1/2 on a 0-1 fraction number line were the most 

predictive of general math performance. Similarly, it was hypothesized that a stimulus of 

57 would be aided by a student’s abilities to a) identify the two-digit numeral correctly 

and b) to leverage nascent proportional reasoning to dissect the line approximately in 

half. It was hypothesized exhibiting these developing mathematical competencies would 

be associated with greater overall mathematical competence in kindergarten. 

However, Item 3 (target numeral 89) was found to be most correlated with other 

math measures. Item 3 has small correlations with the outcome measures (r2 = -.23 and    

-.22). Interestingly, the relationships between Item 3 and the outcomes are higher than the 

full-scale NLT scores with the outcomes (r2 = -.19 and -.17). Comparatively, Items 1, 2, 

and 4 exhibit minimal relationships with the other math measures and, in the models, may 

simply be noise. Item 3 alone may be responsible for the full-scale’s relation to the other 

math measures. Thus, summing all four scores together adds noise to Item 3’s 

contributions. 

It is speculated that the uniqueness of Item 3 is due to a large portion of the 

sample using an undiscerned strategy. It’s important to consider that, if students were 

randomly responding for all items, scores would exhibit an equal frequency of errors. 

Students would be just as likely to respond with 1 to a prompt to locate the number 61 on 

the line as they would with 100. However, the cognitive evidence base shows that, when 

presented with an array of similar options, people attend to and choose options near the 

middle most often (Atalay, Bodur, & Rasolofoarison, 2012; Christenfeld, 1995; Lo & 

Tsang, 2018; Rodway, Schepman, & Lambert, 2012). For children presented with 
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unfamiliar numbers, all possible locations on the number line may seem equal. Thus, a 

tendency towards the center is plausible. 

In examining the specific items, Items 1 (target numeral 34) and 4 (target numeral 

57) are closest to the center of the number line. If students were employing the strategy 

hypothesized above, such that all placements on the number line are treated relatively 

equal, one would expect smaller average errors for items nearest the middle. In fact, post-

hoc comparisons of the means revealed that students are, on average, more accurate for 

Items 1 and 4 than for Item 2. Thus, it is possible that a number of students were 

employing this pattern of responding on the NLT.  

While the data is presented as absolute error, without directionality, examination 

of the item distributions also contributes to this theory. More so than the other items, the 

distribution of Item 3 is somewhat bimodal (Figure 7). These two peaks appear to be 

centered around 0-10 and around 40. Using these absolute errors, we can infer response 

patterns to some extent. With the first error peak around 0-10, we may infer one “group” 

of students responded in the range of 79-99. For the other peak, we can conclude 

directionality. Any error above 11 (due to the endpoint of 100) means the student had a 

negatively-oriented error, or they responded with a number less than 89. Thus, the other 

“group” of students responded around the midpoint of the line. Similarly, the peak of 

Item 2’s (target numeral 12) error distribution is around 30. A cluster of errors around 40 

would add credence to this theory. 

This pattern of behavior is also supported by Muldoon et al.’s (2011) findings. 

Their data found children responded in a relatively linear pattern for numbers under 15 

(on the 0-100 number line). This pattern was not observed above 15, and they concluded 
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children were likely guessing for these numbers. It’s possible students in the current 

study approached the task similarly and responded semi-randomly for unfamiliar 

numbers. However, this study had only one item below 15, limiting the ability to infer 

trends above or below 15. 

More importantly, this theory may interact with why Item 3 is most predictive. 

Attention should be paid again to the bimodal nature of Item 3’s distribution. This item 

may distinguish, more than the other items, between guessers and non-guessers. The 

correct placement for Items 1 (target 34) and 4 (target 57) are near the midpoint of the 

line, so these items may fail to distinguish students who understand these numbers and 

students who are using a semi-random strategy. Item 3’s target numeral is the rightmost 

endpoint and is also a number that kindergarteners are not expected to be familiar with at 

school entry (Muldoon et al., 2011). In contrast, knowing (or not knowing) where to 

place 89 on the number line at kindergarten may be indicative of future performance (to a 

small degree). Future research is needed to explore item-level utility. 

Implications 

In an applied context, the findings from this study do not present value for 

schools. This study found no evidence that a four-item NLT promotes more informed 

screening decisions. By itself and while supplementing an established screener, this NLT 

does not uniquely contribute to predicting how students will perform at the end of the 

year. This holds true whether students are judged by a short-form outcome measure (the 

NSB) or a longer, comprehensive outcome measure (the SESAT). Evidence supports that, 

at best, educators will get a small sense of their students’ mathematical competency from 

the NLT. However, the NLT does not provide any information that would not be better 
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provided by the ASPENS. Schools do not have excess time to assess each student with an 

additional math measure, no matter how short, if it does not provide actionable 

information. 

However, prior studies of the NLT in an educational context (Clarke et al., 2018; 

Sutherland et al., 2020) have found unique and meaningful contributions of the NLT in 

screening decisions. While it does not appear the students in this sample performed 

worse, on average, than other studies, a clear difference between this study and its peers 

is the format of the number line task employed. 

In the prior cited number line screening studies, the number line assessment had 

26 items compared to the four-item form in the current study. Additional items sample 

more behavior and, potentially, allow for a greater approximation of the construct of 

interest. In this case, that is general mathematical competence. The prior studies utilized 

random or semi-random ordering of the task items. The current study did not, limiting the 

ability to counteract order effects. Order effects can be substantial in number line 

estimation tasks as prior items can serve as a mental “anchor” that affects future 

placement of numbers (Siegler, 2016; White & Szucs, 2012).  

These studies also utilized a descriptive task explanation and practice items with 

corrective feedback prior to the measure. It is possible these additions would have 

increased the validity of students’ responses, or the likelihood that students would be able 

to respond in ways that reflect their true mathematical knowledge. Lastly, the current 

study utilized a paper and pencil format. For students in the fall of kindergarten it is 

unclear if motor skills would be a barrier to participation. The cited prior studies used an 

iPad administered form, which could also be influenced by motor skills. Future number 
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line research should carefully consider these task differences when designing or utilizing 

number line estimation tasks with young children. 

Rodrigues, Jordan and Hansen (2019) found that a small number of items on their 

number line measure held a disproportionate amount of the predictive power. The items 

most predictive of future performance were the “simpler” items such as 1/2 or 5/6 on a 

fraction number line. One would assume the simplest item on this shortened NLT would 

be Item 2 (target numeral 12) but this was not the case. Items 1 (target number 34) and 4 

(target number 57) appeared to be the easiest. One theory is that this range of numbers 

may have been inappropriate for this age range. However, as mentioned earlier, prior 

studies have utilized the 0-100 number line to some success. These prior studies 

demonstrated similar amounts of error by participants and yet derived greater value from 

their number line measures. The task may have been misunderstood by participants, due 

to limited directions and practice items. 

A goal of this study was to explore whether a measure that optimizes efficiency 

(by reducing the number of items and thus the time needed to administer) could maintain 

its predictive value demonstrated in prior studies. This study does not support that this 

four-item form of number line estimation succeeds in this mission. However, the pursuit 

of a screener that efficiently leverages a smaller selection of highly predictive items still 

holds potential value for school practice. 

Limitations and Future Research 

 Interpreting these findings should be made in the context of the study’s 

limitations. While linear regression is relatively robust to violations of assumptions, the 

data in this study violated numerous assumptions. The most striking of these violations is 
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the bimodal nature of the NLT summed scores, which is also seen in the distribution of 

Item 3. The ASPENS in the fall also violates the assumption of normality, though the 

distribution more closely resembles a normal distribution in the spring. It is possible that 

kindergarteners who are new to formal education more closely resemble a normal 

distribution after a year of instruction. Regardless, these violations impair the confidence 

of the results. 

Another limitation is the relatively small sample size, which limits the extent to 

which this sample could generalize to a typical school. Furthermore, 25 students were 

excluded who did not provide an appropriate response to all four NLT items. In other 

words, over 10% of the potential sample was removed. This may include both students 

who misunderstood the task or were not attending. Representing these students in the 

sample may have improved the predictive value of the NLT. 

 The construction of the number line task presents a number of limitations and 

future directions. Firstly, the NLT had a response range for each item of 0-100. Unlike 

the other measures used, which dichotomize responses as right or wrong, the NLT allows 

for a continuous spectrum of responses. This can create situations where, given a 

stimulus of 12, one student responded with position 65 on the number line and another 

responded with position 86. Is the former student demonstrating greater understanding of 

the numeral 12? This point is particularly salient considering prior studies tend to 

administer a 0-10 or 0-20 number line to young children (Schneider et al., 2018) or found 

greater associations with a 0-20 number line than a 0-100 number line task (Muldoon et 

al., 2011). Alternatively, number lines with smaller ranges may be more closely linked to 

students’ developmental level at kindergarten entry. Due to the mixed evidence regarding 
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range for the number line estimation task, future research should explore varying number 

line ranges for predicting future performance and different methods for quantifying 

student responses. 

 The background information and directions provided to participating students 

prior to the NLT was limited, especially in comparison to other studies. Given the novel 

nature of the task compounded with kindergarten students’ newness to formal education, 

more detailed directions including teaching items may be critical to ensure that students 

fully understand task demands. Future studies are urged to explain the task to participants 

and provide practice items to increase the possibility of measuring a participant’s true 

mathematical competence. 

Studies demonstrating promise of the 0-100 NLT with young children have 

utilized a 26-item form, unlike the short four-item form used here. Additional items, or 

additional behaviors sampled, appear to increase the NLT’s association with future math 

achievement in young children. However, the balance between efficiency and a minimal 

necessary amount of items is unanswered. This point is especially salient knowing that 

the administration time of the 26-item form utilized by Sutherland and colleagues (2020) 

commonly met the self-imposed five-minute limit. 

In the pursuit of consolidated measures, the specific items selected for stimuli 

should be considered. Because of the current finding that certain items may have added 

noise to the model and detracted from the value of the full-scale, identifying high-value 

items may be critical for increasing the value of the NLT as a screener. As opposed to 

randomly sampling across the chosen number range, items could be strategically selected 

based on prior hypotheses or data. 
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Because of the evidence base supporting the logarithmic to linear shift in young 

children, oversampling 0-20 on a 0-100 number line may be more developmentally 

appropriate. Additionally, the Common Core calls for kindergarteners to be able to count 

by both ones and tens to 100 (Practices, 2010). Oversampling the decades may align with 

and be sensitive to students’ response to classroom instruction. Older students are 

observed to rely upon familiar anchor points (such as 25, 50, or 75; D. Cohen & 

Sarnecka, 2016). While kindergarteners may not use these numbers as benchmarks, they 

may use numbers within their familiar range, like 5, 10, and 15 instead.  

Research including such items can illuminate which are most predictive. 

However, the consolidation of items should be performed post-hoc, once the 

effectiveness of particular items is established. Then, screeners can maximize efficiency 

by including only these high-utility items. Finally, counterbalancing these items would 

reduce the influence of potential order effects. 

Future number line research is urged to explore various task forms to design more 

effective and efficient screeners. Certain factors should be consistent, such as task 

directions and practice items, while other factors would benefit from variation across 

forms, times, and skill levels. 

Conclusion 

Schools need accurate and efficient screeners that empower them to make better 

decisions around mathematics instruction and intervention. While this study does not 

provide evidence of this form of the NLT filling that gap, other studies have 

demonstrated unique contributions of assessing the mental number line. Evidence 

supports the number line’s association with mathematics concepts spanning diverse 
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competencies and ages, highlighting the potential for a versatile mathematics screener 

across school grades. However, practical implementation is crucial. Though schools exist 

in a context that demands efficiency and accounting for every minute, this study cautions 

that maximizing efficiency may sacrifice clinical utility. Knowing the long-reaching 

implications of successful early prevention and intervention, future research should strive 

to increase schools’ abilities to make informed decisions around who to serve. 
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