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Diffuse optics for glaciology
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Abstract: Optical probing of glaciers has the potential for tremendous impact on environmental
science. However, glacier ice is turbid, which prohibits the use of most established optical
measurements for determining a glacier’s interior structure. Here, we propose a method for
determining the depth, scattering and absorption length based upon diffuse propagation of short
optical pulses. Our model allows us to extract several characteristics of the glacier. Performing
Monte Carlo simulations implementing Mie scattering and mixed boundary conditions, we show
that the proposed approach should be feasible with current technology. The results suggest that
the optical properties and geometry of the glacier can be extracted from realistic measurements,
which could be implemented with a low cost and small footprint.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The optical properties of glacial ice encode information on paleoclimate [1,2], ice crystal
orientation and flow [3–5], and hold the key to precise modeling of radiative transfer [6–8].
Optical remote sensing techniques are commonly employed to monitor snow cover [9]. While
lidar cannot penetrate more than a few centimeters into snow [9], exact knowledge of optical
properties of snow and ice is nevertheless required to achieve high precision [8]. The transport
of light in glacier ice is dominated by scattering from bubbles, grain boundaries and dust [10],
while pure ice absorption is small in comparison. In deep glacier ice, diffuse optics have been
employed to successfully measure scattering and absorption coefficients independently of each
other from the shape of laser pulses transmitted through a large volume [11–13]. Understanding
of diffuse optics is tantamount to perform such measurements. Penetrating, non-invasive optical
measurements on the surface would simplify data collection and allow the usage of low-cost,
portable off-the-shelf components. In addition, similar techniques are known in medical imaging
as diffuse optical imaging [14], where appropriate boundary conditions for diffuse optics have
long been known [15]. The theory of diffuse transport of light with boundaries holds the
key to measuring not only local optical properties, but also to extracting information about
the volume geometry, such as the thickness of a glacier. Ice thickness is typically measured
using radar-sounding [16]. Such techniques are successfully used on cold glaciers, but only
low-frequency systems, which are typically not commercially available, are of use for temperate
glaciers [16,17]. The use of commercially available optical components could provide similar
performance at a much reduced system size and cost.

While many optical properties of snow and ice are well studied [6–8,18–20], precise data on
the scattering and absorption properties of near-surface ice is scarce. Scattering coefficients of
glacier ice has been measured in deep ice (>1000 m) at the South Pole [11,12]. By extrapolating
data collected in the arctic region one can conclude that scattering near the surface is too strong
for penetrating measurements [10]. However, recent measurements in the Greenland ablation
zone revealed that this is not the case in warmer regions, with scattering lengths on the order of
1 m [8]. Recently extracted ice cores from the Rhône glaciers also show a low density of bubbles
of small size [5], corroborating the order of magnitude of scattering observed in Greenland. This
prompts a re-evaluation of the feasibility of a penetrating optical measurement technique.
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In this paper we present a simple model for diffusive transport of light in a shallow glacier
and outline the very basic principles needed to describe diffuse optical measurements of glacier
ice. We describe the glacier as a semi-infinite slab, where transport of light is governed by both
absorption and scattering. We evaluate appropriate boundary conditions for both an idealized,
totally reflective bottom termination and Fresnel-reflection at the top ice-air interface, which is
known in the context of diffuse optical medical imaging [15]. With these boundary conditions, we
show that information about the geometry becomes easily accessible by constructing solutions to
the diffusion equation using the well-known method of images [21]. This serves as an extension
of the infinite-volume random walk model developed for AMANDA [22]. In the second half
of the paper we employ Monte Carlo simulations of a random walk to verify the validity of
the model and give an estimate of measurement performance and limitations under realistic
conditions. The results show that scattering and absorption length are accessible through both
time-resolved measurements and simple intensity measurements on the surface, while information
about thickness and geometry in general are accessible with time-resolved measurements only.
We discuss challenges arising for a possible experimental implementation, such as laser sources,
detectors, realistic glacier ice structure and bedrock reflectivity. While more research is needed
to understand all these details as well as test the robustness of the presented model, these results
do outline the potential of diffuse optical measurements for glaciology.

2. Theory

2.1. Optical properties of glacier ice

The optical properties of glacier ice are governed by both the properties of pure ice, as well as
the effect of trapped air bubbles and impurities. For example, the absorption coefficient β of
pure ice, which attenuates transmitted light after length d by the factor exp(−βd), is small in the
visible spectrum, measurements give values between 10−1m−1 in a laboratory setting to 10−3m−1

in the field [7]. While measuring the exact value is a challenge, it is evident that pure ice is
optically very clear, and absorption at wavelength above 600nm seems unaffected by impurities
[7,8]. Transport of light is instead strongly governed by scattering at bubbles, impurities, crystal
boundaries, and various other sources, with bubbles giving the dominant contribution [10]. If
the transmission through snow or ice is affected by both scattering and absorption, transmitted
intensity I(d) at depth d can be described by the attenuation coefficient α = σ + β:

I(d)
I0
= e−αd = e−(σ+β)d, (1)

where I0 is the input light intensity and σ is the isotropic scattering coefficient, which is much
larger in snow than it is in ice. After a distance of 1/α in the ice, the initial intensity will
have dropped to 1/e. The size and character of σ varies strongly throughout the literature.
Attenuation, scattering and absorption coefficients have recently been measured in the Greenland
ablation zone [8]. Without snow cover in the ablation zone of a glacier, the bare ice is accessible
to optical measurements and appears to be mostly uniform at depths of more than a few
centimeters. The scattering and absorption coefficients were found to be of order σ ≈ 1m−1 and
β ≈ 10−2 · · · 10−1m−1, respectively, corresponding to scattering and absorption length (mean
free path) of 1m and 10 · · · 100m. These findings suggest that diffusive transport of light can be
quite efficient, especially in the spectral region around 400 nm. This implies that a small portion
of light injected at the surface reaches deep into the volume, and some signature of the volume
depth may be encoded in light detected at the surface.

From the existing literature it is evident that absorption in the visible spectrum depends strongly
on the content of light absorbing impurities, while the physical scattering coefficient is largely
independent of wavelength. Independent measurement of σ and β without the use of reference
values, i.e., not relying on the attenuation coefficient from Eq. (1), is challenging. To the best of
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the authors’ knowledge this has only been achieved in the framework of the random-flight model
employed at AMANDA [12,22], where the distribution of photon arrival times between a source
and detector embedded deep in the ice was measured.

Exact knowledge of σ and β are tantamount to establish a useful and realistic model of the
transport of light in a glacier. If these parameters can be extracted from measurement, such
a model can in turn be used to obtain information about the geometry of a glacier, namely its
thickness. These questions are similar to diffuse optical imaging in the context of life science
[14].

2.2. Random flights: from multi-scattering to diffusion

To derive a simple model of diffuse light transport in a glacier, we model the glacier as a
semi-infinite slab. The system is symmetric around the z-axis. The volume is uniformly turbid,
meaning the scattering coefficient is larger than the absorption coefficient, and both, as well as
the index of refraction n, are assumed to be constant. The volume has a reflective boundary at the
bottom (z = −Z), and a semi-reflective boundary at the top (z = 0). An instantaneous (infinitely
short pulsed) source of light is injected at z = ρ = 0, a detector is placed at the surface to collect
light at the point of interest z = 0, ρ, where we are using cylindrical coordinates. We assume that
light occupies a narrow spectral range and spectral dependencies can hence be neglected. The
geometry is depicted in Fig. 1.

Fig. 1. Sketch of transport of light in glacier ice of thickness Z. Light gets injected
downward from the surface and eventually gets scattered into a random direction by bubbles
in the ice. Some light makes it back to the surface and gets detected by a detector separated
from the source by the distance ρ.

After injection, photons travelling on average for lsca = 1/σ, where they are scattered into
a random direction, as prescribed by the probability density p(θ) or scattering angle θ. The
photon will travel a random distance r before it is scattered again. Each photon is scattered many
times before reaching a boundary or being absorbed, performing a "random flight", while on
average covering the distance lsca with every scattering step, but in a random direction. Finding
the photon after a certain number of scattering steps becomes a statistical problem instead of an
optical one that can be described simply by propagation. The probability density P(R) to find a
photon at distance R from the injection point after N steps is described by the distribution [23]

P(R) =
1(︂

2
3πN⟨r2⟩

)︂3/2 exp
(︂
−3R2/2N⟨r2⟩

)︂
, (2)

where ⟨r2⟩ described the mean square displacement in the random flight. Here, we first establish
the connection between the governing length scale of the random flight, ⟨r2⟩, and the transport
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parameter of diffusion, the diffusion constant D. Using this parameter, we rewrite the above
probability density into the well-known solution to the diffusion equation in an infinite volume.
Again, it represents a probability density to find a photon at distance R from the source at time t
after being emitted:

P(R, t) =
1

(4πDt)3/2
exp

(︂
−3R2/4Dt

)︂
, (3)

with
D =

N⟨r2⟩

6t
=

c⟨r2⟩

6lsca
, (4)

where we introduced the stepping rate N/t. The distance traveled is Nlsca = ct by design, with the
speed of light in the medium, c, which removes the apparent time-dependence of the diffusion
constant. The diffusion constant is independent of the actual distribution of scattering lengths
and depends only on a mean transport parameter ⟨r2⟩.

Askebjer et al. [22] uses an additional dampening term to account for absorption. This term
introduces a weight to components at long times. With the absorption term, we modify the
previous density function. Since the probability to find the photon at large times is exponentially
decreasing, the following density function is formally not a probability density function, because
it does not integrate to 1, but it does still have the same form and information about where and
when to find the photon. It reads

P(R, t) =
1

(4πDt)3/2
exp

(︃
−

R2

4Dt
− βt

)︃
. (5)

This is a solution to the photon diffusion equation. Transitioning to macroscopic quantities,
from a probability density P(R, t) for the location of a single particle to a fluence rate ϕ(R, t),
describing the isotropic fluence rate in units of [Wm−2], originating from an isotropic point
source of unit energy. The diffusion-kernel with absorption is a well-known solution to the
isotropic, infinite-volume case of the photon diffusion equation

∂ϕ(R, t)
∂t

= D∇2∂ϕ(R, t) − cβϕ(R, t) + cS(R, t), (6)

where S(R, t) is the source term.

2.3. Role of anisotropy

Before we move on, it is worthwhile to inspect the diffusion constant D and the physical
interpretation of the mean distance and mean square displacement. For a "truly random" flight,
the scattering angle θ is uniformly distributed. It is straightforward that mean distance and mean
square displacement are then

⟨r⟩ =
1
N

N∑︂
i=1

ri = 0, ⟨r2⟩ =
1
N

(︄
N∑︂

i=1
ri

)︄2

= l2sca. (7)

This implies that the distribution is always centered around the source point, since the average
distance traveled is 0, while the mean square displacement, which is a measure of the extent of the
distribution, is the scattering length squared. Scattering by bubbles in particular is not isotropic,
but forward-peaked, with the average cosine of the scattering angle being ⟨cos θ⟩ = 0.75 [22].
This is commonly known as the anisotropy factor first introduced in meteorology [24] to describe
attenuation in terms of an effective scattering constant

σeff = σ(1 − ⟨cos θ⟩). (8)

This effective scattering coefficient can successfully describe attenuation in the sense of Eq. (1),
even when the distribution of scattering angles is not uniform, i.e., when scattering is anisotropic.
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While attenuation may behave the same for an effective scattering constant compared to an actual
isotropic scattering constant, mean distance and mean square displacement differ [22]:

⟨r⟩ = lsca, ⟨r2⟩ = 2l2sca (9)

This yields a factor of 2 difference for the diffusion constant between truly isotropic scattering
and effective isotropic scattering. Using the mean square displacement for forward-peaked
scattering and substituting into Eq. (4) along with the effective scattering length we find that
the diffusion constant for the case of scattering on bubbles or other forward-peaked scattering
processes is

D =
c⟨r2⟩

6leff
=

2cl2eff
6leff

=
cleff
3

. (10)

2.4. Boundary condition

The volume we are employing to model the glacier has two boundaries. The top boundary is
semi-reflective, the bottom boundary is reflective. As mentioned before, assuming unit reflectivity
at the base is an oversimplification, but it allows for a straightforward, intuitive solution. This
bottom boundary can easily be modeled using the method of images, which is well known in the
context of electromagnetism and conduction of heat, which is also described by diffusion [21].
The method is based on the assumption that any sum of solutions ϕ1, ϕ2 to the diffusion equation
is itself a solution to the diffusion equation

∂ (ϕ1(R, t) + ϕ2(R, t))
∂t

= D∇2 (ϕ1(R, t) + ϕ2(R, t)) − cβ (ϕ1(R, t) + ϕ2(R, t)) + cS(R, t). (11)

This follows from the linearity of the diffusion differential equation. The method of images
allows the construction of a solution satisfying various boundary conditions from a source term,
and several mirror sources. For a fully reflective barrier at z = −Z, the mirror source term is
identical to the source, but mirrored around the boundary, giving the solution with two source
terms, where one is mirrored around the boundary and hence placed at z = −2Z:

ϕ(R, t) =
1

(4πDt)3/2
exp

(︃
−
ρ2

4Dt
− βt

)︃ (︃
exp

(︃
−

z2

4Dt

)︃
+ exp

(︃
−
(z + 2Z)2

4Dt

)︃)︃
. (12)

We simplify this expression by defining a point-source term as

ϕ+(z) =
1

(4πDt)3/2
exp

(︃
−
ρ2

4Dt
− βt

)︃
exp

(︃
−

z2

4Dt

)︃
, (13)

which allows us to rewrite the above equation

ϕ(R, t) = ϕ+(z) + ϕ+(z + 2Z). (14)

Here, it is assumed that the source is isotropic, which isn’t the case for injection of a laser
beam from the surface. We can approximate isotropic behavior by replacing the source (and
mirror source) by effective sources, shifted by one effective scattering length into the slab:

ϕ(R, t) = ϕ+(z + leff) + ϕ+(z + 2Z − leff). (15)

This equation would be sufficient if all light escaped the top boundary, in which case it
completely describes the time-dependent power density distribution in the slab in the presence of
a reflective boundary. Unfortunately, behavior at the top boundary isn’t that simple. To introduce
a mixed boundary condition that describes the Fresnel reflections at the boundary between two
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media with different refractive index, ice and air, we follow the derivation by Haskell et al.
[15]. To find a suitable expression, we need to introduce more radiometric quantities, namely
the radiance L and flux j⃗. Radiance is a directional power density per unit area and therefore
describes the directional transport of optical power. In a diffuse medium, the total radiance is
composed of the isotropic fluence rate and a small directional flux:

L(R, s⃗, t) =
ϕ(R, t)

4π
+

3
4π

j⃗(R, t) · s⃗. (16)

The general diffusion approximation which allows us to describe the transport of light with
such equations in the first place dictates that the radiance is dominated by the fluence rate, and
the flux component is small. All outward radiation that is repelled by Fresnel reflection can be
replaced by an inbound irradiance, analog to the method of images:

Lin = RLout =

∬
s⃗·n⃗>0

R(s⃗)L(s⃗)s⃗ · n⃗dΩ, (17)

with

R(θ) =
1
2

(︃
n cos θ ′ − cos θ
n cos θ ′ + cos θ

)︃2
+

1
2

(︃
n cos θ − cos θ ′

n cos θ + cos θ ′

)︃2
, θ<θc, (18)

where θc is the critical angle above which total internal reflection occurs, θ ′ is the external
refracted angle. Note that we are averaging the Fresnel reflection for both linear polarizations,
assuming that polarization is random after many scattering steps.

Left and right side of the reflected radiance equation evaluate as follows:

ϕ(R, t)
4
+

jz
2
= Rφ

ϕ(R, t)
4

− Rj
jz
2

, (19)

where the integrals for fluence rate and flux are

Rφ =

∫ θc

0
2 sin θ cos θR(θ)dθ, (20)

Rj =

∫ θc

0
3 sin θ cos2 θR(θ)dθ. (21)

With these definitions, we can write

jz = −
1
2

1 − Rφ

1 + Rj
ϕ. (22)

Using Fick’s law, which links fluence rate and flux in the diffusive regime, the boundary
condition can finally be identified as

−
D
c
∇ϕ(R, t) = j = −

1
2

1 − Rφ

1 + Rj
ϕ, (23)

with
ϕ(R, t) =

2leff
3

1 + Rj

1 − Rφ

∂ϕ

∂z
≡ h
∂ϕ

∂z
(24)

at the top of the volume (z=0). Ignoring the bottom boundary entirely for the moment, the mirror
source’s fluence rate ϕm can be calculated using the boundary condition and infinite-volume
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solution [21]:

∂ϕm

∂z
−
ϕm

h
= −

(︃
∂

∂z
−

1
h

)︃
1

(4πDt)3/2
exp

(︃
−
ρ2

4Dt
− βt

)︃
exp

(︃
−
(z + leff)

2

4Dt

)︃
(25)

at z = 0, at which point we may use −(z + leff) = z − leff . Multiplying both sides by exp(−z/h)
gives:

∂

∂z

(︂
e−z/hϕm

)︂
=
∂

∂z

(︃
e−z/h 1

(4πDt)3/2
exp

(︃
−
ρ2

4Dt
− βt

)︃
exp

(︃
−
(z − leff)

2

4Dt

)︃)︃
−

2
h

e−z/h 1
(4πDt)3/2

exp
(︃
−
ρ2

4Dt
− βt

)︃
exp

(︃
−
(z − leff)

2

4Dt

)︃
.

(26)

This expression can be integrated, moving the new dampening terms exp(−z/h) to the right
side:

ϕm(R, t) = ϕ+(z − leff) −
2
h

∫ ∞

z
e−(z−z′)/hϕ+(z′ − leff)dz′

= ϕ+(z − leff) −
2
h

∫ ∞

0
e−l/hϕ+(z − l − leff)dl,

(27)

which consists of a mirror source at z = −leff , and an exponentially dampened line of sinks
extending from z = −leff to −∞.

So far, we have extended the infinite-volume description to non-isotropic injection and treated
the two interfaces separately with different boundary conditions. For a general solution, both
need to be combined. Since both interfaces are at least partially reflective, the solution will have
to consist of an infinite sum of sources, sinks and their mirror images to account for the repeated
reflections between both. We shall restrict the treatment of this problem to the surface, z = 0,
and calculate the ratio between two consecutive round trips through the volume at the surface.
Using a single source at z = 0, the ratio between the signal at ρ, z = 0 and the signal from a
mirror source at (ρ, z = −2Z) is then

ϕm

ϕ
= exp

(︃
−

Z2

Dt

)︃
= exp

(︃
−

3Z2

cleff t

)︃
. (28)

Assuming typical diffuse optical transit times ct ≈ 1 m and a sufficiently large volume to
justify the diffuse treatment, Z/leff ≫ 1, this ratio will be small. In addition, for the signal at the
surface, only full integer reflections will contribute, and it is reasonable to only consider the first
roundtrip reflection. Hence, we can write the full solution as the effective source distribution
accounting for the partial boundary condition at the surface, plus a mirror distribution centered
around z = −2Z, consisting of 6 terms in total:

ϕ(ρ, t, z = 0) = ϕ+(leff) + ϕ+(−leff) + ϕ+(leff + 2Z) + ϕ+(−leff + 2Z)

−
2
h

∫ ∞

0
e−l/hϕ+(−l − leff)dl −

2
h

∫ ∞

0
e−l/hϕ+(l + leff + 2Z)dl,

(29)

once again using the compact definition of a source term ϕ+. If higher precision is needed, the
bottom mirror source distribution can be mirrored once more by applying the same method that
was used to obtain the top source distribution, and so forth.

While constructing a mirror source image to account for a totally reflective boundary is both
simple and instructive, it may not be applicable in many real-world applications. In the presence
of loss at the lower boundary, introducing a mixed boundary may be more appropriate. If optical
properties of the interface are known, this can be accomplished by following the derivation
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shown here but may prove challenging in the presence of a lossy medium. Employing a so-called
extrapolated boundary [15], which involves shifting the mirror source image further away from
the physical boundary, may prove valuable to approximate a lossy interface sufficiently. We
discuss realistic values for the interface’s reflectivity in section 4.4.

2.5. Instantaneous source and time-resolved measurement

The above formula clearly shows the signature of three properties of the volume: diffusion
constant, absorption constant, and thickness. Assuming the pure ice refractive index is known,
the diffusion constant is directly related to only the scattering coefficient. The distribution
ϕ(ρ, t) on the surface can in principle be measured using photon counting detectors, which offer
time-resolved detection of even dim light with resolution of the order of ∼ 100ps. Since the
diffusion approximation is only valid for many scattering steps, and the effective scattering length
is of the order of ∼1m, it can be assumed that typical arrival times are at least of the order of
many nanoseconds. Using these assumptions and a refractive index of 1.31 [19], we can calculate
the arrival time distributions at a hypothetical detector for different offsets of the detector from
the light source, and for different thicknesses, shown in Fig. 2.

Fig. 2. Time-dependent fluence rate for an instantaneous point-source and a detector
separated by ρ. (a) Different detector offsets, showing the fluence rate distribution for an
infinitely deep slab (black lines) and with a bottom boundary 10m deep (blue line). (b-d)
Distribution for different thicknesses, shown for detector separation of ρ=10m, 30m, 50m,
respectively.

Figure 2(a) shows the fluence rate as a function of time at four different detector positions for
an infinitely deep volume. The blue curves are the corresponding fluence rates for a 10m-deep
volume. The curves are all normalized to unit area for the infinite volume. It can be seen that the
presence of a shallow boundary not only increases the fluence rate at the surface, but it also shifts
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the distribution to longer arrival times. Assuming a priori knowledge of optical properties, this
is a clear signature of volume thickness that could potentially be used to invert a time-resolved
measurement. With increasing distance between source and detector, this signature apparently
grows larger as well. This can be understood in the picture of source and mirror source: Moving
the detector further away from the source exponentially dampens the fluence rate from the source
but does not proportionally change the separation from the mirror source at z = −2Z, hence
increasing the portion of the signal that bears the signature of volume thickness. In Figs. 2(b)-(d)
we show the fluence rate distribution for different volume thickness in three different detector
offsets, 10m, 30m and 50m respectively. Again, at large detector separation the difference
between different volume thicknesses becomes more pronounced, but takes the shape of an
almost symmetrical offset. With the parameters we assumed, it seems likely that thicknesses
around 25m could be measured in principle. For larger thickness, a significant change in the
shape of the curves is only present at very large distance from the source, where any remaining
signal would be weak. It should be noted that normalizing the curves in Fig. 2(a) individually is
not representative of an actual measurable signal, since absorption dominates the model behavior
at larger source-detector separations, and actual measurable signal per injected pulse decreases.
The magnitude of this decrease is better quantified in terms of time-integrated fluence rate.

In addition to the signature of volume size there is a clear indication that the effective
scattering and absorption coefficients can be extracted independently from a measured arrival
time distribution, as was done for the infinite-volume situation [10,12]. Close examination of
Eq. (29) reveals that all terms present in the bounded volume model are of similar nature to the
infinite volume solution from Eq. (5). Diffusive terms ∼ exp(−1/Dt) dampen short arrival times
and bear the signature of the diffusion constant and hence the scattering coefficient. Absorptive
terms ∼ exp(−βt) dampen dominantly long arrival times. We can therefore conclude that in a
similar fashion to the deep measurements [10,12], scattering and absorption coefficient can be
independently extracted from measurements at the surface, assuming that the ice thickness is
either known, or detector separation is small, in which case thickness has a minor influence on
the detector signal.

Another point worth noting is that the modification of the infinite solution achieved by
introducing the mixed boundary condition at the surface is most prominent at small detector
separation, mostly influencing the peak, and becomes negligible otherwise.

2.6. Stationary sources and stationary measurement

While time-resolved measurements have the potential of proving abundant information, they
are not as simple as time-integrated intensity measurements. A stationary measurement, i.e.,
a continuous source and non-time-resolving detector that only measures intensity, would be
much more desirable for a portable, low-cost measurement apparatus. Using non-time-resolved
detection would yield the time-integrated, stationary fluence rate, or short fluence ϕS(ρ) at the
surface:

ϕS(ρ) =

∫ ∞

0
ϕ(ρ, t, z = 0)dt. (30)

Employing a stationary source gives an expression that can be shown to be identical with the
stationary fluence. For this, the fluence rate at time t is the instantaneous fluence rate integrated
over all past times from −∞:∫ t

−∞

ϕ(ρ, t − t′, z = 0)dt′ = −

∫ 0

∞

ϕ(ρ, t, z = 0)dt =
∫ ∞

0
ϕ(ρ, t, z = 0)dt = ϕS(ρ). (31)

We find that all time-dependencies in the fluence rate (Eq. (29)) are of the form

C
∫ ∞

0
dt

1
t3/2

exp
(︂
−

(︂a
t
+ bt

)︂)︂
= C

√︃
π

a
exp

(︂
−2

√
ab

)︂
, (32)
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where C, a, b are constant. Calculating the fluence from Eq. (32) for one term of the above form
yields a stationary source term:

ϕS+(ρ) =
1

4πD
1√︁
ρ2

exp ⎛⎜⎝−
√︄

3ρ2
leff labs

⎞⎟⎠ . (33)

Applying this recipe to Eq. (29) can be done term-by-term, yielding the complete fluence:

ϕS(ρ) =2ϕS+(ρ
2 + l2eff) + ϕS+(ρ

2 + (leff + 2Z)2) + ϕS+(ρ
2 + (−leff + 2Z)2)

+
2
h

∫ ∞

0
e−

l
h ϕS+(ρ

2 + (−l − leff)
2)dl +

2
h

∫ ∞

0
e−

l
h ϕS+(ρ

2 + (l + leff + 2Z)2)dl.
(34)

The result consists of the beforementioned 6 terms: 2 sources, 1 sink, and their mirror images,
whereby the first two source terms are identical at z = 0. In terms of a injected energy, the
time-integrated fluence rate has the units of [Jm−2]. Integrating over a hypothetical detector
aperture would yield the detected energy. Each term displays an exponential decay with separation
ρ from the source, with each term again bearing different offsets to this value due to different
effective source position. The exponentials fall off as exp(−

√︁
3ρ/leff labs). Hence, a fit to data

would reveal the product of scattering and absorption coefficients.
The integrated fluence rate for different system parameters is shown in Fig. 3. Panel a shows the

fluence rate for constant scattering length leff = 1 m, but different absorption lengths, resulting in

Fig. 3. Time-integrated fluence rate for an instantaneous point-source and a detector
separated by ρ, compared for (a-b) different scaling parameters leff labs on linear and log-
scale, respectively, (c) infinite and 10m-deep volume, and (d) for constant scaling constant
leff labs but varying scattering length leff .



Research Article Vol. 29, No. 12 / 7 June 2021 / Optics Express 18855

a different scaling parameter leff labs. Panel b shows the same data on a log-scale. The difference is
most apparent in the tails of the distribution, where the curves cover about one order of magnitude
for a realistic range of parameters, displaying different slopes on a log-scale.

Figure 3(c) shows the same curve for two different geometries, the infinitely deep volume, and
a shallow one with a depth of 10m. It is clear that the difference is minor and only shows up in
the tail of the distribution. This hints that the integrated fluence rate is not an ideal measure of
volume geometry, especially compared to the time-dependent fluence rate. This highlights that
stationary measurements are more useful for extracting optical properties rather than measuring
thickness - especially so since the measurement is largely independent of thickness.

Figure 3(d) shows the distribution for different scattering lengths, but constant overall scaling
constant leff labs. In comparison to panel b the slope in the tail (corresponding to the exponential
term) is retained, while the behavior at small detector separation is different for each set of
parameters. A difference is only visible for small detector separation, where the diffusion
approximation may not hold. This implies that independent measurement of scattering and
absorption is not possible in this configuration.

Lastly, the integrated fluence rate can answer question of the absolute measurable signal level
in a time-resolved measurement, and its fall-off with detector position ρ. According to Eq. (31),
the integrated fluence rate is identical to the integral over the entire arrival time distribution
shown in Fig. 2. Therefore, the integrated fluence rate is a measure for the total measured signal
at position ρ in a time-resolved measurement, revealing the overall system loss.

3. Monte Carlo simulations

The model developed so far is based on several assumptions and approximations. We’re assuming
that the physical Mie scattering process can be approximated with an effective isotropic process,
and that the diffusion approximation holds, specifically at the boundaries. The bottom boundary
is modeled as a perfect mirror, which surely is far from reality. To test if these assumptions
are reasonable, we are comparing the model to Monte Carlo simulations implementing a more
physical process. However, these simulations have their own limitations, especially since a
computationally efficient physical scattering phase function has to be chosen. Agreement with a
realistic, physical scattering process is only guaranteed if the phase function is well known.

The simulations calculate the trajectory of an individual photon. Scattering is implemented
using a Henyey-Greenstein distribution [25] around the pitch-axis of the photon flight vector,
and a uniform distribution around the roll axis, which is the vector itself, using the Rodrigues’
rotation formula to calculate. The asymmetry factor for the employed Henyey-Greenstein
distribution is g = ⟨cos θ⟩ = 0.75. The two random angles θ, γ in each scattering step are
obtained from uniformly distributed random numbers ξ1, ξ2 ∈ {0, 1} using the inverse cumulative
Henyey-Greenstein density function

θ = cos−1

[︄
1
2g

(︄
1 + g2 −

(︃
1 − g2

1 + g − 2gξ1

)︃2)︄]︄
, (35)

γ = 2πξ2. (36)
Since this approximation to the true Mie scattering distribution only accounts for the forward

component of scattering, artifacts around the injection point have to be expected. While the
bottom boundary is assumed to be lossless and cosine-distributed

θ = sin−1 (ξ1) , (37)

γ = 2πξ2. (38)
Given that the bedrock of a glacier will have some degree of microscopic and macroscopic

roughness, this approximation seems appropriate, and is in line with experimentally observed
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emission profiles [26]. In the presence of a water or air layer below the ice, a (partial) specular
reflection may be more appropriate. For cases leff ≪ Z, the distribution will not matter, since
randomization of the distribution will occur regardless of the scattering distribution at the
interface. For all cases under investigation in the following chapter we observe no significant
differences in the simulated distributions for reflective, cosine or uniformly distributed angles at
the lower interface.

A Fresnel reflection is implemented at the top boundary, assuming unpolarized light and
summing the contribution of both linear polarizations, assuming a refractive index of ice of 1.31
[19]. For this refractive index, total internal reflection takes place for trajectories that intersect
the surface at an angle larger than θC = 50◦. Each step implements absorption in the form of
a survival probability of exp(−lsca/labs) and trajectories are terminated either by absorption or
return to the surface. Figure 4 shows 2000 trajectories for a deep and a shallow volume and
denotes injection point, effective source position and boundaries. The overlayed trajectories
display the usual pear-shaped distribution.

Fig. 4. Simulated random flights for 2000 photons with constant scattering length leff = 1m
and absorption length labs = 100m. The bottom boundary implements a total, diffuse
(cosine-distributed) reflection, the top boundary implements Fresnel reflection. Light is
injected straight down, getting scattered after one physical scattering length, whereas the
model’s effective source would be one effective scattering length down. (a) Shallow volume,
Z = 10m, (b) Deep volume, Z = 50m.

For each photon trajectory the endpoint and time-of-flight are accessible. A subset of
trajectories ending in a defined detector area of 0.01m2 - achievable with off-the-shelf optics -
is evaluated in histograms to simulate the outcome of a time-of-flight measurement. Surface
intensity measurement can be simulated easily by counting all trajectories ending within detector
areas along a line on the surface.

4. Feasibility of measurements

The simulations can be compared to the theoretical model. The simulations can easily predict
photon count rates and measurement duration for a given source brightness. For a successful
measurement of any parameters, it should be possible to extract these parameters by fitting the
theoretical curves to the simulated data.

4.1. Intensity measurements

The easiest measurement to implement is an intensity measurement as a function of detector
position. Here, photon counting detectors such as photo multiplier tubes or avalanche photo
diodes offer good efficiency, temporal resolution, and more importantly a dynamic range over
many orders of magnitude. This helps when extracting meaningful data from measurements.
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To ascertain how well this technique would fare given the complicated nature of Eq. (34), we
performed simulations for different combinations of parameters leff and labs, corresponding to a
scaling parameter leff labs between 20m2 and 250m2, covering a wide range of expected values.
The results are shown in Fig. 5.

Fig. 5. Simulated time-integrated detector counts per injected photon on the surface for
100cm2 detector area with 108 simulated photon trajectories. (a) Reconstructed vs simulated
scaling constant (blue curve) over the ideal ratio of 1 (black curve). Points shown contain
combination of scattering and absorption lengths in the range of leff = 0.5 · · · 1.5m and
labs = 20 · · · 250m. Data is averaged in bins of width 20m2 with R2 = 0.99 (R2 = 0.93 for the
raw data). (b) Simulation with scaling constant leff labs = 130m2 and 108 photon trajectories.
The solid line is a fit of the mixed-boundary diffusion model to the simulated histogram,
excluding the center portion. Reconstructed scaling constant is leff labs = 134(±7)m2. The
inset shows the two-dimensional distribution on the surface with the dashed line indicating
where the cut was taken.

For fitting the theoretical model, we scale it by detector area. Simulated data points y are
inversely weighted as 1/y to account for the large dynamic range of 4-5 orders of magnitude.
As a result, the scaling parameter used for the simulation can be extracted. Accuracy is in the
range of 10% for smaller values. Faithful fitting seems increasingly difficult at larger values for
leff labs. While scattering and absorption length are used as independent fitting parameters as
prescribed by Eq. (34), only their product yields reasonable agreement with the expected value.
We believe that this is caused by the invalidity of the diffusion approximation in proximity to the
detector. In Fig. 5(b) we show one example of simulated measurement data for a scaling constant
of leff labs = 130m2. The fit retrieves a value of leff labs = 134(±7)m2. In the lowest counting
detector positions, detection probability per injected photon is of the order of 10−9. Assuming
injection rates of 1015s−1, which corresponds to roughly 1 mW of optical power, we can expect
count rates of the order of 106s−1. This is equivalent of about 1 pW of optical power. Accounting
for limited detector and collection efficiency, these estimates leave ample room to clear ambient
nighttime background using photon counting detectors or highly efficient photo diodes.

Note that product of absorption and scattering coefficient is sufficient above 600 nm, where
absorption is well known and independent of impurities [7,8]. Physical scattering length lsca
has to be independent of wavelength, and the wavelength-dependence of the scattering angle
distribution (asymmetry factor) can be modeled through Mie scattering theory, which can serve
as a waypoint to extrapolate scattering coefficients measured above 600 nm to short wavelengths.

Even though information for large scaling parameters is hard to retrieve with the presented
method, the small experimental effort necessary makes it an attractive measurement regardless of
its limitations. Only a diode laser source, detector and collection optics are required.
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4.2. Time-of-flight measurements

Time-resolved measurements can potentially provide more information, but at the cost of lower
counting rates, since the signal will be distributed in many discrete time bins. We first assume
that the volume depth is either known or can be assumed sufficiently large not to play a role.
Using these assumptions, we apply a least-square fit to the simulated arrival time histograms and
attempt to retrieve the simulation parameters for scattering and absorption length.

The results for several combinations of scattering and absorption length are shown in Fig. 6.
The ratio between retrieved and simulated parameter is shown as a function of detector position. It
can be seen that for large detector offset, both parameters asymptotically reproduce the simulated
parameters within the variance of the dataset. Achievable relative error is below 20% for detector
positions at least 15m away from the source. The asymptotic behavior can be explained by the
fact that the diffusion approximation only holds for large detector separations. This appears
to be much more apparent for time-resolved measurements than it is for time-integrated ones.
Figure 6(c) shows an example of a fit. In general, these fits are much more robust than the ones
of surface distribution. This is due to the separate influence of scattering and absorption length
on different sections of the curve, but also due to the smaller dynamic range of 1-2 orders of
magnitude. We found that fit solutions are largely independent of starting values.

Fig. 6. Simulated arrival time histogram of detector counts per injected photon for 100cm2

detector area, fitted with diffusion theory curves. The dataset combines nine different
combinations of scattering and absorption length in the range of leff = 0.5 · · · 1.5m and labs =
25 · · · 250m. (a) Reconstructed vs simulated effective scattering length. (b) Reconstructed
vs simulated absorption length. (c) Example on a simulated arrival time histogram at a
detector position 15m away from the source, scattering length of leff = 1m and absorption
length labs = 100m. The least-square fit retrieves parameters leff,fit = 1.14(±0.03)m and
labs,fit = 88(±5)m.
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For the evaluation of the simulated arrival time distributions we chose a bin width of 50 ns,
which yields a reasonable compromise between sampling the distribution with enough points and
producing sufficient number of counts per bin. Using this temporal resolution of 50 ns we estimate
return loss of the order of 10−10 for the bins in the tail of the distribution. This is well above the
temporal resolution of modern photon counting detection systems, which is typically of the order
of 100ps for combined response of the detector and electronics. Since optical parameters can
be retrieved using such bin widths, the use of inexpensive nanosecond-pulsed lasers is possible.
These lasers typically provide pulse energies of the order of 1nJ (109 photons per pulse), with
pulse repetition rates of 105s−1, limited by the width of the arrival time distribution. Taking
combined detector and collection efficiency of 10−3 into account, we expect count rates for the
lowest counting bins of the order of 10s−1. This is reasonable for a time-resolved measurement,
where any background is constant. It is worth noting that the technique gives a truly independent
measurement of scattering and absorption length, without assumptions or reference values used
previously [7,8].

4.3. Thickness

Measuring ice thickness is the most challenging of the measurements investigated here, since it is
only far away from the source that the volume depth causes a large modification to the diffusion
model. Results for volume depths up to 25m are shown in Fig. 7. It can be seen that at small
detector separation the thickness is systematically overestimated. However, in those cases the
confidence intervals of the fits (not shown where the relative confidence interval is larger than
100%) are not useful. Retrieved thicknesses trend towards the simulated value at a detector
position around 30 m from the source. At larger separation, fits still converge, but do not converge
to the correct value. This can be explained in terms of the theoretical curves shown earlier: At
large separation, the signature of the truncated volume turns into what is almost symmetrical
around the peak, and is not strongly dependent on the volume thickness anymore. To avoid
mismeasurement it seems appropriate to perform the measurement as a function of detector
position, and choose the closest separation where fits converge with reasonable confidence. If
we assume loss at the lower boundary, parameter retrieval is less reliable, but still possible for
moderate loss. We show results for reflectivity R = 0.9 and R = 0.75 in Fig. 8. For R = 0.9,
the fits retrieve thickness values that are comparable to the ones shown previously in Fig. 7 for
the case of a perfectly reflecting lower boundary. For R = 0.75, it can be seen that especially
for small source-detector separation, the thickness retrieval fails. As loss is introduced to the
lower boundary, the portion of the detectable signal stemming from the reflection is decreased,
explaining the loss of this signature. For shallow volumes, this effect is more pronounced because
multiple reflections are more likely. In addition, systematic deviations from the simulated volume
depth occur, with relative errors of the order of 50%. We can therefore conclude that the idealized
diffusion model can tolerate small amounts of loss of the order of 10%, but further modeling is
needed to account for larger losses at the boundary.

While this approach leaves much to be desired and further investigation is warranted, the
results show that thickness retrieval is possible in principle. Askebjer et al. [22] used a more
sophisticated approach for parameter retrieval, where they used curve fitting to only extract
maximum and mean of the distribution, and then used the optical parameters extracted from
those two figures as a starting point for a maximum likelihood estimation using simulations.
However, they did not apply their procedure to retrieval of propagation distances, since those
were known. Given that we assumed exact knowledge of optical properties and unit reflectivity
of the lower boundary, we conclude that this measurement of ice thickness may be very limited
under realistic conditions, and that further research is needed to develop this technique.

To judge their usefulness, these results need to be put into context. The assumptions made
about optical properties and access to bare ice definitely restrict the described experiment to the
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Fig. 7. Simulated arrival time histogram of detector counts per injected photon for 100cm2

detector area. (a) Reconstructed vs simulated volume depth. Confidence intervals for
unreliable fits are not shown. (b) Example on a simulated arrival time histogram for a volume
depth of Z = 25m with the detector situated at ρ = 35m. The recovered volume depth is
Z = 24(±9)m.

Fig. 8. Reconstructed vs simulated volume dept with a lossy lower boundary. Confidence
intervals for unreliable fits are not shown. (a) Lower boundary reflectivity R = 0.9. (b)
Lower boundary reflectivity R = 0.75.

ablation zone of temperate glaciers. Here in Oregon, the thickness of glaciers in the Cascade
range was last measured in the 1980’s [27]. At that time, ice thickness rarely exceeded 50m,
while some of the glaciers under investigation have since disappeared completely [28]. The
accuracy of depth retrieval demonstrated here is of the orders of 10%, on par with comparable
techniques using radio waves.

4.4. Experimental considerations

Measuring glacier thickness is the most challenging experiment proposed here. The results
presented here show that a signature of volume thickness can be extracted in principle and under
ideal conditions. While we have also shown that optical properties, which need to be known as
precisely as possible to retrieve thickness, can be measured independently, further modeling is
needed in order to test the robustness of parameter retrieval. This is particularly true in regard of
the lower boundary and realistic structure of the ice. Lastly, if a precise model is needed, the
commonly used Henyey-Greenstein formula as well as mixed phase functions used by others
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may be insufficient since they do not reproduce the back-scattering peak of the Mie distribution
[13,25].

Bedrock reflection can be as high as 70 % for sandstone [26], 50 % for granite and as low
as 10 % for andesite [29]. Additional issues such as air and water between the ice and bedrock
further complicate formulating an appropriate lower boundary for the diffusion model, since
they could either enhance or reduce reflectivity, depending on geometry and optical properties.
Therefore, knowledge on local geology and glacier morphology is essential for successful depth
measurement. Again, establishing bounds on how robust the diffusion model needs to be for the
measurement to be successful will be essential.

All measurements outlined here will require to measure small quantities of light on photon
counting detectors, which will be subject to intrinsic detector dark counts of the order of 10 s−1

to 1000 s−1. In addition, we have to assume a sizable amount of background light, even at
night, which can be somewhat suppressed using spectral filtering around the employed laser
wavelength. Both dark and background counts are in principle constant. Using modulation,
either by modulating the laser or using a mechanical shutter, changes in those values on scales
longer than the modulation period can be accounted for, and detection thresholds of 1s−1 are
possible. In the case of time-resolved measurements, a pulsed laser provides the periodic pulse
train. We have shown that detection bin widths of roughly 50 ns are sufficient to resolve the
expected arrival time distributions, which span several microseconds. If a long pulse is used, the
measured distribution will be the convolution of the instantaneous source distribution with the
laser pulse shape. As long as the pulse duration is much shorter than the detection bin width, the
broadening cannot be resolved, and the instantaneous distribution can be used for fitting.

Given the simple nature of these proposed experiments we believe that they can be implemented
at relatively low cost. With a photon counting detector, a ns-pulsed diode laser, acquisition
electronics and minimal optics for collection, an adequate setup can be implemented with
off-the-shelf components for under $10, 000. Stationary measurements are possible at much
lower cost. In medical imaging, diffuse optical tomography in the frequency-domain, where
a continuous wave laser is modulated at different frequencies, has recently been gaining in
popularity [30–32]. This has resulted in further reduction in cost.

5. Conclusion

We extended the diffusion model used in AMANDA [22] with boundary conditions necessary to
describe a semi-infinite volume of glacier ice. The modifications from these boundary conditions
make it possible to extract both optical properties and the size of a shallow volume. The stationary
fluence encodes information on optical properties.

In the framework of the simplified toy model presented here, the feasibility of several different
measurement scenarios using laser sources and photon counting detectors has been demonstrated.
Measuring the intensity distribution on the ice surface can offer some insight into scattering and
absorption coefficients, but they cannot be measured independently without reference. However,
the simplicity of this measurement makes it easy to deploy, potentially enabling a vast increase in
data collection that can help refine models for radiative heating of ice and snow. A measurement
apparatus can potentially be lightweight and easily fit in a backpack. Especially in the mountain
ranges of the western United States, where many glaciers are located in designated Wilderness
where motorized access is prohibited, the portability of the measurement apparatus could open
new frontiers and enable repeat measurements. While time-of-flight measurements come with
the increased effort of coincidence measurements, nanosecond temporal resolution, and high
demands on collection efficiency, the measurement apparatus would remain similarly mobile, and
can be realized with off-the-shelf components. Not requiring boreholes and being non-invasive
would make such an apparatus even easier to deploy in the field. Using diffuse optics and
time-of-flight measurements is, to the best of the authors’ knowledge, the only viable option to



Research Article Vol. 29, No. 12 / 7 June 2021 / Optics Express 18862

obtain independent measurements of scattering and absorption coefficients, without reference
values and assumptions about the nature of scattering processes, and has been proven in the
field for deep ice [12,13]. Moreover, these measurements require only small separation between
source and detector of the order of 10 meters, where such measurements appear to insensitive to
the volume size. The simple retrieval scheme used here showed systematic overestimation of the
scattering length by up to 20%, and further investigation is needed to remedy this issue. Once
optical parameters are known, such measurements are able to reveal the depth of shallow bodies
of ice up to 25m in thickness. Since the diffusion description and Monte Carlo simulations are
both approximations, further research in the physical nature of the scattering phase function
may be needed to facilitate reliable ranging. Future research should also focus both on range of
realistic values for bedrock reflectivity and additional modeling including appropriate boundary
conditions for absorptive interfaces. While our results imply that diffuse optical ranging cannot
compete with radar techniques in range [16], an optical measurement device can be built using
commercially available components at small cost and size. For the shrinking temperate glaciers
in the western United States this technique could serve as an early warning system for dying
glaciers and improve hydrological forecasting. Measurement of optical properties of ice in the
ablation zone can help to improve radiative transfer models and reveal valuable information on
paleoclimate history and local ice properties.
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