
 
 

 
 
 
 
 
 

 
Lincoln University Digital Thesis 

 
 

Copyright Statement 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

This thesis may be consulted by you, provided you comply with the provisions of the Act 
and the following conditions of use: 

 you will use the copy only for the purposes of research or private study  
 you will recognise the author's right to be identified as the author of the thesis and 

due acknowledgement will be made to the author where appropriate  
 you will obtain the author's permission before publishing any material from the 

thesis.  

 



The influence of anaerobic conditions and redox on phosphorus loss 

from waterlogged soils 

 

 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the Degree of 

Doctor of Philosophy 

 

at 

Lincoln University 

by 

Genevieve J Smith 

 

 

 

 

Lincoln University 

2020 

 



 ii 
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requirements for the Degree of Doctor of Philosophy. 

Abstract 

The influence of redox and waterlogging on phosphorus loss risk from poorly 

drained agricultural soils 

 

by 

Genevieve J Smith 

 

 

Diffuse phosphorus (P) loss from agricultural land contributes to surface water quality 

degradation. To mitigate losses and protect waterways it is important to describe all the ways 

that P can be mobilised and transported from land. The main aim of this thesis was to 

investigate P loss associated with the reductive dissolution of iron (Fe) and manganese (Mn) 

oxides in the soil, due to waterlogging and reducing conditions. The overall hypothesis was 

that anaerobic and reducing conditions in soils contribute significantly to potential annual P 

losses. A combination of laboratory analysis and field work was conducted in New Zealand 

and Ireland.  

The first objective was to quantify the potentially reducible phosphorus (P) component in the 

lab for a range of stored soil samples, and the distribution of reducible P pools relative to 

known soil maps. In New Zealand, eight stored soils were tested in the laboratory (Andisol, 

Cambisol, Vitric andisol, Ferrasol, Luvisol, Gleysol, Arenosol/Fluvisol, and Acrisol), and five 

stored soils were tested in the laboratory from Ireland (Cambisol, Gleysol, Luvisol, Phaeozem, 

and Podzol). Current models use oxic soil tests, which may not represent anaerobic conditions. 

Anoxic water extractable P (anoxic WEP) and sodium-bicarbonate-dithionite extractable P 

(dithionite-P) tests were developed to predict soil P vulnerable to reductive dissolution and 

potential loss under anaerobic conditions. In New Zealand and Ireland, anoxic WEP and 

dithionite-P varied by soil order and land use, and anoxic WEP was greater than oxic WEP, 

which showed the short-term impact of soil anoxia on P release. Models predicting anoxic 

WEP and dithionite-P at the 1:50,000 scale in New Zealand found relatively small proportions 
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of agricultural land were enriched in dithionite-P (31% >85 mg kg-1) or anoxic WEP (3% >0-

0.291 mg L-1).  

The second objective was to determine if redox reflects changes in P and redox-sensitive 

components, with attention to the length of time that the soil is saturated, P fertiliser 

treatment, and temperature. The second laboratory experiment was an incubation comparing 

the rate and extent of P release across contrasting soil textures (clay loam, silt loam, sandy 

loam), three long-term P fertiliser levels, at two temperatures (3oC v.s. 18oC), and two oxygen 

levels (oxygen < 0.5 mg L-1 v.s. > 7 mg L-1). The mean dissolved reactive P (DRP) concentration 

and its rate of release increased with fertiliser application, temperature, and in two soils, 

anoxic conditions - commensurate with the depletion of nitrate (NO3
-) and the reductive 

dissolution of Fe and Mn. The release of P was complete within 24 hours, which showed that 

the reaction, and potential for enhanced P loss, could occur within a day of saturation. 

The third objective was to observe trends in the release of P and other redox-sensitive species 

into soil solution under saturated conditions, during the drainage season. A field experiment 

monitored a New Zealand soil profile with 16 unsaturated zone samplers installed down to 20 

and 80 cm below ground level, from May to September of 2017 and 2019. They were installed 

to observe P and Fe release as the profile wets up or dries out. Events that saturated soil 

caused reducing conditions that released up to 77% and 96% greater P and Fe, respectively, 

than average over the rest of the sample period. Artificial saturation experiments in the 

laboratory and in the field used the same soil as the field experiment and showed that soils 

treated with NO3
- released up to 86% less DRP and 98% less Fe than the soil that received no 

N. This showed that the reduction reaction was buffered by the presence of NO3
-.  

The fourth objective was to determine the role of redox processes in the release of P and other 

redox species within and across drainage and runoff events. Flow-weighted artificial drainage 

and runoff samples were collected from four hydrologically-isolated plots on the same slope 

in Ireland in 2009, 2018 and 2019. They were analysed for P and redox sensitive components 

and assessed throughout seasons and storm events. At the site used, dissolution of P and Fe 

dissolution had a stronger relationship in reducing conditions. Additionally, the reaction was 

not season specific. The main drivers of Fe and P release were the extent of waterlogging in 

the soil, and levels of NO3
-.  
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In conclusion, an area that is prone to saturation excess could have increased P loss due to 

reductive dissolution. The research presents two updated soil test methods and predictive 

equations that could be used to improve estimations of P loss from poorly drained areas and 

specific soil types. Laboratory data gives evidence that soil texture, P fertility levels, 

temperature and oxygen conditions affect the amount and rate of WEP released within 24 

hours of waterlogging. Field data shows that the relationship between P and Fe can be seen 

in soil solution as well as at the drainage output. The present work also shows that 

waterlogging and NO3
- levels are key drivers in the occurrence of P and Fe dissolution from 

soil. Therefore, the research highlights periods where warm temperatures and high moisture 

conditions coincide as high risk. Having a high P/low NO3
- system, particularly in sites that are 

prone to saturation events may exacerbate P release into waterways in the future. The 

influence of waterlogging and anaerobic conditions on Fe and P should be integrated into 

current critical source area models and used to inform potential mitigation strategies. 

 

Keywords: Anaerobic, saturation, drainage, iron-oxide, phosphorus, WEP, sodium-

bicarbonate-ditionite.  
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Chapter 1 

Introduction 

1.1 Background 

Projected estimates set the world population at 9.1 billion by 2050, with half of that 

population being urban (FAO, 2009). There has been a shift in focus to ensuring that the 

primary sector can provide for this expected demand. Despite cropland and pasture occupying 

already around 40% of global land area, many countries are reaching (or have reached) their 

limit of land use, and with an anticipated growing urban population, it is expected that food 

production would have to increase by 70% between 2005 and 2050 to support the new 

population estimate (FAO, 2009; The World Bank, 2007). Therefore, there is pressure on 

farming groups around the world to meet new milestones between now and 2050 (FAO, 2009; 

MPI, 2020). Alongside this is the growing social pressure to minimise the impact of farming on 

environmental health. While a variety of activities and urban practices add to water quality 

degradation, farming has been identified as a main diffuse source of nutrient enrichment 

(FAO, 2009; Foley et al., 2005; The World Bank, 2007). Current N and P pollution levels may 

already exceed world sustainability limits (Boretti and Rosa, 2019), and it is expected that, by 

2050, nitrogen (N) and phosphorus (P) effluents will increase by 180% and 150%, respectively. 

The two goals of increased production and environmental health are driving the move 

to smarter farming using technology and science to inform sustainable production. Ideally, 

this would mean the rate of agricultural growth can increase to meet population pressure, 

without compromising environmental health (FAO, 2009; Foley et al., 2005; Schneider et al., 

2011; The World Bank, 2007). In order to achieve this, the behaviour and losses of phosphorus 

(P) must be fully understood, so that consideration of P can be effectively incorporated into 

our approach to farming, and its losses mitigated. The main objectives of this review were to 

identify gaps in current literature about redoximorphic chemistry relating to phosphorus (P) 

in soil, subsurface losses of mobilised phosphorus, and methods to reduce losses. 
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The specific goals of this review were to: 

• Summarise the key issues associated with environmental P loss from agricultural 

practices; 

• Understand the different pools of P and their mobilisation risk in different soils;  

• Identify what soil chemistry is involved in mobilising P to then be lost, and the specific 

chemistry involved in releasing P associated with iron (Fe) and manganese (Mn) oxides; 

and, 

• Establish the transport pathways and speciation for P, and connectivity to surface water. 

Once information was collected and gaps were identified, objectives and the main hypothesis 

were developed.  

1.1.1 Case Studies: New Zealand and Ireland 

Ireland and New Zealand both have milestones established for increased primary outputs by 

2020 and 2025 respectively. The Irish Food Harvest 2020 and Food Wise 2025 schemes set the 

target of a 33% increase in primary output value compared to the 2007-2009 average, which 

involves a 50% increase in milk production (DAFM, 2010). Similarly, New Zealand has goals set 

to double primary exports by 2025 (MPI, 2015; MPI, 2017; OECD, 2017). New Zealand and 

Ireland have similar populations, climates and export rates. They are also both striving to find 

a balance between production and the environment, where the primary sector must produce 

more for growing populations but cannot degrade resources and compromise future national 

health and production. 

Agricultural grassland covers approximately half of both Ireland and New Zealand 

(Bord Bia, 2020; European Commission, 2019; StatsNZ, 2018). Therefore, research into the 

behaviour of phosphorus is necessary in order to offset potential impacts of agricultural 

intensification presently and in the future. Additionally, approximately 14.5% of managed Irish 

grassland utilises poorly drained soils, and approximately 27.7% of productive land in New 

Zealand is on very poorly to imperfectly drained soils (Landcare Research, 2017; Newsome et 

al., 2008; O'Sullivan et al., 2017). The behaviour of phosphorus in saturated and anaerobic 

conditions is therefore particularly important to both countries. 
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Ireland 

In 2017, cattle and calves made up 29% of gross output from Ireland, while milk made up 32% 

(Table 1.1). Dairy products were exported to almost 140 countries that same year 

(Department of Agriculture, 2018). Irish ground and surface waters are considered ‘among the 

best’ compared to other countries in Europe, and there have been promising downward 

trends in P loss to surface and groundwater (Department of Agriculture, 2018; EPA, 2012; 

Trodd and O'Boyle, 2018). However, there is the potential for significant unbalancing and 

degradation if technological and management advancements do not develop alongside 

primary output targets, particularly if the country is to meet their Food Harvest 2020 targets 

(ACP, 2012). The country works under the ecologically focused Water Framework Directive 

(WFD) used by the European Union (EU) and the Nitrates Directive to protect surface water, 

groundwater and transitional areas (ACP, 2012; EPA, 2006; EPA, 2014).  

The WFD also sets objectives for Member States, to prevent further water quality 

degradation and work to improve areas with poor water status. If Ireland breaches WFD 

targets as the result of agricultural intensification, it could lose its derogation status to stock 

livestock above the threshold of 170 kg/ha N which would make achieving policy aims in the 

future much more difficult (DAFM, 2020). The Agricultural Catchments Programme (ACP) was 

established to monitor and research different aspects of water quality and farming in 6 

catchments, highlighting the importance of catchment-specific nutrient management 

methods (ACP, 2012). 

Table 1.1 Republic of Ireland agricultural land use statistics in 2016 (CSO Ireland, 2018) 

Description ‘ 000 Hectares % Change 2015-2016 

Cereals 281.1 -3.9 
Crops, fruit & horticulture 351.7 -2.2 
Crops & pasture 3,914.8 -0.3 
Dairy cows 1,397.9 7.9 
Other cattle 1,103.7 2.6 
Sheep 5,179.2 0.8 
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New Zealand 

Currently, New Zealand stands as the twelfth largest agricultural exporter by value and is the 

number one dairy product exporter worldwide (MPI, 2020; OECD, 2017). Historically, low 

intensity sheep and beef farming was a staple of New Zealand farming but, in light of 

‘economic signals’ over the last couple of decades, there has been a significant shift towards 

higher intensity land uses, particularly in the South Island (Table 1.2) (Environment Southland, 

2014; MfE, 2011; Stats NZ, 2015a; Stats NZ, 2015b; StatsNZ, 2018). The decade between 2002 

and 2012, there was a 10.8% (1,306,774 ha) decrease in land area dedicated to sheep and 

beef, and a 28.2% (877,124 ha) increase in the land area used for dairy farming (Stats NZ, 

2015b). Accompanying this, the stocking rate has increased, with a 29.8% increase in dairy 

cattle numbers in New Zealand, representing around 1.5 million cows (Stats NZ, 2015b). 

Compared to world standards, New Zealand water bodies are generally of good 

quality. However, there have been growing issues with water quality over the last fifty years 

due to increasing pressures from different land uses (MfE, 2017). This is coupled with the 

increasing pressure from the public to address the impacts on environmental health (OECD, 

2017).  

New Zealand has the National Policy Statement for freshwater management (NPS-

FWM) that sets guidelines and trigger values for each regional council to implement how they 

see fit (MfE, 2014). Environmental thresholds for nutrients in waterways have been set by the 

Australian and New Zealand Environment and Conservation Council (ANZECC) to guide water 

quality regulations and management (e.g. Table 1.3). As a point of comparison, New Zealand’s 

lowland river dissolved reactive phosphorus (DRP) target (0.011 mg DRP L-1) is much lower 

than the EU target of 0.035 mg DRP L-1established by the WFD (ACP, 2012; McDowell et al., 

2018). It has become a matter of finding ways to ‘farm within the limit’, and many research 

institutes are involved in establishing the effects of different practices on nutrient loss and 

developing possible changes in management. For instance, to offset the influence of dairy 

intensification on local waterbodies in the Southland region, housing cows and duration-

controlled grazing has been deemed a viable method to increase production but meet nutrient 

output requirements, whereas largescale housing in the past was unheard of (MacDonald et 

al., 2014).  
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As well as affecting local organisms and general waterway health, excess nutrient input 

and waterway pollution affects New Zealand’s image. Although this is not as readily 

quantifiable as the other factors discussed, visually declining water quality can influence local 

recreation and tourism, affecting community satisfaction and potential revenue from water-

based activities and attractions (OECD, 2017). Therefore, there has been significant research 

into understanding and mitigating P inputs into waterways from agricultural land.  

Table 1.2 New Zealand agricultural land use statistics in 2015-16 (Journeaux et al., 2017) 

Description ‘ 000 Hectares % Change 1990-2015 

Sheep & Beef 8,035 -34 
Dairy 2,258 67 
Deer 344 24 
Other 9 - 
Horticulture 126 43.8 
Forestry 1,681 28.9 

 

Table 1.3 New Zealand default guideline values (DGVs) for phosphorus (McDowell et al., 

2018). 

Ecosystem type TP DRP 

mg L-1 mg L-1 

Cool wet hill 0.016 0.008 
Cool wet low-elevation 0.018 0.011 
Cool extremely wet low-elevation 0.009 0.013 
Warm wet hill 0.017 0.008 
Warm wet low-elevation 0.024 0.014 
Warm extremely wet low-elevation 0.017 0.006 

DRP = dissolved reactive phosphate; TP = total phosphorus 

 

1.1.2 Phosphorus in the Environment 

Phosphorus is an integral nutrient in animal, microbial and plant processes. In the context of 

agriculture, it has become an important part of maintaining plant health, quality and yield, 

and pushing the limits of production to meet new demands (Haygarth et al., 1998; Leinweber 

et al., 2018). Agricultural systems remove P from the plant-soil continuum when crop and 

animal products are taken away. Agricultural practices rely on the P supply in the soil being 

replenished and maintained, so there is a dependence on anthropogenically-sourced P 

fertilisers (Table 1.4) or manures (Bomans et al., 2005). A key practice in agricultural 

production is applying nutrients like N and P to crops via fertilisers and manures, particularly 

under intensified regimes (Leinweber et al., 2018; Leinweber et al., 2002).  
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Table 1.4 International phosphorus fertiliser demand from 2017 to 2020 (FAO, 2017). 

Region Demand (thousand tonnes P fertiliser) 
 2017 2018 2019 2020 

Asia 24056 24544 25005 25432 
Americas 12060 12380 12700 13009 
Europe 4217 4269 4319 4368 
Oceania 1332 1356 1376 1390 
Africa 1529 1571 1614 1659 

 

Total-P (TP) encompasses all forms of aqueous P, and the main forms within this are 

dissolved reactive P (DRP), dissolved unreactive P (DUP), total dissolved P (TDP), and 

particulate-P (PP). These terms define the physical chemical characteristics of the P present. 

Dissolved P persists in solution after being filtered at 0.45µm. The terms also define the 

reactivity of the forms. DRP will react with reagents used in the Murphy & Riley measurement 

process, while DUP will not until digested into a reactive form (Watanabe and Olsen, 1965). 

The sum of the two makes TDP. PP is the organic and inorganic forms of P that would be 

filtered out of solution at 0.45µm. PP and TDP make up the TP in solution (Leinweber et al., 

2002; Selig et al., 2002; Simmonds, 2016).  

Approximately three quarters of undesirable periphyton growth in freshwater systems 

globally is driven by P (King et al., 2015; McDowell et al., 2020). The dissolved (or filterable) 

forms are associated with increased periphyton and phytoplankton growth particularly in 

streams and rivers, as they are immediately accessible in solution. Studies suggest that algal 

growth requires TP concentrations greater than 0.02 mg TP L-1, and DRP concentrations 

beyond 0.01 mg L-1, provided other requirements are met (Owens and Shipitalo, 2006). Along 

with – and due to – the excessive algal and macrophyte growth associated with increased 

reactive P levels, aquatic ecosystems also develop increased turbidity; poor oxygenation; and 

biodiversity shifts (Hansen et al., 2002; Heathwaite and Dils, 2000; Leinweber et al., 2018; 

Leinweber et al., 2002). Dissolved oxygen (DO) in water is affected by aquatic plant 

photosynthesis, respiration, and death. Plant respiration and microbial decomposition 

consumes oxygen. Then, depending on how sensitive fish and micro-organisms are to habitat 

changes, the fluctuations in oxygen levels between oxic, hypoxic and anoxic conditions can 

cause biodiversity shifts or death (Wright, 2012).  
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The time of year at which these forms of P are lost and discharged to streams and 

rivers is important. During winter months when flow rates are fast in rivers and streams and 

temperatures are low, there is less opportunity for P to make an impact in waterways as it is 

quickly diluted and flushed from the system. In summer months when streamflow is lower 

and more sluggish, coupled with greater temperatures and light, P discharged from land will 

have a greater retention time and the conditions will encourage algal growths. There is also 

less chance for streams and rivers to be inundated and flushed to clear them of sediment and 

growths, so nutrients and plants accumulate. Lake systems are more sensitive to nutrient 

changes and can accumulate PP in lake sediments. Particulate P in sediments will support 

rooted plant growth and can also be released to replenish available P in the upper layers of a 

lake system for algal blooms in summer months (Wright, 2012). 

Previous studies have shown a clear connection between agriculture and P movement 

to surface water bodies, via natural rainfall-runoff processes and via the artificial drainage that 

farms rely on to utilise poorly-drained land in wet periods (Heathwaite and Dils, 2000; Owens 

and Shipitalo, 2006). In recent years, there has been a focus on mitigating nutrient 

contributions from different sources. The issue is that losses from agricultural land are largely 

from diffuse or non-point source (NPS) pollution. This means that, rather than being from one 

localised site (a point source), P moves from a variety of small sources in the landscape and 

the amount lost can vary depending on the frequency or intensity of rainfall events. This 

makes targeted and effective mitigation significantly more difficult  (Heathwaite and Dils, 

2000; Leinweber et al., 2018; Leinweber et al., 2002). 

On agricultural land, P losses can originate from incidental or residual transfers. The 

former involves recently applied nutrients being moved from source to sink before it can be 

properly incorporated into the soil, so is an immediate risk. The latter is a more long-term risk, 

as it involves the transfer of soil nutrient stores that are not being drawn from by crops. 

Therefore, if the supply in the soil continually outweighs the requirements of crops, the 

residual source represents a risk until that excess supply can be depleted. The fertiliser history 

and legacy soil P of a site can contribute significantly to P loss in the long term (Cassidy et al., 

2016; Shore et al., 2016). Due to the variability of P bioavailability in soil and the assumption 

that P remains stable in the subsurface, there has been a tendency for farm managers to 

overcompensate when making P fertiliser decisions, particularly as the economic benefits of 

applying extra P outweigh the economic impact of P loss from land (Bomans et al., 2005).  



 8 

However, there are risks associated with P fertiliser inputs being greater than plant 

requirements or the ‘agronomic optimum’. If this occurs, the plant response and economic 

output do not reflect the input. Beyond being wasteful financially, this practice also increases 

the potential for unutilised available P in soil to move away from the target area and be 

transported to a waterbody (McDowell and Condron, 2004; Taylor et al., 2016). Even in a well-

managed system, the critical concentration of available P required in soil for good crop growth 

is an order of magnitude greater than the concentrations that will cause issues in waterways 

(Heathwaite and Dils, 2000; Owens and Shipitalo, 2006). Therefore, agricultural practices that 

apply in excess and increase the chances of soil P loss and transport will put water bodies at 

risk. 

The amount of P that is transported to waterways, and the forms it is transported as, are highly 

variable depending on the biogeochemical processes that occur in soil and hillslope hydrology 

(Heathwaite and Dils, 2000). To improve P loss management, there needs to be an in-depth 

knowledge of the different flow pathways of P; the opportunities for attenuation in each 

relevant pathway; and what affects the kinetics of P transfer in soils. This review will explore 

source, release and transport factors that dictate how much P is lost to the environment and 

via what pathway. 

1.1.3 Phosphorus in Soil 

Soils are the source of P for plant uptake and for transfer to watercourses. The potentially 

mobile P fraction and the relevant processes that can influence it need to be defined first 

before moving on to the hydrological, soil and land use effects (Taylor et al., 2016). When 

considering the risk of P loss to water, there first needs to be a mobile or potentially mobile 

soil P fraction that could pose a risk.  

There are several forms of phosphorus in soil that can be divided into categories, 

namely: reactive and unreactive or soluble and insoluble. The categories dictate how available 

the P is to plant uptake or loss: reactive P is the most readily available, and the unreactive 

portions represent the soil solid phase (Hansen et al., 2002). The amount of P vulnerable to 

loss depends on the concentration of P in soil solution (primarily in the form of 

orthophosphate anions) and the fixation and solubilisation processes that occur in a soil that 

can remove or release P to the readily-available pool (Figure 1.1). There are three relevant 

processes that lead to fixation: sorption, precipitation, and immobilisation. With each of 
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these, the reverse processes that can return P to soil solution: desorption, dissolution, and 

mineralisation, respectively (Lindsay, 1979; Shaheen and Rinklebe, 2015). 

 

Figure 1.1 Relevant transformations that affect dissolved phosphorus concentrations, adapted 

from  Dodd (2013). 

 

Sorption can happen at variable rates, and involves either adsorption onto solid 

surfaces or absorption into oxides and minerals to form precipitates (Shaheen and Rinklebe, 

2015). In adsorption, orthophosphates bind to the surface of minerals via ligand exchange 

reactions (viz. chelation) (McLaren and Cameron, 1996). Relevant soil cations that P anions 

can bind to are Fe, aluminium (Al), calcium (Ca), magnesium (Mg), and Mn, but amorphous 

hydrous oxides of Fe and Al (Fe/Al oxides) and short-range aluminosilicates are the primary 

contributors to sorption (McLaren and Cameron, 1996). The relative abundance of these 

materials can dictate the anion sorption capacity (ASC, or P retention) of a soil, and can be an 

indicator of P loss risk (Hansen et al., 2002; King et al., 2015; Leinweber et al., 2002; Lindsay, 

1979; Mackey and Paytan, 2009; McLaren and Cameron, 1996). In the short term, P adsorbed 

to the surface of oxides and amorphous material is in equilibrium with solution P and, 

depending on the local conditions, can desorb and re-enter soil solution to replenish soluble 

P if plant uptake or environmental losses occur. This can occur within seconds to minutes. 

Therefore, of the sorbed P fraction, this pool presents the greatest potential for becoming 

readily available and being lost (Haygarth et al., 1998; Haygarth and Jarvis, 1999). The binding 
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efficiency to these materials can be affected by a variety of conditions in the soil, such as pH 

and the presence of competitive anions. Conditions and factors that influence ASC could 

therefore affect how much P is left vulnerable to loss via surface and subsurface flow. 

Chemical processes can lead to P becoming strongly sorbed or occluded and therefore 

unreactive, as it is in a more stable form. Occlusion is the term for when phosphate ions either 

diffuse into soil minerals or if phosphate ions adsorb onto the surface of soil minerals and are 

then trapped under coatings or concretions of Al- or Fe-oxides (Haygarth et al., 1998; Haygarth 

and Jarvis, 1999; McLaren and Cameron, 1996). As shown in Figure 1.1, adsorbed P or soil 

solution P can be precipitated into secondary P minerals by reacting with soluble minerals. 

These minerals render P insoluble, and potential solubility will vary with pH. Biologically, P can 

be rendered unreactive via immobilisation (Lindsay, 1979; Mackey and Paytan, 2009). 

Transitory immobilisation occurs when microbes absorb inorganic P into their cellular biomass 

to aid tissue synthesis (Mackey and Paytan, 2009). In the process, P is converted to organic 

forms and can be incorporated into organic matter. This type of immobilisation is restricted 

to the lifetime of the microbe, so can re-enter the reactive P pool after cell death. The rate of 

immobilisation and mineralisation is affected by temperature, moisture, organic matter 

content, and aeration (McLaren and Cameron, 1996). 

Unreactive or insoluble forms are technically in equilibrium with reactive forms and can 

be released and move back into solution via desorption, dissolution, or mineralisation. These 

are the reverse processes of sorption, precipitation, and immobilisation, respectively. The 

reactions to remobilise strongly occluded or immobilised P are considered too slow to be 

significant in farming practices (Hansen et al., 2002; McLaren and Cameron, 1996). However, 

as stated, organic P immobilisation can vary. 

1.2 Factors affecting phosphorus availability to transport 

1.2.1 Phosphorus fertility and saturation 

P loss occurs to some extent from most soils. However, when P inputs accumulate on P binding 

sites, the soil profile can eventually become saturated and lead to increased DRP losses 

(Bomans et al., 2005; Ekholm et al., 2005; Heckrath et al., 1995a; Sharpley, 1995). In 

agriculture, fertility is anthropogenically maintained using manures or fertilisers, which 

increases the fraction of readily available P in the topsoil. In response, fixation reactions will 

occur that remove P from solution. However, there is a limit to this (Haygarth and Jarvis, 1999). 
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As discussed, different soil orders in the New Zealand soil classification (IUSS Working Group 

WRB, 2015) will have varying levels of mineral surfaces or active sites for P anions to react 

with. Therefore, depending on the quantity of these active sites, different soil orders will have 

different ASCs, and will reach anion saturation thresholds at different rates (Table 1.5). A 

profile is never truly saturated, but high saturation levels mean a decreased fixation efficiency. 

For instance, P saturation may occur relatively quickly in a fragic pallic soil that has an ASC of 

20% due to a low quantity of Fe/Al oxides, but there is a high P input (Ekholm et al., 2005). 

Dissolved P losses are exacerbated in soils with lower ASC (McDowell et al., 2015). Meanwhile, 

allophanic soils like those in the Waikato region in New Zealand have large amounts of a short-

range order aluminosilicate called allophane, which provides a high ASC. Soils with high ASCs 

can sorb greater quantities of applied P before the profile is considered saturated (Ekholm et 

al., 2005). The degree of P saturation in different soils is defined by the Equation 1 (Sharpley, 

1995): 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑃 𝑆𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (%) =
𝑂𝑙𝑠𝑒𝑛 𝑃

𝐴𝑆𝐶
∗ 100          Eq. 1.1 

 

When there is a high degree of P sorption saturation, the soil’s ability to retain added P in a 

form that will not easily be carried in runoff or drainage decreases, so the soil has a greater 

potential to enrich runoff with DRP (Sharpley, 1995). ASCs in specific soil types have been 

catalogued (Table 1.5). However, this only applies for oxic conditions. Tests conducted in 

aerobic, controlled conditions may not reflect the variable and dynamic conditions in the field 

where periods of anoxia often occur (Zhang et al., 2010). Therefore, while we rely on these 

values to inform fertility management decisions, it is potentially an oversight to not also have 

a database of capacities when soils are anaerobic. 
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Table 1.5 Topsoil anion storage capacity categories of soil orders in New Zealand, adapted 

from McLaren and Cameron (1996) and Saunders (1965) 

P retention/ASC category Soil order 

Very low to low (0-30%) Organic soils 

Low (0-30%) Pallic soils 
Ultic soils 
Podzols 
Recent soils 
Raw soils 

Medium to high (31-85%) Brown soils 
Pumice soils 

High to very high (86-100 %) Granular soils 
Allophanic soils 

 

Soil tests are used to establish the fraction of P (‘soil test P’ or STP) in soil that can easily move 

into soil solution (viz. Labile). There are several tests such as Mehlich 3-P or Morgan’s P, but 

New Zealand predominantly uses the Olsen P test. Results from these tests are used to guide 

fertility management but are also used as a proxy measurement of P loss potential to water 

(Heckrath et al., 1995a; King et al., 2015; McDowell, 2015; McDowell and Condron, 2004; 

Taylor et al., 2016). There are several studies that show how Olsen P and ASC influence P loss. 

The general trend is that increasing Olsen P will increase P loss risk, particularly when coupled 

with a lower ASC. The risk of P loss in soil typically follows a similar upward curve as Olsen P 

increases, but at different rates for each soil type.  

Specifically concentrating on the study by Simmonds (2016), there is an increase in P 

loss concentrations with each Olsen P increment from natural Olsen P levels to 80 mg L-1 

(Figure 1.2, bottom). The increase is particularly notable in the organic soil, which has a 

significantly lower ASC (5% ASC). The brown soil appeared to exhibit more gradual changes 

than the Organic soil and required a greater input of P to elicit the same response. It should 

be noted that the data for the Organic and Brown soil were collected are under lab conditions. 

1.2.2 Soil pH 

Soil pH influences the amount and availability of anions and cations in soil solution. In the 

context of P, the ratio of H2PO4
- : HPO4

2- anions increase in more acidic conditions (pH<7), and 

vice versa. The soil pH can also influence which metal oxides (Al, Fe, Mn, Mg and Ca) will 
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contribute more significantly to sorption and precipitation, sorption strength, and the 

solubility of phosphate minerals. Acidic conditions will favour adsorption to colloidal Fe/Al 

minerals, or precipitation to form Fe/Al phosphate minerals. Meanwhile P in alkaline 

conditions of around pH 8 will swiftly react with dominant cations Ca2+ and Mg2+ (Figure 1.2). 

Dissolution of Ca phosphates will occur in sufficiently acidic soils, while Fe/Al phosphate 

dissolution will occur in alkaline soils (Simmonds, 2016). Therefore, chemical processes that 

alter pH can affect a soil’s sorption ability, as some soils will have a greater proportion of 

certain metal oxides than others.  

 

Figure 1.2 Oxide sorption and availability of P from pH 4-8 (McLaren and Cameron, 1996) 

 

Minimum P sorption occurs between pH 6-7, so P availability is at a maximum in this 

range (Leinweber et al., 2018; Leinweber et al., 2002; Lindsay, 1979; Sato and Comerford, 

2005). Studies attribute decreased P sorption as soils’ pH increase to two reasons. The first is 

that the increased pH corresponds with an increase in hydroxyl (OH-) concentrations, which 

increases the competition for mineral adsorption sites between OH- and PO4
- ions. The other 

is that increasing pH reduces the number of sorption sites available for P, either via the 

neutralisation and precipitation of cations, or through an increase in negativity on mineral 

surfaces that would repel phosphate anions (Sato and Comerford, 2005). 

1.2.3 Redoximorphic reactions 

Fe/Al oxides contribute significantly to P retention in acid soils. Therefore, any conditions that 

compromise the minerals’ ability to retain P will influence the readily-available pool (Prem et 

al., 2014). When soils are anaerobic, natural microbial respiration can lead to the reductive 

dissolution of Fe (and Mn) compounds, converting them and associated P to soluble forms. 
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Abiotic or chemical Fe reduction can also occur but is not coupled with reduction of oxygen 

and NO3
-
 like the biotic reaction (Ionescu et al., 2015; Melton et al., 2014). Microbial 

respiration involves a reaction where an electron donor (e.g. carbon) gives an electron (e-) to 

a redox-sensitive terminal acceptor. By gaining an electron, the acceptor is converted to a 

reduced species, and the microbial mediator gains energy from the reaction. Typically, 

microbial respiration favours oxygen as an electron acceptor as the reaction is energetically 

more favourable than with other potential acceptors. The hierarchy of preferred electron 

acceptors is demonstrated in Figure 1.3. In anaerobic conditions, after oxygen is depleted by 

respiration processes, the next most favourable available acceptor will be used. This continues 

down the electron acceptor hierarchy (McMahon and Chapelle, 2008). 

 

 

Figure 1.3 The electron acceptor hierarchy in bacterial respiration and redox transformations 

(McMahon and Chapelle, 2008). 

The active form ferric oxyhydroxide (Fe[III]) is redox-sensitive, and can be reduced to its 

Fe2+ species in soil (Lindsay, 1979). P that was coprecipitated in ferric oxyhydroxide (Fe(III) 

phosphates) will no longer be sorbed and can exchange with soil solution (Holford and Patrick, 

1978; Patrick and Khalid, 1974). This fraction of P will be referred to as ‘reducible-P’. Soils can 

become anaerobic when they are inundated or flooded long enough for oxygen to be 

depleted, so soils with poor hydraulic conductivity or perched water tables can produce the 

correct conditions. This poses the question of whether Fe reduction in soil will have an 

influence on P release and loss, which is a gap in the literature. From this, there are areas that 

could be investigated to fill the gap. Does this process have enough of an effect to switch a 

site from a sink for P to a source? Are there spatial and temporal influences that will increase 

the likelihood, rate, and extent of release? An example of spatial influences could be that soils 
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with a high concentration of Fe oxides would have more potential for P release than a soil with 

more Al. A temporal influence could be how long the soil remains saturated and anaerobic for 

P mobilisation to be significant. The effects of reduction on the state of P can be remedied by 

reoxidation, which occurs when aerobic conditions are re-established (Holford and Patrick, 

1978; Patrick and Khalid, 1974). However, would this attenuating feature be relevant if P is 

moving before aerobic conditions are re-established? It may be possible that areas vulnerable 

to redox reactions can briefly become sources of P during periods of inundation and remove 

solubilised P before natural attenuation at the source can occur. This is an area that could be 

explored further. 

1.3 Soil inundation and flooding 

A soil profile that is prone to regular or prolonged inundation with water is at risk of becoming 

a source of mobilised P (McDowell and Sharpley, 2002). When soil profiles become saturated, 

normally air-filled pores are filled with water and the profile cannot be infiltrated further until 

drainage or evapotranspiration occurs (Houlbrooke and Monaghan, 2009). Profiles that are 

shallow, are slow-draining, or have high or perched water tables are particularly vulnerable to 

saturation (Dahlke et al., 2012). In waterlogged soils, microbial activity can quickly induce 

anaerobic conditions, with timeframes varying from hours to days (Leinweber et al., 2002; 

McLaren and Cameron, 1996; Zhang et al., 2010). As stated, these conditions can quickly cause 

the reductive dissolution of Fe(III) and the release of associated P in acid soils. The difference 

in soluble P levels in oxic versus anoxic soils has been shown to be as much as 10-fold (Holford 

and Patrick, 1978; Patrick and Khalid, 1974; Scalenghe et al., 2002; Scalenghe et al., 2012). This 

raises the question of whether, in a scenario where an aerobic soil with good drainage and an 

anaerobic soil are compared, there would be a significant contrast between P losses at 

identical Olsen P levels, or whether the poor drainage of the latter soil would mean less of the 

mobilised P is free to be transported.  

One study measured the effects of flooding on Fe at a site in autumn and winter 

months, when anaerobic conditions were likely to occur. The area was inundated during this 

period, and the ratio of Fe(III) to Fe(II) measured. The results indicated that the soil was 

significantly reducing and affected the phase of P (Heiberg et al., 2010). This shows how 

waterlogging and subsequent reduction can lead to a site switching from being a sink of 

available P to a source of vulnerable P, especially as this site was adjacent to a river (Prem et 

al., 2014). Where controlled drainage or sub-irrigation management systems are introduced, 
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there can be regular shifts between reduction and oxidation in the soil profile (Tan and Zhang, 

2011). Tan and Zhang (2011) observed a 30% increase in filterable P concentrations in water 

samples from controlled systems compared to free-draining systems, and attributed this to 

reduction processes induced by the wetter conditions from retaining the water in the profile 

rather than having it immediately discharge. 

Reduction reactions can lead to an acidic soil’s pH increasing to near-neutral (Grybos 

et al., 2009; Sallade and Sims, 1997a; Scalenghe et al., 2002). As discussed, this pH is when 

phosphate is at its most available and phosphate minerals’ solubility increases (Lindsay, 1979; 

Sato and Comerford, 2005; Scalenghe et al., 2002). Sallade and Sims (1997a) conducted a 

study observing changes in soluble Fe and pH in wetted sediments. The general trend of the 

study was that the redox potential (Eh) of flooded sediments gradually decreased (became 

more reducing) to a point where Fe compounds could be reduced, which increased pH to near-

neutral; increased the soluble Fe component; and paralleled an increase in soluble P. The 

relationship between an increase in soluble Fe and pH was shown to be positively correlated.  

When considering the effects of temperature, there were similar trends of pH increase 

and Fe solubility at 7oc (simulating winter and spring conditions) and 35oc, though “changes 

were more rapid and more pronounced” under the latter treatment. In warmer temperatures, 

Eh decreased within a week. Soluble P and Fe concentration changes were observed in this 

window, then only slightly changed over the rest of the 42-day period. Meanwhile incubation 

at 7oc produced more gradual changes over the first 3 weeks, then a sharp increase in soluble 

Fe and pH during the rest of the period (Sallade and Sims, 1997a). This study represents an 

extreme temperature that would be unlikely below the soil surface. However, seasonal 

fluctuations in soil temperature can still be observed in soils up to 10m below ground level, 

and show a sinusoidal pattern in depths to two metres (Figure 1.4) (Hanova and Dowlatabadi, 

2007). Soils with impermeable layers or shallow depths to groundwater at 2m or less could 

both be prone to having a saturated portion of the soil profile affected by seasonal 

temperature fluctuations. There is the question of whether it is important to consider the 

effect of temperature on the rapidity of redox reactions, and whether the effects are 

significant enough to be considered when planning irrigation on easily-saturated soils in the 

warmer season. 
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Figure 1.4 Averaged annual data for changes in soil temperature at different depths in Ottawa, 

Canada (Hanova and Dowlatabadi, 2007). 

 

The impact of redox on P desorption is difficult to generalise, as it can be very spatially 

and temporally complex on account of variation in the extent of Fe(III) reduction, soil flooding, 

and timing, particularly due to seasonal and topographic differences (Zhang et al., 2010). Also, 

as Al is not redox-sensitive, the ratio of Fe oxides (Feox) to Al oxides (Alox) in soil can define the 

impact of changes in redox potential on P retention. At similar STP values, DRP release to 

runoff has been shown to be greater in soils with a larger Feox:Alox than soils with a greater 

proportion of Alox (Dodd et al., 2014b; McDowell et al., 2020). It could be said that Al is more 

important for P sorption than Fe if a soil is redox-sensitive. Additionally, knowing the ratio of 

the two is essential when mapping out soil vulnerability to reductive dissolution and P 

remobilisation. Natural remediation or attenuation of remobilised P can occur when the soil 

re-oxidises as the water table lowers and soils dry (Holford and Patrick, 1978; Patrick and 

Khalid, 1974). However, not all inundation occurs in a controlled system like the study 

conducted by Tan and Zhang (2011), where the discharge is minimised and remobilised P is 

somewhat contained until reoxidation occurs. If inundation on a slope combined with 

preferential flow increases the rate of flux, it is possible that reoxidation during drying would 

not play a part in attenuating the recently desorbed P (Heiberg et al., 2012; Prem et al., 2014). 

Overall, this raises the question of whether these types of soils, that are also vulnerable to 

anaerobic conditions and reduction are potentially significant sources of P loss. 
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Available organic matter in soil plays a part in driving reductive dissolution. As indicated in 

Figure 1.3, C is the electron donor and energy source for the microbial respiration reaction 

(Khan et al., 2019; McMahon and Chapelle, 2008). The effects of C content are dependent on 

soil type, environmental conditions and the likelihood of flooding at each site. However, a 

range of studies have investigated the significant positive relationship between C availability 

and the rate of reactions. For instance. Esberg et al. (2010) and Schmidt et al. (1997) noted a 

strong positive correlation between C content and increased microbial activity. A study by 

Chacon et al. (2006) showed that C availability could limit Fe(III) reduction rates. Additionally, 

they established that natural stocks of labile C in a humic tropical forest would be ample to 

consistently accelerate the reduction of Fe(III). In subtropical rice paddies, the release of labile 

C in anoxic conditions is exploited to release Fe and its sorbed P via reductive dissolution for 

plant growth (Khan et al., 2019). Therefore, there is a known relationship between labile P, 

redox and the rate or amount of P released. 

1.4 Transport pathways and speciation 

As well as needing an available source, P loss requires a transport pathway (or hydrological 

pathway) to carry it to the receiving waterbody. P is lost either in dissolved forms (DRP & DUP) 

or while sorbed to soil material (PP), and can move via different broad pathways: overland 

flow; shallow subsurface flow or interflow; and deep subsurface flow or groundwater flow 

(Figure 1.5) (Haygarth and Sharpley, 2000; McDowell and Condron, 2004). Different pathways 

in a catchment can be affected by a series of variables, such as topography and climate. 

Depending on landscape features, each possible pathway or mechanism of loss will vary in 

significance in different catchments, and have different characteristics, transport factors and 

opportunities for attenuation, which influence the forms and concentrations of P loss to 

receiving waters (Bomans et al., 2005; Taylor et al., 2016). Table 1.6 indicates how relevant 

different transport pathways are to different soil P fractions. Interflow represents horizontal 

flow in surface soil (often included in overland flow measurements) and subsurface flow in 

drainage representing the faction that is intercepted by subsurface drainage. 
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Figure 1.5 Potential flow pathways of P from source to receiving water body in an agricultural 

catchment, adapted from Houlbrooke, Laurenson, & Carrick, 2011. 

Table 1.6 Applicable transport pathways of P fractions* indicated by tick marks, adapted from 

Simmonds (2016) 

Fractions 

Pathways 

Leaching 
Subsurface flow in 

drainage 
Soil through 

flow 
Overland flow 

PPi 
✓ ✓ ✓ ✓ 

PPo - - - ✓ 
DRP 

✓ ✓ ✓ ✓ 
DUP 

- ✓ - - 
*PPi = Particulate inorganic phosphorus; PPo = Particulate organic phosphorus; DRP = Dissolved 
reactive phosphorus; DUP = Dissolved unreactive phosphorus 

 

1.4.1 Surface transport 

Surface runoff (viz. overland flow) is a broad term given to lateral transport of water and 

collected solutes over the soil surface (Haygarth and Sharpley, 2000). This pathway is 

associated with elevated P losses due to the accumulation of nutrients in the topsoil (1-5 cm 

depth) from agricultural practices and topsoil erodibility (Buda et al., 2009a; Buda et al., 

2009b; King et al., 2015). The potential concentration in runoff is greater as STP increases, due 

to the increased degree of P saturation in the topsoil (Hansen et al., 2002). Runoff typically 

contributes a significant proportion of P as PP on soil particles from erosion, and the 
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proportion of DRP and DUP is dependent on the amount and reactivity of topsoil P (Hansen et 

al., 2002; Leinweber et al., 2002; Taylor et al., 2016).  

 There are two key runoff-generating processes; infiltration-excess overland flow and 

saturation-excess overland flow. The relative importance and contribution of each process is 

dependent on spatial and temporal variables like topography, soils and climate (Agnew et al., 

2006; Dahlke et al., 2012). Infiltration-excess or Hortonian flow occurs when rainfall intensity 

exceeds the soil’s infiltration capacity, either because the rainfall intensity is high or the soil’s 

infiltration capacity is very low (Agnew et al., 2006; McDowell, 2015). Saturation-excess 

overland flow occurs only when the soil becomes saturated. As this process of runoff-

generation is dependent on landscape wetness and profile inundation, saturation-excess is 

dependent on landscape features that would encourage convergence and inundation, and 

seasonal fluctuations or random rainfall events. It is more likely to occur in winter and spring; 

in easily-saturatable or slowly-permeable soils; areas with high water tables; or near stream 

channels (Agnew et al., 2006; Dahlke et al., 2012; McDowell, 2015).   

There is conflicting evidence for whether saturation-excess or infiltration-excess 

mechanisms induce greater P concentrations in runoff. Findings by Buda et al. (2009a) 

suggested that, while saturation-excess processes produced greater runoff volumes, the 

relative P concentration was less than infiltration-excess processes. Meanwhile, Zheng et al. 

(2004) and Sanchez and Boll (2005) show that the contact time between saturation-excess 

runoff and an inundated and P-saturated soil profile will give greater P concentrations than 

infiltration-excess processes. 

The issue with investigating transport pathways is that the pathways are dynamic, and 

the importance of each pathway is highly spatially and temporally variable. A small rainfall 

event or short, heavy rainstorm could only result in subsurface flow, while a much heavier or 

longer rainstorm could either result in infiltration-excess or saturation-excess overland flow 

depending on factors like antecedent moisture content, topography and slope, soil type and 

infiltration capacities (Bomans et al., 2005; Samper et al., 2015). Buda et al. (2009a) found 

that, on specific hillslope sites, at least 80% of the runoff events were generated as infiltration-

excess runoff, with small runoff volumes but high P concentrations. However, on a specific 

north slope, saturation-excess runoff volumes were 19 times greater than infiltration excess 

runoff volumes. This means P loads from saturation-excess was greater than from infiltration-



 21 

excess. Differences were attributed to the influence of upslope soil profiles that contained a 

fragipan (i.e. an impermeable layer). Therefore, generalisations about hillslope hydrology such 

as assuming that water flow is uniformly in one direction over a wide landscape, or that one 

runoff-generating mechanism explains transport in a catchment can be very inaccurate. 

Factors that will influence the threshold of activation of each pathway are important to 

acknowledge when attempting to establish their relative importance to P transport 

(Heathwaite and Dils, 2000).  

1.4.2 Subsurface transport 

Traditionally, contributions from subsurface flow were considered unimportant due to P 

adsorption in soil and P losses were not agronomically-significant (King et al., 2015; Taylor et 

al., 2016). However, as the focus of nutrient management has moved more towards 

environmental considerations, the amounts lost from subsurface pathways that would 

previously have been considered negligible would now be considered a threat to receiving 

waters (Haygarth et al., 1998). Efforts have been made to identify and model runoff pathways 

and potential means of P transport from source to sink (Thomas et al., 2016), to better inform 

mitigation strategies. However, modelling requires “realistic representation of hydrological 

transport” (Thomas et al., 2016). Assuming isotropic conditions (uniform flow in one direction) 

when making hydrologic models can be detrimental. Therefore, evaluating and applying the 

effects of subsurface conditions is very important. 

Subsurface pathways can be significant contributors to contamination in situations 

with high STP levels, poor ASC, reducing conditions, and preferential flow, but also offer 

opportunities for resorption into the soil matrix if the P moves into a P-deficient subsoil (King 

et al., 2015; Sims et al., 1998). Characteristics in soil horizons can alter subsurface hydrology 

and affect where and how P moves from source to sink. Preferential flow occurs due to the 

presence of macropores or cracks, artificial drainage, or low permeability layers in soil profiles 

(King et al., 2015; Kramers et al., 2009; McDowell and Sharpley, 2004; Stamm et al., 1998; 

Svanbäck et al., 2014). The subsurface pathways to consider are: lateral flow (interflow); 

vertical drainage; or preferential flow via macropores, cracks and artificial drainage (Dahlke et 

al., 2012; Du et al., 2016; Enright and Madramootoo, 2004; Klaiber, 2016; Tan and Zhang, 

2011; Ward and Robinson, 2000).  
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Preferential flow 

This term describes the movement of solutes and water through a more favourable pathway 

such as macropores, cracks, along low permeability layers, and via artificial drainage. It 

presents issues for nutrient management as preferential flow does not provide the same 

opportunities for sorption like in matrix flow where solutes are exposed to more of the soil 

matrix (Houlbrooke and Monaghan, 2009). Heathwaite and Dils (2000) conducted a study in 

the Pistern Hill catchment (Leicestershire, UK) and observed that TP losses in preferential flow 

were more than twice the losses in matrix flow. Preferential flow can cause water to move 

through only a small portion of the soil profile, reducing contact time and residence time 

(Taylor et al., 2016). There may be a point in a rainstorm event where vertical drainage flow 

shifts more towards macropore rather than matrix flow, which will influence the terminal P 

load (Heathwaite and Dils, 2000).  

Also, rapid flow through larger pores and cracks can give rise to erosion within the soil 

profile. This can contribute significant amounts of fine, colloidal particles carrying PP 

(Leinweber et al., 2002). If there is an artificial drainage system in place, these particles can 

then be carried out of the profile and directly to a receiving environment. In profiles with 

preferential flow and artificial drainage, it is common to have greater quantities of PP in 

drainage than in a profile with matrix flow (King et al., 2015).  

Low permeability layers and lateral flow 

Impermeable subsurface soil layers – like a fragipan – can define how sensitive a catchment 

area is to perching, saturation, subsurface lateral flow and runoff generation during rainfall 

(Thomas et al., 2017). Low permeability layers or restricting layers are dense horizons in the 

soil profile with high bulk density and low saturated hydraulic conductivity (KS) compared to 

adjacent horizons. They can take various forms and are given different names like duripans, 

plough pans and fragipans depending on how they are formed (Bockheim and Hartemink, 

2013).  A specific example of a low permeability layer in soils is the fragic pallic soils that are 

present in 12% of New Zealand, and have a compact pan in the subsurface (Landcare Research, 

2016). They can reduce the vertical conductivity down the profile, resulting in either the 

profile above the layer developing a perched water table and becoming saturated, or can 

increase the flow of water via the path of least resistance - generally laterally, parallel to the 

impeding horizon (King et al., 2015; McDaniel et al., 2008; Zhang et al., 2010). This preferred 
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flow pathway is typically termed interflow, throughflow or subsurface stormflow (Du et al., 

2016; Ward and Robinson, 2000). Interflow requires: 

• Steep slopes that increase movement in the lateral direction rather than via profile 

vertical flow; and, 

• Thin soil layers overlying low-permeability layers, shallow sub-horizontal rock 

fractures, or bedrocks (Samper et al., 2015). 

The presence of an impermeable layer plays a significant part in shaping hydrological 

pathways. As well as inducing lateral flow in the subsurface, interflow is an important 

precursor to surface flow generation. Dahlke et al. (2012) demonstrated how catchments with 

fragipans will generate twice the amount of runoff than soils without fragipans. This is 

supported by observations in other studies that lateral flow over a fragipan can account for 

more than 80% of the runoff on a site (Buda et al., 2009a; McDaniel et al., 2008). Gburek et 

al. (2006) ascertained that areas in a Pennsylvanian catchment that had fragipans exhibited 

saturation-excess overland flow, while other areas in the same catchment without a fragipan 

generated “little or no runoff”.  

Overall, impermeable layers create the conditions that would be conducive to the 

mobilisation of reducible P: an area vulnerable to saturation and a tendency to generate 

lateral flow via interflow and runoff. Therefore, these areas are of potential interest to study, 

to find their influence on P loss via redox.  

Artificial drainage 

Poor natural drainage and high water tables reduce land use productivity, and increase the 

potential for P loss via surface flow (Bomans et al., 2005). There are ways to mitigate the 

effects of poor drainage, including breaking up poorly permeable layers via ripping and 

flipping, or installing artificial subsurface drainage. Ripping and flipping involves deep 

cultivation that break up the problem impermeable layer, to encourage percolation to depth. 

These mitigation strategies can be costly, but will improve land capabilities (Government of 

Western Australia, 2017). Artificial drainage involves altering the landscape by installing tile 

or pipe drainage for water to flow into, so that it can increase the storage capacity in the 

spaces above the tiles and in the pipes, and direct the excess water to a receiving environment 

(increase saturated hydraulic conductivity (Ks)) rather than leaving it to perch above the layer 
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(Figure 1.5) (Christianson and Harmel, 2015). This practice is relatively widespread. Around 43 

million ha and 16 million ha has or needs artificial drainage in the USA and Canada respectively 

(Enright and Madramootoo, 2004). Some Irish and New Zealand soils are also commonly 

artificially drained to improve water flow, such as the surface water gleys and gleyic luvisols 

of Ireland, and the pallic soils found predominantly along the eastern side of New Zealand 

(Kramers et al., 2009; Landcare Research, 2016). 

Introducing artificial drainage has been shown to increase crop yields by 5-25% 

annually, increase the number of days field activities can occur, improve infiltration, and 

decrease surface runoff volume, soil compaction and erosion (Bomans et al., 2005; 

Christianson and Harmel, 2015; King et al., 2015). While P loss via surface runoff and erosion 

can decrease after installation, tile drainage can increase the amount of discharge that is 

contributed to a stream via subsurface flow in comparison to surface flow (King et al., 2015). 

Soluble P loads and concentrations in drainage water are greater in tile-drained soils than in 

natural soils, as the artificial system decreases the potential retention and contact time of 

water and solutes in a profile, and there is less opportunity for natural P-attenuating processes 

to occur. One study showed that, on an undrained plot, there were twice the annual average 

losses via surface runoff than on a drained plot (0.86 and 0.44 kg P/ha respectively). While 

losses still occurred via the installed drainage, these were significantly lower (Sharpley and 

Syers, 1979). In saying this, the losses are still significant environmentally, and the amount of 

P that arrives at the drain from the profile does depend on factors like depth to the tiles (where 

shallower tiles can produce greater P losses) and the soil texture (where clay soils with 

cracking and significant bypass flow to drains will have greater contributions than soils with 

better matrix flow) (Bomans et al., 2005; King et al., 2015). Artificial drainage systems can also 

be installed that restricts drainage to periods when excess water would be damaging to plant 

growth or inhibit farm practices. Below this level, water is retained in the profile to minimise 

nutrient loss. There have been previous studies undertaken by Tan and Zhang (2011) that have 

shown how altering the landscape and hydrology in this manner lends itself to creating 

redoximorphic conditions in the subsurface. In these studies, controlled drainage increased 

the filterable-P component when compared to a typical free-draining system (King et al., 

2015).  

Artificial drainage offers the opportunity to compare a soil that is drained and 

undrained to observe and measure the influences on aerobic and anaerobic conditions in the 
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landscape. Through this, there is the potential to see whether more P is lost from a reduced 

soil compared to aerobic soils of same Olsen P concentrations, or whether the limited 

discharge of saturated soils mean they lose less P than free-draining soils. 

1.4.3 Connectivity 

In a certain amount of land that drains to a receiving waterbody, it is possible that maybe 10% 

of it can contribute 80% of the P lost to waterways (Dahlke et al., 2012). That 10% is termed 

the critical source areas (CSAs) (McDowell and Sharpley, 2004). To be a risk, CSAs need to have 

a large pollutant source, a high mobility risk, and hydrologically sensitive areas (HSAs). In turn, 

to be hydrologically sensitive, there needs to be a high transport risk and connectivity to 

receiving surface waters (Thomas et al., 2016). Any of the reactions described in section 1.3 

can occur to render P potentially mobile but, without a means to move to a receiving 

waterbody, the site where these reactions occur do not represent a mobility risk and are not 

a critical source area (CSA). Therefore, a key component of P transport is the connectivity of 

CSAs to a sink, and how immediate this connection is. An important question is to ask how 

strong the connection is between sources and a sink. In an instance with artificial drainage, 

there is a conduit for water flow, and a strong connectivity between source and sink would be 

expected. In a perfect world, different variables and influences like depth to pans and 

subsurface topography would be catalogued and applied to each hillslope to establish the 

level of hydrological connectivity. Then, the actual risk of P loss from different areas can be 

quantified and targeted accordingly based on that level or risk. 

Transport pathways are not isolated, so although water and associated solutes may be 

carried by a pathway, it does not mean that this one pathway will carry those solutes the 

entire distance from source to sink. In general, the areas that would generate lateral flow 

would be spatially and temporally complex, so the relative importance of these areas and this 

pathway may vary, particularly between seasons (Haygarth and Sharpley, 2000). For instance, 

although there is evidence of very rapid solute transport over a fragipan in soil (McDaniel et 

al., 2008), if the lateral hydraulic conductivity above the fragipan is poor, this may not be the 

case (Dahlke et al., 2012). Some interflow does not directly discharge to stream channels but 

can return to the surface as overland flow and continue via this pathway, particularly in very 

shallow soil profiles (Ward and Robinson, 2000). As the water flow moves to the surface, the 

influences of subsurface biochemical processes may not play as large a part in exacerbating P 

loss or attenuating nutrients (Vero et al., 2017). Studies such as those by Thomas et al. (2017) 
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used modelling to develop HSA maps that incorporate depth to bedrock or a restrictive layer 

in their equations. However, an identified drawback in this study was that the presence of and 

the depth to potential fragipans at their sites were not accounted for due to time constraints. 

For the time being, it was assumed that they were not present. Part of the model equation 

involves defining the mean soil saturated hydraulic conductivity (Ks) above a local soil depth 

to the restrictive layer (D). Therefore, for improved accuracy, developing a way to identify 

fragipans, assess their contribution to P loss, and incorporate them into the runoff modelling 

is a step forward.  

Another possibility is that solutes could simply be transported in the subsurface to 

another part of the soil profile and not move to a waterbody, due to a disconnection between 

upper and lower landscape positions, as was demonstrated in the study by Buda et al. (2009a); 

Buda et al. (2009b). In these situations, a segmented conveyance process could come into 

play, where subsurface P transfers take more than one event to be transferred to a waterway. 

In the instances where lateral flow is transferring upslope P to a downslope position, there is 

the question of whether there is an accumulation of P in the downslope positions that can be 

remobilised when saturated and pose a risk again, particularly as convergence of water flow 

in lower slope positions is likely to lead to saturation (Buda et al., 2009a; Dahlke et al., 2012; 

Ward and Robinson, 2000). 

1.5 Summary 

The literature highlights several potential information gaps regarding the influence of 

anaerobic conditions on P mobility and the potential for this newly mobilised P to be 

transported to waterways. There are variable results regarding the influence of redox on 

reducible-P co-precipitated with soil Fe, therefore it would be useful to carry out an 

investigation on a larger database of soils to clarify this. It would also be useful for identifying 

whether having a database of ASC values in anaerobic conditions would be beneficial to 

fertility management decisions. In-field factors should also be explored, such as whether the 

period of inundation and reduction significantly influences the quantity of remobilised P, the 

importance of the Feox:Alox ratio to release, and whether seasonal changes in natural soil 

temperatures play a part in accelerating reduction processes.   

Impermeable layers and perched water tables represent a likely environment for 

inundation and redoximorphic processes, as well as a tendency to generate lateral flow via 
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interflow and runoff. Therefore, their influence and importance to these processes should be 

assessed and compared to a drained site to inform model development in the future. Finally, 

due to the incredible variability of transport between source and sink in a landscape, the 

influence of dissolution from these sites to a receiving water body should be investigated to 

assess whether remobilised reducible-P can be identified in output. 

Taking these gaps into consideration, this research aims to clarify the role of anaerobic 

conditions (and therefore redox) on P release and load in a catchment by exploring spatial 

influences like soil Fe concentrations, impeding layers, artificial drainage, and vulnerability to 

saturation; temporal changes like length of inundation and regularity of rainfall events within 

and between seasons; and the connectivity between these sites and receiving water bodies. 

The underlying rationale behind this is that, although technology could be developed to 

accurately describe subsurface fragipan topography and therefore surface load, the actual 

chemical reactions in the fragipanic soil need to be assessed to understand P mobilisation and 

load. 

1.6 Research Aim and Objectives 

Based on the literature, the overall hypothesis was established: 

Anaerobic conditions in soils will contribute significantly to potential annual P losses. 

The following four specific objectives were carried out to assess this hypothesis: 

 

I. Quantify the potentially reducible phosphorus (P) component in the lab for a range of 

stored soil samples, and the distribution of reducible P pools relative to known soil 

maps, 

II. Determine if redox reflects changes in P (and other redox-sensitive components such 

as Fe and Mn) with attention to the length of time that the soil is saturated, P 

fertiliser treatment, and temperature, 

III. Observe trends of the release of P and other redox-sensitive species into soil solution 

under saturated conditions, during the drainage season, 

IV. Determine the role of redox processes in the release of P and other redox species 

within and across drainage and runoff events. 
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The objectives, once completed, were intended to be integrated into current critical source 

area models and used to develop potential mitigation strategies. Field and laboratory 

experiments were employed to explore the relationship between periodic and/or seasonal 

saturation and the release of Fe and associated P into soil water and surface water. Soil 

extractions and incubations were conducted in the laboratory in controlled conditions, and 

monitoring sites were established to identify anticipated trends as the in situ soil profiles were 

wetted up and dried out over seasons and storm events. 

1.7 Layout of the Thesis 

The thesis contains nine chapters. Following this introduction, Chapters 2 to 5 are a collection 

of experiments presented as papers: Chapter 2 explores the redox-sensitive phosphorus in 

dried archived soils, as a laboratory technique to measure the potential P release in easily 

saturated land; Chapter 3 assesses the potential for reduction releasing P and Fe from soil in 

ideal reducing conditions, achieved under laboratory incubation conditions; Chapter 4 

explores the in situ influence of redox potential on soil Fe-phosphorus loss in a soil profile; 

and, Chapter 5 assesses the reduction and P release into surface and subsurface drainage 

losses in the Southeast  of Ireland. Finally, Chapter 6 is an overall discussion of the results and 

implications for land management and farming going forward, and possible areas of future 

work. 

The contribution of each objective to publications are outlined in Figure 1.6. The 

experiments outlined in Chapters 4 to 7 were carried out in both New Zealand and the 

Republic of Ireland. In New Zealand, laboratory and field work was carried out in Agresearch 

Invermay and Mossburn Southland, respectively, as well as in Lincoln University, Lincoln. In 

the Republic of Ireland, laboratory and field work was carried out in Teagasc Johnstown Castle.
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Figure 1. Objectives and their relationship to chapters and thesis structure  
 

Hypothesis: Anaerobic conditions in soils will contribute significantly to annual P loads in a catchment 

Part 1: Laboratory soil analysis Part 2: Field trials 

Objective 1: Quantify 
the potentially 

reducible phosphorus 
(P) component in the 

lab for a range of 
stored soil samples 

Objective 2: Determine if 
redox reflects changes in P 
(and other redox-sensitive 

components such as Fe 
and Mn) with attention to 
the time of saturation and 

temperature 

Objective 3: Observe trends 
of P release in a saturated 

environment in the field, to 
track P and Fe release into 

soil water through different 
seasons and storm events – 
does redox play a significant 

role? 

Objective 4: Determine 
the role of redox in P and 
Fe release from soil water 
to drainage water through 

different seasons and 
storm events 

Chapter 2: Archive of 
reducible P in soils. 
Use soil information 

in mapping 

Chapter 3: Rates in P 
release due to redox, as 
influenced by incubation 
period and temperature 

Chapter 5: The saturation 
impact of P/Fe release into 
drainage, and differences 

due to seasonal conditions 

Chapter 4: In-field 
influences of redox on 

reducible P release 

Chapter 6: Conclusions and future research priorities 

 

Figure 1.6 Objectives and their relationship to chapters and thesis structure 
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Chapter 2 

Estimating and modelling the risk of redox-sensitive phosphorus 

loss from saturated soils using common soil tests 

2.1 Introduction  

Phosphorus (P) loss from agricultural soils can negatively affect water quality through 

eutrophication and excessive aquatic plant growth (Hansen et al., 2002; Heathwaite and Dils, 

2000; Leinweber et al., 2018; Leinweber et al., 2002; Owens and Shipitalo, 2006). To decrease 

losses, a greater understanding of the mechanisms of P loss and flow pathways from different 

soils to waterways is required (Gillingham and Thorrold, 2000; Hansen et al., 2002; Leinweber 

et al., 2018; Owens and Shipitalo, 2006). One way to understand flow pathway behaviour and 

P contributions is critical source area (CSA) modelling. In CSAs, sources of mobile P coincide 

with hydrologically sensitive areas (HSAs) in a landscape. They account for the majority of P 

loss from a farm or catchment but come from a minority of the farm or catchment’s area 

(Dahlke et al., 2012; McDowell et al., 2016).  

The CSA models rely on estimates of soil P tests such as water extractable P (WEP), 

Olsen P or Mehlich-P (McDowell and Condron, 2004). Thomas et al. (2016) created models 

using WEP and Morgan’s P to estimate potential P losses due to saturation-excess overland 

flow. Using WEP may be problematic, as the amount of P released under oxic conditions may 

not represent P release from saturated soils that could become anoxic. Some studies (Gu et 

al., 2019; Prem et al., 2014) suggest that saturated, anoxic conditions can release greater 

dissolved reactive P (DRP) than oxic conditions (Gu et al., 2019; Heiberg et al., 2012; Heiberg 

et al., 2010). Saturated soils can become anoxic from microbial respiration (Zhang et al., 2010). 

During respiration, microbial communities mediate oxidative-reductive (redox) reactions to 

make energy. They preferentially use oxygen as an electron acceptor – as it is the most 
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energetically favourable in a system – followed by nitrate (NO3
-), manganese (Mn3+), and then 

iron (Fe3+) (O2 > NO3
- > Mn3+ > Fe 3+ > SO4

2-). When Fe3+ and Mn3+ are used as electron 

acceptors, they become reduced, and are dissolved into solution (viz. reductive dissolution) 

(Hansen et al., 2002; Martynova, 2010). Fe and Mn hydroxides and oxyhydroxides (viz. Fe- or 

Mn-oxides) can significantly contribute to P retention in non-calcareous soils, so their 

reduction could enhance P loss risk (Baken et al., 2015; Brand-Klibanksi et al., 2007; Heiberg 

et al., 2012; Zhang et al., 2010).  

To successfully predict P losses in periodically saturated soils, a soil test should 

simulate the maximum potential reductive dissolution of Fe, Mn and associated P across a 

variety of soil types. This paper developed a modified WEP test conducted in anoxic conditions 

(anoxic WEP) to represent immediate loss risk in saturated soils and compared this to oxic 

WEP. Additionally, sodium-bicarbonate-dithionite (Na2S2O4) – a strong reducing agent – was 

proposed to estimate the maximum potential reducible P pools (viz. Dithionite-P) (Jensen and 

Thamdrup, 1993; Psenner and Pusckso, 1988). Soils from New Zealand and Ireland were taken 

as case studies,  two temperate countries where approximately 27.7% and 14.5% of 

productive land, respectively, utilises imperfectly to poorly-drained soil (European 

Commission, 2019; StatsNZ, 2018); (Landcare Research, 2017; Newsome et al., 2008; 

O'Sullivan et al., 2017). In the present study, the overall objective was to predict the pools of 

reducible P (Dithionite-P and anoxic WEP) across New Zealand and Ireland, in an effort to 

provide a means to improve the estimation of P losses over current tests. Selected soils were 

used from national soil archives to: 1) determine Dithionite-P pools across New Zealand and 

Ireland as a measure of maximum potentially reducible metal oxide-bound P; 2) show the 

potential immediate P loss risk in saturated conditions via  WEP tests in anoxic conditions, and 

compare results to normal oxic WEP; 3) create prediction equations for Dithionite-P and 

anoxic P using proxy soil tests from the New Zealand and Irish soil archive databases; and 4) 
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create a map for the distribution of Dithionite-P and anoxic WEP pools across New Zealand. 

No map was produced for Ireland owing to a lack of spatial data. The present study posits that 

predictive equations and maps of Dithionite-P and anoxic WEP can be used to show if 

significant pools of reducible P intersect with CSAs. Therefore, they would aid in improving 

land management decisions to decrease P loss (Leinweber et al., 2018; Thomas et al., 2016).  

2.2 Materials and methods 

2.2.1 Soil archives 

Over three hundred soil samples from across New Zealand and Ireland were used for the 

purposes of this study, covering a variety of soil types and land uses (Tables 2.1 and 2.2). The 

limitation of the datasets used is that it is topsoil data. Therefore, it may not be fully 

representative of the subsoil environment and the behaviour of WEP in this scenario. 

However, a compromise was made in order to have more ancillary data to create models with. 

The following is a summary of the dataset: 

1. 500 Soils project archive: 500 soil samples were taken during a nation-wide survey by 

Landcare Research from 1998-2002, to explore all soil types and land uses as evenly as 

possible (Hill et al., 2003; Sparling and Schipper, 2002). The samples represented the top 

10 cm of soil from each site, and the co-ordinates from each sample site were recorded. 

The dataset covers the following soil orders, with NZ soil classification (Hewitt, 2010) and 

associated World Reference Base (WRB) classification (IUSS Working Group WRB, 2015) in 

parentheses: Allophanic soils (Andisols); Brown soils (Cambisols); Gley soils (Gleysols); 

Granular soils (Ferrasols); Pallic soils (Luvisols); Podzols (Podzols); Pumice soils (Vitric 

andisols); Recent soils (Arenosols & Fluvisols); & Ultic soils (Acrisols). The database also 

included ancillary data on each soil sample, the averages of which are included in Table 

2.1. A subset including 134 of these soils were chosen to represent a range of soil orders 

and land use and where enough sample remained.  
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2. Irish Soil Information System (Irish SIS) archive: This archive was a collection of composite 

samples taken from the first horizon (between 0-15 or 40 cm below ground level) of 

grassland soils around Ireland. 106 samples were used. These soils were classified in this 

report according to their FAO classification: Cambisols, Gleysols, Luvisols, Phaeozems, and 

Podzols. Ancillary data was available for each sample, the averages of which are listed in 

Table 2.2. 
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Table 2.1 Mean topsoil (0-10cm) chemical parameters1 for eight Food and Agriculture Organization (FAO) soil groups, corresponding New 

Zealand soil orders2 and land uses in the New Zealand archive (n = 134). The significance of soil group, land use, and the interaction of soil 

group and land use is given by P values3 (n = number of samples). A t-test compared the total dataset (n = 526) and this subset, to find if the 

subset was representative of the archive. 

FAO Group NZ Soil 
Order 

Land use n Dithionite-P 
mg kg-1 

WEP 

mg L-1 
Olsen P 
mg kg-1 

CBD-Fe 

mg kg-1 
TC 
Mg ha-1 

TN 
Mg ha-1 

pH CEC 
cmol 
kg-1 

ASC 
% 

Ca 
cmol 
kg-1 

Mg 
cmol kg-

1 

Andisol Allophanic Crop 7 53 0.07 53 1001 32 2.8 6.4 24 55 14 1.5 

  Pasture 18 59 0.10 38 637 50 4.8 5.9 28 47 10 1.3 

Cambisol Brown Pasture 15 91 0.10 22 852 35 2.8 5.7 28 24 1 1.4 

Vitric 
Andisol 

Pumice Pasture 10 29 0.26 40 318 49 3.6 5.8 14 27 7 0.7 

Ferrasol Granular Crop 4 63 0.11 100 1678 8 0.7 6.4 22 19 14 1.1 

Pasture 9 124 0.10 46 1567 50 4.3 6.1 26 34 13 1.8 

Luvisol Pallic Crop 7 253 0.15 21 582 34 2.8 6.0 20 11 13 1.5 

Pasture 9 273 0.17 26 573 41 3.5 5.8 23 17 15 3.3 

Gleysol Gley Crop 12 362 0.18 56 673 23 2.0 6.1 21 16 14 3.0 

Pasture 15 313 0.14 45 526 46 4.1 5.7 24 28 12 2.1 

Arenosol / 
Fluvisol 

Recent Crop 7 257 0.26 72 510 44 3.4 6.6 19 10 16 1.7 

Pasture 14 183 0.20 40 717 42 3.6 6.0 21 13 12 2.3 

Acrisol Ultic Pasture 7 211 0.13 28 652 62 5.0 5.8 22 15 14 1.9 

P soil order
 <0.001 <0.05 <0.001 <0.001 ns4 ns <0.05 <0.001 <0.001 <0.05 <0.001 

P land use ns ns <0.001 ns <0.001 <0.001 <0.001 ns ns <0.05 ns 

P soil order x land use <0.001 ns <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 ns <0.05 

t-test subset x full archive ns ns ns -5 ns <0.01 ns ns - ns ns 

1Abbreviations for chemical parameters are: WEP = Water extractable phosphorus; CBD-Fe = Citrate-bicarbonate-dithionite Iron; TC = Total carbon; TN = Total nitrogen;  
CEC = Cation exchange capacity; ASC = Anion storage capacity; Ca = Exchangeable calcium; Mg = Exchangeable magnesium 
2Hewitt, 2010  
3P values for parametric data = two-way ANOVA  
4ns = not significant. 
5Not included in original dataset
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Table 2.2 Mean first horizon chemical parameters1 for different Food and Agriculture Organization (FAO) soil groups2 by land use in the Irish Soil 

Information System project archive (n = 106). The significance of soil group, land use, and the interaction of soil group and land use is given by P values3 

(n = number of samples) 

1Abbreviations for chemical parameters are: WEP = water extractable P; TC = Total carbon; TN = Total nitrogen; CEC = cation exchange capacity; PSI = P sorption index; Ca = 
Exchangeable calcium; Mg = Exchangeable magnesium 
2from Creamer et al. (2007). 
3 P values for parametric data = two-way ANOVA; nonparametric data = Kruskal-Wallis Chi-sq  
4ns = not significant 

FAO soil 
group2 

Land 
use 

n Dithionite-
P 
mg kg-1 

WEP 

mg L-1 
Morgan’s 
P 
mg kg-1 

Mehlich-
P 
mg kg-1 

Mehlich
-Fe 
mg kg-1 

Mehlich
-Al 
mg kg-1 

TC 
Mg/ha 

TN 
Mg/ha 

pH CEC 
cmol 
kg-1 

PSI 

mg kg-1 
Bulk 
density 
g/cm3 

Ca 
cmol 
kg-1 

Mg 
cmol kg-

1 

Cambisol Arable 6 61 0.04 4.3 44 309 957 43 4.2 5.9 15 15 1.04 11 1.9 

 Pasture 27 92 0.05 6.2 55 345 1079 47 4.0 6.1 14 21 1.00 11 1.4 

Gleysol Arable 1 84 0.07 9.0 41 337 705 45 4.6 6.6 19 9 1.04 16 4.0 

 Pasture 39 107 0.06 7.4 58 395 979 61 4.7 5.8 16 21 0.94 13 1.3 

Luvisol Arable 1 193 0.06 8.9 57 584 785 43 4.5 5.3 13 27 1.04 8 2.0 

 Pasture 8 88 0.06 4.7 44 366 922 43 4.0 6.0 13 21 1.00 10 1.1 

Phaeozem Pasture 17 100 0.05 5.3 58 399 1098 45 3.9 6.0 13 28 1.01 11 1.1 

Podzol Pasture 7 24 0.04 6.3 33 335 1384 120 6.8 4.9 13 29 1.00 5 1.5 

P soil order 
   ns4 ns ns ns ns <0.01 <0.001 <0.05 <0.00

1 
ns <0.05 ns <0.05 ns 

P land use   ns ns ns ns ns ns ns ns ns ns ns ns ns ns 
P soil order x 

land use 
 

 
ns ns ns ns <0.05 <0.01 <0.01 ns <0.00

1 
ns <0.05 ns ns ns 
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2.2.2 Laboratory analysis 

A method to quantify maximum potentially reducible P  

A method was refined from other works (Jensen and Thamdrup, 1993; Lukkari et al., 2007b; 

Psenner and Pusckso, 1988) to determine the pool of P that could be released under anaerobic 

conditions, using a sodium dithionite-bicarbonate buffered solution. An alternative test for 

amorphous Fe oxides is extracting with hydroxylamine-HCl. The P extracted using dithionite is 

bound to amorphous and slightly crystalline Fe- and Mn-oxides in soil (Dithionite-P). The 

dithionite-bicarbonate test is widely used in P fractionation methods and lake sediment 

studies, but not typically in a solitary soil profile test. Some limitations of the test are: 

a. Dithionite-bicarbonate solution can extract slightly crystalline Fe oxides, which may 

result in over-estimating the readily-reducible Fe fraction; 

b. The extractant may produce variable results or may have impaired efficiency 

depending on different soil types and pH levels (Rennert, 2019). 

In the present study, a buffered solution of 0.11 M sodium dithionite (Na2S2O4)/0.11 M sodium 

bicarbonate (NaHCO3) (viz. Na-Dithionite) was added to soil (air-dried, <2 mm) at a soil to 

solution ratio of 1:100, shaken end-over-end for 1 hour, centrifuged and the supernatant 

removed for analysis.  

Initial method development involved testing different procedures on a subset of seven 

soils – representing seven soil groups – from the New Zealand archive (Table 2.3). The aim was 

to find the most reproducible and effective method of detecting orthophosphate via 

colorimetry. Colorimetry was used as a cheaper and faster method of detecting 

orthophosphate P in solution than other methods such as ion chromatography.  

The addition of molybdate-based acid colorimetry reagents to Na-dithionite extracts 

cause elemental sulphur (S) to precipitate which impair the detection of P via colorimetry 

(Loeppert and Inskeep, 1996). Hence, Na-dithionite needed to be oxidised by aeration to 
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minimise the formation of S precipitate. A trial was run with triplicate samples of seven air-

dried soils, aerating the extract post-shaking for four different periods (0 minutes, and 1, 2 

and 4 hours, Fig. 2.1). Regardless of aeration period, a precipitate formed. To resolve this 

problem Jensen and Thamdrup (1993) left the precipitate to settle over days, while Lukkari et 

al. (2007b) bubbled the supernatant with compressed air to accelerate dithionite oxidation. 

They noted that, when oxidation was not complete, precipitation of S occurred. Others have 

used trisodium citrate or ethylenediaminetetraacetic acid (EDTA) to inhibit S precipitation 

(Alexander and Robertson, 1972; Kowalenko and Babuin, 2007). However, these compounds 

require long colour development times that could enhance the acid-mediated oxidation of 

organic P thus overestimating the fraction under consideration. Therefore, potassium 

persulfate (K2S2O8), an oxidiser, was used to keep S in a soluble SO4 form (Kronholm et al., 

2000; Nimesh, 2013). Given that K2S2O8 is used to digest solutions at high temperatures for 

total P analysis (Dayton et al., 2017) it was necessary to investigate if the addition of K2S2O8 

just prior to detection and at a low temperature would avoid significant oxidation of organic 

P and detection as orthophosphate. A second trial aerated the Dithionite-P extracts of nine 

soils from the New Zealand archive, which were selected to cover both a range of soil groups, 

and contrast of chemical characteristics within a soil group (Fig. 2.2). They were aerated for 2 

hours, adding 1ml of K2S2O8 dissolved in 0.5 M sulphuric acid (H2SO4) and added the Mo-

reagent followed by pH adjustment with NaOH, to detect orthophosphate immediately (0 

min), after 60 min, or after heating the mixture to 120oC for 2 hours as per a full digestion 

(Dayton et al., 2017).  

The maximum amount of orthophosphate detected in the Na-Dithionite extracts 

occurred after 2 hours of aeration and oxidation, after which concentrations in solution 

declined (Fig. 2.1). The decline was assumed to be caused by the production of a S precipitate 

(Jensen and Thamdrup, 1993; Loeppert and Inskeep, 1996; Lukkari et al., 2007a). Acidified-
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K2S2O8 was tested to see if it would partially digest organic P into solution and over-estimate 

orthophosphate (Fig. 2.2). Across all soils there was no significant difference in 

orthophosphate detected between soils that had been extracted in Na-Dithionite for 2 hr and 

in contact with acidified-K2S2O8 for zero or for 60 minutes. However, the digested sample had 

greater orthophosphate detected than both time treatments. This increase demonstrated 

that the addition of acidified-K2S2O8 without heating did not digest organic P and over-

estimate orthophosphate.  

Based on these results, the final method involved aerating 20 mL of supernatant in a 

fume hood for 2 hours, adding 1 mL of K2S2O8 dissolved in 0.5 M sulphuric acid (H2SO4), 

adjusting pH to > 7 with 4 M NaOH and analysing for orthophosphate using the procedure of 

Watanabe and Olsen (1965). 
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Figure 2.1 Mean orthophosphate concentrations in sodium bicarbonate-dithionite extracts of 

seven New Zealand soils that have been aerated for 0, 1, 2 and 4 hours prior to analysis. Means 

with different letters indicate a significant difference between the treatments using Tukey’s 

Honestly Significant Difference test. 
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Figure 2.2 Mean orthophosphate concentrations in sodium bicarbonate-dithionite extracts 

(Dithionite-P) of nine New Zealand soils that have been aerated for 2 hours and left in contact 

with acidified-potassium persulfate for 0 or 60 minutes or subjected to a complete digestion 

(‘Full digest’). Means with different letters indicate a significant difference between the 

treatments using Tukey’s Honestly Significant Difference test. 
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WEP by anaerobic and aerobic incubation in New Zealand soils 

To demonstrate the effect of anaerobic conditions on the potential for P loss in runoff, WEP 

was measured using the method of McDowell and Condron (2004) with oxic and anoxic water. 

Specifically, soil was extracted using deionised (DI) water for 1 hour at a ratio of 1:300, 

respectively. Soil samples were selected from the described New Zealand archive. For that 

purpose, at least eight samples were selected per soil group (supplementary table 1), to 

identify the behaviour of each group in anaerobic conditions. In the anoxic treatment, all 

sample handling after weighing occurred in an anoxic glove box that was purged with helium 

(He). Anoxic water (<0.5 mg dissolved oxygen (DO)/L) was prepared by bubbling helium 

through the water. After extraction and filtering, the sample was kept anoxic by minimising 

the headspace in the sample tube until analysis. Oxic water had a DO of >7 mg DO/L, and the 

samples were prepared and handled as normal in ambient laboratory conditions. The resulting 

anoxic- and oxic-P concentrations of each soil group were checked for outliers based on Cook’s 

Distance (Cook and Weisberg, 1984), which were removed. The two treatments were then 

compared to establish whether a difference in the extent of P release existed after 1 hour of 

extraction, within and between soil groups.  

Additional Analysis 

The soils from New Zealand and Ireland were also tested for measures of P sorption capacity 

using the P sorption index (PSI) (Graetz and Nair, 2009; McDowell and Condron, 2004) and 

anion storage capacity (ASC) tests (Saunders, 1965). The citrate-bicarbonate-dithionite 

reducible Fe in the New Zealand soils was also tested (Loeppert and Inskeep, 1996). 

 

 

 

  



 42 

Table 2.3 Mean Na-Dithionite-extractable P (dithionite-P), citrate-dithionite-extractable P 

(CBD-Fe), anion sorption capacity (ASC), total carbon (TC) and pH, for representative New 

Zealand soil orders (n = 83) extracted by water under anaerobic and aerobic conditions. The P 

value1 is given to test for differences between soil orders and a t-test to determine if the mean 

of these soils were different to that in the full archive. Means within a column with the same 

letter are not significantly different from one another according to post hoc tests2. 

FAO soil 
group 

NZ soil 
order 

n Olsen P 
mg kg-1 

ASC 
% 

pH TC 
Mg/ha 

Dithionite-
P 

mg kg-1 

CBD-Fe 
mg kg-1 

Andisol Allophanic 9 35b 54c 5.8 74b 51a 794b 

Cambisol Brown 10 10a 33abc 5.6 42a 53a 553b 

Gleysol Gley 10 52b 33abc 5.7 49a 381b 481ab 

Ferrasol Granular 12 30ab 40bc 6.0 70b 122ab 933b 

Luvisol Pallic 9 26ab 17ab 5.8 41a 277ab 240a 

Vitric 
andisol 

Pumice 8 36b 34abc 5.7 59ab 28a 209a 

Arenosol / 
Fluvisol 

Recent 16 39b 18a 6.0 45a 218ab 411ab 

Acrisol Ultic 9 24 15a 5.8 58ab 225ab 407ab 

P soil order
1  <0.001 <0.001 ns <0.001 <0.001 <0.001 

t-test WEP soils vs archive 

(n=186) 
 ns ns ns <0.01 ns ns 

1P value for parametric data = two-way ANOVA; non-parametric data = Kruskall-Wallis Chi-
sq. 
2Post hoc for parametric data = Tukey’s Honestly Significant Difference; non-parametric data 
= Kruskall-Wallis post hoc. 
  



 43 

2.2.3 Statistical Analysis 

Statistical analyses were conducted in three phases. The first phase involved comparing the 

means for each parameter between soil groups, land use and the interaction of soil group and 

land use via a two-way analysis of variance (ANOVA). The second phase compared oxic WEP 

and anoxic WEP concentrations on a subset (n = 83) of the New Zealand soils (n = 134) and 

used an analysis of covariance (ANCOVA) to determine if the slope of the linear relationship 

between a select group of soils extracted for oxic WEP and Dithionite-P was different to that 

between anoxic WEP and Dithionite-P by soil group. If the slope differs, then the interaction 

between the two WEP forms and Dithionite-P differ. The third phase determined whether soil 

data could be combined in a stepwise regression to predict Dithionite-P or anoxic WEP. The 

performance of the stepwise models (α = 0.05) was assessed by choosing the model with the 

fewest predicting parameters and the smallest Mallows Cp value.  

All data were checked for normality using the Shapiro-Wilkes test and log- or square 

root-transformed if necessary. Analyses were conducted using R Studio, or Minitab where 

specified (Minitab, 2018; R Development Core Team, 2010). All differences are only discussed 

if significant at the P<0.05 level or greater. 

2.2.4 Model and mapping anoxic WEP and dithionite-P concentrations 

Equations from the stepwise regression were used to create GIS maps of anoxic WEP and 

Dithionite-P concentrations. Dithionite-P concentrations were categorised by soil order in 

New Zealand and Ireland using hierarchical cluster analysis. The output was clustered into the 

best number of groups according to the Elbow method in R studio. This cluster analysis 

separated the data into three ranges of Dithionite-P pool size.  

For New Zealand, spatial data was available to model and map the size of P pools at 

the national scale. For the New Zealand data, the equation from the stepwise regression 

model were used to predict pool categories of Dithionite-P at the 1:50,000 scale across 
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productive land (12.1M ha) (Statistics New Zealand, 2014) using ArcGIS software, national 

chemical data from the New Zealand 500 Soils project, data from fundamental soil layers 

(Newsome et al., 2008) and the land cover database (Landcare Research, 2017). The same 

process was carried out for the oxic WEP, anoxic WEP and anoxic WEP – oxic WEP data. The 

final map indicated the predicted size of anoxic WEP and Dithionite-P pools via colour-coding 

based on the hierarchical cluster analysis. The predictions of Dithionite-P and anoxic WEP 

were also intersected by soil drainage class (LRIS, 2010). 

As there was no national spatial data available from Ireland at the time of this study to 

use for prediction and mapping, equations were the final product. These were produced using 

the data in the Irish-SIS to predict Dithionite-P, and using the parameters specified by Thomas 

et al. (2016). These equations will potentially benefit other models being developed at the 

smaller scale (Thomas et al., 2016). 

2.3 Results  

2.3.1 Soil characteristics 

In New Zealand, mean values of all the chemical parameters except TN and TC were different 

at the soil order level (Table 2.1). Land uses were different from one another for Olsen P, TC, 

TN, pH, bulk density, Ca and Mg. The interaction of soil order by land use showed means were 

different for all parameters but WEP. In Ireland, none of soil P tests exhibited differences 

between soil orders, land uses, or for the interaction of soil order and land use (Table 2.2). 

This can be attributed to two facts about the Irish soil archive data. The first was that soil 

orders and land uses were heavily skewed towards Gleysols and Cambisols, and grassland, 

respectively. The second was that the Irish soils were sampled from the top horizon (up to 40 

cm deep) where P enrichment would be diluted compared to a shallower 10 cm topsoil sample 

(Sharpley, 2003a).  
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2.3.2 Dithionite-P and WEP 

In New Zealand, mean Dithionite-P concentrations by WRB soil group ranged from 29-362 mg 

P/kg, with Vitric andisols under pasture having lowest mean concentration and cropped 

Gleysols having the greatest (Table 2.1). Significant differences occurred in mean Dithionite-P 

between soil groups and for the interaction of soil group by land use, but not for different land 

uses. Olsen P and ASC both have significantly different mean concentrations at the soil group 

and soil group by land use level, but Olsen P is the only one significant at the land use level 

(Table 2.1). Mean WEP concentrations ranged from 0.07 to 0.26 mg P/L, with the lowest mean 

concentration from the Andisol under cropping, and the greatest WEP means in Vitric andisols 

and Arenosol/Fluvisols under cropping. Mean WEP concentrations in New Zealand were 

different between soil groups but not for land uses nor for the interaction of soil group by land 

use. 

In Ireland, at horizon level, the lowest mean concentration of Dithionite-P was from 

Podzols under pasture (24 mg P/kg) and the highest mean concentrations were from Luvisols 

under arable production (193 mg P/kg) (Table 2.2). The WEP ranged from 0.04-0.07 mg P/L 

across the first horizons. No significant differences were noted for Dithionite-P or WEP 

between soil groups, land uses or for their interaction. However, this does not preclude 

additional relationships to be explored via regression analysis. 

2.3.3 Oxic and anoxic WEP in New Zealand soils 

Mean anoxic WEP was significantly greater than mean oxic WEP for the Andisols, Cambisols, 

Luvisols, Acrisols, Ferrasols and Gleysols tested (Table 2.4, Fig. 2.4). However, this increase 

relative to oxic WEP was only paralleled by an increase in Dithionite-P for Cambisols, Gleysols 

and Luvisols, as the slopes of anoxic WEP versus Dithionite-P were significant (P < 0.05) only 

for these three soils (Table 2.4, Fig. 2.3 & Fig. 2.5). To get a better picture of the magnitude of 

P that could be quickly released under reducing conditions to sub-surface flow or surface 
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runoff, anoxic WEP was calculated relative to the total reducible P pool - Dithionite-P. The 

mean anoxic WEP proportions ranged from 12% (Acrisol) to 159% (Andisol). The unusual 

behaviour of WEP versus Dithionite-P in the Andisol samples may be due to allophane 

occluding P. Allophane would not behave like metal oxides in reducing conditions. However, 

more in-depth research is required to understand the minute behaviours of each soil and their 

constituents in reducing conditions. The mean proportions of the Andisols and Vitric andisols 

were significantly different (P < 0.001) from the mean proportions from Gleysols, Luvisols, 

Arenosols and Acrisols.  
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Figure 2.3 Relationship between water extractable P (WEP) extracted under anaerobic 

(oxygen < 0.05 mg L-1) and aerobic (oxygen >0.05 mg L-1) conditions, and Na-dithionite-

extractable P (dithionite-P) concentrations for Cambisols (Brown soils) from the New Zealand 

archive. R and P values indicate the strength and significance of the relationship, respectively. 
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Figure 2.4 Relationship between water extractable P (WEP) extracted under anaerobic (oxygen < 0.05 mg/L) and aerobic (oxygen >0.05 mg/L) 

conditions, and Na-Dithionite extractable P (Dithionite-P) concentrations of New Zealand soils 
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Figure 2.5 Relationship between water extractable P (WEP) extracted under anaerobic (WEPanox, oxygen < 0.05 mg/L) and aerobic (WEPox, oxygen >0.05 

mg/L) conditions, and Na-Dithionite extractable P (NaBD-P) concentrations for different soil orders in the New Zealand archive. Note scales are of 

different size. 
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Table 2.4 Mean water-extractable P (WEP) of New Zealand soils from each soil group extracted 

under aerobic WEP (>0.5 mg dissolved oxygen (DO)/L) or anoxic WEP (<0.5 mg DO/L) 

conditions, the output of an analysis of covariance yielding the slope of a regression against 

Na-dithionite-extractable P, and the proportion of anoxic WEP relative to the total Dithionite-

P pool. Lettering1 indicates significant difference between groups via Tukey’s Honestly 

Significant Difference. 

FAO soil 
group  

NZ soil 
order 

n WEP (mg/L) Slope R2 % Anoxic 
WEP as 

Dithionite
-P 

Andisol Allophanic 9 Oxic 
Anoxic  

0.14*2 
0.26 

0.0000 
0.0008 

0.74 
0.83 

159a 1 

Cambisol Brown 10 Oxic 
Anoxic 

0.08* 
0.18 

0.0005*3 

0.0019 
0.45 
0.92 

66ab 

Gleysol Gley 10 Oxic 
Anoxic 

0.16** 
0.38 

 -0.0000* 
0.0004 

0.37 
0.31 

22bc 

Ferrasol Granular 12 Oxic 
Anoxic 

0.10** 
0.25 

0.0000 
0.0007 

0.02 
0.44 

56abc 

Luvisol Pallic 9 Oxic 
Anoxic 

0.17* 
0.34 

  0.0004* 

0.0006 
-0.31 
-0.32 

20bc 

Vitric 
andisol 

Pumice 8 Oxic 
Anoxic 

0.32 
0.24 

 -0.0095 
 -0.0019 

-0.54 
-0.36 

113a 

Arenosol 
/ Fluvisol 

Recent 16 Oxic 
Anoxic 

0.25 
0.25 

 -0.0001 
0.0002 

-0.09 
0.54 

32bc 

Acrisol Ultic 9 Oxic 
Anoxic 

0.13* 
0.28 

0.0004 
0.0018 

0.66 
0.58 

12c 

2Tests for the significant differences in means between oxic WEP and anoxic WEP within a 

soil order as *** = P<0.001, ** = P<0.01, * = P<0.05 

3Significant difference (P<0.05) between slopes of oxic WEP and anoxic WEP 
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2.3.4 Estimating anoxic WEP and dithionite-P 

Equations were generated from stepwise regression using a range of parameters (e.g. ASC, 

Olsen P, pH, soil group, land use) to find the best predictors for anoxic WEP and Dithionite-P. 

Predictors for the normal WEP test under oxic conditions were also established using stepwise 

regression analysis. These equations were used to map the likely concentrations of different 

P pools across New Zealand. Assumptions were that the prediction errors are independent, 

follow a normal distribution, and have homoscedasticity. Outliers were tested for (via Cooke’s 

Distance) and removed. The models are limited by the sample size for each soil group and the 

soil groups available from the two countries and is therefore not exhaustive. 

Stepwise regression analysis (Table 2.5) showed that normal oxic WEP was best, but 

weakly, predicted by ASC and Olsen P (R2 37%, Mallow’s Cp: 6.9, α < 0.05; Eq 2.1). Anoxic WEP 

was also best predicted by Olsen P and ASC (R2 53%, Mallow’s Cp: 0.6, Eq. 2.2). Categorical 

predictors (i.e. land use or soil group) were not significant in any case. 

 

1

√Oxic WEP
= (0.1171√ASC) − (1.253 Log Olsen P) + 4.156   Eq. 2.1 

√Anoxic WEP = (0.4404 Log Olsen P) − (0.0371√ASC) − 1.057  Eq. 2.2 

 

 Stepwise regression analysis of Dithionite-P identified Olsen P, ASC, pH, land use as 

two categories (arable and pasture), and soil group in the New Zealand model as key 

predictors (Eq. 2.3), with the smallest Mallow’s CP value and the best R-squared prediction 

percentage of 44% (R2 54%, Mallow’s Cp: 12, Table 2.6).  
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Log Dithionite P = −0.928 + (0.397 Log Olsen P) − (0.00626 ASC) + 0.3196 pH +

0.0 Andisol + 0.369 Cambisol + 0.658 Gleysol + 0.150 Ferrasol + 0.797 Luvisol −

0.160 Vitric Andisol + 0.386 Recent + 0.729 Acrisol + 0.0 Arable + 0.1932 Pasture      

Eq. 2.3 

 

 For the Irish soils, no groupings were made by land use or the soil by land use 

interaction, reducing the model to soil group and terms for Morgan’s P and Mehlich-Al (Table 

2.6; Eq. 2.4). The larger coefficient for the Morgan’s test implies that it exerts greater control 

of Na-Dithionite than other variables. The homogeneity of land use in Ireland likely caused the 

lack of significance of land use in the constructed model. This model explained 52% of the 

variation in Dithionite-P concentration and had a Mallow’s CP of 7. The soils were also grouped 

into 3 clusters by Dithionite-P concentrations and gave ranges of: 0-108 mg kg-1; 108.1-324 

mg kg-1; and <324 mg Dithionite-P kg-1. 

 

Log (Dithionite P) =  0.79 Log (Morgan′s P) − 0.0005 Mehlich Al − 0.13 Gleysol +

0.17 Luvisol + 0.14 Phaeozem − 0.15 Podzol − 0.25     

           Eq. 2.4 

 

If the prediction parameters were selected to match those identified by Thomas et al. 

(2016), namely WEP and Morgan’s P and included soil group, they explained 50% of the 

variation in the model and had a Mallow’s CP of 7 (Eq. 2.5, Table 2.7).  

Log(Dithionite P) = 0.52 Log (Morgan′s P) + 0.21 Log (WEP) − 0.12 Gleysol +

0.16 Luvisol + 0.07 Phaeozem − 0.38 Podzol + 0.12     

           Eq. 2.5 
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Table 2.5 Stepwise effect on the coefficient of determination and the degree of fit (via 

Mallows’ Cp) of different parameters for the prediction of oxically-extracted water-

extractable phosphorus (oxic WEP), anoxically-extracted water-extractable phosphorus 

(anoxic WEP) in New Zealand soil samples (n=81). 

Country / parameter -----Step 1----- -----Step 2----- 

Oxic WEP   

Constant 4.88 4.16 

Olsen P -1.34***1 -1.25*** 

ASC  0.112* 

 R-sq 31% 37% 

 Mallows’ Cp 11.85 6.91 

Anoxic WEP   

Constant -1.289 -1.067 

Olsen P 0.47*** 0.44*** 

ASC  -0.0371** 

R-sq 46% 53% 

Mallow’s CP 9.02 0.60 
1P values indicating significance of 0.001, 0.01 and 0.05 are shown with ***, **, and *, respectively 
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Table 2.6 Forward stepwise effect on the coefficient of determination and the degree of fit 

(via Mallows’ Cp) of different parameters for New Zealand (anion sorption capacity (ASC), 

Olsen P, pH, soil order, and land use, n = 134) and Ireland (Morgan’s P, Mehlich Al, and soil 

order, n=106) on predicting sodium bicarbonate-dithionite extractable P (Dithionite-P). 

Country / 
parameter 

Step 1 Step 2 Step 3 Step 4 Step 5 

New Zealand      

Constant 2.25 1.89 -0.02 -0.40 -0.93 

ASC -0.01*** -0.01*** -0.01*** -0.01** -0.01** 

Soil group  0.54*** 0.65*** 0.76*** 0.80*** 

pH   0.31*** 0.27*** 0.32*** 

Olsen P    0.35** 0.40*** 

Land use     0.19* 

R-sq % 25% 42% 49% 52% 54% 

R-Sq Pred2 23% 34% 40% 43% 44% 

M Cp3 66 36 21 14 12 

Ireland      

Constant -0.80 -0.25 -0.25   

Morgan’s P 0.82*** 0.75*** 0.79***   

Mehlich-Al  -0.0005*** -0.0005**   

Soil group   0.17*   

R-sq % 40% 47% 52%   

M Cp 23 10 7   

1P values indicating significance of 0.001, 0.01 and 0.05 are shown with ***, **, and *, 
respectively 
2R-Sq Pred = determines how well the model predicts a removed observation 
3M Cp = Mallow’s Cp 
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Table 2.7 Forward stepwise effect on the coefficient of determination and the degree of fit 

(via Mallows’ Cp) of parameters used by Thomas et al. (2016), using the Irish Soil Information 

System data (n = 106). 

Parameter -----Step 1----- -----Step 2----- ------Step 3----- 

Constant -0.78 0.19 0.12 

Log Morgan’s P 0.82*** 0.46** 0.52*** 

Log WEP 1:300  0.55** 0.49** 

Soil group   -0.38* 

 R-sq % 40% 44% 50% 

 Mallows’ Cp 18 11 7 
1P values indicating significance of 0.001, 0.01 and 0.05 are shown with ***, **, and *, respectively. 

 

2.3.5 Spatial coverage of dithionite-P and anoxic WEP 

Based on the stepwise regression analysis, using equations 2.2 and 2.3, anoxic WEP and 

Dithionite-P were mapped for productive land of New Zealand (Fig. 2.6) using input data from 

the New Zealand 500 Soils project and the FSL soil drainage layer (LRIS, 2010). Hierarchical 

cluster analysis (via the Elbow method) accounting for soil order grouped the Dithionite-P 

pools in New Zealand in soil into three clusters: 0-170 mg kg-1; 171-600 mg kg-1; and >600 mg 

kg-1. For anoxic WEP, the clusters were identified as: 0-0.291 mg P/L; 0.291-0.570 mg P/L; and 

>0.570 mg P/L. However, all the predicted anoxic WEP values were predicted to be less than 

0.57 mg P/L. In the original dataset, 5 of the 83 samples tested were greater than 0.57 mg P/L. 

Therefore, this may indicate a weakness in the model to predict more extreme concentrations. 

Each cluster was rescaled into two (Table 2.8) to allow for more detailed mapping, due to the 

large ranges the clusters encompassed and the lack of definition in the resulting map (Fig. 2.6). 

For instance, when dividing by only the three Dithionite-P pool clusters at a 1:50,000 scale in 

New Zealand, 85% of the productive land fell within the first Dithionite-P cluster. Therefore, 

while working at the 1:50,000 scale, more detail was required to give any definition while 

mapping. 
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Table 2.8 The percentage within a drainage class in New Zealand that occurs within the assigned ranges of sodium-bicarbonate-dithionite extractable 

P (Dithionite-P) pool size and anoxic WEP pool size, from overlaying the created Dithionite-P and anoxic WEP maps with a New Zealand drainage class 

map (Landcare Research, 2018). 

 
Very poor Poor Imperfect Moderately 

well 
Well Total land area per P range 

(ha) 

Dithionite-P range 
(mg P/kg) 

---------- % Dithionite-P fraction within drainage class ---------- 
 

0 – 85 2.3 3.3 9.9 23.5 61.1 7,795,343 

86 – 170 1.0 20.9 38.2 15.8 24.1 1,752,184 

171 – 390 1.2 19.1 29.3 30.1 20.3 1,627,048 

391 – 600 0 14.0 48.8 5.8 31.4 100,682 

601 – 900 0 12.3 0 87.7 0 7,074 

901 + 0 0 0 100 0 6,344 
Anoxic WEP range 
(mg P/L) 

---------- % Anoxic WEP fraction within drainage class ----------  

0.000 – 0.145 <0.1 <0.1 1.7 30.8 59.5 278,195 

0.146 – 0.291 <0.1 8.2 17.7 23.5 49.5 10,634,054 

0.292 – 0.430 <0.1 20.0 21.1 9.1 31.5 376,246 

0.431 – 0.570 0 13.8 20.5 26.9 38.9 179 
Total area in NZ per 
drainage class (ha) 

214,256 945,904 1,969,757 2,614,880 5,543,877 
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(a) 

 

(b) 

 

Figure 2.6 New Zealand productive land maps of (a) sodium-bicarbonate-dithionite extractable 

phosphorus (Dithionite-P), and (b) Water Extractable Phosphorus (anoxic WEP) pool sizes, using 

equations 2.2 and 2.3. 
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After intersecting the six Na-Dithionite concentration ranges with the five New Zealand soil 

drainage classes from very poor to well drained (LRIS, 2010), there was an even spread of low 

(0-85 and 85-170 mg kg-1) Dithionite-P across all drainage classes but the spread became 

narrower and more likely to be within poorer drainage classes as concentrations increased 

(Table 2.8). A similar spread was noted for anoxic WEP. All the anoxic WEP values were 

predicted to be less than 0.57 mg P/L. In the original dataset, 5 of the 83 samples tested were 

greater than 0.57 mg P/L. 

For clarity; the results produced in Figure 2.6 are not a risk map. The map indicates 

pool sizes and the amount of redox-sensitive P in the soil at a site. However, many of areas 

(e.g. in Central Otago, Canterbury) have typically high soil moisture deficits (due to lower 

rainfall). Therefore, this may be why there is also higher WEP – as it has not been flushed out 

by regular rainfall – and/or soil types (e.g. alluvial gravels) that are not conducive to 

maintaining soil saturation to enhance WEP. A potential improvement would be to include 

number of saturation days or climatic data. 

2.4  

2.4.1 Relative size importance of dithionite-P 

Na-Dithionite targets P that is attached to total free iron oxides in soils and is intended to 

artificially mimic reduction that occurs naturally (Jensen and Thamdrup, 1993; Lehtoranta et 

al., 2015; Loeppert and Inskeep, 1996). It can reduce and release 100% of exchangeable iron 

and amorphous iron oxides (ferrihydrite), and between 50 and 100% of crystalline iron oxides 

(goethite and hematite) (Colombo et al., 2014; Fan et al., 2016; Scalenghe et al., 2012; Van 

Bodegom et al., 2003). Therefore, any P associated with these forms of Fe would be released 

into solution. This test significantly differs from the others in its effect on Fe, as crystalline Fe 

minerals generally have very low solubility in soils. So a soil with a greater abundance of 



 59 

amorphous Fe (e.g. a Gleysol) would be more prone to reductive dissolution during initial 

reactions after saturation (Colombo et al., 2014; Lindsay, 1979).  

Some studies have used dithionite-extractable P to draw connections between hypoxia 

and P release from tidal flats, assessing P attached to soil iron oxides and, in the relationship 

between iron oxides and P sorption. Concentrations vary widely depending on the source and 

soil group. In the tidal flat areas of Japan, the amount of dithionite-extractable P ranged 

between 120-200 mg P/kg (Tanaka et al., 2007). Extractions conducted in the United States of 

America on Acrisol, and Podzoluvisols yielded 308 and 18 mg P/kg, respectively (Hass et al., 

2011; IUSS Working Group WRB, 2015). In a study conducted in Pakistan and Germany, a 

Phaeozem, Cambisol and two Luvisols extracted 18, 61 and 181 and 46 mg P/kg, respectively 

(Memon, 2008). Although each study used slightly different extraction times and extractants, 

the magnitude of P extracted is in line with that measured here. 

2.4.2 Relative size importance of oxic and anoxic WEP 

Oxic WEP tests are an environmental indicator of the soluble P that is likely to be desorbed 

from soil into  surface runoff during a rainfall event (Self-Davis et al., 2009). Anoxic WEP is 

intended to mimic saturated and reducing conditions in the field. Gotoh and Patrick (1974) 

showed that water-soluble Fe extraction under a negative redox potential (i.e. reduced 

conditions) and pH<7 significantly increased extractable Fe compared to a positive redox 

potential of the same pH (e.g., 1493 mg/L Fe at -250 mV vs. < 1 mg/L Fe at +300 mV). As there 

is a strong relationship between P and active Fe (Jiang et al., 2015), conditions that influence 

Fe dissolution will also influence P release. 

The experiment showed that anoxic WEP concentrations were greater than oxic WEP, 

supporting the premise that saturated and anoxic conditions would lead to more P dissolving 

into solution. Experiments such as those by Lai and Lam (2008) and Li et al. (2013) also show 

anoxic conditions and subsequent decreasing redox potentials induces WEP release. In an 
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experiment on US sediments, Rahutomo et al. (2019) showed a significant increase in WEP in 

anaerobic conditions compared to aerobic conditions. Additionally, Maftoun et al. (2003) and 

Ekpete (1976) tested a variety of soil P tests in oxidised and reduced conditions. They both 

demonstrated that, while Olsen P could predict plant growth parameters in either redox state, 

other soil tests showed poorer correlation under reducing conditions. These studies suggest 

that not accounting for reducing conditions can lead to inaccuracies in plant growth modelling. 

The present study asserts that a similar inaccuracy is likely in catchment maps and models in 

areas known to exhibit saturation conditions but predict P losses via oxic WEP (Thomas et al., 

2016). 

While there was a difference in mean oxic WEP and anoxic WEP for most soil groups, 

no difference was noted in Arenosols and Vitric andisols (Table 2.4). These are coarse-textured 

soils unlikely to have a much reducible-Fe due to their youth and minimal development (Craft, 

2016; Hewitt, 2010). Also, these soils have the highest overall WEP concentrations, on average 

(0.26 mg P/L). This suggests that the WEP is extracting P that is likely to be loosely held and 

not as susceptible to reducing conditions.  

2.4.3 Predicting dithionite-P and anoxic WEP  

In the New Zealand soils, the two soil tests important in predicting oxic WEP and anoxic WEP 

were Olsen P and ASC. Olsen P is usually interpreted as the plant-available inorganic P fraction 

but has also been correlated to P loss in runoff (Heckrath et al., 1995b). Soil ASC is a measure 

of the aluminium (Al) and Fe oxide concentration, as measured by the soil’s ability to sorb and 

retain added phosphorus (Saunders, 1965). As ASC increases, P sorption increases and P 

desorption decreases. If two soils were to have the same Olsen P, the soil with the lower ASC 

would release more P into solution, which is supported by the equations in the present study. 

Previous work has shown Olsen P and ASC can predict WEP under oxic conditions (Simmonds 

et al., 2013). The equation of McDowell and Condron (2004), oxic WEP = 0.03(Olsen P/ASC) + 
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0.03 is different to that in this study (Eq. 2.2) for oxic WEP, and substantially different to that 

in Eq. 2.3 for anoxic WEP. This questions the validity of models that use the equation of 

McDowell and Condron (2004) to predict farm P losses to water under saturated conditions 

(Gray et al., 2016a). Two limitations of the model presented here are: using an archive of 

topsoil samples (as discussed); and not including site specific hydro-climatic data in the 

model’s construction. 

Variables important in determining Dithionite-P were Olsen P, pH, ASC and land use 

and soil order. Olsen P has previously been shown to be correlated with Dithionite-P, 

presumably as a result of extracting similar, but perhaps not the same, Fe-P compounds (Olsen 

et al., 1954; Wuenscher et al., 2015). Soil pH affects whether P is sorbed to Al, Fe or Ca 

(Lindsay, 1979). According to the equation for Dithionite-P (Eq. 2.3), Dithionite-P increased 

with pH. The positive relationship can be explained by the fact that P solubility increases as 

soils approach pH 6-6.5 and that all soils were pH <6.5 (Table 2.1). Finally, Eq. 2.2 and 2.3 

indicated that a greater ASC will result in a smaller Dithionite-P. However, the coefficient was 

small indicating that the role of ASC in determining Dithionite-P was weak.  

Soil group was also important in determining Dithionite-P. This concurs with other 

studies where P desorption was linked to soil type (Daly et al., 2001). Those New Zealand soils 

that have the greatest Dithionite-P were Luvisols, Gleysols, Acrisols and Fluvisols (Table 2.1). 

All these orders have undergone some form of periodic saturation and/or fluvial processing. 

Saturation converts Fe to amorphous forms (e.g. ferrihydrite) that are more sensitive changes 

in redox conditions (Colombo et al., 2014; Lindsay, 1979). This cycling is likely to solubilise and 

precipitate Fe and associated P into Na-Dithionite-extractable P forms. In contrast, the lowest 

Dithionite-P concentrations were exhibited in soil groups primarily of volcanic origin – the 

Andisols, Ferrasols and Vitric andisols. Weathered New Zealand volcanic soils contain 
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aluminosilicate clay minerals such as allophane, which are highly P-sorptive due to the 

presence of Al not Na-Dithionite-extractable Fe (Molloy, 1998).  

Land use may reflect the large soil management differences in pH and Olsen P. In a 

study by McDowell et al. (2020), soil P accumulation was connected to the soil order and the 

farm type. Dividing the land uses into pasture versus crop, the means of Olsen P, ASC and pH 

were significantly different (Table 2.1). Particularly in the volcanic soils, the cropped soils had 

a greater mean Olsen P and lower pH within a soil order compared to the same soil under 

pasture. It would be beneficial to integrate hydro-climatic parameters into future work. 

Including them would strengthen WEP predictions at the catchment scale, as conditions such 

as rainfall or soil moisture may affect the accuracy of predictions. 

 Only Dithionite-P was predicted in the Irish soils. The inclusion of Ireland provides an 

interesting contrast between two countries. In New Zealand, there are contrasting soil types 

(e.g. andisols versus gleysols) and land uses (e.g. arable land versus drystock land). Meanwhile 

in Ireland, the land uses are heavily skewed towards grassland, and the soil characteristics are 

more homogenous. Therefore, this demonstrates that reducible Fe and P will have a variable 

level of importance in different countries. In Ireland, the important variables were Morgan’s 

P and Mehlich-3 extractable Al. Morgan’s P test is used to predict plant growth potential and 

therefore can be expected to extract a similar P fraction as Olsen P. This concurs with other 

research where Morgan’s P was identified as a good indicator of P loss from soil to water (Daly 

and Casey, 2005). Mehlich-3 extractable Al was an unexpected predictor, as Al is not expected 

to be affected by redox, but rather subsequent changes in other parameters such as pH 

(Husson, 2013). However, the equation coefficient is small, and its inclusion in the model may 

reflect its importance in contributing to a soil’s ASC (Daly et al., 2015). 
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2.4.4 Utility of dithionite-P and anoxic WEP estimates 

The models can be used to create a GIS layer that can inform future modelling and decision 

support tools (DST) designed to aid management at a catchment scale. However, unless robust 

data are available, caution should be employed when using the predictions at a farm scale. 

For instance, many national soil surveys will have spatial data at a resolution > 1:50,000 

(Landcare Research, 2014). Furthermore, saturated areas expand and contract dependent 

upon soil moisture conditions and the amount and intensity of rainfall (Doody et al., 2006; 

Gburek et al., 2002; Thompson et al., 2012). This scale and the variable nature of saturated 

areas may not relate to management decisions on farm. Therefore, local knowledge of where 

and when saturated areas exist on farm should be the first step in refining the need and 

placement of management decisions to prevent P loss under saturated conditions. The risk of 

P loss and need for remedial action could then be further refined with Dithionite-P and anoxic 

WEP tests.  

Excluding spatial scale, caution should also be employed when using these equations 

to predict anoxic WEP. These equations contain error and therefore should be calibrated 

against a subset of samples representative of soil types and land uses in the region. However, 

if management requires detailed knowledge of saturated areas it may be worth the additional 

time and resources to measure anoxic WEP than predict it. Such a situation may arise if, for 

example, decisions need to be made regarding the renovation of artificial drainage networks 

in catchments with P-sensitive receiving waters. 

 Several practices are available to decrease P losses from saturated grassland soils. 

These range from lowering soil Olsen P concentrations buy reducing P fertiliser inputs (Morton 

et al., 2003), to restricting or avoiding their use either for the application of farm dairy effluent 

or grazing – especially in winter (McDowell et al., 2005; Monaghan et al., 2010). Deceases in 

P losses range from 5 to 40% but may also result in losses occurring in other parts of the farm 
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if not designed well. For instance, restricting the grazing of winter forage crops by cattle to 3-

4 hrs requires stock to be in another part of the farm where dung can be captured and not 

lost to water (McDowell, 2006). Greater decreases occur where the risk of saturation and 

runoff is considered. For instance, in a catchment trial in Otago, New Zealand, a critical source 

area for P loss was identified as the saturated near stream area which lost most P in winter 

and spring. McDowell et al. (2014) modelled this area, and enriched Olsen P concentrations 

decreased by half through inversion tillage. Through a lower need for P fertiliser, soil Olsen P 

and replanting the area in a low-P tolerant ryegrass, milk production was improved while 

dissolved reactive P concentration decreased by 38% (McDowell et al., 2014). 

As noted above, successfully managing P losses from CSAs, requires knowledge of 

where and how often saturation zones occur and the size of the pool of P available for loss 

(Doody et al., 2010). Hydrologic models exist at the farm scale (Thomas et al., 2016; Thompson 

et al., 2012). Data on soil P fertility have been used as a proxy to estimate the availability of P 

to loss, but with variable results (Page et al., 2005). It is proposed that a better estimate of risk 

may incorporate P availability via anoxic WEP in the short-term and Dithionite-P in the long-

term, although additional work is required to confirm this.  

 Accuracy of the anoxic WEP and Dithionite-P tests may vary depending on factors such 

as geographic location, soil type, the depth at which soil samples are taken. The models 

created here used soil samples collected from the first horizon. However, it may be more 

beneficial to investigate the relationship to depth where saturation could occur more 

regularly. We also assumed that the form and behaviour of P and Fe in soil samples were not 

affected by being sieved and stored before analysis. If a soil was originally anaerobic and dried 

in the presence of oxygen, soil P and Fe availability may change. Additional work is required 

to determine if these factors impair the utility of the tests. Another factor to consider is that 

this work has been presented at the 1:50,000 scale and it is unknown if the processes are at 
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play at larger scales over a farm or sub-catchment. Bol et al. (2018) noted that modelling relies 

on assumptions such as a constant availability of P to loss, and that not accounting for 

variation can lead to ambiguities in identifying P sources. Therefore, to be useful in informing 

models and management of P losses, further work is required relating these lab tests to field 

data.   

2.5 Conclusions 

This study showed that exposing soil to an anoxic environment increases WEP, in comparison 

to normal, oxic WEP tests. Therefore, there is a need to include the influence of anoxic 

conditions on P release in periodically saturated farmland. It is recommended to determine 

anoxic P directly or conduct a calibration step to make a more accurate model for the specific 

soils or site in question. However, the present study shows that concentrations could be 

predicted with moderate confidence (R2 53%) with an array of readily available soil tests 

(Olsen P, ASC, and pH). Similar predictions were possible for Dithionite-P.  

Readily available soil test data was used to demonstrate the risk of short- and long-

term P loss from soils that are periodically saturated. These data could be used as an indication 

of where additional, finer scale anoxic WEP and Dithionite-P tests, should be collected. These 

fine scale data will help improve the isolation of CSAs of P loss due to saturated conditions 

and the targeting of strategies to mitigate loss.  Further study should look to include this 

method into current or developing models predicting P release at the paddock to small 

catchment scale and compare predictive data with field data, thus establishing its validity and 

usefulness in a practical setting. 
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Chapter 3 

Shallow subsurface phosphorus losses in grassland soils as 

influenced by oxygen, temperature, superphosphate and soil 

texture 

3.1 Introduction 

Globally, phosphorus (P) is essential for productive agriculture, and regular fertiliser P inputs 

into agricultural soils are necessary to maintain that productivity (Bomans et al., 2005; 

Haygarth et al., 1998; Leinweber et al., 2002). However, P from agricultural soils can be lost to 

local surface water bodies via subsurface and surface pathways, leading to water quality issues 

such as eutrophication and excessive aquatic plant growth (Hansen et al., 2002; Heathwaite 

and Dils, 2000; Leinweber et al., 2002; Owens and Shipitalo, 2006). Many studies have 

concentrated on characterising losses of phosphorus (P) in particulate and dissolved forms via 

surface or subsurface pathways  (Dupas et al., 2017; Fenton et al., 2017; McDowell et al., 2015; 

Monaghan et al., 2016; Thomas et al., 2017; Thomas et al., 2016). The storage of DRP and 

kinetics of release in near-surface, saturated lateral pathways have not received much 

attention. Such pathways are highly relevant to P losses in grassland soils that are poorly 

drained, shallow, have a perched water table, or where there is a large seasonal difference in 

water table levels and where sites are predisposed to saturation-excess runoff (Thomas et al., 

2017).  

Saturation excess conditions could cause changes in P loss kinetics along lateral and 

vertical pathways via a process called reductive dissolution (Gu et al., 2019; Warrinnier et al., 

2020). When a soil becomes saturated, respiring microbial communities will quickly deplete 

oxygen (O2) and NO3
- sources for energy by reducing them to solubilised forms via redox 

reactions. When these are depleted, the soil profile becomes anoxic and microbes rely on 

reducing P-sorptive Mn- and Fe-oxides to create energy (McMahon and Chapelle, 2008). Any 

P sorbed to Mn- and Fe-oxides are dissolved with the Fe and Mn. However, current tests, such 

as water extraction, predict the potential for P loss to runoff in oxic conditions (McDowell and 

Condron, 2004), and therefore may underestimate P loss under saturated conditions. More 

recent tests have tried to overcome this by quantifying P that is released from reduced Fe and 

Mn over the long-term, referred to as “reducible-P” (or R-P) (Smith et al., 2021).  
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In laboratory incubations, microbial activity can quickly (within hours) induce anoxic 

conditions (Holford and Patrick, 1978; Leinweber et al., 2002; Patrick and Khalid, 1974; Zhang 

et al., 2010). For instance, Gu et al. (2019) incubated riparian wetland soils and sediments in 

a soil to solution ratio of 1:20 at room temperature and found DRP release plateaued after 24 

hours. However, Heiberg et al. (2012) incubated peat and sand under cereal crop rotation and 

found that, reduction of Fe(III) began immediately after incubation, and DRP release under 

anoxic conditions levelled off after 45 days at room temperature (23oC). Clearly, more 

information is required on how fast anoxic conditions will cause P release in soils, especially 

grassland soils. It is important to know if the period of saturation expected in grassland soils 

is long enough that DRP release under anoxic conditions is significant. 

As redox is typically microbially-mediated, local soil temperature would influence the 

rate or occurrence of Fe-P dissolution. Sallade and Sims (1997b) demonstrated that there was 

more rapid and pronounced Fe dissolution at an incubation temperature of 35oC compared to 

7oC. However, the cooler temperature is warmer than that exhibited in many temperate 

grassland soils during late autumn to early spring. For instance, at this time, most soils under 

grassland in Ireland and southern New Zealand would have a temperature range of 2-10oC, in 

the top metre of soil (Ceccon et al., 2011; Huang et al., 2014). More importantly, this is also 

when saturated conditions and P loss are most likely (Srinivasan and McDowell, 2009) leading 

to the question of whether this cooler temperature significantly reduces the rate of P release 

under anoxic conditions? 

Long term P fertiliser practices may also affect P losses. Previous work has shown a 

relationship between Olsen P concentrations and surface and subsurface P loss (McDowell 

and Condron, 2004). However, it is unclear how soils of different Olsen P would release DRP 

under anoxic conditions.  

To address these issues, a soil coring study was conducted in Ireland to establish that (a) 

there was a redox-sensitive form of P that should be investigated, and (b) that this redox-

sensitive form behaves differently than a typical water extractable P (WEP) test. Following the 

results of this, an incubation study was conducted using field-moist grassland soils from sites 

in Ireland and New Zealand, in order to further establish differences in P loss due to oxygen 

conditions. Ireland and New Zealand were selected, as grassland agriculture accounts for 

nearly half of each country’s land use (European Commission, 2019; StatsNZ, 2018). The 
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objectives of the incubation study were to: (a) determine the concentration and kinetics of P 

release in water extracts under anoxic and oxic conditions over a 24-hour period – deemed 

representative of a subsurface flow producing rainfall event; and (b) to establish the 

importance of temperature and soil P fertility, representative of winter and summer seasons 

and typical P application rates (0-60 kg P ha-1 yr-1). These results will give some indication 

whether anoxically-induced P release would contribute to P loss within the day of saturation 

and compliment the soil coring study. 

3.2 Materials and Methods 

3.2.1 Soil profile vertical distribution study 

To give credence to the suggestion that Oxic WEP does not extract redox-sensitive P, the 

vertical distribution of P via two soil tests were conducted. To determine the availability of P 

for loss, five soil profile cores were taken every 30 m along a 100 m transect across a hillslope 

grassland paddock at Johnstown Castle, Wexford (Ireland) with known shallow subsurface 

pathways (Ibrahim et al., 2013). Cores were taken to 250 cm below ground level, to intercept 

characterised subsurface transport pathways and capture the distribution of P above and 

below an installed artificial drainage system at 100 cm and any perched water tables. Each 

profile core was divided into 0-10, 10-45, 45-70, 70-100, 100-130, 130-150, 150-175, 175-200, 

200-215, and 215-250 cm below ground level, air-dried, sieved (<2 mm) and analysed for 

water extractable P (Oxic WEP) and sodium-bicarbonate-dithionite extractable P (Dithionite-

P). The Oxic WEP tests represents the readily available P in soil, while the Dithionite-P test 

represents the long-term pool of reducible P (Smith et al., 2021).  

Additional data were collected to establish the likelihood of saturation occurring at the 

site. Within 200 cm of each cored point, the soil water table data was collected daily from 

November 2017 to March 2019 using water level data loggers (TD-Divers, Eijkelkamp Soil & 

Water, Netherlands) inside of piezometers drilled to 300-400 cm below ground level. Soil 

profiles were cored adjacent to these piezometers on the slope. Alongside this, soil moisture 

deficit (SMD) data was used to estimate how often the site would reach saturation excess 

(Met Éireann, 2020). 

A subsample of the core was analysed (air-dried, < 2mm sieved, Table 3.1) for analysis of: 

water extractable P (WEP) at a 1:300 soil to solution ratio  (McDowell and Condron, 2004); 

Olsen P (Olsen et al., 1954); anion sorption capacity (ASC) – a measure of the soil’s P sorption 
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capacity (Saunders, 1965); pH, total nitrogen (TN) and total carbon (TC) by LECO C/N analyser, 

and; particle size (Gee and Bauder, 1986). The soils were also extracted at a 1:100 soil to 

solution ratio with sodium-bicarbonate-dithionite. 

3.2.2 Incubation trial 

Following the results of the vertical distribution study, three different grassland sites were 

sampled over 2018 and 2019 - two in Ireland and one in New Zealand. They will be referred 

to by their textural class: clay loam; sandy loam; and silt loam. The sites were classified using 

the New Zealand (Hewitt, 2010) or the Irish soil classification system and the equivalent FAO 

classification (IUSS Working Group WRB, 2006) in parentheses. The clay loam (from Co. 

Wexford in Ireland) was a moderately-drained Stagnic Brown Earth (Cambisol) and was the 

same soil used in the preliminary soil profile study. The sandy loam (from Co. Cork in Ireland) 

was a well-drained Typical Brown Earth (Cambisol). The silt loam was a well-drained Pallic Firm 

Brown soil (Cambisol) from Canterbury in New Zealand. Soils were given a textural class 

according to previous work in the same locations (Ibrahim et al., 2013; Rickard and Moss, 

2012).  

Initial soil test P values are listed in Table 3.2. The clay loam and sandy loam each have 

had three P treatments for a decade, receiving annual P applications of 20, 40 or 60 kg P ha-

1yr-1. Each soil site selected had received the same nitrogen treatment (300 kg N ha-1). Grass 

was not grazed but periodically harvested for hay/silage. There were three replicates for each 

treatment. The silt loam had three treatments receiving annual applications of single 

superphosphate (SSP) for over 60 years at rates of 10, 20, 30 kg P ha-1 yr-1. Each SSP treatment 

had 4 replicate plots and were grazed by separate flocks of sheep at 10, 14 and 18 stock units 

ha-1, respectively (McDowell and Condron, 2012).  

Ten fresh, field-moist topsoil cores (0-10 cm) were taken in each plot with a hand auger 

from random points in each plot and bulked. A subsample of the bulked cores was analysed 

(air-dried, < 2mm sieved, Table 3.1) for: water extractable P (WEP) at a 1:300 soil to solution 

ratio  (McDowell and Condron, 2004); Olsen P (Olsen et al., 1954); anion sorption capacity 

(ASC) – a measure of the soil’s P sorption capacity (Saunders, 1965); pH, total nitrogen (TN) 

and total carbon (TC) by LECO C/N analyser, and; particle size (Gee and Bauder, 1986). The 

soils were also extracted at a 1:100 soil to solution ratio with sodium-bicarbonate-dithionite. 
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The laboratory treatments used in the incubation were oxygen content (oxic vs. 

anoxic); temperature (3oC vs. 18oC); and fertiliser rate (20, 40 or 60 kg P ha-1 yr-1 for the clay 

loam and sandy loam, and 10, 20 and 30 kg P ha-1 yr-1 for the silt loam), with four replicates 

per treatment combination. Each bulked field-moist soil sample was sieved to <4 cm and 

homogenised. Samples of 2 g were weighed into containers and prepared in either an anoxic 

glove box purged with nitrogen gas (N2), or in ambient air. In the glove box, deionised (DI) 

water was bubbled for 20 minutes with N2 until anoxic (<0.5 mg dissolved oxygen L-1), added 

to the soil to reach a ratio of 1:20 dry weight soil to DI water, stirred, and sealed before 

removal. Samples were placed on orbital shakers (170 rpm) and shaken and incubated in the 

dark at 18oC or 3oC. The same process was carried out for the oxic treatment, but in ambient 

air (> 7 mg DO L-1) with untreated deionised water. Chloroform was not used to sterilize soils, 

as it may have affected the ability of the soils to maintain an anoxic environment and have 

increased P concentrations by lysing microbial cells (Reddy et al., 1998a). The four resulting 

treatment combinations (oxic 3oC, anoxic 3 oC, oxic 18 oC, and anoxic 18 oC) were sampled 

sacrificially in triplicate at each time point (0, 60, 240, 480 and 1440 minutes). 

  Samples were filtered to 0.45 µm, acidified (1 mL 10% HCl) to prevent precipitation of 

redox sensitive species (Gu et al., 2019) and analysed immediately for DRP using a standard 

colorimetric procedure (Watanabe and Olsen, 1965). The main constituent in DRP is thought 

to be orthophosphate, although it is recognised that some organic P species may undergo acid 

hydrolysis and increase orthophosphate measurements by 10-20% (McDowell and Sharpley, 

2001). Redox sensitive cations (Fe2+ and Fe3+, Mn2+) were analysed via inductively coupled 

plasma optical emission spectrometry (ICP-OES), and anions (NO3
-, SO4

2-) using Dionex 

suppressed ion-exchange chromatography.  

The amounts (qt, mg kg-1) of DRP desorbed were calculated after fitting an Elovich 

equation using Curve Expert 14.0. The Elovich equation is widely used in the study of P release 

from soils and sediments (Sparks, 2003). The Elovich model was selected as it fit the data 

better (r2 and standard error [SE]) than other commonly used models (pseudo first-order and 

second-order equations) (Table 3.3). For each treatment, the natural log of time, ln(t), was 

plotted against qt, and the following Elovich model applied (Eq. 3.1):    

 qt = (1/β) ln(α β) + (1/β) ln t       Eq. 3.1 

 



 71 

The model gives the rate of reaction (mg kg min) via the equation constants, α and β, 

which represent initial chemisorption rate (mg g-1 min), and extent of surface coverage and 

activation energy of chemisorption (g mg-1), respectively (Inyinbor et al., 2016; McCallister, 

2015; Ramachandran et al., 2011). The slope from the Elovich equation (1/ β) is equivalent to 

the desorption rate, and the intercept (‘(1/ β)ln(αβ)’) is an approximation of the amount of P 

that is desorbable at time zero (McCallister, 2015). Other studies have quoted decreasing β 

values and increasing α values as an indication of an increase in reaction rate, but the validity 

of this is not robust (Chien and Clayton, 1980; Sparks, 2003).  

3.2.3 Statistical Analysis 

Analyses were conducted using R Studio and Minitab or Curve Expert 14.0 where specified 

(Minitab, 2018; R Development Core Team, 2010). A two-way analysis of variance (ANOVA) 

was used to compare mean soil P test concentrations, and Tukey’s Honestly Significant 

Difference post hoc test was used to find specific significant differences between chemical 

parameters in the three soil groups.  

Analysis by repeated measures was carried out via a general linear model (GLM) applied 

to each of the three soils to identify the influence of oxygen, temperature, and fertiliser as 

factors (and their interactions) on mean DRP, Fe, Mn and NO3 concentrations measured over 

24 hrs, and on the P desorption rate (1/β from the Elovich model). A crossed method was 

selected as all combinations of factors are represented in the experimental design. 

Interactions between factors in their influence on P, Fe, Mn and NO3 were calculated via a 

two-way ANOVA. 
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Table 3.1 Mean soil chemical1 and physical parameters of the three sites used in the incubation of field-moist soils 

Texture 

profile2 

Location FAO Soil 

Group3 

Irish / NZ Soil 

classification § 

Temp 

 

Rainfall pH TN 

 

TC 

 

ASC 

 

Particle Size 

    oC mm yr-1  g kg-1 g kg-1 % Sand % Clay % 

Clay loam Co. Wexford, 

Ireland 

Cambisol Stagnic Brown  10 1060 6.0 2.2 27 18 50 19 

Sandy loam Co. Cork, Ireland Cambisol Typical Brown 10 1029 6.8 3.0 42 14 62 15 

Silty loam Canterbury, NZ Cambisol Pallic firm brown 11 781 5.4 3.9 43 26 30 25 

1TN – Total Nitrogen, TC – Total Carbon, ASC – Anion sorption capacity,  

2Sourced from: Teagasc & Cranfield University (2007) and Landcare Research (2020) 

3(IUSS Working Group WRB, 2015) 
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Table 3.2 Soil phosphorus tests1 for each soil and fertiliser treatment (n = 3 per soil x fertiliser 

treatment). Means (±SE) are contrasted via a two-way analysis of variance. Lettering indicates 

significant differences in means within a fertiliser treatment, according to Tukey’s Honestly 

Significant Difference (Tukey HSD). 

Soil texture P Fertiliser 

treatment 

Oxic WEP Dithionite-P Olsen P 

 kg ha-1 yr-1 mg L-1 mg kg-1 mg kg-1 

Clay loam 20 0.07a (0.003) 50a (0.8) 31a (0.5) 

40 0.07a (0.005) 66b (1.0) 33a (1.4) 

60 0.16b (0.015) 68b (0.1) 47b (0.8) 

Sandy loam 20 0.10a (0.002) 70a (0.2) 52a (0.9) 

40 0.16b (0.008) 73b (1.3) 58b (0.4) 

60 0.15b (0.003) 88c (0.3) 70c (1.5) 

Silt loam 10 0.11a (0.020) 55a (0.4) 27a (1.3) 

20 0.09a (0.005) 66b (0.9) 39b (1.5) 

30 0.22b (0.002) 103c (0.9) 50c (0.7) 

P Soils  <0.01 <0.001 <0.001 

P Fertiliser  <0.001 <0.001 <0.001 

P Soils × fertiliser  ns ns ns 

1WEP = Water extractable P; Dithionite-P = Sodium-bicarbonate-dithionite extractable P 
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Table 3.3 Fit (coefficient of determination and standard error) desorption rate (mg kg-1 min-1) 

of first order, second order and Elovich equation to dissolved reactive P measured over time 

for the site A (clay loam) soil receiving 20 kg ha-1 yr-1. 

Model Treatment b 1 R2 SE 

First order Anoxic (3oC) 0.78 0.54 0.40 

 Oxic (3oC) 0.89 0.58 0.45 

 Anoxic (18oC) 0.76 0.57 0.38 

 Oxic (18oC) 0.85 0.61 0.37 

Second order Anoxic (3oC) 0.59 0.99 54.9 

 Oxic (3oC) 0.34 0.98 41.5 

 Anoxic (18oC) 0.61 0.96 94.8 

 Oxic (18oC) 0.42 0.98 46.3 

Elovich Anoxic (3oC) 0.22 0.99 0.11 

 Oxic (3oC) 0.38 0.99 0.23 

 Anoxic (18oC) 0.20 0.97 0.19 

 Oxic (18oC) 0.30 0.98 0.20 

1b = k1 for first order, k2 for second order, and β for Elovich equations. 
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3.3 Results 

3.3.1 Soil profile vertical distribution study 

The investigation shows that there was a difference in P behavior under normal versus 

reducing conditions. For WEP, the amount of extracted P was greatest in the topsoil and 

decreased with depth. In contrast, Dithionite-P decreased with depth to 60 cm then gradually 

increased to concentrations like those recorded in the topsoil (0-10 cm) and coincident with 

the location of artificial drainage pipes (100-150 cm) (Figure 3.1). The greatest Dithionite-P 

value at depth was found in the soil cores taken from the bottom of the slope (i.e. 124 mg P 

kg-1), which was at least twice the amount found in the soil cores from the middle and top of 

the slope. These data provide context for the potential of short and long-term pools of P to 

influence P losses. More specifically, they suggest that while drainage may be influenced by P 

that is susceptible to loss under long-term reducing conditions, surface runoff may be 

influenced by P that is susceptible to loss in the short-term. The possibility of short-term 

changes (e.g. over 24-hour periods) is prudent in such systems. 

Between November 2017 and March 2019, the average soil water table level was 260 

cm below ground level but at some locations in the slope the water table level would 

periodically come to within to 40 cm of the soil surface (Figure 3.1). At the bottom of the slope, 

the water table was between 100 and 250 cm below ground level for 27% of the period 

sampled. More importantly, for surface runoff, mean SMD indicated that topsoil was either at 

or in excess of field capacity for 60% of the year between 2017-2019, meaning that surface 

runoff was likely to be as frequent as drainage (Met Éireann, 2020). Therefore, as there was a 

difference in the vertical distribution of the two P forms and the site is regularly saturated, the 

study reinforced the necessity to conduct a 24-hour incubation study that clarified the 

influence of oxygen conditions on P release.
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Figure 3.1 Averaged vertical distribution of sodium-bicarbonate-dithionite extractable P 

(Dithionite-P, solid line) and water extractable P (WEP, dashed line) to 250 cm below ground 

level. Error bars show the standard error of the mean at each depth. Soil profile samples were 

taken from the same farm as the soils used in the clay loam incubation. Grey polygons indicate 

the mean and maximum water table level over the five soil profiles from September 2017 to 

March 2019. The shaded area at 100 cm below ground level indicates the location of artificial 

drainage. Note that the x-axis scales are not the same. 
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3.3.2 Incubation soil characteristics 

Mean Olsen P concentrations were enriched above those deemed necessary for optimal 

pasture production (20-40 mg kg-1) for drystock and dairy farming, which may explain why 

WEP concentrations were high (Table 3.2) (Morton and Roberts, 2016; Roberts and Morton, 

2009). Concentrations of Dithionite-P in the New Zealand soil (silt loam) were between 55-103 

mg kg-1. Concentrations of Dithionite-P were below the average of similar soils in national soil 

surveys from New Zealand (91 mg kg-1) and Ireland (92 mg kg-1) (Smith et al., 2021).  

The proportion of sand across the soils ranged from 30% in the silt loam to 62% in the sandy 

loam, and clay ranged from 15% to 25% (Table 3.1). Values of pH ranged from 5.4 to 6.8, with 

the silt loam being the most acidic, but still within the range considered optimal for pasture 

production (5.5-7.0) (Morton and Roberts, 2016). The total N and C concentrations were 

lowest in the clay loam at 1.8 and 26 g kg-1, respectively. The ASC was low compared to soils 

used for grazed grassland farming in New Zealand (McDowell and Condron, 2004). Owing to 

the chemical and physical differences demonstrated between the soils (Tables 3.1 & 3.2), and 

slightly different fertiliser treatments, analysis was carried out on each soil’s data individually. 

3.3.3 Overall incubation DRP release and kinetics 

Table 3.4 shows the mean solution DRP concentration after 1440 minutes (24 hours), with the 

P values of a GLM. DRP concentrations increased with fertiliser inputs in the clay loam, sandy 

loam and silt loam. The warmer temperature significantly increased DRP concentrations in 

sandy (P < 0.001), silt loams (P<0.001) and clay loam (P<0.001). There was a significant 

fertiliser by temperature interaction and fertiliser by temperature by oxygen interaction on 

DRP in the silt loam. There were no significant interaction impacts for the clay loam or sandy 

loam. 

Examples of DRP release over time are given in Figures 3.2-3.4 for each of the soils at the 

same fertiliser rate (20 kg ha-1). Between 40 and 100% of cumulative DRP desorbed from each 

treatment occurred within the first 60 minutes of incubation. However, this varied between 

the soils. For instance, within 60 minutes, the sandy loam released between 80-100% of its 

cumulative DRP, particularly as the fertiliser treatment increased. Meanwhile about 50% of 

cumulative DRP was released from the clay loam in the first 60 minutes. Compared to the 

other two soils, DRP release from the silt loam was more gradual, especially with those treated 
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with 3oC. The patterns of Fe and Mn release were like those for P across all soils (Figures 3.2-

3.4).  

The Elovich model was applied to all soils and the slope (1/β) used to statistically compare 

the desorption rate (mg g-1 min) of DRP across treatments within soils (Table 3.5). A higher 

value was indicative of a faster release rate (McCallister, 2015). Desorption rates increased 

significantly with fertiliser rate and temperature for all soils. There was also a significant 

increase under anoxia in the clay and sandy loams, but not so for silt loam soils. Interactions 

were significant between fertiliser, temperature and oxygen (Table 3.5). By averaging all 

desorption rates of each treatment across all soil textural classes and fertiliser treatments, the 

mean P desorption rate from lowest to highest was Oxic 3oC < Anoxic 3oC ≤ Oxic 18oC < Anoxic 

18oC. 

3.3.4 Factors controlling DRP release during the incubation 

The response of redox sensitive parameters was not as clear as that for DRP (Tables 3.6-3.8). 

Nitrate was enriched in the clay loam under oxic and cold conditions but depleted at higher 

temperatures or under anoxic conditions (Table 3.6). The sandy loam maintained between 0.2 

and 0.4 mg L-1 NO3
- in solution between 60 minutes and 24 hours (Figure 3.2). The silt loam, 

with the highest initial NO3
- concentration, maintained >0.8 mg L-1 NO3

- (Figure 3.4). In 

contrast, the clay loam nearly exhausted NO3 within the first 60 minutes in the anoxic 

treatments (Figure 3.3).  

The overall concentrations of Fe and Mn, like P, increased with temperature in the 

sandy and silt loam soils but not in the clay loam (Tables 3.7-3.8; Figures 3.2-3.4). The clay 

loam exhibited a difference between temperature treatments by the end of the incubation, 

but not overall. Apart from an enrichment under anoxia in the sandy loam no differences were 

noted for the other soils or treatments. 
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Table 3.4 Mean solution DRP concentrations (mg L-1, standard errors of the means in parentheses) over 1440 minutes for each soil and fertiliser rate 

under anoxic or oxic conditions at 3 or 18oC. The P value of general linear model (GLM) of the averaged solution DRP concentrations within a soil group 

is given for each treatment and their interaction. Treatments with different letters are significantly different. 

Site -------- Clay loam -------- -------- Sandy loam -------- -------- Silt loam -------- 

Fertiliser 20 40 60 20 40 60 10 20 30 

kg ha-1 yr-1          

Anoxic (3oC) 
0.05a 

(0.007) 

0.08a 

(0.020) 

0.19 

(0.028) 

0.08ab 

(0.014) 

0.11a 

(0.009) 

0.11 

(0.049) 

0.17a 

(0.021) 

0.38a 

(0.035) 

0.86b 

(0.079) 

Oxic (3oC) 
0.05a 

(0.007) 

0.06a 

(0.006) 

0.17 

(0.025) 

0.07a 

(0.012) 

0.06a 

(0.007) 

0.08 

(0.051) 

0.16a 

(0.027) 

0.37a 

(0.026) 

0.41a 

(0.068) 

Anoxic (18oC) 
0.09b 

(0.013) 

0.14b 

(0.011) 

0.21 

(0.027) 

0.14b 

(0.021) 

0.16b 

(0.017) 

0.18 

(0.051) 

0.26b 

(0.035) 

0.46b 

(0.027) 

0.81b 

(0.078) 

Oxic (18oC) 
0.07ab 

(0.075) 

0.08a 

(0.009) 

0.27 

(0.060) 

0.14b 

(0.022) 

0.15b 

(0.021) 

0.15 

(0.048) 

0.24b 

(0.026) 

0.41ab 

(0.034) 

0.63ab 

(0.093) 

P Fertiliser <0.001 <0.001 <0.001 

P Temperature <0.05 <0.001 <0.001 

P Oxygen ns ns ns 

P Fertiliser × temperature ns ns <0.05 

P Fertiliser × oxygen ns ns ns 

P Temperature × oxygen ns ns ns 

P Fertiliser × temperature × oxygen ns ns <0.05 
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Table 3.5 A comparison of mean DRP desorption rates (1/β, mg g-1 min-1) calculated via the Elovich model after 1440 minutes for each soil and fertiliser 

(Fert) rate under or oxic (Ox) conditions at 3 or 18oC. The P value of general linear model (GLM) of the mean DRP desorption rates within a soil group 

is given for each treatment and their interaction. Treatments with different letters are significantly different via Tukey’s Honestly Significant Difference. 

Site ---- Clay loam ---- ---- Sandy loam ---- ---- Silt loam ---- 

Fertiliser 20 40 60 20 40 60 10 20 30 

kg ha-1 yr-1          

Anoxic (3oC) 
0.21a 

(0.008) 

0.26b 

(0.009) 

0.77ab 

(0.095) 

0.45b 

(0.007) 

0.31b 

(0.005) 

0.16 

(0.002) 

0.63a 

(0.054) 

0.71ab 

(0.055) 

0.46 

(0.458) 

Oxic (3oC) 
0.20a 

(0.203) 

0.16a 

(0.016) 

0.66a 

(0.021) 

0.32a 

(0.009) 

0.22a 

(0.016) 

0.16 

(0.005) 

0.63a 

(0.635) 

0.59a 

(0.061) 

0.51 

(0.053) 

Anoxic (18oC) 
0.37b 

(0.023) 

0.31b 

(0.026) 

0.75ab 

(0.073) 

0.66c 

(0.024) 

0.51c 

(0.034) 

0.16 

(0.003) 

1.07b 

(0.127) 

0.89bc 

(0.010) 

0.84 

(0.244) 

Oxic (18oC) 
0.30b 

(0.019) 

0.23ab 

(0.024) 

1.04b 

(0.081) 

0.63c 

(0.012) 

0.52c 

(0.031) 

0.17 

(0.002) 

0.97ab 

(0.975) 

1.09c 

(0.051) 

0.45 

(0.011) 

P Fertiliser <0.001 <0.001 <0.001 

P Temperature <0.001 <0.001 <0.001 

P Oxygen <0.01 <0.001 ns 

P Fertiliser × temp ns <0.001 ns 

P Fertiliser × oxygen <0.01 <0.01 ns 

P Temp × oxygen ns <0.001 ns 

P Fertiliser × temp × oxygen <0.05 <0.001 <0.01 
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Table 3.6 Mean solution nitrate (NO3
-) concentrations (mg L-1) over 1440 minutes for each soil and fertiliser rate under anoxic or oxic conditions at 3 

or 18oC. The P value of general linear model (GLM) within a soil group is given for each factor, as well as the significance of interactions between 

factors. No treatments were significantly different via Tukey’s Honestly Significant Difference. 

Site ------ Clay loam ------ ----- Sandy loam ----- -------- Silt loam -------- 

Fertiliser 

kg ha-1 yr-1 20 40 60 20 40 60 10 20 30 

Anoxic (3oC) 
0.11 

(0.073) 

0.14 

(0.085) 

0.12 

(0.078) 

0.29 

(0.048) 

0.50 

(0.044) 

0.40 

(0.060) 

1.76 

(0.130) 

1.89 

(0.179) 

2.29 

(0.064) 

Oxic (3oC) 
0.76 

(0.439) 

0.13 

(0.088) 

0.57 

(0.514) 

0.31 

(0.040) 

0.50 

(0.035) 

0.37 

(0.050) 

1.83 

(0.152) 

1.62 

(0.226) 

2.17 

(0.063) 

Anoxic (18oC) 
0.11 

(0.070) 

0.15 

(0.073) 

0.11 

(0.073) 

0.33 

(0.041) 

0.50 

(0.034) 

0.52 

(0.072) 

1.65 

(0.152) 

1.91 

(0.148) 

1.87 

(0.037) 

Oxic (18oC) 
0.07 

(0.071) 

0.20 

(0.064) 

0.13 

(0.076) 

0.35 

(0.051) 

0.50 

(0.041) 

0.38 

(0.061) 

1.63 

(0.144) 

2.23 

(0.148) 

2.32 

(0.036) 

P Fertiliser
 ns ns <0.001 

P Temperature <0.05 ns ns 

P Oxygen <0.05 ns ns 

P Fertiliser × temperature
 ns ns ns 

P Fertiliser × oxygen ns ns ns 

P Temperature × oxygen ns ns ns 

P Fertiliser × temperature × oxygen ns ns ns 
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Table 3.7 Mean solution iron (Fe) concentrations (mg L-1) over 1440 minutes for each soil and fertiliser rate under anoxic or oxic conditions at 3 or 18oC. 

The P value of general linear model (GLM) within a soil group is given for each factor, as well as the significance of interactions between factors. 

Treatments with different letters are significantly different via Tukey’s Honestly Significant Difference. 

Site ------- Clay loam ------- ------ Sandy loam ------ ------- Silt loam ------- 

Fertiliser 
kg ha-1 yr-1 20 40 60 20 40 60 10 20 30 

Anoxic (3oC) 
0.82 

(0.097) 
0.46 

(0.073) 
0.45 

(0.082) 
0.52a 

(0.059) 
0.55 

(0.090) 
0.55bc 

(0.063) 
0.72 

(0.135) 
0.74ab 

(0.087) 
1.21 

(0.118) 

Oxic (3oC) 
0.98 

(0.147) 
0.54 

(0.132) 
0.40 

(0.060) 
0.35ab 

(0.062) 
0.38 

(0.054) 
0.39c 

(0.042) 
0.79 

(0.197) 
0.72b 

(0.078) 
0.86 

(0.152) 

Anoxic (18oC) 
1.48 

(0.280) 
0.57 

(0.107) 
0.43 

(0.062) 
0.93ab 

(0.116) 
0.80 

(0.123) 
1.16a 

(0.134) 
1.34 

(0.285) 
1.05a 

(0.079) 
0.95 

(0.131) 

Oxic (18oC) 
1.41 

(0.224) 
0.44 

(0.092) 
0.48 

(0.079) 
0.69b 

(0.110) 
0.62 

(0.097) 
0.99ab 

(0.114) 
1.16 

(0.173) 
1.16a 

(0.146) 
1.17 

(0.142) 

P Fertiliser
 <0.001 ns ns 

P Temperature ns <0.05 <0.001 

P Oxygen ns <0.05 ns 

P Fertiliser × temperature
 ns <0.01 ns 

P Fertiliser × oxygen ns ns ns 

P Temperature × oxygen ns ns ns 

P Fertiliser × temperature × oxygen ns ns ns 
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Table 3.8 Mean solution manganese (Mn) concentrations (mg L-1) over 1440 minutes for each soil and fertiliser rate under anoxic or oxic conditions at 

3 or 18oC. The P value of general linear model (GLM) within a soil group is given for each factor, as well as the significance of interactions between 

factors. Treatments with different letters are significantly different via Tukey’s Honestly Significant Difference. 

Site ------ Clay loam ------ ----- Sandy loam ----- -------- Silt loam -------- 

Fertiliser 
kg ha-1 yr-1 20 40 60 20 40 60 10 20 30 

Anoxic (3oC) 
0.02 

(0.002) 
0.04 

(0.017) 
0.03 

(0.007) 
0.04ab 

(0.005) 
0.03ab 

(0.006) 
0.03bc 

(0.003) 
0.01ab 

(0.002) 
0.01 

(0.001) 
0.01 

(0.002) 

Oxic (3oC) 
0.03 

(0.006) 
0.02 

(0.002) 
0.02 

(0.003) 
0.02b 

(0.005) 
0.02b 

(0.004) 
0.02c 

(0.002) 
0.01b 

(0.002) 
0.01 

(0.001) 
0.01 

(0.001) 

Anoxic (18oC) 
0.06 

(0.014) 
0.03 

(0.006) 
0.03 

(0.005) 
0.07a 

(0.010) 
0.06a 

(0.008) 
0.07a 

(0.010) 
0.02a 

(0.004) 
0.01 

(0.002) 
0.01 

(0.002) 

Oxic (18oC) 
0.05 

(0.009) 
0.02 

(0.003) 
0.08 

(0.030) 
0.05ab 

(0.010) 
0.07a 

(0.011) 
0.06ab 

(0.007) 
0.02a 

(0.002) 
0.01 

(0.003) 
0.01 

(0.002) 

P Fertiliser
 ns ns <0.01 

P Temperature ns <0.001 <0.001 

P Oxygen ns ns ns 

P Fertiliser × temperature
 ns ns ns 

P Fertiliser × oxygen ns ns ns 

P Temperature × oxygen ns ns ns 

P Fertiliser × temperature × oxygen ns ns ns 
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(a)  

 

(b) 

 

(c) 

 

Figure 3.2 Example of (a) dissolved reactive P (DRP), (b) dissolved iron (Fe), and (c) Nitrate-N 

(NO3
-) concentrations detected over time under the various temperature and oxygen 

treatments for the sandy loam receiving 20 kg ha-1 yr-1. Error bars represent the 95% 

confidence interval. 
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(a) 

 

(b)  

 

(c)  

 

Figure 3.3 Example of the (a) dissolved reactive P (DRP), (b) dissolved iron (Fe), and (c) Nitrate-

N (NO3
-) concentrations detected over time under the various temperature and oxygen 

treatments for the clay loam receiving 20 kg ha-1 yr-1. Error bars represent the 95% confidence 

interval. 
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(a)  

 

(b) 

 

(c) 

 

Figure 3.4 Example of the (a) dissolved reactive P (DRP), (b) dissolved iron (Fe), and (c) Nitrate-

N (NO3
-) concentrations detected over time under the various temperature and oxygen 

treatments for the silt loam receiving 20 kg ha-1 yr-1. Error bars represent the 95% confidence 

interval. 
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3.4 Discussion 

3.4.1 Implications of Dithionite-P accumulation to depth 

It is generally assumed and expected that soluble or available P does not increase with depth 

(van der Wal et al., 2007). However, the preliminary study indicated an enrichment of 

Dithionite-P with depth. As enrichment coincided with a depth where artificial drainage is 

commonly installed, these data suggested it may be important to take redox-sensitive P into 

account when considering P losses from periodically saturated soils. These data also begin to 

explain why soil tests conducted in aerobic conditions may not be representative of 

periodically saturated soils.  

3.4.2 The effect of fertiliser, temperature and oxygen status on DRP release 

The release of DRP from soil to solution depends on the quantity and strength of P sorbed to 

the soil relative to the capacity of the soil to sorb P, and physical conditions that control the 

kinetics of P release into solution (Dodd et al., 2013; McDowell, 2012). The following are 

possible controls: 

a. In neutral to acidic soils the strength of P sorption increases with the quantity of P-

sorbing Al and Fe hydrous oxides;  

b. The exchange or potential release of P from sandier and young soils would be greater, 

as they are less likely to have soil constituents that would tightly hold soil P;  

c. Finer textured soils have more surface area, so may have more stored P that could 

become available to loss; and  

d. less P is sorbed and more desorbed as the quantity of added P increases relative to the 

number of P sorption sites in the soils (Dodd et al., 2013; McDowell, 2012; McDowell 

and Condron, 2004; Saunders, 1965; Simmonds et al., 2015).  

In terms of the kinetics of P release, loosely sorbed and easily available P would be released 

before more strongly sorbed and recalcitrant P (Lair et al., 2009; Scalenghe et al., 2002; Toor 

and Bahl, 1999). No fertiliser effect was expected in the redox-sensitive parameters (Fe, Mn 

and NO3) except for an increase in NO3
- in the silt loam (Table 2.8) where stock numbers, and 
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therefore urine patches containing N in the New Zealand soils, were increased with fertiliser 

rates (McDowell and Smith, 2012). 

Of the soils studied, the sandy loam released a majority if its total DRP in the first 60 

minutes. Owing to its high sand content, it and other sandy soils have low concentrations of 

amorphous and crystalline Fe and Mn oxides (McCallister, 2015), which translates to a low 

ASC (viz. P sorption capacity). Coupled with a coarse texture, providing easy access to sorption 

sites, P desorbed easier than the other soils (Saunders, 1965). The high proportion of 

cumulative DRP release from the soil fertilised at 40 kg ha-1 yr-1 or 60 kg ha-1 yr-1 in the first 60 

minutes suggests that the low number of sorption sites, reflecting the low ASC and coarse 

texture, were not only more saturated, but loosely bound than the other soils (McDowell and 

Sharpley, 2004). 

In contrast to the other soils, the clay loam exhibited a delayed release of P. This has 

been observed in several studies (Ahmadi, 2018; Moazallahi et al., 2018; Toor and Bahl, 1999) 

and attributed to a two-phase reaction, where loosely-bound P is desorbed quickly before the 

dissolution of more tightly-held P occurs (Lair et al., 2009; Moazallahi et al., 2018). The 

influence of dissolution is supported by simultaneous flushes of DRP, Fe and Mn into solution. 

Coupled to this is a delay in reaction caused by aggregation whereby P is slowly diffused from 

the inside of aggregates under oxic or anoxic conditions (McDowell and Sharpley, 2003).  

In the present study, temperature was consistently a significant factor controlling DRP 

desorption rate and solution concentration. Previous research has noted that warmer 

temperatures increase the rate of reaction. Overall, increased reactions rates are either 

caused by the temperature mineralising organic P, increasing reduction potential (Eh) in 

anoxic conditions, or by stimulating biological activity which utilises nutrients and oxygen 

under oxic and anoxic conditions (Gibbons, 2015; Sallade and Sims, 1997b; Schilling et al., 

2019; Sparks, 2003). In this circumstance, rates were likely affected by stimulating biological 

activity (i.e. microbial Fe reduction).  

Anoxic incubations on ditch sediments carried out by Sallade and Sims (1997b) 

demonstrated that a similar downward trend in Eh occurred in 7oC and 35oC incubations, but 

reduction potential decreased faster at 35oC and more than doubled the soluble P 

concentrations after 21 days. Meanwhile, a study by Gibbons (2015) noted that sediments 

incubated at 10 and 20oC had similar release rates, while the 30oC incubation exhibited greater 
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concentrations and release rates. The soils used in this study rarely reach above 20oC, and 

never in the late winter to early spring periods where waterlogging and anoxia are more likely 

to occur (Met Éireann, 2020; NIWA, 2019). The 18oC treatment only modestly increased 

concentrations in the averaged data, but the rationale was that this was more representative 

than the extreme temperature contrasts noted above. It is worth noting that the level of 

significance of the effect of temperature on DRP concentrations varied between soil types in 

the present study. The clay loam exhibited a muted effect (e.g. 0.04 mg L-1 difference at 20 kg 

P ha-1 yr-1) compared to the other soil textural classes (e.g. 0.07-0.1 mg L-1 difference at 20 kg 

P ha-1 yr-1), perhaps being buffered by a finer-texture and two-phase reaction process as noted 

above. Previous work on sediments highlighted how anoxic P release is inconsistent due to 

the fact that temperature influences a variety of factors (e.g. Eh, mineralisation, oxygen 

consumption, diffusion rates) (Gibbons, 2015). 

The mean concentrations at each time point and over the length of the incubations 

suggested that anoxic conditions enriched P concentrations in solution across the soil groups. 

In theory, dissolution and diffusion should be aided by anaerobic conditions throughout the 

soil or in anaerobic microsites. Dissolution and diffusion enhance P release by the action of 

microbes (Hutchison and Hesterberg, 2004; Roden et al., 2000; Scalenghe et al., 2002). 

However, while the data presented herein suggested that anoxic conditions increased the rate 

of DRP release in the clay and sandy loam soils, no such conclusion could be made for the silt 

loam soil. The answer to this discrepancy may lie in the greater concentrations of TC and TN 

in the silt loam soil (Table 3.1) supporting microbial growth, which in turn would maintain 

anoxic conditions (Kölbl et al., 2017). It is also likely that NO3 was formed via the mineralisation 

of organic N (a major proportion of TN in New Zealand pastoral soils) during soil disturbance 

(Kristensen et al., 2000; Ringuelet and Bachmeier, 2006). High NO3
- concentrations were also 

probably in solution sourced from urine and higher stocking rates used in the silt loam soil 

that was absent in the clay or sandy loam soils (18 stock units vs none for the clay and sandy 

soils respectively). Nitrate is a limiting factor in Fe-P release, as it will be preferentially used 

by microbes in redox reactions before Fe and Mn are acted upon (McMahon and Chapelle, 

2008; Surridge et al., 2007b; Yuan et al., 2015). Nitrate concentrations in the silt loam were 

far greater than the clay or sandy loam and were hence inhibiting reductive dissolution 

(Figures 3.2-3.4). The lack of difference between DRP concentrations from the silt loam due 

to oxygen content suggests that 24 hours was not long enough to sufficiently remove enough 
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NO3
- in the silt loam system for metal oxides to be affected by reductive dissolution, or that 

the conditions were not reducing enough. Previous work has suggested that greater 

differences occur beyond a 24-hour time period – especially when NO3
-
 is present and there is 

a lack of OM – and that optimum reduction potential occurred after four days of incubation 

(Gibbons, 2015; Yuan et al., 2015). Conversely, the lower concentrations of TN in the clay and 

sandy loam textured soils (1.8 and 3.0 g kg-1) likely buffered NO3
- concentrations, but not at a 

great enough concentration (0.5 mg NO3 L-1; McMahon and Chapelle, 2008) to prevent anoxic 

conditions from affecting DRP release.   

3.4.3 Implications for Management 

This experiment aimed to determine if over a 24-hour period, P release would be enhanced 

by increased temperature and anoxia. While the enhancement was true for two of the three 

soils, it is possible that this may be true for many soils if the soil contained a low soil N 

concentration. Furthermore, many of the effects were found within 60 minutes (Figures 3.2-

3.4). Both findings are important for predicting how soils respond to saturated conditions. 

However, they more importantly highlight the need to refine the knowledge of local saturated 

areas. The present study also highlights the riskiest period of the year for losses due to these 

processes (i.e. late winter and spring). This is when soils are still moist and easily saturated 

with small rainfall events, temperatures are warmer, and most NO3
- had been leached from 

the soil. Soils would also likely stay saturated for more than 24 hours. Therefore, the there 

would be ample time for conditions to develop. Additionally, the difference between anoxic 

and oxic conditions align with previous work (Smith et al., 2021), and further suggests that 

normal oxic WEP tests are inaccurate for predicting P losses from soils that are often 

saturated. 

General strategies like decreasing soil Olsen P to an agronomic optimum (Morton and 

Roberts, 1999) and/or switching to crops that produce well on lower Olsen P soils will be 

effective in decreasing P losses from these soils year-round (McDowell and Cosgrove, 2016). 

Provided the soil type and situation allows it, artificial drainage systems could be redesigned 

and improved to maximize drainage and avoid saturated conditions. However, such systems 

could end up losing the same load of P by draining a larger amount of diluting water. In order 

to decrease the load effectively systems could be designed to intercept and filter out P in 

drainage water by, for example, lowering the soil P through inversion tillage above the main 
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perforated pipe or using a highly P-sorptive backfill (McDowell et al., 2008). Alternatively, 

where anthropogenically altering the land is untenable, saturated areas could be identified to 

inform management decisions, especially during high-risk periods of the year. For instance, 

strategies specific to springtime could include avoiding the grazing or the application of P 

fertiliser to wet paddocks (Smith et al., 2016). This includes delaying the grazing of forage 

crops in gullies to avoid animals grazing the base of gullies which are likely to be saturated 

(Monaghan et al., 2017). 

Additionally, the results call into question the safety of accumulated P in riparian zones 

or buffer areas adjacent to water ways. If accumulated P is in a form that is vulnerable in the 

long-term (e.g. Anoxic WEP or Dithionite-P), the present study would suggest that buffer areas 

that have low NO3
- during risky periods (i.e. high temperature, low oxygen) may be a potential 

source of P to waterways. Another example where low NO3
- may pose a risk is in heavy-

textured soils in Ireland. In these soils, where artificial land drainage is installed, there have 

been studies that recorded low NO3
- but high ammonium (NH4). Soil N primarily being 

converted to the ammonium form would not provide the same buffering effect and may 

increase the potential for reductive dissolution of P, and its loss via artificial drainage (Clagnan 

et al., 2018a). 

3.5 Conclusions 

Over a 24-hour period the mean DRP concentration in water extracts increased with fertiliser 

application, temperature and in two soils, anoxic conditions - commensurate with the 

depletion of NO3 and release of Fe and Mn via reductive dissolution. Fe-reducing conditions 

were not achieved due to the presence of NO3
-, potentially due to enriched soil N 

concentrations at this location. Treatment effects on the kinetics of P release into water 

mirrored those of mean concentrations, except that for the clay loam soil which noted a 

distinct two-phase release attributed to its finer texture, greater surface area and potentially 

greater store of P held within soil aggregates than the silt or sandy loams. Importantly, 

treatment effects such as the enhanced release of P during anoxia were complete for the clay 

and sandy loam soils within 24 hours. Based on the results presented, late winter to spring 

would be the riskiest season for P losses due to this reaction, owing to moist soils that are 

easily saturated with small rainfall events, warmer temperatures, and low soil NO3 
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concentrations. This knowledge highlights the necessity to consider and refine where in the 

landscape P losses are likely and what strategies can be used to mitigate losses. 
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Chapter 4 

Reductive dissolution of phosphorus associated with iron-oxides 

during saturation in agricultural soil profiles 

4.1 Introduction 

Phosphorus (P) loading from agricultural land to surface water is a major cause of algal growth 

and declining water quality (Leinweber et al., 2018). Of P fractions, dissolved reactive P (DRP) 

is more available to algae than particulate P and many forms of dissolved unreactive P (Ekholm 

and Krogerus, 2003; Thompson and Cotner, 2018). Due to its high bioavailability, there has 

been significant interest in the transport of DRP to surface waters, especially in relation to 

where and when losses of DRP occur (Buda et al., 2009a; Dupas et al., 2017; Leinweber et al., 

2018; Shore et al., 2016)  

A considerable quantity of DRP comes from critical source areas (CSAs), where 

available DRP (a source) coincides with a means of transport and connectivity to surface 

waters (Thomas et al., 2016). Critical source areas can generate a disproportionately large 

amount of catchment DRP loss, despite only making up a small percentage of the landscape 

(Agnew et al., 2006; Dahlke et al., 2012). Although most attention is given to surface runoff in 

CSAs, subsurface flow losses of DRP can also be significant. These subsurface flow losses can 

contribute to surface runoff under saturated conditions such as in winter or spring, or in 

shallow or deep groundwater that may enrich DRP in the baseflow of streams, year-round. For 

instance, Smith et al. (2016) showed that with the installation of artificial drainage on a dairy-

farm in Southland, New Zealand, P that was lost via surface runoff was lost in the same amount 

via subsurface flow.  

Assessments of the risk of subsurface flow P losses currently rely on tools like the P 

index tool in the US, or maps of microtopography, or known artificial drainage networks 

(Sharpley et al., 2003; Thomas et al., 2017; Thomas et al., 2016). These tools identify CSAs 

using information on source P factors and transport data, based on parameters such as soil 

topographic indices, Light Detection and Digital Elevation Models and field data. However, 

models do not always account for subsurface impermeable layers (e.g. fragipans), shallow 
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profiles, poorly-drained soils, or perched water tables, which are particularly vulnerable to 

increased soil solution, saturation, and increased surface runoff (Dahlke et al., 2012).  

Along with increasing instances of runoff and drainage, saturation may increase DRP 

loss via anaerobic conditions, which can desorb DRP from soil particles due to pH changes and 

reductive dissolution via microbial respiration (Gu et al., 2019). Reductive dissolution involves 

the microbially-mediated release of DRP associated with redox-sensitive metal-oxides 

(Colombo et al., 2014; Gu et al., 2019). Microbial communities mediate reduction-oxidation 

(redox) reactions between soil components to make energy for respiration. Organic material 

is oxidised as an electron donor, and is coupled with an electron acceptor which is reduced 

during the reaction (Chacon et al., 2006). This is typically oxygen, as it is the most preferential 

and energetically favourable to reduce. However, there is an ecological succession of viable 

acceptors if oxygen is limiting. For instance, if oxygen is not easily available (i.e. anaerobic), 

NO3
- becomes the most energetically favourable. This is called the electron acceptor hierarchy 

or the redox cascade (O2 > NO3
- > Mn(IV) > Fe(III)/SO4

2- > CO2). When the electron acceptors 

are reduced, they are converted to their gaseous or dissolved forms and released into solution 

(McMahon and Chapelle, 2008). Therefore, if a soil profile becomes saturated and microbial 

communities deplete oxygen and NO3
- electron acceptors, Mn(IV) and Fe(III) could be 

dissolved into their Mn(II) and Fe(II) forms, and release their associated P in to solution (Gu et 

al., 2019). However, few data are available for soils with impermeable layers that are likely to 

exhibit periodic saturation at depth.  

As NO3
- is the second most preferential acceptor, the presence of NO3

- would limit the 

solubilisation of P during wet periods. If not taken up by plants or leached during the growing 

season, residual soil N could inhibit DRP dissolution from soil above impermeable layers 

thereby decreasing P in sub-surface flow. However, no data are available that demonstrate 

this inhibitory effect. Moreover, this process can be microbially mediated, and declines with 

temperature. Greater temperature potentially stimulates biological activity or induces more 

negative redox potentials, which would both lead to greater reaction rates and a greater 

potential for reductive dissolution (Sallade and Sims, 1997a; Sparks, 2003). Therefore, cold 

temperatures at depth or during winter and spring may inhibit reductive dissolution. Given 

that much DRP is lost during winter and spring drainage (Ibrahim et al., 2013; Smith et al., 

2016) there is a need to understand and characterise the conditions under which NO3
- may 

affect DRP release and potential transport to waterways. 
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This study determined the concentrations of DRP and key redox species (i.e. NO3
-, Fe, Mn and 

SO4
2-) in a soil with a slowly permeable layer (<4 mm hr-1) over two drainage seasons. The 

hypothesis was that soil solution P peaks associated with wet periods were linked to the 

reductive dissolution of redox-sensitive Fe and Mn oxides and that dissolution would be 

inhibited by the presence of residual NO3
-
 in soil. Field monitoring was carried out to track 

changes in DRP and redox species over time and relate them to soil and climatic conditions. 

This was carried out in a small plot on a New Zealand dairy farm. The present study 

supplemented these field observations with additional laboratory and in situ experiments to 

artificially induce the saturated and reducing conditions that were hypothesised to cause an 

increase in dissolved P and metal oxides. 

4.2 Materials and Methods 

4.2.1 Study Site 

The plot was established in a 10 m2 area fenced-off within a 6.5 ha paddock of a Southland 

dairy farm near Mossburn, New Zealand (45°37'34.1"S 168°18'43.1"E). The plot was on grazed 

dairy pasture primarily sown with perennial ryegrass (Lolium perenne L), and remained 

fenced-off for the duration of the study (2017-2019). The area receives, on average, 1045 mm 

mean annual rainfall and has an average temperature of 9.5oC (NIWA, 2019). The soil is 

classified in the New Zealand soil classification system as a Melanic Orthic Gley soil (Hewitt, 

2010), equivalent to an Aquept/Aquent in USDA soil taxonomy (Table 4.1). It is poorly drained 

with a slowly permeable profile (<4 mm hr-1) at ~40 cm below ground level (bgl), which 

encourages lateral subsurface flow. Sixteen Teflon suction cups (MacroRhizon, Rhizosphere 

Research Products, Wageningen, The Netherlands) in total were installed in March, 2017. 

Eight were installed with 0.5 m spacing at 20 cm and eight installed at 80cm bgl, avoiding cups 

overlapping at a 45o angle (8 x 80 cm bgl, 8 x 20 cm bgl) using the method outlined in McDowell 

et al. (2016).  

 Rainfall and temperature (10 cm bgl) data was collected, and soil moisture (CS655 TDR 

sensor, Campbell Scientific, Logan, Utah; 0-30 cm depth) was monitored using in situ 

equipment, connected to a CR10 datalogger. Electrical conductivity (EC) and pH of samples 

were measured in the samples off-site using a probe (S20 SevenEasy pH, Mettler-Toledo 

GmbH, Hamilton, New Zealand).  
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Soil cores were taken in triplicate from the 0-20, 20-60 and 60-80 cm depths (Table 

4.1) and analysed for: pH in water; Olsen P (Olsen et al., 1954); 1:300 soil to solution water 

extractable P (WEP) designed to mimic P loss in surface runoff (McDowell and Condron, 2004); 

calcium-chloride extractable P, designed to mimic P loss in subsurface flow (Koopmans et al., 

2002; Self-Davis et al., 2009); sodium-dithionite-extractable P as an estimate of P available 

under reducing conditions (Dithionite-P); (Jensen and Thamdrup, 1993; Loeppert and Inskeep, 

1996; Psenner and Pusckso, 1988; Smith et al., 2021); total nitrogen and total Carbon (TN and 

TC) by LECO C/N analyser; and anion sorption capacity (ASC) as a measure of P sorption 

capacity (Saunders, 1965).  

4.2.2 Field site sampling and saturation treatment 

Regular unsaturated zone pore water sampling occurred from late autumn to mid spring (May 

to September), 2017 and 2019 to coincide with soils wetting up and draining, respectively. In 

2017, sampling occurred twice a week between the beginning of May and July to intercept the 

wetting front and coincide with drainage and rainfall events > 5 mm. Sampling then occurred 

weekly until the end of September 2017 to capture rainfall events at the tail end of the wet 

season. In 2019, sampling again followed rainfall events > 5 mm for the first couple of months, 

and then sampled at 7-to-10-day intervals for the remainder of the sample periods. Samples 

were taken by applying negative pressure to the Teflon suction cups with 50-mL syringes for 

3 hours. The pore size of the suction cups is approximately 0.1 µm thereby negating the need 

for additional filtering in the field. All samples were also analysed for pH and electrical 

conductivity off-site, and for DRP, Fe2+ and Fe3+, Mn2+, Al3+, Mg2+, Ca2+, Na+, K+, NO3
- and SO4

2 

via Inductively Coupled Plasma (ICP-OES) and High-Performance Liquid Chromatography 

(HPLC). Where sample size allowed, total carbon (TC), total inorganic C (TIC) and total organic 

C (TOC) were measured using a Vario TOC Cube Analyzer. 

In addition to the regular sampling, artificial saturation and NO3
- treatments were 

imposed at the end of the regular sampling period in September 2019. The experiment aimed 

to identify whether artificial saturation increased DRP concentrations, and if the presence of 

excess NO3
- would inhibit DRP release in these conditions. The injection of NO3

- and its 

sampling was based on a NO3
-  push-pull test (Kim et al., 2005). At the site, a 0.4 m wide 

wooden border was installed to 0.2 m below ground level around the suction cups, to 

minimise surface spreading. The site was then flood irrigated to a depth of 100 mm with tap 

water (DRP < 0.002 mg L-1) designed to saturate the soil profile to 80 cm depth. The required 
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volume was calculated from real-time data of soil water-filled pore space (WFPS) and known 

soil physical characteristics. After equilibration for 16 hrs, a 30 mL treatment solution was 

injected into four cups per depth (half of cups per depth) followed by 5 mL of deionised water 

to flush the tubes. This treatment solution contained 10 mg NO3-N L-1 as KNO3, 10 mg Br L-1 as 

KBr, and 300 mg Glucose C L-1 for an electron acceptor source, a tracer, and an substrate for 

microbes like carbon (viz. electron donor) for reduction, respectively (Collins et al., 2017). The 

remaining four cups per depth were injected with 30 mL of deionised water to act as a control. 

All cups were left for four hours (Clague, 2013; Kim et al., 2005; Rivas et al., 2014) before 

suction was re-applied to collect a fresh sample. Samples of tap water, the saturation and NO3
- 

treatments were analysed for NO3
-, Br- metals (Fe, Mn), SO4

2- and DRP.  

Daily rainfall and potential evapotranspiration (PET) were sourced from the National 

Institute of Water and Atmospheric Research climate database, from a monitoring site 

approximately 4.5 km away. These data were used to create a soil water balance that would 

estimate periods of saturation-excess likely to lead to surface runoff or drainage events. This 

method was applied to available data over 2015 to 2019 to identify common periods of 

saturation and deficit. The equations used in the balance were those explained by Scotter et 

al. (1979) and Woodward et al. (2001). This method also identified specific periods during 

2017 and 2019 where saturation excess was generated, which was used as a supporting 

indicator that anaerobic conditions could be present. 

4.2.3 Laboratory incubation experiment 

An experiment was designed to replicate the treatments applied to the field site in September 

2019, but more specifically to also determine if C was not limiting redox reactions. Six soil 

cores were taken at 20 cm and at 80 cm soil depths, 1 m away from the bordered plot. Soils 

were sieved (field moist) to 4 mm. A sub-sample was oven-dried overnight to help determine 

the amount of deionised water needed to make a 1:20 soil to solution ratio. Each field-moist 

sample was weighed and placed in a glove box, which was purged with helium (He). At the 

same time, deionised water was bubbled with He to bring it to <0.5 mg dissolved oxygen L-1. 

Solutions of either deionised water, NO3
- (50 ppm), glucose-C (300 ppm) or NO3

- + glucose-C 

were added to make a soil to solution ratio of 1:20. The tubes were sealed and placed on an 

orbital shaker for four hours. Tubes were centrifuged (2000 rpm, 10 minutes) and the 

supernatant filtered to 0.45 µm. Extracts were analysed for NO3
- and SO4

2- (via HPLC) and DRP, 

Fe and Mn (ICP-OES).  
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4.2.4 Statistical and redox analysis 

All data were checked for normality using a Shapiro-Wilk test and confirmed as either normally 

distributed or log-transformed if not. A two-way analysis of variance (ANOVA) was used to 

contrast mean DRP concentrations during the regular samplings of the field trial within and 

between depths. The same test was used to assess the differences between DRP, Fe and Mn 

concentrations in treatments during the artificial saturation experiment in 2019, within and 

across the two depths. The same was done in the laboratory trial between the four 

treatments, within and across depths. A contrast using a two-way ANOVA was also made of 

the NO3+C and DI water treatments within and across depths in the lab trial as a comparison 

to the field treatments (i.e. without the other treatments).  The output of a Tukey’s Honestly 

Significant Difference (HSD) post-hoc test is given to contrast treatments. 

Data for DRP, Fe2+, Mn2+, SO4
2- and NO3

- in the field and in the lab were used in the 

calculation of likely redox conditions using the method of McMahon and Chapelle (2008). A 

Pearson correlation matrix was created using concentrations of solution Fe, Mn, NO3
-, SO4

2- 

and DRP from the laboratory experiment, to identify positive and negative correlations 

between the parameters after incubation. 

4.3 Results 

4.3.1 Site Chemical Characteristics 

Soil physical and chemical characteristics at the start of the trial are given in Table 4.1. 

Concentrations of Olsen P, WEP, Dithionite-P and ASC at the 60-80 cm depth were 

approximately 25-50% of the amount that existed in samples taken from the 0-30 or 30-60 cm 

depth. Although total N and C concentrations were lower than in shallower depths, the C:N 

ratio was the same throughout the profile. The concentrations TN, TC and Dithionite-P in each 

depth were significantly different from one another. The mean ASC from 0-30 and 30-60 cm 

bgl were greater than typical values for other soils used for grazed grassland farming in New 

Zealand (McDowell and Condron, 2004). The mean ASC beyond 80 cm bgl was low compared 

to other soils. Mean Olsen P concentrations were enriched above the optimal range suggested 

for pasture production for drystock and dairy farming in New Zealand (20-40 mg kg-1). This 

may explain why WEP and CaCl2-P concentrations are high (Morton and Roberts, 2016; 

Roberts and Morton, 2009). The Dithionite-P was lower than other gley soils under pasture in 
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New Zealand (Smith et al., 2021). The soil pH was 5.5, which is the lower limit of the range 

considered optimal for pasture production (5.5-7.0) (Morton and Roberts, 2016). 
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Table 4.1 Mean (± standard error of the mean) soil profile physical and chemical parameters1 for study site in Southland, New Zealand. Different 

lettering‡ show a significant difference in means by depth according to Tukey’s Honestly Significant Difference (Tukey’s HSD). The least significant 

difference § at the P<0.05 level is given for the contrast of parameters by depth (n = 3 per depth). 

Depth Particle size2 

% 
Permeability
2 

Soil pH WEP CaCl2-P Olsen P Dithionit
e-P 

ASC TN TC  C:N 

cm Clay Sand Stone   mg L-1 mg L-1 mg kg-1 mg kg-1 % g kg-1 g kg-1  

0-30 25-30 15-25 - Moderate 5.5  
(0.12) 

0.34b 

(0.016) 
0.49b 

(0.072) 
63 
(7.4) 

193c 

(3.8) 
43 
(2.4) 

4.5c 

(0.02) 
46b 

(0.29) 
10.4 
(0.19) 

30-60 25-30 15-25 1-15 Slow 5.5  
(0.22) 

0.27b 

(0.027) 
0.17a 

(0.033) 
50 
(5.1) 

114b 

(3.8) 
51 
(8.1) 

3.5b 
(0.01) 

36a 

(0.05) 
10.2 
(0.10) 

60-80 25-30 40-60 40-70 Moderate 5.5  
(0.02) 

0.09a 

(0.003) 
0.04a 

(0.010) 
41 
(1.6) 

54a 

(7.3) 
29 
(5.5) 

0.9a 

(0.01) 
9.6c 

(0.11) 
10.2 
(0.29) 

LSD05 depth§     ns <0.01 <0.05 ns <0.001 ns <0.001 <0.01 ns 
1WEP = Water extractable P; Dithionite-P = Sodium-Bicarbonate-Dithionite extractable phosphorus; CBD-Fe = Citrate-Bicarbonate-Dithionite 
extractable Iron; ASC = Anion Sorption Capacity. 
2Landcare Research (2019)  
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4.3.2 Field Site Sampling 

Climatic data is presented in Figure 4.1. Data for regular sampling of DRP, Fe, Mn and NO3 at 

the field site are presented by depth at 20 cm bgl and 80 cm bgl are presented in Figures 4.2 

and 4.3, respectively. Concentrations of DRP in the suction cups at 20 cm bgl ranged from 0 to 

0.49 mg DRP L-1
 over 2017 and 2019. The mean (± standard error of the mean, SE) 

concentration at 20 cm was 0.024 (±0.008) and 0.012 (±0.002) mg DRP L-1 in 2017 and 2019, 

respectively. Concentrations of DRP at 80 cm bgl ranged from 0 to 0.30 mg DRP L-1
 over the 

two monitoring years. The mean concentration at 80 cm was 0.025 (±0.015) and 0.005 

(±0.001) mg DRP L-1 in 2017 and 2019, respectively.  

In 2017, there were three notable DRP peaks at the 20 cm depth, but two coincided 

with Mn and Fe concentration increases. The first peak (0.1 DRP mg L-1) occurred in July and 

did not coincide with a enough rainfall to cause saturation according to soil water balance 

calculations (Woodward et al., 2001). The second and third DRP peaks (both 0.1 mg DRP L-1) 

occurred over two consecutive sampling events in September 2017 during and after a large 

rainfall event (63 mm) and increasing soil temperatures (5.7-9.1oC) with the onset of spring. 

During these September 2017 events there was an increase in Fe concentration (0.1 mg Fe L-

1) compared to previous samplings (0-0.02 mg Fe L-1), and a decrease in NO3
- in soil solution 

from 17 mg NO3-N L-1 to 6 mg NO3-N L-1. Using the redox assignment calculator (McMahon & 

Chapelle, 2008), most samples suggested the site was, at most, nitrate reducing, but not Fe or 

Mn reducing. The exception was for the two consecutive September 2017 events which 

suggested Fe and Mn reduction had occurred. Solution SO4 remained unaffected. 

In contrast to the 20 cm depth, DRP was enriched (0.30 mg DRP L-1) at 80 cm depth 

only during the first of the two events in September 2017. Although Fe and Mn concentrations 

at the 20 cm depth suggested the soil was anoxic, concentrations at 80 cm were at most 

considered mixed anoxic (NO3-Fe(III)/SO4). This may be because the suction cups at 80 cm 

were below a slowly permeable layer at 40-60 cm below ground level. Therefore, the soil 

below this layer may not have been saturated. 

Throughout the 2019 sample period, the greatest DRP concentrations occurred in July 

(0.024 mg DRP L-1) and August (0.022 mg DRP L-1). The July sampling coincided with a sustained 

period of light rainfall but no saturation excess generated. The August sample event occurred 

on the final day of a 7-day rainfall (46 mm) and drainage event, where the profile would have 
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been saturated. Only the August event saw a commensurate increase in Fe concentration 

(0.02 mg Fe L-1 and 0.06 mg NO3
- L-1). The only other sample event that yielded similarly high 

DRP concentrations was during the artificial saturation experiment (0.025 mg L-1). 

 

 

 

Figure 4.1 Data for climate and soil conditions between May 2017 to September 2017 and 

May 2019 to September 2019. Soil solution pH, soil temperature (10 cm), soil moisture deficit 

(SMD) and events that generated saturation excess (Excess) are shown. Excess was calculated 

using soil water balance equations (Woodward et al., 2001). Note a break in the x-axis. 
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Figure 4.2 Mean solution concentrations at 20 cm below ground level (with error bars showing 

the standard error of the mean) between May 2017 to September 2017 and May 2019 to 

September 2019 for (A) total dissolved phosphorus (TDP), (B) iron (Fe), (C) nitrate-N (NO3
--N), 

and (D) manganese (Mn). Sample events shaded with a grey polygon indicate a reducing 

environment (McMahon & Chapelle, 2008). Note a break in the x-axis. 
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Figure 4.3 Data for May 2017 to September 2017 and May 2019 to September 2019 for mean 

solution concentrations at 80 cm below ground level (with error bars showing the standard 

error of the mean) of (A) total dissolved phosphorus (TDP), (B) iron (Fe), (C) nitrate-N (NO3
--

N), and (D) manganese (Mn). Sample events shaded with a grey polygon indicate a reducing 

environment (McMahon & Chapelle, 2008).  
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4.3.3 Field and Laboratory Treatment 

Data showing the response to the injection of treatments in the field at each depth is given in 

Table 4.2 and Figure 4.4. Average concentrations of DRP in solution was significantly greater 

in the deionised (DI) water treatment at both depths (P < 0.01 at 20 cm bgl, P < 0.05 at 80 cm 

bgl) compared to the NO3
- + C treatment. Concentrations of Fe were greater at 80 cm bgl (P < 

0.01) in the DI water treatment than the NO3
- + C treatment but did not vary between 

treatments at 20 cm bgl. There was no interaction between treatment and depth for DRP, Fe 

or Mn. There was an interaction between treatment and depth for NO3
- (P < 0.05). Therefore, 

this suggests that depth played a part in the removal of N. 

Concentrations of DRP in the laboratory experiment were greater than the field 

experiment, which may reflect different experimental conditions (Table 4.3 & Figure 4.5). The 

C treatment increased DRP at both depths compared to those treatments that contained NO3
-

, and the C treatment at 20 cm bgl was the only treatment to reach the redox category of 

‘Fe(III)/SO4’. Iron concentrations from the soils treated with C were significantly greater than 

the soils with any NO3
- addition at 80 cm (P < 0.001), but not at 20 cm. While a similar pattern 

was seen for Mn concentrations, the differences in concentrations due to treatment were not 

statistically significant at either depth. When data were restricted to just the NO3
- + C and DI 

treatments (similar to the field trial experiment), concentrations of DRP were greater in the 

DI treatment in both depths (Table 4.4). Solution Fe was only significantly greater in the DI 

water treatment at 20 cm (P < 0.05). 

There were significant differences in NO3
- between treatments (P < 0.001) and a 

significant interaction between treatment and depth (P < 0.001). Over 66% of the initial spike 

NO3
- was left in solution (66-76%), suggesting that the supply of NO3

- was not exhausted by 

redox reactions. However, the soil amended with NO3-C at 20 cm had approximately 10% less 

mean NO3
- left in solution than the other soils with any NO3

- amendment (Table 4.3). These 

results would suggest that the absence of C was limiting redox reaction in this soil and that 

the lower C content at 80 cm bgl potentially compounded this (Table 4.1) (Kölbl et al., 2017; 

Yuan et al., 2015).  

A Pearson correlation matrix (Table 4.5) showed that solution Fe, Mn and DRP amongst 

lab treatments were positively correlated with each other, while DRP was negatively 

correlated with NO3, and SO4 was negatively correlated with Fe and Mn.  
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Table 4.2 Mean (± standard error of the mean) dissolved reactive phosphorus (DRP), iron (Fe), 

manganese (Mn) and nitrate (NO3
-) concentrations (mg L-1) in soil solution samples at 20 and 

80 cm depth following the injection of either deionised water (control), or 50 ppm KNO3 and 

300 ppm Glucose-C (NO3
- + C). Nitrate concentrations are also presented as the percentage of 

initial NO3
 spike left in solution after 4 hours1, where applicable. The output (P values) of an 

analysis of variance is given to identify the significance differences in solution concentrations 

due to treatments within a depth and for the interaction of treatments by depth2. 

Depth 
(cm) 

Treatment DRP Fe Mn SO4 NO3 

 
% 
NO3

1 

20  NO3
- + C 0.003 

(0.0010) 

0.011 
(0.0060) 

0.004 
(0.0010) 

15.2 
(8.96) 

16.7 
(0.09) 

26.8 

 DI water 0.022 
(0.0020) 

0.053 
(0.0060) 

0.007 
(0.0020) 

10.6 
(0.25) 

8.3 
(0.12) 

 

80 NO3
- + C 0.004 

(0.0010) 

0.000 
(0.0000) 

0.004 
(0.0010) 

11.8 
(0.70) 

26.3 
(3.29) 

42.2 

 DI water 0.014 
(0.0030) 

0.048 
(0.0190) 

0.003 
(0.0020) 

28.3 
(2.61) 

5.1 
(2.28) 

 

P values P Treatments (20 cm) <0.01 ns ns ns <0.001  
 P Treatments (80 cm) <0.05 <0.0

1 
ns <0.01 <0.01  

 P Treatments x depth
2 ns ns ns <0.05 <0.05  

 



 107 

  

Figure 4.4 Field incubation mean (± standard error of the mean) total dissolved P (TDP), iron 

(Fe), manganese (Mn), and nitrate-N (NO3
--N) concentrations (mg L-1) across both depths in 

response to treatments of deionized (DI) water or Nitrate + Carbon (50 ppm NO3
-). Asterisks 

denote significant differences in means due to treatment, according to a one-way ANOVA (ns 

= not significant, * P < 0.05, ** P < 0.01, *** P < 0.001) Note different y-axis scales.  
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Table 4.3 Laboratory incubation mean (± standard error of the mean) dissolved reactive P 

(DRP), iron (Fe), manganese (Mn), and nitrate (NO3
-) concentrations (mg L-1) at 20 and 80 cm 

depths in response to treatments of deionised (DI) water, glucose (C, 300 ppm), NO3
-+C (50 

ppm NO3
-), and NO3

-. The percentage of initial NO3 spike left in solution after 4 hours are also 

presented, where applicable1. Also shown are the potential redox class, as per McMahon and 

Chapelle (2008). Analysis of variance P values are given to identify the significance differences 

in solution concentrations due to treatments within a depth and for the interaction of 

treatments by depth. Means within a depth are contrasted using Tukey’s Honestly Significant 

Difference test2. 

Depth  
cm 

Treatment DRP Fe Mn SO4 NO3 

 
%NO3

1 Potenti
al redox 
process 

20  DI water 0.37ab ‡ 

(0.028) 
15.6a 

(3.61) 
0.20a 

(0.038) 
18.1c 

(6.93) 
2.5b 

(0.60) 
 NO3-

Fe(III)/S
O4 

 C 0.49b 

(0.093) 
18.1a 

(7.35) 
0.25a 

(0.093) 
15.1bc 

(7.70) 
0.8b 

(0.20) 
 Fe(III)/S

O4 
 NO3

- + C 0.33ab 

(0.020) 
13.5a 

(3.34) 
0.13a 

(0.020) 
10.8ab

c 

(7.20) 

33.2a 

(1.73) 
66.4 NO3-

Fe(III)/S
O4 

 NO3
- 0.26a 

(0.024) 
7.2a 

(0.71) 
0.19a 

(0.024) 
13.0ab

c 

(9.19) 

38.6a 

(2.31) 
 

77.1 NO3-
Fe(III)/S
O4 

80  DI water 0.36b 

(0.013) 
18.8ab 

(0.86) 
0.27ab 

(0.041) 
2.2a 

(0.36) 
29.4a 

(5.67) 
 NO3-

Fe(III)/S
O4 

 C 0.49c 

(0.055) 
26.4b 

(3.65) 
0.36b 

(0.035) 
3.2ab 

(0.16) 
7.7b 

(6.25) 
 NO3-

Fe(III)/S
O4 

 NO3
- + C 0.29ba 

(0.015) 
16.4a 

(1.23) 
0.23ab 

(0.029) 
3.7ab 

(1.00) 
38.1a 
(2.31) 

76.2 NO3-
Fe(III)/S
O4 

 NO3
- 0.26a 

(0.008) 
14.1a 

(0.82) 
0.21a 

(0.032) 
2.8ab 

(0.47) 
37.6a 

(1.11) 
75.2 NO3-

Fe(III)/S
O4 

P 
values 

P Treatments (20 

cm) 
<0.05 ns ns ns <0.001   

 P Treatments (80 

cm) 
<0.001 <0.00

1 
<0.05 ns <0.001   

 P Treatments (20 -

and 80 cm) 

<0.001 <0.05 ns ns <0.001   

2Means of the same letter are not different  
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Figure 4.5 Laboratory incubation mean (± standard error of the mean) total dissolved P (TDP), 

iron (Fe), manganese (Mn), and nitrate-N (NO3
--N) concentrations (mg L-1) across both depths 

in response to treatments of carbon, deionized (DI) water, nitrate + carbon (50 ppm NO3
-), or 

only nitrate. Asterisks denote significant differences in means due to treatment, according to 

a one-way ANOVA (* P < 0.05, ** P < 0.01, *** P < 0.001) Differences via Tukey’s Honestly 

Significant Difference (HSD) and are indicated by lettering. Note different y-axis scales. 
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Table 4.4 Laboratory incubation mean solution concentrations, isolated to the treatments 

used in the field incubation. Treatments were: deionised (DI) water (i.e. control); and, nitrate 

as KNO3 with glucose-carbon (NO3
- + C). Significant differences between treatments within a 

depth and over both depths were calculated using a two-way ANOVA. 

Depth  
cm 

Treatment DRP Fe Mn NO3 SO4 

20  DI water 0.37 15.6 0.20 2.5 18.1 
 NO3

- + C 0.33 13.5 0.13 33.2 10.8 
80  DI water 0.36 18.8 0.27 29.4 2.2 
 NO3

- + C 0.29 16.4 0.23 38.1 3.7 
P 
values 

P  20 cm <0.01 <0.05 ns <0.01 ns 

 P 80 cm <0.01 ns ns ns ns 
 P Over all depths  <0.00 <0.05 ns <0.01 <0.05 

 

Table 4.5 Pearson correlation matrix of soil solution concentrations from an incubation of soils 

(n = 48) in laboratory conditions, across all depths. Values annotated with *, **, and *** mean 

P values at the 0.05, 0.01, and 0.001 level, respectively. 

 Fe DRP Mn SO4 

DRP 0.512*** 
   

Mn 0.583*** 0.559*** 
  

SO4 -0.441** -0.065 -0.359* 
 

NO3 -0.188 -0.567*** -0.172 -0.323* 
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4.4 Discussion 

4.4.1 Field Monitoring 

The concentration of DRP in samples taken in this study are relatively low, but never lower 

than the 80th percentile for DRP in streams in the area under reference conditions at 0.011 mg 

P L-1 (McDowell et al., 2018). In samples where DRP concentrations were at their greatest (> 

0.1 mg DRP L-1), there are five potential explanations: 1) that there was an anthropogenic 

source; 2) that during rewetting after a dry period, microbial cell lysis occurred due to osmotic 

shock and released P (Turner et al., 2003); 3) that moist, warm conditions will induce organic 

matter decomposition, which would release P (USDA-NRCS Soil Quality Institute, 2001); 4) that 

under anoxic conditions, changes in solution pH cause P to desorb from soil particles (Gu et 

al., 2019); and 5) that reductive dissolution of P occurred under anoxic conditions (Gu et al., 

2019; McDowell et al., 2019). No P fertiliser was supplied to the site. Additionally, the soil 

moisture data (Figure 4.1) suggests that the soil did not dry to the extent necessary (i.e. near 

permanent wilting point) that microbes would desiccate and release their P into soil solution 

(McDowell and Trudgill, 2000). In the September-2017 and August 2019 events, the increase 

in solution DRP was accompanied by an increase in Fe and Mn, and a decrease in NO3. While 

we cannot discount the release of DRP, Fe and Mn from microbes, desiccation is also paired 

with a flush of N (Gordon et al., 2008; van Gestel et al., 1993). As the NO3
- in solution decreased 

in this situation, it would appear more likely that the increase in solution DRP is due to either 

desorption or dissolution.  

Solution pH remained relatively stable during the trial (Figure 4.1). Although it is well 

known that changing pH can affect P availability and desorption in soils (Haynes, 1982), the 

magnitude of pH change (± 0.2 units) was small and near the limit of detection (0.1 unit) 

(Hendershot et al., 1993).  

Increased soil temperature, and available C coupled with lower NO3
- concentrations 

may have influenced the occurrence and rate of the redox reactions releasing P, Fe and Mn 

into soil solution especially in the September, 2017 events; Figure 4.1 (Hossain et al., 2017; 

Scalenghe et al., 2002). Temperature increases the rate of reaction by stimulating more 

biological activity (Sallade and Sims, 1997a; Sparks, 2003). Reductive dissolution of Fe is 

stimulated by available C (Chacon et al., 2006). Total inorganic carbon (33 mg TIC L-1) and total 

organic carbon (18 mg TOC L-1) at 80 cm (insufficient sample volume was available for C 
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analysis at 20 cm) were an order of magnitude greater in the September events than during 

the rest of the sample period. This may have been fuelled by increasing temperature and 

organic matter decomposition (Chacon et al., 2006; Hossain et al., 2017; Lindsay, 1979). 

Finally, NO3
- concentrations, which may have inhibited the reduction of Fe and Mn, were low. 

This was especially the case in the September 2017 events, compared to previous events, 

presumably caused by a combination of saturation, denitrification, and leaching of NO3
- over 

the winter period (Smith et al., 2016). 

In contrast to the 20 cm depth, solution DRP, Fe and Mn enrichment in September-

2017 appeared to be delayed at 80 cm bgl, which was below the depth where soil moisture 

was monitored (0-30 cm). This delay may be due to the poorly permeable layer at ~40 cm bgl, 

potentially inhibiting saturation of deeper soil layers. Another possibility is that there was a 

lack of bioavailable C in the subsoils. Smaller quantities of subsoil C occurred in the study by 

Kölbl et al. (2017), and using Carbon-13 Nuclear Magnetic Resonance (C-13 NMR) analysis 

could be used in future studies to explore this possibility further. 

4.4.2 Field and Laboratory Incubation Experiments 

Inundation and saturation of soils in the field and under controlled laboratory conditions 

appeared to confirm that anaerobically incubated samples resulted in Fe and Mn dissolution 

and P release. However, the presence of NO3
- appeared to buffer/inhibit the reduction and 

release of Fe and associated P.  There are some instances where NO3
- can oxidise iron sulfide 

minerals, which would potentially increase dissolved Fe (Jørgensen et al., 20009), so it would 

have been beneficial to see the effects of only NO3
- on the soil chemistry. However, this was 

not viable due to space and the number of replicates. In the field and lab, the mean P released 

appeared to be greater in topsoil than subsoil – but only significantly so in the lab incubation 

– presumably reflecting the greater available fractions of WEP, CaCl2-P and Dithionite-P in the 

topsoil (Table 4.1). As P is surface applied and usually well sorbed, P concentrations are well 

known to stratify, decreasing down the soil profile (Sharpley, 2003b). 

If NO3
- is in ample supply there is no need for microbes to move onto less energetically 

favourable acceptors such as Fe- and Mn-oxides (McMahon and Chapelle, 2008), meaning P 

associated with these oxides will not be released. However, the activity of the microbial 

biomass will also be controlled by the limiting nutrient. In soil and water, much work has 

shown that this ratio hovers around a molar ratio of 106:16:1 C:N:P – somewhat dependant 
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on the species involved (Cleveland and Liptzin, 2007). We supplied C (as glucose) to avoid C-

limitation and studies have shown that the microbial biomass responds well to C additions. 

For instance, Iovieno and Bååth (2008) stated that adding glucose to moist soils caused five 

times greater bacterial respiration.  

Adding C in the lab enhanced the dissolution of DRP, Fe and Mn suggesting that NO3
- 

was also used up. However, in those soils treated with artificial NO3
-, at least 80% of the NO3

- 

added remained, meaning that the amount of NO3
- added was in excess of the soil’s reductive 

capacity – with or without added C, and that a progression to the dissolution of Fe and Mn-

oxides did not occur. Experiments on riparian wetlands such as those by Surridge et al. (2007a) 

in the United Kingdom and Lucassen et al. (2004) in the Netherlands identified NO3
- as a redox 

buffer. However, these are not on agricultural soils. In agricultural settings, studies have noted 

smaller P losses under increased N treatments (Dodd et al., 2014a; Gray et al., 2016b). 

However, these agricultural soils were not saturated or anoxic. Here, it is likely that a decrease 

in P had nothing to do with reductive dissolution, but that microbial growth was P-limited and 

therefore preferentially sequestered by microbes from the soil solution (N:P ratio > 16 molar 

basis or 7 on a mass basis).  

4.4.3 Implications for Management 

The enrichment of NO3
- in groundwater has been proposed as a potential cause for decreased 

P inputs to streams. A recent study of > 700 catchments in New Zealand by McDowell et al. 

(2019) found that only 4% of sites with enriched groundwater N had a decrease in surface 

water P concentrations. However, the present study suggests that agricultural systems that 

have low N inputs paired with significant P stores could be more vulnerable to P loss in 

saturated conditions. Without the buffering influence of NO3
- in a soil profile, anaerobic 

conditions caused by inundation could cause a soil profile to become Fe- and Mn-reducing and 

release associated P. Hence, different rates of N and its influence on reductive dissolution of 

P should be explored in more detail to determine and avoid situations where N concentrations 

are so low that P becomes enriched and potentially lost to P-limited surface waters. It is also 

necessary to study the influence of the presence of N on DRP in a variety of settings, as the 

results may vary depending on the soil type, climate and local practices. As one of many 

possible examples of how locale and soils could affect the relationship between NO3
-  and P; 

heavy textured soils in the south of Ireland are known to convert NO3
- to ammonium (NH4

+) 

(Clagnan et al., 2018a). Therefore, the resulting low NO3
- concentrations and the influence of 
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NH4
+ on pH may affect DRP release differently. The outcomes of this could improve knowledge 

of knock-on consequences of changing N management and surpluses and their influence on N 

stores available to buffer reducible P.  

4.5 Conclusions 

The results of this study indicates that reducing conditions in agricultural soils may 

increase metal-oxide and associated P dissolution. Through a combination of field monitoring, 

in situ incubations and laboratory incubations, the present study shows that soil saturation 

excess resulted in the reductive dissolution of P. Additionally, NO3
- is a key buffer for the 

reaction. Therefore, an area that is prone to saturation excess and lateral flow could induce P 

loss and its transport downslope to waterways, particularly if it is a low NO3
- system. It is 

important to identify these high P/low N systems, particularly in sites that are prone to 

saturation events (e.g. hydrologically sensitive areas or riparian zones) as they may exacerbate 

P release into waterways in the future and should be managed as CSAs and incorporated into 

the P risk indices.  
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Chapter 5 

Phosphorus and metal-oxide transport from a hydrologically 

isolated grassland slope 

5.1 Introduction 

Agricultural intensification can have negative implications for water quality (Leinweber et al., 

2018). In particular, phosphorus (P) loss from agricultural soil to water is linked to degradation 

of surface water quality and eutrophication (McDowell et al., 2020). Due to its high 

bioavailability, there has been significant interest in the transport of dissolved reactive P (DRP) 

to surface waters (Buda et al., 2009a; Dupas et al., 2017; Leinweber et al., 2018; Shore et al., 

2016). In the European Union, the Water Framework Directive (WFD) outlines regulations and 

thresholds to avoid degradation of water. These regulations stipulate that concentrations of 

filtered molybdate-reactive P (viz. DRP) should not exceed 30 µg P L-1in Irish rivers (Cleneghan 

et al., 2005). However, to reduce or maintain DRP concentrations below this threshold, the 

mechanisms and pathways (surface and subsurface) of DRP loss from agricultural land must 

be fully understood.  

The primary transport pathways for DRP from agricultural land to waterways are 

surface runoff, near-surface lateral flow, and artificial drainage conduits. Surface runoff and 

lateral flow can provide a transport pathway for DRP in the upper soil horizons and soil surface, 

while drainage and deeper lateral flow provide a subsurface pathway (McDowell and 

Monaghan, 2014; Monaghan et al., 2016). The proportion of DRP transported via surface or 

subsurface pathways depends on climatic and soil conditions. The number of studies that have 

examined DRP loss in drainage is increasing but those examining grassland systems are rare 

compared to those examining DRP losses from croplands (Christianson et al., 2016; Dupas et 

al., 2015; Grant et al., 1996; Ibrahim et al., 2013; Kronvang et al., 2005; Moore, 2016; Peyton 

et al., 2016). Owing to their suitability to cooler and wetter climates, grasslands tend to exhibit 

a greater proportion of drainage resulting from saturation-excess conditions than cropping 

systems (Cassidy et al., 2016; Doody et al., 2010; Monaghan et al., 2016; Thompson et al., 

2012). The frequency and length of time a soil is waterlogged is known to influence DRP 

dissolution into soil solution (Gu et al., 2019; Warrinnier et al., 2020) Hence, it is important to 
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know the mechanisms responsible and when such conditions occur, to avoid inappropriate 

management (such as intensive grazing) that could exacerbate DRP losses.   

In soils, a combination of poor drainage and inundation can lead to waterlogging, 

whereby the soil profile can quickly become anaerobic due to microbial respiration. During 

respiration, microbes gain energy by mediating oxidative-reductive (redox) reactions between 

an electron donor (usually carbon, C) and an electron acceptor. The most energetically 

preferable electron acceptor is oxygen. When this is depleted, NO3
- becomes preferable, then 

Mn, Fe, sulphate (SO4
2-), and carbon dioxide (CO2) (McMahon and Chapelle, 2008). The 

reductive dissolution of P-sorbing iron (oxy)hydroxides (i.e. Fe oxides) and Mn oxides 

(Colombo et al., 2014; Smith, 2020; Warrinnier et al., 2020) releases P into the soil solution, 

which in turn could be lost in drainage (Heiberg et al., 2012; Martynova, 2010). In grazed 

grasslands where most NO3
- leaching occurs via urine patches, appropriate timing of grazing 

and stocking rate may influence DRP loss under waterlogged conditions. Additionally, 

movement of NO3
- in groundwater may flow downgradient into an area with a shallow water 

table (Clagnan et al., 2018b). 

Although studies have examined the availability of P under reducing conditions, these 

have largely been in: river and lake sediments (Heiberg et al., 2012); wetland systems 

(Moustafa et al., 2011; Reddy et al., 1998b); or in wetted fields in China’s vegetable production 

systems (Wang et al., 2020; Yan et al., 2013), which all maintain anaerobic conditions for long 

periods and have defined wetting and drying phases. Far fewer studies have been undertaken 

in a soil profile (Prem et al., 2014; Warrinnier et al., 2020) or at the drainage outlet. Recent 

work has shown that anaerobic conditions can increase DRP availability in soil solution quickly, 

particularly in warmer conditions (Heiberg et al., 2012; Jenkinson and Franzmeier, 2005; 

Smith, 2020). Depending on the efficiency of the drainage network and climate, and the timing 

of grazing and stocking rate of the farm, this raises the likelihood of P losses in drainage events, 

with wide variation throughout the year. While there is evidence of anaerobic conditions 

affecting P release into soil solution, further research into the effects of this release at the 

drainage outlet is required, as the relative importance of the mode of P release depends on 

its connectivity to a receiving water body (Thomas et al., 2016). Additionally, the released P 

may be attenuated during transport by precipitation, undissolved Fe oxides, aluminium (Al) 

oxides that are impervious to redox, or grass uptake (Prem et al., 2014). Therefore, it is 

important to identify if redox-sensitive phosphorus is represented at the drainage outlet. 
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The aim of this study was to investigate the processes controlling intra- and inter-event 

and seasonal DRP losses from a poorly drained grassland hillslope. Surface runoff and artificial 

drainage P losses were examined and related to the likelihood of anaerobic conditions and 

redoximorphic species including NO3
-. The study was conducted in Ireland where half of 

agricultural soils fall into poorly or imperfectly drained categories (O'Sullivan et al., 2015).  

5.2 Method 

5.2.1 Site description and sampling 

The ungrazed silage study site was located on a 4.2 ha study area on a beef farm at Teagasc, 

Johnstown Castle, Co. Wexford, SE Ireland (52o17’36”N, 6o31’6”W). Mean annual precipitation 

is 1002 mm. The soil is a Stagnic Brown soil (Irish Soil Classification) or a Cambisol (WRB Soil 

group). The site is derived from mixed drift of shale quartzite and Irish sea muds and has soils 

from the Rathangan (poorly drained) and Crosstown (variable drainage) associations. Previous 

work at the site has identified the particle size fractions as 45% sand, 20% silt, and 34% clay 

(Fenton et al., 2009; Ibrahim et al., 2013). The bulk density to 100 mm depth was 1.35 Mg m-

3. Within the monitoring periods: N fertiliser was applied in 2009 as urea to all plots on the 

23rd March (118 kg N ha-1), and as calcium ammonium nitrate (101.8 kg N ha-1) 31st May; 

phosphorus fertiliser was applied on the 21st March (37 kg P ha-1). Approximately 98 kg N ha-

1 was applied as cattle slurry on the 30th October 2018. A full description of the management 

of the site is found elsewhere, including fertiliser management outside of the relevant 

monitoring periods (Ibrahim et al., 2013). 

The study area contained six hydrologically isolated plots (Figure 5.1) on a uniform 

slope (2% slope), that were installed in 2005. Four of the plots were utilised which had similar 

saturated hydraulic conductivities (Ksat) as there is a correlation between  Ksat and NO3
- (Fenton 

et al., 2009). Previous work at the site (Clagnan et al., 2018b) noted groundwater  (> 3 m below 

ground level) at the site had NO3
--N concentrations between 4.7-8.1 mg L-1. The previous study 

also noted that NO3
- was transferred to the slope via groundwater from a free-draining 

upgradient site. Subsurface drainage was installed to 1 m below ground level (bgl) using pipes 

and gravel, with 10 m spacing between drains. Surface runoff from each plot collected into a 

pipe at the bottom of the slope. The surface and subsurface pipes transported water to 

dedicated v-notch weirs at a downslope monitoring station. The weirs were connected to 

Sigma 900 Max autosamplers (Sigma, Hach Company, USA) which were calibrated using 
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pressure transducers and the angle of the receiving weir’s v-notch. The autosamplers took 

samples of every 500 L of runoff or discharge from January to October 2009, and from January 

2018 to April 2019. The 2009 data were obtained from a previous, unpublished study. The site 

had piezometers installed previously at the top, middle, and bottom of the slope in each plot, 

to sample groundwater >3 m bgl. Water table depths were recorded daily in these 

piezometers using a water diver (MiniDiver, Schlumberger Water Services, Delft, 

Netherlands). 

All sampling and analytical procedures for the 2018 and 2019 sampling years, were 

consistent with those of 2009. Runoff and drainage rates were automatically recorded to 

enable the calculation of flow-weighted concentrations of DRP (fwc-DRP) and other nutrients. 

Samples were filtered (0.45 µm) and analysed for DRP, NO3
-, Fe2+ and Fe3+, Mn2+, and SO4

2- 

using standard methods (APHA-AWWA-WEF, 2005). A synoptic national weather station was 

located on site measuring daily to hourly rainfall, soil moisture deficit (SMD) to 1 m, air 

temperature, soil temperature, and solar radiation from 2009-2019. The nearest receptor of 

flow was the Kildavin River, which was approximately 70 m from the drainage pipe outlets and 

100-200 m from the plots themselves.  

Soil topsoil samples (0-10 mm depth) were taken from spatially distributed points 

across the study site and analysed for: 1:300 soil to solution water extractable P designed to 

mimic P loss in surface runoff (McDowell and Condron, 2004); sodium-dithionite-extractable 

P as an estimate of P available under reducing conditions (Dithionite-P); (Jensen and 

Thamdrup, 1993; Loeppert and Inskeep, 1996; Psenner and Pusckso, 1988); P in Morgan’s 

extractant (Morgan, 1941; Smith, 2020); and, Mehlich-Fe, -Mn and -P (Sims, 2009). 

5.2.2 Data analysis 

A soil-water balance was calculated using climate and soil moisture data (to 1 m bgl) using the 

method of Horne and Scotter (2016). This, combined with the SMD data from the weather 

station, indicates when soils are saturated with water past their storage capacity (viz. 

‘Saturation-excess’) and runoff (including drainage) is generated. Water level data were used 

to show when drainage was occurring when the water table had risen to within 1 m of the soil 

surface. In addition to this, Clagnan et al. (2018b) clarified the net provenance of N at the site 

previously and showed that the artificial drainage network is connected to the field surface 

and is not disturbed by upwelling groundwater. Additionally, the signal of NO3
- in artificial 
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drainage is different to that at 3 m groundwater depth. Therefore, the present study is justified 

in examining SMD, NO3
- concentrations, soil test P and water samples from the soil profile to 

approximately 1 m bgl.  

The redox status of every event sampled was calculated using the method of 

McMahon and Chapelle (2008). Periods where NO3
- concentrations were too low to buffer the 

redox reaction (NO3
--N < 0.5 mg L-1) were identified. Previous work at the site (Clagnan et al., 

2018b) demonstrated that NO3
- attenuation is occurring, attributed to reduction and 

denitrification. 

Each plot exhibited differences in runoff and drainage volumes. Therefore, to avoid 

these volumes skewing the data, concentrations were presented rather than yields (i.e. kg ha-

1). Flow-weighted mean concentrations were produced by dividing the sum of the product of 

each event-based concentration and discharge by the sum discharge of all events. Mean data 

for the plots were contrasted by season via an analysis of variance and post-hoc test (Tukey’s 

Honestly Significant Difference). Correlation matrices were produced to identify significant (p 

< 0.05) associations between flow-weighted mean concentrations and climatic conditions 

across all events and plots.  

5.3 Results 

5.3.1 Site and soil characteristics 

Soil chemical characteristics of the site are given in Table 5.1. The soil pH (6.0) was within 

range of other grazed Irish soils studied (Daly et al., 2017). The Mehlich-Fe (269 mg kg-1) 

extracted from the topsoil at this site was approximately half of that from similarly poorly-

drained grazed sites, but had similar or greater Mehlich-3 P and Morgan-s P concentrations 

(Daly et al., 2017). The degree of Mehlich-P saturation relative to P sorbing Mehlich-Fe and -

Mn was 16.0%, which according to Kleinman and Sharpley (2002) was indicative of a soil that 

was not strongly saturated with P. However, there was a moderate amount of reducible soil 

Dithionite-P (38.3 mg kg-1) in the soil compared to other Irish soils of similar Morgan- or 

Mehlich-3 P concentrations (Smith, 2020).  

Rainfall totals in the three years of sampling were 1453 mm, 1147 mm, and 1060 mm 

for 2009, 2018 and 2019, respectively. Climate data from 2009 to 2019 showed mean daily 

rainfall was greatest in autumn (Table 5.2). The daily mean air temperature and soil 
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temperature to 10 cm bgl were both lowest in winter and greatest in summer (Table 5.2). 

There were small SMDs (to 1 m bgl) in summer, autumn, and spring, but on average saturation-

excess conditions (SMD >0 mm) prevailed over winter (Table 5.2, Figure 5.1). In general, over 

60% of days showed saturation excess (SMD ≤0 mm) across the seasons (Table 5.2). A large 

SMD of > 80 mm occurred in the summer of 2018. Runoff discharge was much smaller after 

this than in 2009 and early 2018, and there was not consistent saturation excess until mid-

October 2018 (Figure 5.2).  

As stated, Clagnan et al. (2018b) showed artificial drainage to 1 m was relatively 

uninfluenced by groundwater. In the present study the water table in the piezometers at the 

top, middle and bottom of the four slopes was generally below 2 m. However, the middle and 

bottom slope location in plot 1 occasionally reached within 1 m of the surface between 

November and May each year. This plot may have been influenced by groundwater. 

 

Figure 5.1 Map of the study slope in Wexford, Ireland, adapted from Ibrahim et al. (2013) Grey 

hashed areas indicate plots that were not monitored. 
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Figure 5.2 Daily data for soil moisture deficit (SMD, mm), rainfall (mm), soil temperature (oC, 

top 10 cm), and mean daily subsurface drainage (mm) from January to October 2009, and 

January 2018 to May 2019. Periods where SMD < 0 show site field capacity and saturation-

excess potential. Note the x-axis break and inverted y-axis for SMD.   
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Table 5.1 Selected soil and farm characteristics for the experimental slope, mean (± standard 

error of the mean). Soil samples were from topsoil (0-75 mm depth), spatially distributed 

across trial site. 

Soil fertility properties Mean 

pHwater 6.0 (0.02) 

WEP, mg L-1 0.009 (0.0012) 

Morgan’s P, mg L-1 1.75 (0.362) 

Mehlich P, mg kg-1 26.3 (2.201) 

DPS1, % 16.0 (0.76) 

Dithionite-P, mg kg-1 38.3 (3.41) 

Mehlich Mn, mg kg-1 55.1 (9.97) 

Mehlich Fe, mg kg-1 269.2 (20.62) 

1DPS = Degree of phosphorus saturation = Mehlich-P/α(Mehlich-Fe + Mehlich-Mn) (Kleinman 

and Sharpley, 2002). 

 

 

Table 5.2 Mean daily rainfall, soil and air temperature and soil moisture deficit (SMD) at the 

site (± standard error) from January 2009 to December 2019. Differences between seasons 

were established via an analysis of variance. Lettering indicates significant differences in 

means due to season, according to Tukey’s Honestly Significant Difference (Tukey HSD) post 

hoc test. 

Season Months Rainfall Soil temp Air temp SMD1 
days 

SMD≤0 

  mm oC oC mm % (n) 

Summer Jun-Aug 2.7 (0.18)ab 17.6 (0.07)d 14.8 (0.06)d 25.7 (0.75)d 61 (276) 

Autumn Sept-Nov 3.4 (0.21)c 11.7 (0.11)c 11.0 (0.11)c 6.3 (0.45)b 62 (283) 

Winter Dec-Feb 3.3 (0.18)bc 5.7 (0.07)a 6.0 (0.09)a -1.3 (0.14)a 65 (511) 

Spring Mar-May 2.2 (0.14)a 10.3 (0.11)b 8.8 (0.09)b 9.9 (0.38)c 63 (520) 

P value
  <0.001 <0.001 <0.001 <0.001 ns 

1SMD<0 indicates saturation excess/waterlogging 
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Table 5.3 A correlation matrix for mean daily concentration (mg L-1) and climatic data in surface runoff samples from all plots, showing the relationship 

between parameters1 over the 2009, and 2018 to 2019 events. 

 Flow DRP Fe Mn NO3
--N TP PP Rain Soil temp 

DRP 0.287***         

Fe -0.006 -0.089**        

Mn -0.120 -0.084** -0.005       

NO3
--N -0.020 -0.205*** 0.369*** -0.092***      

TP 0.412* 0.932*** -0.096* -0.272*** 0.053     

PP 0.395* 0.247*** -0.001 -0.250*** -0.092* 0.584***    

Rain 0.445*** 0.232*** -0.004 -0.173*** -0.097*** 0.343*** 0.319***   

Soil Temp 0.146 0.148*** 0.161*** 0.003 -0.150*** 0.191*** 0.342*** 0.365***  

SMD -0.336* -0.271*** -0.089** -0.021 0.250*** -0.268*** -0.235*** -0.541*** -0.324*** 

1DRP = Dissolved reactive phosphorus, Fe = Iron, Mn = Manganese, NO3 = Nitrate, TP = Total phosphorus, PP = Particulate phosphorus, SMD = Soil 

moisture deficit (mm), Flow = surface runoff discharge (mm) 
2*** < 0.001, ** < 0.01, * < 0.05 
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5.3.2 Loss of nutrients in runoff and drainage 

Runoff volumes from the plots during storm events were not significantly different between 

seasons (Table 5.2). Mean DRP concentrations in spring and summer were an order of 

magnitude greater in runoff compared to drainage concentrations. Runoff DRP was 

significantly greater in spring (p < 0.001) compared to the other seasons, but this did not align 

with mean concentrations of redox-sensitive analytes. Mean Fe was greatest in summer, Mn 

was greatest in autumn and winter, and NO3
- was greatest in autumn and winter (p < 0.001). 

Particularly in summer and autumn, more than half the samples collected from each season 

contained nutrient concentrations indicative of a low redox potential to reduce and dissolve 

Mn and Fe into solution (NO3
--N <0.5 mg L-1, Table 5.5). In instances like this where solutions 

appear to have enriched Mn and Fe and depleted NO3
- from reductive dissolution, events will 

be described as ‘metal-reducing’. Events that have elevated NO3
- concentrations and minimal 

Mn and Fe will be described as ‘NO3
--reducing’. Periods of metal-reduction were paired with 

sustained saturation excess (SMD <0 mm), no recent N addition, and potentially minimal 

interaction with N-rich groundwater. In a correlation matrix of runoff nutrient concentrations, 

flow and climatic conditions, DRP was not positively correlated with any of the redox-sensitive 

nutrients, and Fe was positively correlated with NO3
--N (Table 5.3). 

Mean drainage DRP concentrations were 0.01 mg L-1 in summer and winter, 0.04 mg L-1 in 

autumn, and 0.08 mg L-1 in spring. The greatest mean Fe, Mn and NO3
- concentrations in 

drainage were measured in autumn (Table 5.2). In contrast, the greatest mean concentration 

of DRP occurred in spring, when NO3
- concentration was moderate. In a correlation matrix of 

all drainage data (Table 5.6), DRP concentrations were positively and significantly correlated 

with dissolved Fe in artificial drainage, but negatively and significantly correlated with NO3
--N. 

Concentrations of Fe were negatively correlated with NO3
--N and SMD.  

In contrast to the runoff data, artificial drainage data suggests that, on average, there 

is a connection between DRP and Fe released from a waterlogged soil profile, especially when 

NO3
- is depleted. The seasonal patterns of Fe, Mn and NO3

- in DRP loss is supported by the 

proportion of artificial drainage samples that classified as likely to be metal-reducing in 

summer (Table 5.2), whereas the leaching and greater concentration of NO3
- in autumn, 

winter and spring led to them being more often classified as NO3
--reducing. This may be 

because the water table level at the site never reaches within 1 m bgl outside of November to 
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May. Therefore, in the summer to autumn period, there would be no upgradient groundwater 

source of NO3
--N to replenish the N supply and continue to buffer the redox reaction. 

However, in the winter to spring months, there may be some interaction from groundwater 

that could introduce new N. 

 

 

Figure 5.3 Averaged daily data for dissolved reactive phosphorus (DRP, mg L-1) and nitrate 

(NO3
-, mg L-1) in drainage from January to October 2009, and January 2018 to May 2019. Note 

the x-axis break. Sample events that occurred under iron- and manganese-reducing conditions 

(NO3 < 0.5 mg L-1) are shaded in grey. Specific events (★) are explored in Figures 5.6 and 5.7 

for Fe(III)-SO4-reducing (Oct 2009) and NO3-reducing (Feb 2019) conditions. Symbols , , 

and  indicate nitrogen fertiliser, phosphorus, and slurry addition, respectively.  
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Figure 5.4 Averaged daily data for dissolved reactive phosphorus (DRP, mg L-1) and nitrate 

(NO3
-, mg L-1) in surface runoff from January to October 2009, and January 2018 to May 2019. 

Note the x-axis break. Sample events that occurred under iron- and manganese-reducing 

conditions (NO3 < 0.5 mg L-1) are shaded in grey. Specific events (★) are explored in Figures 

5.6 and 5.7 for Fe(III)-SO4-reducing (Oct 2009) and NO3-reducing (Feb 2019) conditions. 

Symbols , , and  indicate nitrogen fertiliser, phosphorus, and slurry addition, 

respectively. 
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Table 5.4 Mean runoff (mm) and drainage (mm) and flow-weighted concentrations (mg L-1, ± 

standard error) in surface runoff and drainage events of dissolved reactive P (DRP), iron (Fe), 

Manganese (Mn) and nitrate-N (NO3
--N), across all plots by season from 2009, 2018 and 2019. 

Differences between seasons were established via an analysis of variance. Lettering indicates 

significant differences in means due to season, according to Tukey’s Honestly Significant 

Difference (Tukey HSD) post hoc test. 

Flow path/ 

Season 

n1 Volume  DRP Fe Mn NO3
--N 

Surface runoff       

Summer 7 
16.5  

(9.55) 

0.19  

(0.007)b 

0.46  

(0.033)a 

0.03  

(0.014)b 

0.04 

(0.010)c 

Autumn 6 
6.0  

(5.92) 

0.09  

(0.018)b 

0.35  

(0.040)b 

0.61  

(0.106)a 

0.59 

(0.076)a 

Winter 47 
7.8  

(4.97) 

0.03  

(0.003)c 

0.27  

(0.022)bc 

0.50  

(0.101)a 

0.61  

(0.029)a 

Spring 64 
14.0 

(11.1) 

0.35  

(0.030)a 

0.21  

(0.014)c 

0.18  

(0.060)b 

0.37  

(0.001)b 

P value
  ns <0.001 <0.001 <0.001 <0.001 

Drainage       

Summer 8 
2.4  

(0.64) 

0.01  

(0.001)a 

0.87  

(0.050)b 

0.04 

(0.017)ab 

0.10 

(0.013)a 

Autumn 11 
4.0  

(1.95) 

0.04  

(0.005)a 

1.60  

(0.091)c 

0.14  

(0.023)b 

0.77 

(0.053)d 

Winter 42 
1.7  

(0.34) 

0.01 

(0.000)a 

0.33  

(0.019)a 

0.04 

(0.005)ab 

0.60 

(0.018)c 

Spring 37 
2.8  

(1.24) 

0.08  

(0.014)b 

0.33  

(0.029)a 

0.04  

(0.031)a 

0.37 

(0.011)b 

P value  ns <0.05 <0.001 <0.001 <0.001 
1n = Number of events across four plots that were averaged  
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Table 5.5 The number and percentage (in parentheses) of samples categorised by the 

concentration of redox-sensitive analytes in solution. Samples were divided between those 

with increased nitrate concentrations (NO3
- > 0.5 mg L-1), and those that had low NO3

- (<0.5 

mg L-1) and increased iron (Fe) and manganese (Mn) oxides. 

Season Samples with 

NO3
--N > 0.5 mg L-1 

Samples with  

NO3
--N < 0.5 mg L-1, 

Fe/Mn > 0.1 mg L-1 * 

Number of samples per 

season 

Drainage    

Summer 0 (0) 98 (100) 98 

Autumn  120 (48) 131 (52) 251 

Winter 234 (56) 185 (44) 419 

Spring 499 (60) 337 (40) 836 

Runoff    

Summer 31 (7) 400 (93) 431 

Autumn  39 (14) 230 (86) 269 

Winter 171 (23) 566 (77) 737 

Spring 231 (31) 521 (69) 752 

*Thresholds indicated by McMahon and Chapelle (2008) 
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Table 5.6 A correlation matrix for mean daily concentration (mg L-1) and climatic data in drainage samples from all plots, showing the relationship 

between parameters1 over the 2009, and 2018 to 2019 events 

 Flow DRP Fe Mn NO3
--N TP PP Rain Soil temp 

DRP -0.067         

Fe 0.142 0.215***        

Mn -0.111 -0.005 -0.125*       

NO3
--N 0.082* -0.111*** -0.361*** -0.140***      

TP 0.915*** -0.057 0.306 -0.134 -0.007     

PP 0.912*** -0.069 0.299 -0.146 -0.004 0.999***    

Rain 0.146 -0.080 0.255* -0.098 -0.311*** 0.217 0.208   

Soil Temp 0.094 -0.041 0.241* 0.295** -0.297*** 0.139 0.136 0.382***  

SMD -0.158 0.171*** -0.302** 0.425*** 0.075* -0.289 -0.277 -0.617*** 0.147 

1DRP = Dissolved reactive phosphorus, Fe = Iron, Mn = Manganese, NO3-N = Nitrate-nitrogen, TP = Total phosphorus, PP = Particulate phosphorus, 

SMD = Soil moisture deficit (mm), Flow = surface runoff discharge (mm) 
2*** < 0.001, ** < 0.01, * < 0.05 
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5.3.3 Concentrations in specific storm events 

Concentrations of DRP determined in runoff and drainage over 2009, 2018 and 2019 show no 

clear pattern alongside site climatic data (Figures 5.4-5.5), which aligns with the lack of 

significant seasonal differences in runoff, drainage and % SMD days (Table 5.2-5.3). However, 

more valuable information is gained for drainage when events are examined individually 

relative to management and soil redox conditions. Applications of P and nitrogen (N) fertiliser 

are indicated by an up and down triangle, respectively (Fig. 5.4 and 5.5).  An increase in DRP 

concentration in surface runoff occurred following the application of P fertiliser in May 2009. 

No increases were evident following the application of slurry in drainage or surface runoff 

until the slurry-N was depleted (Figure 5.5). Concentrations of NO3
- followed a general pattern 

of leaching and potential NO3
- attenuation via denitrification (Clagnan et al., 2018b) during the 

winter and spring drainage events. Nitrate concentrations appeared to be depleted during 

significant DRP drainage losses, and all DRP concentrations greater than 0.1 mg L-1 in drainage 

occurred when concentrations were less than 1 mg NO3
--N L-1. This warranted further 

investigation on an event-by-event basis. 

Two drainage sample events were isolated to identify the behaviour of DRP, Fe, Mn 

and NO3
- concentrations over the course of the events. The first occurred in an event classed 

as metal-reducing (Figure 5.6), while the second had excess NO3
--N in drainage (> 0.5 mg L-1) 

(Figure 5.7). Fire 5.6 demonstrates an initial Mn-reducing process and an increase in solution 

Fe as the storm event progresses. Solution DRP increases as solution Fe increases. At the end 

of the rainfall event, NO3
- begins to increase, but still remains < 0.5 mg L-1, below the NO3

- 

buffer threshold. In the second event (Figure 5.7), NO3
- is consistently > 0.5 mg L-1, and the 

only period where there is a large change in DRP, Fe and Mn is when NO3
- concentrations in 

solution are halved towards the end of the event. Concentrations of Fe are approximately half 

and DRP an order of magnitude smaller in this event than in the metal-reducing event. 
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Figure 5.4 An intensively sampled event from Plot 2 in October 2009, where redox-sensitive 

components were characterised as ‘metal-reducing’ (McMahon and Chapelle, 2008). 
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Figure 5.5 An intensively sampled event from Plot 1 in February 2019, where redox-sensitive 

components were characterised as ‘NO3-reducing’ (McMahon and Chapelle, 2008). 
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5.4 Discussion 

5.4.1 Nutrient characteristics in surface runoff 

Concentrations of DRP in surface runoff were an order of magnitude greater soon after P 

fertiliser and slurry application than in other events. This coincides with a period of high P 

solubility, where recently applied P could be lost in surface runoff before it is adsorbed to the 

soil (McDowell and Catto, 2005). The relationships between DRP, Fe and Mn in surface runoff 

were contrary to the trend demonstrated in drainage. While apparent metal-reduction was 

seen in a greater proportion of surface runoff samples, those samples also showed a negative 

correlation between DRP, Fe and Mn, even during periods of sustained waterlogging and 

where events were classed as metal-reducing by their chemical make-up. Thus, it is likely that 

the increase in Fe and Mn in surface runoff during saturation-excess generated runoff periods 

may be connected to soil profile reductive dissolution, but the additional topsoil P released 

into surface runoff may mask this relationship. This is not unexpected, as runoff constitutes a 

mix of older water that may carry a metal-reducing chemical signature, but also new oxic 

water that has interacted and derived P from chemical and physical processes by interaction 

with a thin layer of topsoil (Ahuja and Lehman, 1983). Another explanation is that colloidal P 

and Fe could be resulting in an overestimation of solution Fe and P in the present study. A 

study by Zhang and Oldham (2001) showed that particles are mobilised, and colloidal Fe and 

P are seen in increased concentrations, which affects final estimates. A method to identify the 

source of P and Fe in runoff would be necessary to explain the effects of reductive dissolution 

and on saturation-excess generated runoff. 

5.4.2 Nutrient characteristics in artificial drainage output 

Drainage DRP concentrations from the present site in summer and winter (0.01 mg DRP L-1) 

were comparable to another grazed Irish site with similar Mehlich-P concentrations (Daly et 

al., 2017). However, the mean drainage concentration seen in autumn (0.04 mg L-1) was 

enhanced and comparable to losses from another Irish site with high legacy P (Valbuena-

Parralejo et al., 2019). This implies that waterlogging and redox processes induce DRP losses 

that are greater than indicated by simple soil tests. Although as mentioned above, Dithionite-

P, designed to assess reducible-P was enriched in this soil. 

The relationship between DRP and Fe release into drainage was positive and 

significant, and both were negatively correlated with NO3
- (Table 5.6). This concurs with other 
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studies (Ann et al., 2000; Surridge et al., 2007b; Zak and Gelbrecht, 2007). There was no 

significant relationship with Mn, which is likely because Mn can begin to reduce in the 

presence of NO3
- (Grybos et al., 2007). Events collected after fertiliser-N addition did not 

generally meet the requirements for metal-reduction until NO3
- contributions to solution were 

depleted. This may have been due to fertiliser-derived N becoming depleted via denitrification 

- which was not measured in the present study, but was proven in previous work (Clagnan et 

al., 2018b) - or its removal via surface runoff or drainage. After this point, concentrations of 

Fe and DRP increased (Figures 5.4-5.7). Previous work at the site has shown that the soils have 

a significant denitrification capacity above the drainage system, or potentially dissimilatory 

NO3
--reduction to ammonium (Clagnan et al., 2018b). However, this process was 

overwhelmed and disrupted by N fertiliser applications inputs in March and May 2009 that 

led to increases in NO3
- in drainage (> 0.5 mg L-1) that buffered reduction until July 2009 

(Grybos et al., 2007; Surridge et al., 2007b; Young and Ross, 2018). A similar buffer mechanism 

was likely after the slurry spreading in late October 2018, which was only sufficiently depleted 

the next month.  

There was a significant correlation between decreasing soil moisture deficit (i.e. 

becoming more waterlogged) and Fe, and increasing moisture deficit and NO3
-, which 

indicated that the state of DRP and the redox-sensitive components in drainage were related 

to the level of waterlogging and frequency of the soil. As this site was waterlogged for at least 

half of every season, its propensity to become metal-reducing, provided NO3
- is depleted, is 

high. However, the soil profile experienced an unusually high moisture deficit in the summer 

of 2018 (Fig. 5.4). The persistence of NO3
- at the site for a month could have been caused by 

drought impairing the capacity of soil microbial biomass to utilise N (Gu et al., 2018) or 

because more oxygen was penetrating into the soil profile (Stirling et al., 2020). Additionally, 

P was released in larger quantities during this month, but was greater relative to Fe release 

than after the first waterlogging event and was accompanied by high levels of NO3
-. This could 

be explained by P released from microbial cell lysis during drying, osmotic shock and 

rewetting, especially as biomass may not have adapted to drought conditions at this site 

(Blackwell et al., 2009; Butterly et al., 2009; Gu et al., 2018).  

5.4.3 Implications for management and the environment 

The mean concentration of DRP over all samples (0.04 ± 0.005 mg DRP L-1), particularly during 

autumn and spring were greater than a commonly reported eutrophication threshold of 0.03 
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mg DRP L-1 (Trodd and O'Boyle, 2018). This was despite low soil P concentrations (Table 5.1) 

and P fertiliser inputs. Since previous work has shown that P desorption increases with 

increasing P saturation (Pal, 2011), it is clear that in this system with low nutrient inputs, other 

properties such as redox potential need to be taken into account to minimise P loss.  

In terms of influencing DRP losses, the data showed that the combination of 

waterlogging and low NO3
- were more important than seasonality. Without the buffering 

influence of NO3
- in a soil profile, waterlogging could lower redox potential and release DRP 

from Fe and Mn (Surridge et al., 2007b). The present study suggests that there is a point at 

which NO3
- is too low and DRP loss to waterways increases as a result. All DRP concentrations 

> 0.1 mg L-1 in drainage occurred when NO3
--N concentrations were < 0.5 mg L-1. Finding this 

point in a range of P saturation, waterlogging vulnerability, soil textures, organic carbon 

availability, and temperature will improve the ability to restrict N and P loss (Heiberg et al., 

2010; Lair et al., 2009; Plach et al., 2019; Prem et al., 2014).  

The sites experience frequent waterlogging year-round, results may differ in sites with 

more defined seasonal differences. The knowledge of local management practices, weather, 

and the likelihood of waterlogging is therefore critical to mitigating DRP losses. Common 

strategies for minimising P losses from soils include decreasing soil Olsen P and/or utilising 

crops that grow well on low P levels (Morton and Roberts, 1999). However, the study site was 

already below soil test P concentrations considered optimal for pasture production (Wall and 

Plunkett, 2016) and according to Kleinman and Sharpley (2002) had a low degree of P 

saturation (Table 5.1). Therefore, the focus should be on improving the efficiency of artificial 

drainage, provided this does not increase P losses (Monaghan et al., 2016). Alternative 

methods of interrupting the connectivity between the waterlogged paddock and receiving 

water bodies could also be explored. For instance, controlled drainage can lower P losses by 

encouraging sediment to deposit, but can also increase DRP losses via reductive dissolution 

(Sunohara et al., 2015). Some work has also looked at routing drainage water through P-

sorbing material, but those containing Fe will be discounted in favour of those containing less 

P-sorptive Ca-materials (Ballantine and Tanner, 2010). Failing this, if a site is deemed 

particularly wet and P leaky, it may be better to retire the area than continue to farm it. 
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5.5 Conclusions 

This study highlighted that soil profile waterlogging and low NO3
- increase P loss from the soil 

and into drainage, potentially via reductive dissolution. Areas that are prone to frequent 

waterlogging and lateral flow could exhibit increased P loss to receiving waterways under 

reducing conditions. If such areas have moderate P levels and are managed to keep N losses 

very low, P losses may be exacerbated.  The present study highlights the importance of having 

local knowledge of soil behaviour and waterlogging throughout the year, in order to minimise 

the potential for P loss via fertiliser and grazing management. Otherwise, it highlights a need 

to introduce or improvement of artificial drainage systems to minimise the likelihood of 

saturation events in a soil profile. 
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Chapter 6 

General Discussion & Conclusions 

6.1 Summary of results and implications for P loss management 

The overall hypothesis for this research was that anaerobic conditions in soils will contribute 

significantly to total annual phosphorus (P) loads in a catchment. Following a literature review, 

four main areas were highlighted as being necessary to investigate in-depth regarding the 

influence of anaerobia and reduction on P release. The main aim of the thesis was to 

investigate and ascertain the importance of P release associated with the reductive dissolution 

of Mn- and Fe-oxides in the soil, and how this might affect overall loads of P being lost to 

waterways. Specific objectives were prepared to individually study this process in three areas: 

in laboratory conditions; in the field at the plot scale; and from the field in discharge. These 

were intended to confirm that the hypothesis that reducing/anaerobic conditions increase P 

release, should be integrated into current critical source area models and used to inform 

develop potential mitigation strategies.  

Objective 1: Quantify the potentially reducible-P component in the lab for a range of stored 

soils  

Models and management to decrease losses increasingly focus on P that is available and 

transported from areas in the landscape that are regularly saturated – and periodically 

anaerobic. However, current models use soil tests conducted in oxic conditions, which may 

not represent anaerobic conditions. The water extractable P (WEP) and sodium-bicarbonate-

dithionite extractable P (Dithionite-P) tests were developed to predict P that is available in the 

short- and long-term, respectively. Using archived soils from New Zealand and Ireland, it was 

confirmed that Anoxic WEP and Dithionite-P varied by soil order and land use, and that Anoxic 

WEP was greater than Oxic WEP, which showed the short-term impact of soil anoxia on P 

release. Fluvisols, Gleysols and Luvisols were found to be particularly enriched in Anoxic WEP 

and Dithionite owing to their periodic saturation.  Models predicting Anoxic WEP and 

Dithionite-P at the 1:50,000 scale in New Zealand found relatively small proportions of 

agricultural land predicted to have Dithionite-P >85 mg kg-1 (31%) or Anoxic WEP > 0.291 mg 

L-1 (3%).  
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Objective 2: Determine if redox reflects changes in P with attention to the time of inundation 

and temperature 

Samples from soil cores taken to approximately 2.5 m depth were analysed for Anoxic WEP 

and Dithionite-P. Vertical distributions of WEP and Dithionite-P concentrations showed that 

the former remained the same with depth, but the latter increased with depth. Therefore, this 

demonstrated disparity between the behaviour of normal WEP and the more potentially-

reducible P represented by Dithionite-P. Three grassland soils (clay, silt and sandy loam 

textures) were saturated and incubated for 24 hours to determine if the mean concentration 

and release rate of dissolved reactive P (DRP) into water was exacerbated by superphosphate 

fertiliser (varying from 10 to 60 kg P ha-1 yr-1), warming temperatures (3 v 18 oC) and anoxia. 

The mean DRP concentration and its rate of release increased with fertiliser application, 

temperature and in two soils, anoxic conditions - commensurate with the depletion of NO3
- 

and the reductive dissolution of Fe and Mn. The enhanced release of P during anoxia was 

complete within 24 hours. The results identify late-winter to spring as the riskiest season for 

P losses owing to wet soil conditions, warmer temperatures, and low soil NO3
- concentrations.  

Objective 3: Observe trends of P  and Fe loss in saturated field conditions through different 

seasons and storm events, and assess the role of redox in loss 

It was hypothesized that single rainfall events in wet winter-spring conditions could cause 

saturation over a fragipan or in a poorly drained soil and cause subsurface P concentrations 

to increase via reductive dissolution. Also, dissolution – being microbially-mediated – would 

be buffered by the presence of NO3
-. Unsaturated zone monitoring from May to September, 

in the years 2017 and 2019, showed that events in July and August in 2017 and 2019 resulted 

in reducing conditions (Fe(III)/sulphate-reducing) and up to 77% and 96% greater P and Fe 

release, respectively. In an additional experiment in 2019, 100-mm of flood irrigation was 

applied, together with 10 mg NO3
—nitrogen (N) as potassium NO3

- and carbon as glucose was 

injected into half the cups at the site. The other cups received no N. Cups treated with N 

yielded up to 0.02 mg L-1 DRP and 0.05 mg L-1 less Fe than the no-N cups. A laboratory 

incubation of soils from the site confirmed that NO3
-inhibited P release.  

Objective 4: Determine the role of redox in connecting P and Fe release in soil water, to 

drainage and runoff through different seasons and storm events. 
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Dissolved reactive phosphorus (DRP) loss from agricultural soil can degrade surface water 

quality. Shallow subsurface pathways can dominate P losses in grassland soils especially in 

wetter months when waterlogging can be common. Subsurface drainage at 1 m and surface 

runoff was collected from four hydrologically isolated plots. Artificial drainage accounted for 

89% of discharge. Water samples were analysed for DRP and redox-sensitive parameters (i.e. 

Fe, Mn, and NO3
-). Simple linear regression and correlation matrices showed positive 

relationships between DRP, Fe and soil moisture excess, and negative relationships between 

these three factors and NO3
- concentrations in drainage.  The data indicate that waterlogging 

and low NO3
- dictate the release of P in drainage, potentially via reductive dissolution. The 

relationship between DRP and metal release was less obvious in surface runoff, as nutrients 

gathered from P-rich topsoil camoflaged redox reactions. Having a high P/low nitrogen 

system, particularly in sites that are prone to waterlogging may exacerbate P release into 

waterways in the future.  

6.2 Implications for P loss management 

6.2.1 Predicting redox-sensitive P loss 

The difference between P released from anoxic and oxic conditions in Chapters 4 and 5 show 

that normal oxic WEP tests are inaccurate for predicting P losses from soils that are often 

saturated. Data from Chapter 4 indicates that there may be a short-term store of redox-

sensitive P (i.e. Anoxic WEP) that is immediately affected by saturation, and a long-term store 

of P (i.e. Dithionite-P) that would be slowly affected by cyclical saturation. Therefore, a better 

estimate of risk may incorporate P availability via Anoxic WEP in the short-term and Dithionite-

P in the long-term. The models presented in Chapter 4 could be used to inform future 

modelling and decision support tools designed to aid management at a catchment scale, 

whether by predicting concentrations using proxy soil tests with moderate confidence (R2 > 

50%), or by conducting the proposed soil tests at the location for better accuracy.  

As the accumulation of Anoxic WEP and Dithionite-P appears to generally relate to soil 

drainage class, it would be important for farm managers to have in-depth knowledge of 

saturated areas and their behaviour throughout the year. However, if management requires 

detailed knowledge of saturated areas it may be worth the additional time and resources to 

measure Anoxic WEP than predict it. Conducting the proposed soil tests is recommended to 

calibrate the model to the specific location to overcome error, if robust data is lacking,  or the 
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scale of the exercise is small/fine (e.g. at the farm scale). Having finer scale data will help to 

improve the isolation of critical source areas of P loss due to saturated conditions and the 

targeting of strategies to mitigate loss. 

6.2.2 Rapidity of reduction reaction 

The incubation experiment in Chapter 5 and 6 shows that an aerobic and anaerobic 

environment can cause differences in DRP release into solution. In the laboratory incubation 

in Chapter 5, the reaction could occur within 60 minutes, and reaction rates plateaued within 

24 hours. In the field experiment in Chapter 6, saturation also caused a significant difference 

in DRP release within 24 hours. Therefore, this suggests that a single rainfall event that 

saturates the soil could cause a reductive dissolution reaction and significant P release into 

solution. Therefore, P loss could occur relatively soon after saturation is reached, and 

anticipated periods of saturation that occur at certain times of year could be highlighted as 

periods of expected P vulnerability.  

6.2.3 Risky periods for P loss 

The findings of this study indicate that high soil profile saturation, low NO3
-, and increased 

temperature induce P release, potentially via reductive dissolution. Without the buffering 

influence of NO3
- in a soil profile, anaerobic conditions caused by inundation could cause a soil 

profile to become Fe- and Mn-reducing and release associated P. Based on the results of the 

incubation (Chapter 5) and field studies (Chapters 6 and 7), the period of greatest risk is likely 

to be when saturation (i.e. anaerobia and reduction) overlaps with increasing temperatures.  

These conclusions identify late winter to spring as risky periods for P loss, due to the 

combination of: existing moisture; warmer temperatures; minimal rainfall quantities required 

to saturate the soil profile; and, NO3
- is likely to be depleted via leaching from the soil. This 

again highlights why it is important to understand where saturation occurs on-site. For 

instance: in typically poorly-drained soils; in low-lying areas where flow from upslope would 

accumulate; or on soils over poorly-permeable layers (e.g. the site used in Chapter 6).  

 Additionally, as redox-sensitive P release is connected to NO3 and saturation, the 

results call into question the safety of accumulated P in riparian zones or buffer areas adjacent 

to water ways. If accumulated P is in a form that is vulnerable in the short term or the long-
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term (e.g. Dithionite-P), this thesis would suggest that buffer areas that have low NO3
- during 

risky periods (i.e. high temperature, low oxygen) may be a potential source of P to waterways.  

6.3 Mitigation 

A year-round strategy to reduce P losses via reductive dissolution would be to decrease Olsen 

P (Morton and Roberts, 1999) and/or switch to a land use or crop types that produces well on 

reduced P availability, such as certain ryegrass cultivars  (McDowell and Cosgrove, 2016). 

The results of Chapters 5 and 6 show that P release may relate to soil N concentrations, 

and that NO3
- can be a buffer for the reductive dissolution of P in a normal agricultural system. 

However, this may not be a reliable mitigation strategy, as the costs of introducing excessive 

N could outweigh the benefits of reducing P. However, future research could involve 

investigating whether there is a N/P ratio optimum to minimise losses overall. 

As spring has been highlighted as a high-risk period, mitigation methods specific to this 

period could also be used to minimise P losses. For instance, land managers could avoid 

grazing or P fertiliser application to saturated soil (Smith et al., 2016), or specifically avoid 

areas that are known to become saturated during this time (e.g. low lying areas or gullies). 

However, this would require good knowledge of the landscape and good farm management. 

For instance, if it is decided animals are to be grazed on a less obviously saturated paddock, it 

is important to know whether this paddock may have direct connectivity to surface water or 

other such characteristics that may represent another conduit for P loss. If the proposed 

equations were developed further and integrated into critical source area models, the models 

would be useful to identify hotspots in the landscape that can be targeted with mitigation 

measures, and areas that are not as risky and could be used during the late-winter to spring 

period. 

If it is viable or economical to do so, artificial drainage systems could be redesigned and 

improved to maximise drainage and avoid saturated conditions. However, such systems could 

end up losing the same load of P by draining a larger amount of dilute water. In order to 

decrease the load effectively systems could be designed to intercept and filter out P in 

drainage water by, for example, lowering the soil P through inversion tillage above the main 

perforated pipe or using a highly P-sorptive backfill (McDowell et al., 2008).  
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6.4 Future Research Priorities 

Based on the presented findings and potential changes, the following future steps are 

recommended; 

6.4.1 Model refinement 

The model presented in Chapter 4 contains errors, and it is recommended that manual testing 

should be conducted using the soil tests presented in that study in order to overcome to error 

or to calibrate the model for better accuracy. It would be beneficial to develop the models for 

Dithionite-P and Anoxic WEP further in order to integrate them into current critical source 

area management models. From this, it would be necessary to establish whether these two 

new tests improve the accuracy of such models. 

6.4.2 Relevance of Dithionite-P and Anoxic WEP 

The importance of Dithionite-P and Anoxic WEP to predictions and losses needs to be explored 

in a range of environments and settings, in order to decrease error and better identify problem 

areas. The importance of soil type on the prediction of Dithionite-P in Chapter 4 and the 

incubations in Chapter 5 showed that soil type, texture and soil chemistry play an important 

role in P vulnerability and Dithionite-P accumulation. Therefore, it would be beneficial to 

expand the investigation to areas such as riparian zones and monitor their release of P at 

different times of the year, and their influence on surface water concentrations.  

6.4.3 Nitrate buffering 

The behaviour of Fe and Mn in relation to N and P fluctuations are not often monitored, so it 

cannot be said whether these studies are examples of NO3
- buffering reductive dissolution. 

Therefore, it is necessary to carry out future experiments using different rates of N, and 

monitor its influence on the reductive dissolution of metal-oxides and associated P. This would 

help to understand and avoid the point at which low N and P enrichment causes saturation, 

reductive dissolution, and loss to P-limited surface waters. Additionally, it would be necessary 

to study the relationship between N and DRP release under a range of soil types, management 

conditions, and environments. This is necessary, as the incubation experiment in Chapter 5 

showed that not all soil textures and chemistries react at the same rate to anaerobic 
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conditions. The outcomes of this could improve knowledge on the consequences of changing 

N management and surpluses and their influence on biogeochemical N cycling.  
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