
Geoderma 401 (2021) 115346

Available online 15 July 2021
0016-7061/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Predicting field capacity in undisturbed stony soils 

Balin B. Robertson a,*, Sam T. Carrick b, Peter C. Almond a, Stephen McNeill b, Veronica Penny b, 
Henry W. Chau a, Carol M.S. Smith a 

a Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647, New Zealand 
b Manaaki Whenua – Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand   

A R T I C L E  I N F O   

Handling Editor: Cristine L.S. Morgan  

Keywords: 
Rock fragment water content 
Field capacity 
Low porosity rock fragments 
Undisturbed stony soil 
Pedotransfer function 

A B S T R A C T   

An increasing number of studies around the world are showing that a long-held assumption that rock fragments 
(RFs) are inert with respect to water retention is incorrect. Yet very few pedotransfer functions (PtFs) account for 
water held by RFs or the effect RFs have on the water retention of the fine earth. The few PtFs that incorporate 
the water content (WC) of RFs have relied upon measurement methods that may not be representative of field 
conditions. This indicates a gap in research regarding the characterisation of the water holding behaviour of 
stony soils in situ using soil volumes that adequately represent the soil. We address this gap in research by 
developing PtFs that predict the field capacity WC of stony soils using soil water storage measurements from 52 
pits excavated into stony soils on the Canterbury Plains, New Zealand. These soils comprise sediment derived 
from a Mesozoic hard sandstone. The soils at each site were watered to saturation, and then after two days of 
drainage (a proxy for field capacity), a 30 × 30 cm pit was excavated in 10 cm increments to a depth of 60 cm. 
Matric potential was measured in situ for each increment, and soil WC was calculated from samples taken back to 
the laboratory. Our results showed it was possible to accurately predict the field capacity WC of stony soils using 
only explanatory variables that could be easily measured or estimated from a minimalistic field survey. An 
existing PtF calibrated on NZ soils (logit PtF), which was constructed on the assumption that RFs had no effect on 
WC at FC other than reducing the volume of the fine earth, performed worse than our models. By modifying the 
logit PtF, we conclude that its poorer performance stems from its inability to account for deviations from 1) the 
matric potential it assumes for field capacity (− 10 kPa), 2) water held by RFs, and 3) the effect of RFs on the 
water retention characteristics of the fine earth. Our results demonstrate that even the low porosity RFs measured 
in this study can significantly affect model performance, but by including two variables (depth and volumetric 
proportion of RFs) that are routinely measured or estimated in most soil sampling projects, it is possible to 
improve prediction accuracy in established models.   

1. Introduction 

Worldwide, there are concerns about rising nutrient concentrations 
in surface and groundwater systems (McDowell et al., 2020). A leading 
source of leached nutrients is agricultural land, which has expanded 
significantly with the global demand for food (McDowell et al., 2020; 
Wu et al., 2014). To mitigate nutrient leaching, more effective land 
management practices operating within an appropriate regulatory 
environment are necessary, making knowledge of soil water and 
nutrient retention properties indispensable. However, soil hydraulic 

properties are costly and time-consuming to measure, making it difficult 
or impossible to provide representative soil hydraulic properties at the 
farm scale, let alone regional and national scales. Therefore, models 
have been developed to provide estimates of soil retention properties 
like field capacity (FC) using more readily available field data (Ver
eecken et al., 1990). When applied to soil mapping units, these models 
(known as pedotransfer functions or PtFs) can be utilised for manage
ment and regulation purposes at the national scale when appropriate 
uncertainty analysis is included (Johnston et al., 2003; Lilburne et al., 
2012). But PtFs for water retention properties often rely on the 

Abbreviations: PtF, pedotransfer function; FC, field capacity; RF, rock fragment; SSA, specific surface area; VWC, volumetric water content. 
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assumption that rock fragments (RFs) in the soil are inert, such that all 
retention estimates are based solely on soil fine earth (<2 mm fraction) 
properties and its volumetric proportion. 

Several studies have demonstrated that RFs can account for a sig
nificant proportion of the water held in a soil (Hanson and Blevins, 
1979; Poesen and Lavee, 1994; Schoeman et al., 1997). For instance, 
Tetegan et al. (2011) found the soil available water content (WC) of a 
horizon containing 30% RFs could be underestimated by 5–33% 
depending on the lithology of the RFs. Similarly, Jones and Graham 
(1993) found large volumes of low porosity granite could hold more 
plant available water than the surrounding fine earth in soils under 
forest. As a result, a potentially significant error could exist for pre
dictions of FC WC in stony soils (soils with over 30–35% RFs by volume), 
which represent large areas of land in many countries, including ~30% 
of Western Europe (Tetegan et al., 2011) and >60% of land in the 
Mediterranean area (Poesen, 1990). This is especially important 
considering PtFs that do not account for RF WC are used in national soil 
information systems (Lilburne et al., 2012; McNeill et al., 2018) and are 
used in digital soil information projects consistent with specifications of 
the GlobalSoilMap initiative (Román Dobarco et al., 2019a; Román 
Dobarco et al., 2019b). For instance, S-Map (the national soil informa
tion system of New Zealand; Lilburne et al., 2012) do not incorporate the 
WC of RFs in FC predictions, even though two-thirds of the irrigated land 
area in one of New Zealand’s most important agricultural region (Can
terbury) is on stony soil (Carrick et al., 2013). The few PtFs that incor
porate the WC of RFs (Cousin et al., 2014; Parajuli et al., 2017; Scheinost 
et al., 1997; Wang et al., 2013) have relied upon measurement methods 
that may not be representative of field conditions: they used small 
sample sizes, relied upon repacked soil, or neglected to include the effect 
RFs may have on fine earth in situ. This indicates a gap in research 
regarding the characterisation of the water holding behaviour of stony 
soils in situ using soil volumes that adequately represent the soil. 

This paper aims to develop PtFs that incorporate characteristics of 
the skeletal material in soils, and thus implicitly account for water held 
by RFs. We use variables that may reasonably be expected to affect the 
response variable, for example, depth (Minasny et al., 2016; Szabó et al., 
2021), carbon (Moreno et al., 2014) and bulk density (Pollacco, 2008). 
There are also variables that have not been described in the literature as 
predictor variables for water retention but might reasonably be expected 
to have an association such as phosphate retention (as a proxy for soil 
weathering and structural development, Hewitt, 2010; Saunders, 1965), 
geomorphic surface age (as a proxy for post-depositional soil develop
ment processes acting over time, Robertson et al., 2021a), total nitrogen 
(as a proxy for organic matter, Cotrufo et al., 2019, and as a global soil 
map attribute) and irrigation treatment (due to its effect on soil carbon 
and soil physical attributes, Drewry et al., 2021; Mudge et al., 2021). 
The combined effect of all these variables is unknown and is therefore 
another novel aspect of this paper. The PtFs are calibrated on data 
derived from representative elementary volumes of stony soils in situ on 
alluvial fans in Canterbury, New Zealand. To develop better PtFs for FC 
in stony soils worldwide, we identify variables that have predictive 
value and are easy to measure. We then use them to augment the logit 
model of McNeill et al. (2018) to demonstrate how they may improve 
model performance in stony soils. 

2. Materials and methods 

2.1. Soil data 

The soil data used to develop the FC PtFs was sourced from Rob
ertson et al. (2021a) and Robertson et al. (2021b). Data from these 
studies are derived from 52 soil pits located throughout the Canterbury 
Plains of New Zealand. The Plains are approximately 180 km long and 
70 km at their widest and consists of geomorphic surfaces of latest 
Pleistocene and Holocene age. The Plains have been built of coalescing 
aggrading Pleistocene glacial outwash fans constructed by large rivers 

sourced in the Southern Alps. The large rivers are now entrenched 
within the Pleistocene fans to form inset fans of Holocene age. Most of 
the soils on the Canterbury Plains are shallow stony soils (Carrick et al., 
2013) comprising RFs of indurated muddy fine sandstone (greywacke) 
of the Rakaia terrane (Coates and Cox, 2002; Forsyth et al., 2008). On 
the late Pleistocene surfaces, Pallic and Brown soils dominate, while 
Holocene surfaces are dominated by Recent soils in the NZ Soil Classi
fication (Hewitt, 2010). The stony soils of the Canterbury Plains include 
Firm Brown Soils (Dystrudepts and Dystrustepts) and Fluvial Recent 
Soils (Fluvents and Ustepts). 

We adopt Webb and Lilburne’s (2011) definition of stony soils as 
applied at the family level (level 4) of the NZ Soil Classification; spe
cifically, soils with >35% rock fragments by volume within 45 cm of the 
soil surface. This definition is comparable to soil families of the USDA 
Soil Taxonomy system with the skeletal or fragmental particle sizes 
classes; or taxa having the skeletic soil qualifier for the second-level 
units of the WRB (IUSS Working Group WRB, 2015). 

The 52 soil pits spanned 24 sites on land under pasture for at least 
three years and were predominately grazed by dairy cattle. At each site, 
a minimum of two pits were sampled. One pit was under spray irrigation 
for at least two years, while the other pit was in the same paddock but in 
soil that had never been irrigated (e.g. in the corner of a paddock outside 
the arc of a centre pivot irrigator). For each sampling location, the soil 
was first wet-up by applying >100 mm from a bespoke trickle irrigation 
system designed to wet a local area. The soil was allowed to drain for 
two days, which was used as a proxy for FC. A 30 cm by 30 cm pit was 
then excavated in 10 cm increments to a depth of 60 cm. The soil profile 
was then described according to the terminology of Milne et al. (1995) 
and classified to the subgroup level of the New Zealand Soil Classifica
tion according to Hewitt (2010). Each increment was equal to ~9000 
cm3, a volume that Novák and Hlaváčiková (2019) suggest is a repre
sentative elementary volume for measuring hydraulic properties in 
stony soils with gravels (2–75 mm RFs). The volume of each increment 
was determined using the pit and bead method (Hedley et al., 2012). 
After each increment was excavated, matric potential was measured by 
inserting a UMS T5 pressure transducer tensiometer horizontally into 
the pit wall, as described in Robertson et al. (2021a). Excavated material 
from each increment was then analysed following the process outlined 
in Robertson et al. (2021b) to determine a suite of attributes: the whole 
soil and fine earth bulk density; the volumetric proportion of fine earth 
(<2 mm) and RFs (>2mm); RF size distribution; WC of whole soil and 
fine earth. A subsample of <2 mm fine earth material was used for 
particle size analysis (Claydon, 1989), particle density (Gradwell and 
Birrell, 1972), specific surface area of the fine earth (Kirschbaum et al., 
2020), WC of the fine earth at − 1500 kPa (Gradwell and Birrell, 1972), 
phosphate retention (Saunders, 1965), total nitrogen (Leco, 2003) and 
organic carbon (Leco, 2003). 

Some manipulation of raw data was required prior to statistical an
alyses. Because the proportion of sand (psand), silt (psilt), and clay (pclay) in 
the fine earth form a ternary simplex, a structural correlation exists 
(McNeill et al., 2018). As a result, conditions that may only affect clay 
for instance, will have an apparent statistical effect on sand and silt even 
though no functional relationship is present, as changes to one fraction 
alter the other two. For computational convenience, texture proportions 
were transformed to a Cartesian system as this generally reduces the 
apparent correlation between texture fractions by removing the struc
tural correlation component. As per the method used by McNeill et al. 
(2018) and Cornell (1981), the texture proportions were transformed to 
a Cartesian system by generating two auxiliary variables as follows, 

ω1 = 2psand − psilt − pclay (1)  

ω2 = psilt − pclay (2) 

The data set was also censored according to relative errors in data 
values. Many of the variables used for model development are derived 
from calculations on primary variables, with inherent uncertainty. 
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Those uncertainties compound and grow in relative magnitude, espe
cially where subtractions and divisions are involved. We quantified the 
magnitude of errors, both absolute and relative, by applying Gaussian 
error propagation (refer to Supplementary file). Increments were 

removed if the relative error for an increment’s fine earth VWC, fine 
earth bulk density or total porosity was >25%. As the New Zealand Soil 
Classification Order (top level of the NZSC, Hewitt, 2010) was used as an 
explanatory variable, increments from soils belonging to rare soil orders 
(Pallic (2 pits) and Gley (2 pits)) were excluded. The texture group of a 
soil was also an explanatory variable, making it necessary to remove 
increments from the rare clayey texture group (4 increments). The 
resulting dataset had 230 measured increments. 

2.2. Statistical modelling 

For modelling purposes, the dataset was randomly split 70:30 into 
training and validation datasets, respectively. Two multiple linear 
regression models to predict total FC WC (matrix plus RFs) were con
structed in R version 4.0.2 (R Core Team, 2016) using different combi
nations of independent variables (Table 1). 

These models constituted PtFs referred to as an optimal and a prac
tical PtF (Fig. 1). The optimal PtF included all the explanatory variables 
measured in the experiment and was developed as a standard to 
compare the relative accuracy of the other models. The practical model 
used explanatory variables that could be easily measured or estimated 
from a minimalistic field survey. The explanatory set of variables for 
each model (PtF) was refined by selecting only significant variables 
according to a backwards selection process based on finding the model 
with the lowest Akaike information criterion value (AIC). This method 
of development is commonly found in modelling literature (Burnham 
and Anderson, 2002). 

2.3. An existing New Zealand PtF 

To quantify the value of implicitly accounting for the effects of RFs 
on soil water retention we sought a model that considered the fine earth 
only, which we could apply to our data to compare predictions against. 
McNeill et al. (2018) developed PtFs calibrated on NZ soil data to predict 
soil water retention when evaluating modelling methods for NZ’s S-Map 

Table 1 
Variables used in initial models for PtF development.  

Optimal PtF Practical PtF 

Soil order Soil order 
Irrigation treatment (irrigated, dryland) Irrigation treatment (irrigated, dryland) 
Geomorphic surface age* Geomorphic surface age* 
Depth# Depth# 

Measured FC matric potential Texture class^ 

Phosphate retention Texture group~ 

Total nitrogen Specific surface area 
Organic carbon Proportion of vol. that is RFs 
Total porosity Proportion of vol. that is 2–6 mm RFs 
Particle density Proportion of vol. that is 6–20 mm RFs 
− 1500 kPa WC Proportion of vol. that is 20–60 mm RFs 
Texture class^ Proportion of vol. that is >60 mm RFs 
Texture group~  

ω1   

ω2   

Specific surface area  
Proportion of vol. that is RFs  
Proportion of vol. that is 2–6 mm RFs  
Proportion of vol. that is 6–20 mm RFs  
Proportion of vol. that is 20–60 mm RFs  
Proportion of vol. that is >60 mm RFs  
ρb

+

ρ<2
-    

* Pleistocene, Holocene and Pleistocene to Holocene. 
# The depth increment at which variables were measured, such as 0-10 cm, 

10-20 cm and 50-60 cm. 
^ Such as sand, silt loam and loamy clay. 
~ Namely, sandy, loamy, silty and clayey texture groups. 
+ Whole soil bulk density. 
- Fine earth bulk density. 

Raw dataset 

Refined dataset 

Training dataset Validation dataset 

Optimal PtF Practical PtF 

Censor data using Gaussian 
error propagation method 

Randomly select 
70% of dataset 

Randomly select 
30% of dataset 

Refine # of variables  
using the AIC 

Refine # of variables  
using the AIC 

Validate model 

Fit a multiple linear regression  
with 12 variables 

Fit a multiple linear regression  
with 23 variables 

Fig. 1. Schematic methodology of practical and optimal PtF optimisation and validation.  
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spatial soil information system. They concluded a logit-transformation 
model (logit PtF) had the lowest RMSE estimates and was the most 
stable, so we compared our results directly with output from that PtF. 

The logit PtF was derived from eight explanatory variables, namely, 
soil order (top level of the NZSC, Hewitt, 2010), natural soil drainage, 
rock class of the fine earth, two auxiliary texture variables (ω1 and ω2), 
ped size, a topsoil identifier, tephra descriptor and consistence (for more 
information on variables see Milne et al., 1995; Webb and Lilburne, 
2011). Interactions were permitted for the topsoil identifier and the two 
auxiliary texture variables. 

Unlike the PtFs developed in this paper (the optimal and practical 
PtFs), the logit PtF was able to predict the water release curve of the fine 
earth (from 0 kPa to − 1500 kPa). This was achieved by first fitting the 

logit transformed WC at − 1500 kPa, logit(θ1500kPa), using a linear model, 

logit(θ1500kPa) = f (⋯)+ ε (3) 

where f(⋯) is the linear function of the explanatory variables defined 
above and ε is the uncertainty, which is assumed to be Gaussian 
distributed. The explanatory set of variables was optimised using the 
AIC. The difference in WC between matric potentials (Δ) was then used 
as the response variable for another six PtFs: 

Δ1 =
logit(θ100kPa) − logit(θ1500kPa)

1 − logit(θ1500kPa)
= f (⋯)+ ε (4)  

Δ2 =
logit(θ40kPa) − logit(θ100kPa)

1 − logit(θ100kPa)
= f (⋯)+ ε (5) 

Raw dataset 

Refined dataset 

Training dataset Validation dataset 

Logit3 PtF 

Censor data using Gaussian 
error propagation method 

Randomly select 
70% of dataset 

Randomly select 
30% of dataset 

Validate model 

Fit a multiple linear regression 
using the water content estimate  
from the Logit PtF, depth and the  

volumetric proportion of RFs as variables 

Logit PtF 

Run the Logit PtF at the matric  
potential observed in the  
field at time of sampling 

Logit2 PtF 

Run Logit PtF 

Fig. 2. Schematic methodology of the optimisation of the Logit3 PtF and the validation of the Logit, Logit2 and Logit3 models.  

Fig. 3. Soil texture diagram displaying textures for each increment in the training dataset (left) compared to those of the validation dataset (right).  
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Δ3 =
logit(θ20kPa) − logit(θ40kPa)

1 − logit(θ40kPa)
= f (⋯)+ ε (6)  Δ4 =

logit(θ10kPa) − logit(θ20kPa)

1 − logit(θ20kPa)
= f (⋯)+ ε (7)  

Table 2 
Descriptive statistics for training and validation databases.    

Training data set Validation data set   

Min Median Mean SE Max Min Median Mean SE Max 

Clay %  1.00  20.0  17.9  0.68  34.0  2.00  21.0  17.5  1.02  32.0 
Silt %  0.00  46.0  40.5  1.52  67.0  4.00  46.0  40.6  2.20  67.0 
Sand %  11.0  29.0  41.7  2.07  96.0  11.0  34.0  41.9  3.07  93.0 
Prop. RF by vol. %  0.00  33.0  35.5  0.02  78.8  0.00  43.1  39.5  0.03  83.2 
Carbon %  0.21  1.88  2.11  0.10  5.15  0.26  1.58  1.97  0.14  4.98 
-Topsoil~ 1.97  3.90  3.68  0.18  5.15  1.62  3.57  3.52  0.32  4.98 
-Subsoil> 0.21  1.17  1.20  0.08  3.30  0.26  1.24  1.26  0.10  2.95 
ρb  *  1.13  1.74  1.77  0.03  2.41  1.16  1.89  1.82  0.04  2.43 
FC VWC ^  0.02  0.25  0.24  0.01  0.44  0.04  0.21  0.22  0.01  0.47  

* Mg m− 3. 
^ m3 m− 3. 
~ Average carbon (%) in 0–20 cm increments. 
> Average carbon (%) in 20–60 cm increments. 

Table 3 
Multiple linear regression results for the optimal PtF.  

Coefficients Estimate Std Error t-value Pr(>|t|)  

(Intercept) 1.15 7.29E-01  1.58  0.116  
Depth 10–20 cm − 2.12E-02  6.07E-03  − 3.50 6.29E-04 ***  

20–30 cm − 2.49E-02  8.25E-03  − 3.02 3.01E-03 **  
30–40 cm − 2.62E-02  1.01E-02  − 2.59 0.0107 *  
40–50 cm − 2.34E-02  1.11E-02  − 2.11 0.0363 *  
50–60 cm − 2.13E-02  1.19E-02  − 1.79 0.0750 . 

Particle.density 5.61E-01 2.37E-01  2.37  0.0194 * 
Total.N 3.26E-01 4.46E-02  7.30  1.84E-11 *** 
Total.porosity − 2.55 1.293528  − 1.97  0.0504 . 
Phosphate.retention 9.32E-04 1.53E-04  6.10  9.3E-09 *** 
Fine.earth.bulk.density − 0.958 4.86E-01  − 1.97  0.0509 . 
Whole.soil.bulk.density 1.44E-01 3.30E-02  4.35  2.54E-05 *** 
Vol.proportion.RFs − 4.74E-01 4.31E-02  − 11.0  8.87E-21 *** 
15.bar.WC 1.23E-03 3.42E-04  3.60  4.42E-04 *** 
Treatment.irrigated 1.13E-02 3.33E-03  3.39  9.12E-04 *** 
ω1 − 3.28E-04 4.33E-05  − 7.58  3.87E-12 *** 
Geomorphic surface Pleistocene − 2.41E-02  5.31E-03  − 4.54 1.18E-05 ***  

Pleistocene to Holocene − 1.55E-02  9.34E-03  − 1.66 0.0987 . 
Residual standard error: 0.01918 on 143 degrees of freedom  
Multiple R-squared: 0.9783, Adjusted R-squared: 0.9757  
F-statistic: 379.4 on 17 and 143 DF, p-value: <2.2e-16  
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   

Table 4 
Multiple linear regression results for the practical PtF.  

Coefficients  Estimate Std Error t-value Pr(>|t|)  

(Intercept) 0.320 1.37E-02  23.3 1.78E-51 *** 
Depth 10–20 cm − 0.0120  6.80E-03 − 1.76 0.0798 .  

20–30 cm − 0.0321  7.70E-03 − 4.17 5.26E-05 ***  
30–40 cm − 0.0344  8.74E-03 − 3.93 1.30E-04 ***  
40–50 cm − 0.0451  1.03E-02 − 4.37 2.34E-05 ***  
50–60 cm − 0.0530  1.09E-02 − 4.88 2.74E-06 *** 

Vol.proportion.RFs − 0.307 1.34E-02  − 23.0 1.29E-50 *** 
Treatment.irrigated 0.0124 4.41E-03  2.82 5.44E-03 ** 
SSA 0.00141 2.12E-04  6.64 5.6E-10 *** 
Geomorphic surface Pleistocene − 0.0132  6.10E-03 − 2.16 3.24E-02 *  

Pleistocene to Holocene − 0.00688  1.29E-02 − 0.533 0.595  
Texture.group Sandy − 0.0363  7.83E-03 − 4.64 7.61E-06 ***  

Silty 0.0164  8.20E-03 2.00 0.0470 * 
Residual standard error: 0.02672 on 148 degrees of freedom  
Multiple R-squared: 0.9564, Adjusted R-squared: 0.9529  
F-statistic: 270.8 on 12 and 148 DF, p-value: <2.2e-16  
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   
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Δ5 =
logit(θ5kPa) − logit(θ10kPa)

1 − logit(θ10kPa)
= f (⋯)+ ε (8)  

Δ6 =
logit(θ0kPa) − logit(θ5kPa)

1 − logit(θ5kPa)
= f (⋯)+ ε (9)  

where f(⋯) is the same linear function as for the logit(θ1500kPa) and each 
set of explanatory variables was optimised using the AIC (Appendix A). 
Collectively, the 7 models span the water release curve and will 
collectively be referred to as the logit PtF. 

In the logit PtF, the WC of a stony soil is estimated as the predicted 
WC of the fine earth scaled on a volumetric basis by the concentration of 
RFs (McNeill et al., 2018). Thus, it does not take account of the water 
held in RFs or the effect of RFs on the water retention of the fine earth. 
For example, when estimating FC WC, the logit PtF predicts the volu
metric WC (VWC) of the fine earth only at a default FC matric potential 
of − 10 kPa (θ10kPa). The FC VWC of stony soils (θFCstony) is then estimated 
by adjusting θ10kPa by the volume proportion of RFs in an increment (χ), 
which are considered inert; 

θFCstony = θ10kPa(1 − χ) (10) 

To explore the limitations and avenues for improvement of the logit 
PtF, we generated two variants, logit2 and logit3. Logit2 was essentially 
the same statistical model as the logit PtF but evaluated at the matric 
potential observed in the field at the time of sampling (θFC) instead of 
− 10 kPa (Fig. 2). This model could never be used in practice because 
matric potential at field capacity is rarely going to be available. Logit3 
was a new linear regression model, which incorporated the logit- 
predicted WC plus two variables that were identified as significant to 
FC predictions in our practical model, namely increment depth (z) and 
the volume proportion of RFs. The significance of the two variables was 
determined by a variable scaling procedure, which is explained in more 
detail in the Comparing models section. The model was calibrated using 
70% of the measured data like the optimal and practical PtFs (Fig. 2). 

2.4. Comparing models 

The five models were compared by using the validation dataset. Each 
of the models were used to predict the whole soil FC VWC of the vali
dation dataset and were then ranked using the mean bias, mean absolute 
error (MAE) and the root mean square error (RMSE) of predictions. As 
per McNeill et al. (2018), distributions of the three error measures above 

Table 5 
Multiple linear regression results for the logit3 PtF.  

Coefficients  Estimate Std Error t-value Pr(>|t|)  

(Intercept) 0.193 2.04E-02  9.49 4.4E-17 *** 
logit.prediction 0.520 4.97E-02  10.5 1.21E-19 *** 
Depth 10–20 cm − 0.0179  7.14E-03 − 2.51 0.0132 *  

20–30 cm − 0.0281  8.08E-03 − 3.48 6.57E-04 ***  
30–40 cm − 0.0292  9.47E-03 − 3.08 2.45E-03 **  
40–50 cm − 0.0420  1.10E-02 − 3.82 1.93E-04 ***  
50–60 cm − 0.0432  1.21E-02 − 3.56 4.98E-04 *** 

Vol.proportion.RFs − 0.244 1.44E-02  − 16.9 6.17E-37 *** 
Residual standard error: 0.02889 on 153 degrees of freedom  
Multiple R-squared: 0.9474, Adjusted R-squared: 0.945  
F-statistic: 393.5 on 7 and 153 DF, p-value: <2.2e-16  
Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   

Fig. 4. Density plots of the root mean square error for the five regression models for FC WC. Ranked in order of lowest to highest bias, the PtFs follow the sequence: 
optimal, practical, logit3, logit2, and logit. The mean bias for all but the logit PtF were within ±0.01 m3/m3 of 0, showing the PtFs had no substantial positive or 
negative biases overall. The 0.027 bias of the logit PtF indicates a pattern of underestimation. 

Table 6 
Model performance based on the means of error measure distributions obtained 
from bootstrap sampling.   

Order Bias RMSE MAE 

Optimal PtF 1  0.0001  0.020  0.016 
Practical PtF 2  0.001  0.026  0.021 
Logit3 PtF 3  0.0016  0.029  0.023 
Logit2 PtF 4  0.006  0.045  0.038 
Logit PtF 5  0.027  0.043  0.036  
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were made by bootstrap sampling the training data. An error estimate (e. 
g. RMSE) was derived using the validation dataset for each bootstrap, 
resulting in a distribution of each error measure. This analysis was used 
because the distributions indicate the likely range of error as a result of 
all possible training data, as opposed to the more limited information 
derived from the more commonly used single-value estimates of error. 

To understand variation in model performance and to identify the 
influential variables (which were incorporated in the logit3 model), the 
“standardised” function in R was also used to centre all the model var
iables and scale by the standard deviation. Following this scaling pro
cedure, the size of the coefficients can be used as a direct measure of 
relative importance – large coefficients indicate strong influence, and 
small coefficients indicate weak influence. 

3. Results and discussion 

3.1. Descriptive statistics 

Descriptive statistics of soil properties were similar between the 
training and validation datasets (Fig. 3, Table 2). 

Soil textures fell within 6 of the 11 soil texture classes used by the 
NZSC (Milne et al., 1995). There were no samples in the clay, loamy 
clay, silt, sandy clay loam or silty clay textures. Textural distribution was 
biased toward the sand and silt-dominated textures with silt loam rep
resenting ~50% of the dataset (Table 2). Distributions of soil variables 
remained similar between training and validation datasets (Table 2), so 
the changes in variables with depth will now be described as an average 
of the two datasets. On average, the volume of RFs accounted for <15% 
of the total soil volume in the 0–10 cm increment, but >60% for the 
40–50 cm and 50–60 cm increments. Whole soil bulk density increased 
from an average of 1.37 g cm− 3 in the 0–10 cm increment to 2.04 g cm− 3 

in the 50–60 cm increment. As expected, the average organic carbon 
content decreased with depth from 3.6% in the topsoil to 1.2% in the 
subsoil (Table 2), while the FC VWC of the whole soil decreased from 
0.35 in the 0–10 cm increment, to 0.09 in the 50–60 cm increment. 
Brown Soils were the dominant soil order, accounting for ~60% of the 
total dataset, while Recent Soils accounted for ~40%. Pits were 
distributed over two geomorphic surfaces: ~79% were on Late Pleisto
cene glacial outwash, ~17% were on Holocene alluvial deposits and 
~5% were on Late Pleistocene to Holocene alluvial deposits. 

3.2. Model structures and performance 

The optimal PtF had an R2 = 0.98 and included 12 of 23 variables 
once those that did not minimise the AIC were removed (Table 3). 

The practical PtF, generated from 12 pre-selected, easily measured 
soil variables, had an R2 of 0.95 and retained 6 of 12 variables after the 
AIC was applied (Table 4). 

The logit and logit2 PtFs are established models that did not require 
model formulation and thus no regression results are presented. The 
logit3 PtF, generated from three variables, had an R2 of 0.95 and 
retained all three variables after the AIC was applied (Table 5). 

The five PtFs produced distinct distributions of RMSE (Fig. 4), bias 
and MAE (Table 6) when applied to the validation dataset. 

3.3. Is less more? predicting FC WC with field survey variables 

Despite displaying the best performance, the relative improvement 
of the optimal model in comparison to the practical model is only 
modest considering the increase in explanatory variables. We expected 
the optimal model would perform much better considering the practical 
model does not include a number of variables commonly associated with 

Fig. 5. Correlations between soil variables (carbon, matric potential, particle density and total nitrogen) and depth. Note, data points within each increment have 
had slight adjustments to their depth to aid readability. 
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predicting soil VWC, such as carbon, bulk density (whole soil or fine 
earth) or even continuous measures of texture (i.e. proportion sand, silt 
or clay) (Mohamed and Ali, 2006; Ostovari et al., 2015; Pollacco, 2008; 
Román Dobarco et al., 2019b; Santra et al., 2018). Regardless of the 
absence of these ‘standard’ variables, the RMSE of the practical PtF 
(0.026 m3/m3) is still low when compared to the logit PtF or the per
formance of other PtFs in the literature, which commonly predict FC 
with RMSE > 0.04 m3/m3 (Ostovari et al., 2015; Pollacco, 2008; Román 
Dobarco et al., 2019b). 

Using the “standardised” scaling procedure in R, it was found that the 
proportion of RFs, geomorphic surface and total nitrogen content were 
the most influential variables in the optimal PtF (Appendix B), while the 
practical model was mostly influenced by the proportion of RFs and 
depth (Appendix C). The depth variable in the practical model was 
correlated with a number of variables found in the optimal PtF (such as 
total nitrogen and particle density) as seen in Fig. 5. As such, depth may 
act as a proxy for several other variables, allowing the practical model to 
predict accurately even with a limited number of variables. These results 
are consistent with international literature that have also found depth to 
be a significant explanatory variable for many soil properties including 
soil carbon, texture, soil development and solute transport (Fontaine 
et al., 2007; Minasny et al., 2016; Vasques et al., 2010). 

3.4. Do RFs affect prediction accuracy? a review of logit and logit2 
performance 

The average error for whole soil VWC showed logit predictions were 
underestimates at all depths, while the logit2 predictions were more 
evenly distributed around a mean error of 0 (Fig. 6A and 6B). To un
derstand the cause of this bias, the logit and logit2 predicted fine earth 
WCs were compared to the measured fine earth WC. The measured fine 

earth WC was greater than the logit predictions in all but the 50–60 cm 
increment (Fig. 6C). Alternatively, logit2 predictions of fine earth WC 
generally exceeded measured fine earth WC at all depths except the 
20–40 cm increments (Fig. 6D). 

These results demonstrate that on average, logit underestimates the 
WC of the fine earth, while logit2 maintains a near-zero bias in the 0–40 
cm increments with substantial overestimation in the 40–60 cm in
crements. However, as logit2 considers RFs to be inert (when they in fact 
hold water; Robertson et al, 2021b), bias in total WC predictions tends 
towards zero or underestimation. For instance, in the 50–60 cm incre
ment, logit2 (which takes into account actual matric potential) over
estimates fine earth WC by 0.09 m3 m− 3 on average, but total WC is 
overestimated by only 0.007 m3 m− 3. By chance, the greater over
estimation of fine earth WC by logit2 better compensates for the 
neglected WC of RFs in the 40–60 cm increments, resulting in logit2 
having a lower average error compared to the logit PtF when predicting 
the whole soil WC. 

3.5. How to calibrate the logit PtF to alluvial stony soils; identifying 
variables with predictive value 

The inclusion of depth and RF proportion variables in logit3 sub
stantially improved model performance in comparison to logit, with 
logit3 demonstrating a similar accuracy to the practical model (Fig. 7). 
Model performance may have improved because depth acts as a proxy 
for several variables as discussed previously (Fig. 5). Furthermore, 
including RF proportion as a predictor variable may capture the influ
ence of the WC of the RFs, as well as the indirect effects RFs have on 
water retention of the fine earth, by way of changes to soil properties 
such as fine earth bulk density (Gargiulo et al., 2016; Shi et al., 2012) or 
carbon content (Bornemann et al., 2011; Schiedung et al., 2017). 

Fig. 6. Difference between logit predictions and measured values for fine earth and total VWC. Blue line depicts zero error, red dots are the average error for an 
increment. Note, data points within each increment have had slight adjustments to their depth to aid readability. 
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There remains only three variables in the practical model (SSA, 
irrigation treatment and age of geomorphic surface) that are absent in 
logit3, which could explain the model’s lower performance when 
compared to the practical PtF. When SSA was added to the logit3 PtF, 
the performance of the model was not notably different to the practical 
PtF. The SSA is a metric that may relate grain-scale properties to macro- 
scale physical and chemical properties of a porous medium (Petersen 
et al., 1996). Accordingly, Hillel (1980) suggested that SSA may become 
a more pertinent index for characterising a soil than the proportions of 
sand, silt and clay. Currently, SSA is more commonly used for deter
mining soil WC at low matric potentials (Arthur et al., 2013; Chang and 
Cheng, 2018; Resurreccion et al., 2011), although our results suggest it 
could be relevant to FC estimates as well. In contrast, Petersen et al. 
(1996) found that SSA did not relate well with the WC at − 10 kPa; 
however, they used different methods to estimate SSA, which can cause 
widely different results (de Jong, 1999; Petersen et al., 1996). 

3.6. Implications and future work 

Assuming RFs do not hold water or have no effect on water retention 
of the fine earth leads to non-negligible, systematic error in soil water 
storage estimates, as demonstrated by the performance of the logit PtF. 
Importantly, our results show that even low porosity greywacke (with a 
FC volumetric WC of 0.03–0.06, Robertson et al., 2021b) can have a 
substantial effect on prediction accuracy. Considering RFs besides 
greywacke can have FC WC of 0.20–0.67 cm3 cm− 3 (Gillespie, 2020; 
Schoeman et al., 1997; Tetegan et al., 2011), our results indicate the 
potentially significant error in current modelling methods that are used 
internationally (Román Dobarco et al., 2019a; Román Dobarco et al., 
2019b). 

We have identified depth and the volume proportion of RFs as 
important variables for reducing error when predicting FC WC of stony 

soils. Our results have potentially significant implications for developing 
better stony soil PtFs worldwide, as these variables are easy to measure 
(or estimate) and are either already a part of national and international 
datasets (Lilburne et al., 2012; Ribeiro et al., 2018; Shangguan et al., 
2013), or are soon to be as part of the specifications for the Global
SoilMap initiative (Arrouays et al., 2014). However, further research is 
required to determine the importance of these variables in stony soils 
formed in depositional settings contrasting to those of our study. For 
instance, the significant influence of depth we found may disappear 
where stony soils are formed in diamicts such as debris flows or glacial 
till. Similarly, the influence of the volumetric proportion of RFs is likely 
to vary with soil moisture content, RF lithology and weathering (Poesen 
and Lavee, 1994; Tetegan et al., 2011), requiring different calibrations 
for each. Further questions also exist around how this RF parameter
isation interacts with predicting other soil water processes such as 
evapotranspiration, root water uptake and macropore/bypass flow. 
Results also indicate the potential for SSA as a useful predictor, espe
cially as it is both cheap and quick to determine. Finally, our practical 
model offers an accurate method for predicting FC using information 
derived from a minimalistic field survey; however, to be used routinely 
in an operational way, the model needs to be tested using field-based 
assessments of soil texture and RF abundance instead of the lab 
measured values used in this study. 

4. Conclusions 

Results of this study demonstrate that hard sandstone RFs in Can
terbury stony soils are not inert and can in fact cause significant error in 
FC WC predictions when the water held by RFs is not implicitly 
accounted for. However, the practical PtF we derived demonstrates that 
it is possible to accurately predict FC WC in stony soils, while only using 
explanatory variables that could be easily measured or estimated from a 

Fig. 7. Predicted total FC WC as a function of measured total FC WC.  
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minimalistic field survey. This model also indicated the potential of SSA 
as an explanatory variable that is quick and cheap to determine. The 
logit model did not account for RF WC and tended to underestimate fine 
earth WC, resulting in a substantial bias in predictions for increments 
with high and low RF content. Alternatively, logit2 tended to over
estimate fine earth WC in the lower increments, which by chance 
compensated for the neglected WC of RFs in the 40–60 cm increments, 
resulting in logit2 having a near-zero bias on average. However, incor
porating depth and volumetric proportion of RFs as explanatory vari
ables substantially improved prediction accuracy as demonstrated by 
the logit3 PtF. Our findings could have significant implications for the 
modelling of FC WC worldwide, as the effect of RFs (even those with 
much greater porosity than those measured in this study) are not 
currently accounted for in most PtFs. But, by including two variables 
(depth and volume proportion of RFs) that are already measured or 
estimated in most soil sampling projects, WC predictions may be 
significantly improved in stony soils. However, research must be 
repeated in soils that are not of alluvial origin and with RFs of varying 
weathering and lithology, to determine if the depth and the proportion 
of RFs remain important predictor variables. 
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Szabó, B., Weynants, M., Weber, T.K.D., 2021. Updated European hydraulic pedotransfer 
functions with communicated uncertainties in the predicted variables (euptfv2). 
Geosci. Model Dev. 14 (1), 151–175. https://doi.org/10.5194/gmd-14-151-2021. 

Tetegan, M., Nicoullaud, B., Baize, D., Bouthier, A., Cousin, I., 2011. The contribution of 
rock fragments to the available water content of stony soils: proposition of new 
pedotransfer functions. Geoderma 165 (1), 40–49. https://doi.org/10.1016/j. 
geoderma.2011.07.001. 

Vasques, G.M., Grunwald, S., Comerford, N.B., Sickman, J.O., 2010. Regional modelling 
of soil carbon at multiple depths within a subtropical watershed. Geoderma 156 (3), 
326–336. https://doi.org/10.1016/j.geoderma.2010.03.002. 

Vereecken, H., Maes, J., Feyen, J., 1990. Estimating unsaturated hydraulic conductivity 
from easily measured soil properties. Soil Sci. 149 (1), 1–12. https://doi.org/ 
10.1016/0016-7061(95)92543-X. 

Wang, H., Xiao, B., Wang, M., Shao, M., Chen, H.Y.H., 2013. Modeling the soil water 
retention curves of soil-gravel mixtures with regression method on the loess plateau 
of China. PLoS ONE 8 (3), e59475. https://doi.org/10.1371/journal.pone.0059475. 

Webb, T.H., Lilburne, L.R., 2011. Criteria for Defining the Soil Family and Soil Sibling: 
the Fourth and Fifth Categories of the New Zealand Soil Classification. Landcare 
Research Science Series No. 3. Manaaki Whenua Press, Lincoln, New Zealand. 

Wu, W.-B., Yu, Q.-Y., Peter, V.H., You, L.-Z., Yang, P., Tang, H.-J., 2014. How could 
agricultural land systems contribute to raise food production under global change? 
J. Integr. Agric. 13 (7), 1432–1442. https://doi.org/10.1016/S2095-3119(14) 
60819-4. 

B.B. Robertson et al.                                                                                                                                                                                                                           

https://doi.org/10.1080/15324982.2015.1029649
https://doi.org/10.1080/15324982.2015.1029649
https://doi.org/10.1016/j.agrformet.2017.05.013
https://doi.org/10.1016/j.agrformet.2017.05.013
https://doi.org/10.1097/00010694-199601000-00003
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0195
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0195
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0195
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0195
https://doi.org/10.1016/0341-8162(94)90050-7
https://doi.org/10.4141/CJSS07120
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0210
http://refhub.elsevier.com/S0016-7061(21)00426-2/h0210
https://doi.org/10.1029/2010wr010229
https://doi.org/10.1016/j.geoderma.2021.114978
https://doi.org/10.1016/j.geoderma.2021.114978
https://doi.org/10.1016/j.geoderma.2020.114912
https://doi.org/10.1016/j.geoderma.2020.114912
https://doi.org/10.1016/j.geoderma.2019.02.036
https://doi.org/10.1016/j.geoderma.2019.02.036
https://doi.org/10.1016/j.geoderma.2018.08.022
https://doi.org/10.1016/j.geoderma.2018.08.022
https://doi.org/10.1007/s12040-018-0937-0
https://doi.org/10.1080/00288233.1965.10420021
https://doi.org/10.1016/S0016-7061(97)00046-3
https://doi.org/10.1016/S0016-7061(97)00046-3
https://doi.org/10.1016/j.geoderma.2017.05.006
https://doi.org/10.1080/02571862.1997.10635089
https://doi.org/10.1002/jame.v5.210.1002/jame.20026
https://doi.org/10.1002/jame.v5.210.1002/jame.20026
https://doi.org/10.5897/AJB12.145
https://doi.org/10.5194/gmd-14-151-2021
https://doi.org/10.1016/j.geoderma.2011.07.001
https://doi.org/10.1016/j.geoderma.2011.07.001
https://doi.org/10.1016/j.geoderma.2010.03.002
https://doi.org/10.1016/0016-7061(95)92543-X
https://doi.org/10.1016/0016-7061(95)92543-X
https://doi.org/10.1371/journal.pone.0059475
https://doi.org/10.1016/S2095-3119(14)60819-4
https://doi.org/10.1016/S2095-3119(14)60819-4

	Predicting field capacity in undisturbed stony soils
	1 Introduction
	2 Materials and methods
	2.1 Soil data
	2.2 Statistical modelling
	2.3 An existing New Zealand PtF
	2.4 Comparing models

	3 Results and discussion
	3.1 Descriptive statistics
	3.2 Model structures and performance
	3.3 Is less more? predicting FC WC with field survey variables
	3.4 Do RFs affect prediction accuracy? a review of logit and logit2 performance
	3.5 How to calibrate the logit PtF to alluvial stony soils; identifying variables with predictive value
	3.6 Implications and future work

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Supplementary data
	References


